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Abstract 

Cells invest in an extensive network of factors to maintain protein homeostasis (proteostasis) 

and prevent the accumulation of potentially toxic protein aggregates. This proteostasis 

network (PN) comprises the machineries for the biogenesis, folding, conformational 

maintenance and degradation of proteins, with molecular chaperones as central 

coordinators. Here we review recent progress in understanding the modular architecture of 

the PN in mammalian cells and how it is modified during cell differentiation. We discuss the 

capacity and limitations of the PN in maintaining proteome integrity in the face of proteotoxic 

stresses, such as aggregate formation in neurodegenerative diseases. Finally, we outline 

various pharmacological interventions to ameliorate proteostasis imbalance.    
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Introduction 

Proteins are the most versatile macromolecules and are responsible for almost all cellular 

functions. An average human cell expresses approximately 10,000- 13,000 different protein 

species (Bekker-Jensen et al. 2017; Kulak et al. 2017), with copy numbers varying over 

several orders of magnitude, from a few molecules to tens of thousands. To maintain protein 

homeostasis, or proteostasis (Balchin et al. 2016), cells must ensure that these proteins fold 

and assemble correctly and exist in the right cellular locale at appropriate abundance.  

Most proteins must adopt a unique, thermodynamically stable three-dimensional 

structure, the functionally active state, that is determined by the amino acid sequence 

(Anfinsen 1973). Proteins must fold to this native state at biologically relevant timescales, a 

process that is increasingly well understood, at least for small model proteins that fold rapidly 

without detectable intermediate states (Dobson and Karplus 1999; Hartl and Hayer-Hartl 

2009). However, proteins with complex domain folds and multi-domain proteins, which make 

up the major part of the proteome, frequently populate folding intermediates that expose 

hydrophobic amino acid residues. These proteins are at risk of misfolding and aggregation 

within the highly crowded environment of the cell (Ellis and Minton 2006). Once folded, 

proteins must maintain their correct three-dimensional shape, which is complicated by the 

fact that functionality often requires considerable conformational flexibility. As a result, the 

folded states of many proteins are only marginally stable (or metastable) in the cellular 

milieu. Moreover, a considerable fraction of proteins (~30% in human cells) are either 

completely devoid of ordered structure (intrinsically disordered proteins; IDRs) or contain 

substantial unstructured regions (Dunker et al. 2008). These proteins typically only adopt 

folded structures upon binding to partner proteins, which emphasizes the importance of 

correct concentration and localization. Even natively structured proteins are constantly 

conformationally challenged in the face of a variety of endogenous and exogenous stresses. 

Proteins that fail to adopt or maintain their folded structure, for example due to mutation, as 

well as proteins which have served their function, must be removed by degradation to 

prevent deleterious consequences.  
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To maintain protein homeostasis and proper proteome balance, cells employ 

interconnected modules of factors collectively referred to as the proteostasis network (PN). 

This network comprises of cellular machineries for the biogenesis and degradation of 

proteins, with molecular chaperones as central coordinators mediating protein folding and 

conformational maintenance. Although early studies in yeast have enabled a basic 

understanding of the eukaryotic PN (Albanese et al. 2006; Finley et al. 2012), the PN in 

human cells is predicted to be far more complex (Klaips et al. 2018), owing to the diverse 

requirements of cell- and tissue- specific proteomes (Wilhelm et al. 2014; Uhlen et al. 2015). 

Loss of proteostasis is linked to ageing and several medical conditions associated 

with the formation of toxic protein aggregates, prominently including numerous 

neurodegenerative diseases like Alzheimer’s and Huntington’s disease, and other 

pathologies affecting many different cell types. The familial forms of these diseases have an 

underlying genetic cause in which mutations increase the likelihood of specific disease 

proteins to misfold and aggregate. Classic examples are forms of amyotrophic lateral 

sclerosis associated with mutations in superoxide dismutase and a group of disorders, 

including Huntington’s disease, that are caused by expanded polyglutamine tracts in 

otherwise unrelated proteins. Importantly, despite the presence of the respective mutation in 

all somatic tissues, most of these pathologies manifest in an age-dependent manner (age-

onset diseases), consistent with a decline in proteostasis capacity during aging being a 

critical risk factor (Taylor and Dillin 2011; Labbadia and Morimoto 2015; Higuchi-Sanabria et 

al. 2018). Moreover, in most cases specific cell types and tissues are exclusively or 

preferentially affected (Fu et al. 2018), suggesting an underlying heterogeneity between cell 

types in proteostasis capacity and the ability to respond to proteotoxic stress (Sala et al. 

2017).  

In this review we discuss recent progress in our understanding of the modular 

organization of the PN and its capacity to maintain proteome integrity in the face of stress 

conditions. Using the example of stem cells, we examine PN plasticity and rewiring during 

cell differentiation. We further discuss how the burden of toxic protein aggregates in disease 
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may cause proteostasis collapse. Finally, we outline various pharmacological interventions to 

ameliorate proteostasis imbalance as an attractive avenue towards therapeutic strategies for 

some proteinopathies.  

 

Organization of the Proteostasis Network 

Protein folding accuracy is fundamental to all cells. However, maintaining fidelity of protein 

synthesis and folding is confounded by the fact that the underlying genetic and biochemical 

systems are inherently error-prone, which leads to the constant production of a certain 

amount of misfolded proteins. This problem is further aggravated by genetic variation (single 

nucleotide polymorphisms) and the effects of environmental stress. The resulting aberrant 

proteins must be detected and degraded by the PN to prevent them from engaging in 

unwanted interactions and toxic protein aggregation. Chronic aggregate production can 

overwhelm the cellular capacity to maintain proteostasis and respond properly to proteotoxic 

stress (Olzscha et al. 2011; Roth et al. 2014). To maintain a balanced and healthy proteome, 

cells have evolved an integrated network of protein quality control factors (the PN) tending to 

the synthesis, folding, maintenance and timely turnover of proteins. For any given protein, 

the PN comprises all cellular factors required for folding upon synthesis and conformational 

maintenance at the correct location and appropriate concentration, and finally for controlled 

degradation once the protein has fulfilled its function or has undergone irreversible 

misfolding. 

In its simplest form the PN can be described by three major modules which govern 

each of these processes (Figure 1A and B): 1) protein synthesis; 2) folding and 

conformational maintenance by molecular chaperones and co-chaperones; and (3) protein 

degradation by the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal 

pathway (ALP). These three modular branches coordinately tune the health of the proteome 

with molecular chaperones being central to their interconnectivity. Besides PN components 

that are required generally, such as ribosomes, proteasomes and lysosomes, there is likely a 

requirement for ‘specific’ factors tailored to certain proteins (or sets of proteins) with distinct 
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properties. Additionally, proteostasis within organelles such as the endoplasmic reticulum 

(ER) and mitochondria requires specialized factors and chaperones for protein trafficking and 

folding (Hetz et al. 2015; Moehle et al. 2018). Due to this inherent complexity, the 

composition of the PN remains poorly defined. However, advances in understanding the 

functional annotation of components belonging to each individual module allows an 

estimation of a total size of ~2000 components in human cells (Klaips et al. 2018) (Figure 

1A). 

 

Protein Synthesis 

Cytosolic ribosomes and associated factors produce the bulk of the cellular proteome at an 

average rate of 5-6 amino acids per second (Ingolia et al. 2011), generating over a billion 

protein molecules per human cell (Milo 2013) with an average size of 560 amino acids (Wolff 

et al. 2014; Balchin et al. 2016). However, this process is error-prone with a misincorporation 

rate of 1 in 104 amino acids (Zaher and Green 2009). As a result, roughly 1 in 20 protein 

molecules contains a sequence error, potentially causing misfolding or reduced stability. 

Defective protein products can also arise due to posttranscriptional splicing errors or 

production of defective mRNA. For example, erroneous mRNA molecules that lack stop 

codons cause ribosome stalling during translation. In these cases the defective mRNAs are 

removed by cellular RNA surveillance pathways (Doma and Parker 2007; Isken and Maquat 

2007), and the translated nascent protein chain is degraded by the ribosome associated 

quality control (RQC) pathway (Brandman and Hegde 2016; Joazeiro 2017), which senses 

ribosome-stalled polypeptides and engages UPS components to degrade them. Failure of 

the RQC machinery leads to protein aggregation and proteotoxic stress (Choe et al. 2016; 

Yonashiro et al. 2016; Izawa et al. 2017), and to age-dependent neurodegeneration in a 

mouse model (Chu et al. 2009). tRNA availability may limit translation rates and result in 

protein aggregation, perhaps by increasing the likelihood of misreading or frameshifts, or by 

increasing the risk that nascent chains occupy non-productive folding intermediates 

(Nedialkova and Leidel 2015). Notably, the rate of protein synthesis is also dynamically 
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regulated in response to a variety of stimuli, both globally and in a protein-specific manner. 

During conditions of proteotoxic stress, a programmed decrease in protein synthesis 

(Spriggs et al. 2010) is initiated (Figure 1B) to alleviate the load of newly-synthesized 

proteins that must be folded by the PN. Upon conformational stress in the ER or activation of 

the integrated stress response, this is accomplished by phosphorylation of the translation 

initiation factor eIF2α (Pakos-Zebrucka et al. 2016; Karagöz et al. this vol.). 

 

Folding and Conformational Maintenance  

As shown recently, some small proteins can undergo partial or complete folding within the 

exit tunnel of the ribosome (Holtkamp et al. 2015; Nilsson et al. 2015). However, for the 

majority of larger proteins, folding is thought to begin once a chain segment sufficient to 

specify a cooperatively folding domain has emerged from the ribosome, followed by 

completion of folding upon chain release (Balchin et al. 2016). Multi-domain proteins may 

fold their domains co-translationally in a sequential manner, thereby reducing the problem of 

folding a large protein to the folding of smaller modules (Kim et al. 2013).  

Both co- and post-translational folding is assisted by molecular chaperones (Figure 

1B), which prevent or reverse misfolding events and favor productive folding pathways. 

Molecular chaperones are defined as factors which assist in the folding (and often assembly) 

of another protein without being part of its final structure (Hartl 1996).  

The human genome encodes ~332 chaperones and co-chaperones (referred to as 

the ‘chaperome’) (Brehme et al. 2014) (Figure 1A). Chaperones are broadly grouped by 

molecular weight and many are classified as heat shock proteins (Hsp), due to their induction 

upon exposure of cells to elevated temperature and other forms of proteome stress. The 

main classes of chaperones (88 proteins) include the ATP-dependent Hsp70s, Hsp90s, 

Hsp60s (also called chaperonins) and Hsp100s, and the ATP-independent small heat shock 

proteins (sHsps). They are assisted by regulatory co-chaperones (244 proteins) that further 

impart substrate specificity and selectivity. The major groups of co-chaperones are the 
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Hsp40s (49 proteins), as regulators of the Hsp70s, and the tetratricopeptide repeat proteins 

(TPR) (114), as regulators of the Hsp90 system (Table 1). 

Chaperones serve as the main conductors of proteostasis by directly influencing the 

‘foldedness’ of the proteome. They typically do so by binding to hydrophobic polypeptide 

segments that are exposed by non-native proteins but are buried in the native state, thus 

preventing aggregation and maintaining the polypeptide in a folding-competent state. The 

ATP-dependent chaperones (Hsp70, Hsp90, chaperonins) promote folding through ATP-

regulated cycles of binding and release during which the client protein reaches its final 

structure, sometimes through an accelerated folding pathway (Hartl et al. 2011; Balchin et al. 

2016). In some cases, proteins are altogether unable to fold without the aid of chaperones, 

defining the limit of the Anfinsen dogma. One such case is the cytoskeletal protein actin 

(Balchin et al. 2018). 

Chaperones act in the folding of newly-synthesized polypeptides either in association 

with the ribosome (e.g. the mammalian ribosome associated complex RAC and specialized 

Hsp70s (HSP70L1) (Preissler and Deuerling 2012; Kramer et al. 2018) or downstream of the 

ribosome upon polypeptide release, such as the classical Hsp70s, Hsp90s and the 

TRiC/CCT chaperonin (Figure 1B). TRiC (and the chaperonins in mitochondria, Hsp60, and 

bacteria, GroEL) are large ~1 MDa double-ring complexes that transiently enclose a single 

molecule of unfolded substrate protein in a cage-like structure, allowing folding to occur 

unimpaired by aggregation (Balchin et al. 2016; Hayer-Hartl et al. 2016). The ATP-

independent sHsps function as ‘holdases’ in stabilizing proteins against aggregation or in 

shielding the surfaces of aggregates (Carra et al. 2017).  

Molecular chaperones cooperate in cellular folding pathways, as shown for the 

bacterial and eukaryotic cytosol and in other systems (Langer et al. 1992; Frydman et al. 

1994; Frydman 2001). Indeed, different chaperones interact to form modules and functional 

supercomplexes (Rizzolo et al. 2017). Specific chaperone pathways for the diverse array of 

protein clients can be perceived as a sequential percolator: proteins that fold rapidly upon 

interaction with upstream chaperones, like the Hsp70s, would not require more specialized 
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downstream chaperones, whereas proteins that fail to fold with the upstream chaperones will 

filter down to Hsp90 or the chaperonin to attain their folded functional state (Hartl 1996). 

Quantitative analyses of client proteins for specific chaperones in simpler model 

systems like E. coli (Kerner et al. 2005; Oh et al. 2011; Calloni et al. 2012) have revealed 

features of client flux through the bacterial chaperone network. Similar studies in S. 

cerevisiae have yielded a systems view of the eukaryotic chaperone network (Zhao et al. 

2005; Gong et al. 2009; Willmund et al. 2013). Chaperone-dependent proteins are frequently 

larger than average, containing multiple domains or domains with complex fold topologies, 

typically characterized by many long-range interactions. Salient features of the eukaryotic 

chaperone network have emerged from systematic mapping of the interactions of 

chaperones and co-chaperone with their clients. It has been shown for yeast cells that the 

‘chaperome’ can be divided into components that are mainly devoted to the folding of newly-

synthesized proteins and components that function in conformational maintenance (Albanese 

et al. 2006). The former include the ribosome-binding chaperones that are not stress-

inducible, whereas the latter include the classic stress-inducible chaperones.  

In humans and other mammals the chaperome has expanded to match the needs of 

a larger and more complex proteome (Powers and Balch 2013). While the PN of human cells 

has not yet been comprehensively characterized, recent studies focused on the substrate 

interactome of Hsp90, a chaperone system thought to be specifically devoted to kinases and 

other signaling proteins (Mymrikov et al. 2017). In an initial survey of ~2000 candidates 

comprising kinases, transcription factors (TFs) and E3 ligases, 200 of 355 kinases and ~120 

of 426 ubiquitin E3 ligases analyzed were found to utilize Hsp90 for folding or conformational 

regulation, while TFs showed no such preference (50 Hsp90 substrates among 1100 TFs 

tested) (Taipale et al. 2012). The finding that E3 ligases are clients of the folding machinery 

further emphasizes the interconnectivity of the folding and degradation modules of the PN. A 

more comprehensive investigation (Taipale et al. 2014) including ~70 chaperones, co-

chaperones and protein quality control factors revealed a hierarchical organization of the 

chaperone network centered on the interconnected Hsp70 and Hsp90 chaperone systems. 



10 
 

More recently, an integrated chaperone network that supports cell survival was observed in 

cancer cells to be essential for tumor maintenance. This complex called the ‘epichaperome’ 

(Rodina et al. 2016) is formed by an enhanced physical interaction of the Hsp70 and Hsp90 

machineries along with their co-chaperones. 

A key question regarding chaperone networks is how client flux is redirected when 

one chaperone system is overwhelmed. Similar to findings in bacterial cells where mutual 

compensation among chaperone systems is observed (Deuerling et al. 1999; Teter et al. 

1999; Calloni et al. 2012), inhibition of Hsp90 in human cells promoted client binding to 

Hsc70, the constitutively expressed Hsp70 (Taipale et al. 2014). Among the BAG family co-

chaperones, which function as nucleotide exchange factors of Hsp70, only BAG2 proved to 

have a client range similar to Hsc70, suggesting that it is a general co-factor involved in the 

folding pathway of Hsc70 substrate proteins. The interaction spectrum of Hsc70 also 

correlates with that of the E3 ligase CHIP (carboxy-terminus of Hsp70-interacting protein), 

again pointing to a functional co-operation between chaperones and the UPS (Esser et al. 

2004; Kundrat and Regan 2010).  While these studies have provided initial insights into how 

substrate proteins are distributed within the chaperome, it remains to be established how 

exactly client specificity and selectivity is achieved. Within the Hsp70 system, the Hsp40 

cofactors (~50 different proteins in human) play a central role in this process (Kampinga and 

Craig 2010) (Table 1). 

While the majority of chaperone systems function to prevent protein aggregation, 

certain chaperones are specialized to act as “disaggregases” and actively dissolve protein 

aggregates (Mogk et al. 2018) (Figure 1B). A well-studied example is yeast Hsp104, which 

performs disaggregation in an ATP-driven manner (Parsell et al. 1994) in cooperation with 

Hsp70 and Hsp40 (Mogk et al. 2015). In metazoans, which lack Hsp104, disaggregation of 

stress induced aggregates is enabled by Hsp70 in cooperation with Hsp110 (a Hsp70-like 

protein that functions as nucleotide exchange factor for Hsp70), Hsp40s and sHsps 

(Nillegoda et al. 2015; Zwirowski et al. 2017).  
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Protein Degradation 

The steady-state concentration of proteins is the result of a balance between protein 

synthesis and degradation. Cells are equipped with efficient protein degradation machineries 

which recycle proteins once they are no longer needed and remove misfolded proteins in 

order to prevent the formation of potentially toxic aggregates. Eukaryotic cells employ two 

main degradation machineries, the UPS and the autophagy lysosomal pathway (ALP) 

(Forster et al. 2013; Cohen-Kaplan et al. 2016; Dikic 2017; Varshavsky 2017). The UPS 

serves as the major pathway of protein degradation and is responsible for ~80% of protein 

turnover (Zhao et al. 2015; Collins and Goldberg 2017). Central to the UPS is the 26S 

proteasome, a large multisubunit protease complex (Forster et al. 2013; Livneh et al. 2016). 

The 26S proteasome recognizes substrates after their covalent modification with the small 

protein ubiquitin. Ubiquitylation of target proteins is a highly regulated process that is 

catalyzed in an ATP dependent manner by a cascade of ubiquitin activating enzymes (E1), 

ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3) (Finley 2009; Zheng and 

Shabek 2017). Of the ~2000 PN components, the UPS constitutes the largest group with 

~850 proteins (Klaips et al. 2018), ~600 of which are E3 ligases (Li et al. 2008) (Figure 1A). 

The catalytic sites of the proteasome are buried within the central cavity of the 20S catalytic 

unit, and can only be accessed if the protein substrate is able to pass a narrow entrance into 

the catalytic core. To achieve this passage, most proteins need to be unfolded in an ATP-

dependent reaction catalyzed by the 19S regulatory particle that caps the 20S core 

(Bhattacharyya et al. 2014). Recent cryoelectron microscopy analyses of the proteasome 

with substrate protein engaged provide mechanistic insight into this complex process (Beck 

et al. 2012; de la Pena et al. 2018; Dong et al. 2019). Owing to the requirement for substrate 

unfolding, the proteasome is unable to degrade aggregated proteins directly, and 

disaggregation by chaperone machinery is a prerequisite. More generally, chaperones 

function to stabilize misfolded proteins in a non-aggregated state competent for ubiquitin 

tagging and delivery to the proteasome (Esser et al. 2004). A chaperone-bound protein may 

be triaged for degradation by ubiquitylation when (re)folding is unsuccessful, resulting in a 
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prolonged chaperone residence time. The E3 ligase CHIP interacts directly with Hsp70 to 

ubiquitylate chaperone-bound proteins. Up to a certain point this modification may still be 

reversed by ubiquitin hydrolases (Mevissen and Komander 2017). How these opposing 

reactions are fine-tuned is central to understanding the mechanisms of protein quality 

control. 

Despite the presence of the UPS, protein misfolding nevertheless leads to the 

formation of insoluble aggregates and larger inclusions, especially under stress conditions. In 

contrast to the UPS, autophagy coupled to lysosomal degradation has the capacity to directly 

remove such aggregates (Figure 1B). In this process, aggregates or fragments thereof are 

engulfed by double-membrane structures (autophagosomes), which then fuse with the 

lysosome (Galluzzi et al. 2017). While the core machinery of autophagy consists of only 17 

proteins (Dikic 2017), the ALP system including accessory factors comprises a total of ~500 

components (Garcia-Prat et al. 2016). Aggregated proteins accumulate in ubiquitin positive 

deposits to which the autophagic machinery is recruited by chaperones in a process known 

as chaperone-assisted selective autophagy (CASA) (Carra et al. 2008; Gamerdinger et al. 

2009; Arndt et al. 2010). Under basal conditions in mammalian cells, soluble proteins can 

also be degraded by a specific form of autophagy called chaperone-mediated-autophagy 

(CMA), which involves substrate recognition and unfolding by Hsc70 and direct lysosomal 

translocation by binding to the lysosomal receptor LAMP2A, without the need for 

autophagosome formation (Kaushik and Cuervo 2018) (Figure 1B). While both the UPS and 

the ALP display a certain degree of specificity regarding their range and diversity of 

substrates, they are functionally interconnected and often compensate one another under 

conditions where one pathway is saturated or malfunctional (Suraweera et al. 2012; Zhang et 

al. 2016; Dikic 2017) – another reflection of the network character of the PN.   

 

Stress Response Pathways  

Many natively folded proteins are metastable under normal cellular growth conditions (i.e. 

they reside at the limit of thermodynamic stability or contain substantial IDRs). Exposing cells 



13 
 

to proteome stress, such as heat stress, then results in (partial) protein unfolding and 

possible aggregation. To deal with such stress situations, cells have evolved compartment-

specific transcriptional stress response pathways (Figure 2), prominently including the 

cytosolic heat stress response (HSR) (Morimoto 2011) and the unfolded protein response 

pathways of the ER (UPRER) (Walter and Ron 2011; Karagöz et al. this vol.) and 

mitochondria (UPRMito) (Melber and Haynes 2018; Naresh and Haynes, this vol.).  

Activation of the HSR leads to the induction of molecular chaperones (Hsps) and 

other quality control components, which act to prevent protein aggregation and mediate 

protein refolding or degradation via the UPS (Richter et al. 2010). The selective induction of 

molecular chaperones is accompanied by a global decrease in protein synthesis, particularly 

through attenuation of translational elongation (Liu et al. 2013; Shalgi et al. 2013), thus 

reducing the burden on the folding machinery and making proteostasis capacity available for 

conformational maintenance and clearance of misfolded proteins (Figure 2). Induction of the 

HSR is not limited to acute abiotic stresses such as heat or a change in pH, but is also 

mediated by other proteotoxic insults, such as the expression of certain misfolding mutant 

proteins at normal cellular growth temperatures (Geiler-Samerotte et al. 2011). 

The eukaryotic HSR is mediated by heat shock factor 1 (HSF1) as the master 

transcription factor (Vabulas et al. 2010; Anckar and Sistonen 2011). Under normal 

conditions, HSF1 exists as a monomer bound by chaperones (Zou et al. 1998; Neef et al. 

2014; Zheng et al. 2016). While HSF1 controls the expression of thousands of genes, its key 

function under conditions of proteotoxic stress is the tight regulation of a small set of 

chaperone genes (Mahat et al. 2016; Solis et al. 2016). The current model of the HSR posits 

that production of misfolded proteins under conditions of stress titrates away the chaperones 

bound to HSF1, which allows HSF1 to trimerize and become transcriptionally active. The 

resulting increase in chaperone levels provides a negative feedback loop that deactivates 

HSF1 once a sufficient amount of free chaperones is restored (Krakowiak et al. 2018). 

Additional mechanisms of attenuation of the HSR include HSF1 degradation and cycles of 

acetylation and deacetylation (Westerheide et al. 2009; Raychaudhuri et al. 2014). 
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While it is unclear what fraction of the mammalian proteome denatures and misfolds 

during heat stress (Wallace et al. 2015), the level of ubiquitylated proteins rapidly increases 

in stressed cells (Fujimuro et al. 1997), suggesting that degradation of misfolded proteins via 

the UPS is critical in reestablishing proteome balance (Parag et al. 1987). Nascent 

polypeptides synthesized prior to heat stress, possibly still bound to ribosomes in unfolded 

states, are thought to represent the major vulnerable fraction of the proteome that is targeted 

for degradation (Medicherla and Goldberg 2008; Xu et al. 2016). A comprehensive genome-

wide deletion screen for induction of the HSR in yeast (Brandman et al. 2012) under non-

stress conditions revealed an enrichment of individual chaperones and members of the UPS 

among other inducers, pointing to a strong cross-talk between the two PN modules. Future 

genome-wide efforts to study proteostasis in mammalian cells will be facilitated by the advent 

of pooled CRISPR screens (Shalem et al. 2014) and haploid genetic screens (Brockmann et 

al. 2017). While protein degradation via the UPS has been classically associated with the 

HSR, studies in the nematode C. elegans (Kumsta et al. 2017) and in mammalian cells 

(Watanabe et al. 2017) demonstrated a direct link between the HSR and autophagy, thus 

providing further evidence for a highly interconnected PN with modular flexibility. 

 

The Proteostasis Network in Cell Differentiation 

All existing tissues and cell types within the human body are a result of well-defined 

programs of stem cell division and differentiation. While embryonic stem cells (ESCs) 

represent the reservoir of pluripotent cells and thus shape development early in life, postnatal 

maintenance of tissue homeostasis is conducted by specialized multi-potent adult stem cells 

(e.g. neuronal stem cells and satellite stem cells in muscles) within their respective niches. 

Regardless of their origins, stem cells must continuously replenish their numbers via 

asymmetric cell division (segregating cell fate determinants into only one of the two daughter 

cells) (Knoblich 2008), while maintaining a damage-free proteome. At the same time, they 

have to remodel their proteomes as they differentiate into various fates, which emphasizes 

the importance of proteostasis control and PN rewiring in development (Vilchez et al. 2014). 
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Stem cells are thought to have a higher proteostasis capacity than differentiated cells. 

Lower rates of protein synthesis in adult hematopoietic, neural, epidermal and muscle stem 

cells (Signer et al. 2014; Llorens-Bobadilla et al. 2015; Blanco et al. 2016; Zismanov et al. 

2016) presumably result in a reduced burden on the folding module of the PN. In contrast, 

ESCs tend to have higher translational rates (Ingolia et al. 2011; You et al. 2015). This 

difference can be attributed to the higher proliferative activity of ESCs (Garcia-Prat et al. 

2017). Important differences have also been noted in the composition of the stem cell 

chaperome (Figure 3A and B). ESCs have higher levels of a subset of chaperones, such as 

the chaperonin TRiC/CCT, which decreases as cells differentiate into neuronal progenitors 

and neurons (Noormohammadi et al. 2016). The high demand for TRiC/CCT may be related 

to the folding requirements of actin (Yam et al. 2008; Balchin et al. 2018), which is 

increasingly needed in proliferating ESCs for cytoskeletal synthesis and integrity. Mouse 

ESCs have also been found to have increased levels of stress inducible cytosolic Hsp70 

(HSPA1), a strong target of HSF1 (Saretzki et al. 2004; Saretzki et al. 2008). Hsp70 levels 

decrease as the cells differentiate, which may point to a dampened stress response. Indeed, 

neural differentiation from progenitor cells results in a marked reduction of HSR inducibility 

(Yang et al. 2008) (Figure 3A), suggesting that neurons may inherently be more vulnerable to 

proteome stress. It remains to be seen, whether this is generally true for other differentiated 

tissues. 

Stem cells are also equipped with enhanced protein degradation capacity, 

presumably allowing for the effective removal of misfolded proteins. Studies in ESCs 

demonstrated higher levels of proteasome activity associated with an increase of the 19S 

regulatory subunit PSMD11, which is limiting for 26S proteasome assembly (Vilchez et al. 

2012). Proteasome activity decreased during differentiation into several lineages.  

An extreme case of PN rewiring and proteome remodeling is the recently described 

mechanism of terminal differentiation of reticulocytes into erythrocytes (red blood cells) within 

the hematopoietic lineage (Nguyen et al. 2017). Erythrocytes are unique cells whose 

proteome is composed to almost 98% of a single protein – hemoglobin. As reticulocytes 
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differentiate into erythrocytes, most of their proteome is degraded and replaced by 

hemoglobin. Surprisingly, the determinant of such a global process is a single E2-E3 hybrid 

ligase, UBE2O, which encodes activities for multiple components of a quality control pathway 

– substrate recognition (in lieu of a chaperone), ubiquitin transfer (E2) and ubiquitin 

conjugation (E3). UBE2O was also found to be responsible for the removal of ribosomal 

proteins via the proteasome, a hallmark of erythrocyte development. UBE2O also clears 

unassembled globin chains, thus serving as an essential quality control factor during this 

transition (Yanagitani et al. 2017). This unique process exemplifies extensive rewiring of PN 

modules. 

 

Ameliorating Proteinopathies  

PN deregulation and decline during aging has been recognized as a major driver of many 

proteinopathies, especially affecting the more vulnerable populations of postmitotic neuronal 

cells (Dillin and Cohen 2011; Gidalevitz et al. 2011; Morimoto, this vol.). These age-onset 

pathologies include Alzheimer’s, Parkinson’s and Huntington’s diseases, as well as 

amyotrophic lateral sclerosis and other pathologies. All these disorders are characterized by 

the formation of soluble, oligomeric and insoluble, fibrillar aggregates that exert cytotoxic 

effects (Chiti and Dobson 2017; Iadanza et al. 2018). Of particular importance in 

understanding the progressive nature of these diseases is that the aggregates subvert the 

function of the PN at several levels, for example by sequestering critical chaperone 

components and degradation machinery into aggregate inclusions (Rubinsztein 2006; Park 

et al. 2013; Yu et al. 2014; Guo et al. 2018; Thibaudeau et al. 2018), by overburdening the 

UPS (Bence et al. 2001; Bennett et al. 2007; Hipp et al. 2012), and by reducing the cellular 

capacity to respond to additional stresses (Labbadia et al. 2011; Olzscha et al. 2011; Roth et 

al. 2014). As a result, affected cells gradually lose the ability to cope with misfolding proteins, 

which in turn increases aggregate burden, setting in motion a vicious cycle that ends in 

proteostasis collapse and cell death (Hipp et al. 2014). 
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Since the PN is inherently modular and adaptable to stress, exploring ways to boost 

proteostasis could provide therapeutically viable options to decrease disease severity and 

slow progression (Balch et al. 2008; Powers et al. 2009; Hipp et al. 2014). Evidence has 

been provided that molecular chaperones, especially Hsp70 and Hsp40, can prevent 

formation of amyloid fibers (Muchowski et al. 2000) or disaggregate them (Gao et al. 2015), 

demonstrating the potential of modulating the PN to combat proteinopathies in vivo. 

Accordingly, pharmacological induction or genetic overexpression of molecular chaperones 

has been shown to prevent aggregation in cellular (Sittler et al. 2001) and animal models 

(Labbadia et al. 2012; Kakkar et al. 2016; Nagy et al. 2016; Scior et al. 2018).  

While boosting chaperone activities has shown promise, tuning the other PN modules 

may also enhance proteostasis capacity. Small molecule based modulation of the UPS (Lee 

et al. 2010; Leestemaker et al. 2017) and autophagy (Sarkar et al. 2009; Barmada et al. 

2014; Kuo et al. 2015) augments clearance of protein aggregates and improves cellular 

health. Furthermore, stress responses to protein misfolding often culminate in translational 

attenuation to reduce downstream burden on the folding and degradation arm of the PN 

(Figure 2). Reducing the level of newly-synthesized proteins is therefore another promising 

approach to combat protein misfolding. Indeed, the pharmacologic prolongation of stress-

induced translational attenuation has been shown to be beneficial in protein misfolding 

disorders (Tsaytler et al. 2011; Das et al. 2015).  

 

Concluding Remarks 

Maintenance of proteostasis is central to cellular health, and its impairment is causally linked 

to neurodegenerative proteinopathies and numerous other pathologies. Advances over the 

past two decades have laid the foundation for our understanding of the architecture of the 

proteostasis network. The modular and adaptive nature of the PN enables cells to handle 

changing proteomic requirements during cellular development and endure adverse 

conditions brought about by various endogenous and environmental stresses. Although we 

currently have only a bird’s eye view of how the PN is organized and how many components 
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may be involved in proteostasis maintenance, future studies will hopefully tease apart the 

complex and specific PN connectivities in tissues that are particularly vulnerable to 

proteostasis collapse. Progress resulting from such studies will be especially relevant in 

developing urgently needed treatments for the group of neurodegenerative proteinopathies. 

Protein misfolding and aggregation in these diseases results in a gain of function toxicity 

which eventually overwhelms the capacity of the PN to maintain proteostasis. Enhancing 

proteostasis capacity through modular tuning of the PN offers viable strategies for 

therapeutic intervention. 
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Table 1. Chaperone classification in human cells (from Brehme et al. 2014) 

Chaperone class Number of genes 

HSP40 49 

HSP60 15 

HSP70 27 

HSP90 46 

HSP100 14 

sHSP 10 

TPR 114 

Others (prefoldin, calnexin, oxidoreductases, prohibitin) 57 
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Figure legends 

Figure 1. Architecture of the proteostasis network (PN). 

A. The three modules of the PN (outer ring) – synthesis (blue – 274 factors), folding and 

conformational maintenance (green – 332 factors) and degradation (brown – 1382 factors). 

The inner pie chart shows the partitioning of each module into essential (hatched sectors – 

synthesis (203/274), folding (78/332) and degradation (178/1382)) and nonessential 

components (filled sectors).    

B. Central role of molecular chaperones in the PN. The nascent polypeptide chain emerging 

from the ribosomal tunnel is prevented from misfolding and aggregation by chaperones, 

including components that bind to the ribosome (Trigger factor in bacteria, Nascent chain 

associated complex (NAC) and ribosome associated complex (RAC) in eukarya). A second 

tier of chaperones (Hsp70, Hsp90, chaperonins) does not interact with the ribosome directly 

and mediate co- or post-translational folding. Proteins that misfold due to mutations or under 

conditions of stress are selectively degraded either by the ubiquitin proteasome system 

(UPS) or by chaperone-mediated autophagy (CMA) and chaperone-mediated selective 

autophagy (CASA). Misfolded proteins may aggregate to soluble oligomers, amorphous 

aggregates or amyloid fibrils when basal chaperone and degradation capacity is exceeded. 

Aggregates may be sequestered into insoluble inclusions, which may be dissociated into 

fragments by specialized chaperones (Hsp104 in yeast, Hsp70/Hsp40/Hsp110 in metazoans) 

for subsequent clearance by the autophagy/lysosomal pathway (APL).  

 

Figure 2. Proteostasis capacity and stress responses. 

During proteotoxic stress in different cellular compartments, proteostasis capacity is adjusted 

to meet increased cellular requirements. Global translational attenuation (1) reduces the 

burden on the folding machineries to free chaperone capacities for assistance in clearance of 

misfolded and aggregated species (2). Concomitantly, transcriptional stress responses 
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pathways are activated (3) to increase chaperone pools available for folding and 

degradation.  

 

Figure 3. Proteostasis network rewiring and decline in proteostasis capacity during cell 

differentiation. 

A. Human embryonic stem cells (hESC) have a higher proteostasis capacity as compared to 

differentiated cells, such as neurons. As hESC differentiate to neurons, the chaperonins 

(cytosolic TRiC/CCT and mitochondrial Hsp60) decrease in abundance and there is a 

general decline in degradation capacity. Additionally, differentiated neurons are less efficient 

in mounting a stress response in comparison to their progenitors and stem cells.  

B. Chaperome trajectories during neuronal differentiation of hESC (332 proteins analyzed). 

The chaperome landscape changes in abundance (indicated as log2 fold change) sampled 

on each day as hESC are differentiated into neurons. Chaperones can increase (left), 

decrease (middle) or remain unchanged in abundance (right) during this process. Prominent 

examples of each cluster are shown (BAG1/BAG3, regulators of Hsp70/Hsc70; CRYAB, a-

crystallin B chain; TRiC, cytosolic chaperonin; HSPD1, mitochondrial Hsp60; HSPA1, Hsp70; 

DNAJB1, Hsp40 regulator of Hsp70/Hsc70; HSPA8, Hsc70). Data for time dependent 

changes in chaperone abundance values were derived from Sequence Read Archive (SRA) 

accession number GSE86985 (Yao et al. 2017). TPM (transcripts per million) values were 

directly used to calculate clustering of chaperone trajectories using the fuzzy c-means 

algorithm Mfuzz (Kumar and Futschik 2007) with ‘m’ values set at 2 and a minimum 

membership cutoff of 0.8. The gradient from red to blue indicates high to low membership 

scores.    
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