
Chapter 12

Ancestral Population Genomics

Julien Y. Dutheil and Asger Hobolth

Abstract

The full genomes of several closely related species are now available, opening an emerging field of
investigation borrowing both from population genetics and phylogenetics. Providing we can properly
model sequence evolution within populations undergoing speciation events, this resource enables us to
estimate key population genetics parameters, such as ancestral population sizes and split times. Further-
more, we can enhance our understanding of the recombination process and investigate various selective
forces. We discuss the basic speciation models for closely related species, including the isolation and
isolation-with-migration models. A major point in our discussion is that only a few complete genomes
contain much information about the whole population. The reason being that recombination unlinks
genomic regions, and therefore a few genomes contain many segments with distinct histories. The
challenge of population genomics is to decode this mosaic of histories in order to infer scenarios of
demography and selection. We survey different approaches for understanding ancestral species from
analyses of genomic data from closely related species. In particular, we emphasize core assumptions and
working hypothesis. Finally, we discuss computational and statistical challenges that arise in the analysis of
population genomics data sets.

Key words: Coalescence, Demography, Selection, Divergence, Speciation, Markov model, Ancestral
population

1. Introduction

We are on the edge of the population genomics era, but themajority
of population genomics data sets, such as the 1000 human genomes
project (1) and the 1001 arabidopsis genomes project (2), are still in
the production stage. The current data available consists of align-
ments of fully sequenced and closely related genomes. In some
cases, the genomes are consensus genomes obtained by pooling
sequences from several individuals. Under these conditions, the
recent history of species is not available to the investigator (although
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in some cases information is available from heterozygous positions
(3)). By comparing genomes from closely related species, we can,
however, obtain information about split times, ancestral population
sizes, ancestral recombination events, and selection in ancestral
species (see Fig. 1). In this chapter, we discuss various models for
obtaining this information.

Comparing homologous sequences available for a given locus
to infer their degree of relatedness enables the discovery of the
parental relationships of the sequences, depicted as a tree thereby
named genealogy. When one sequence sampled from one individual
of one species is compared with the ones taken from other species,
the resulting genealogy contains information about the history of
species, the so-called phylogeny. The phylogeny summarizes the
relationship and the divergence times between the species.

Conversely, when sequences from several individuals within a
species are sampled, we have access to the genetic variation in
contemporary populations. The evolutionary forces that shape
genetic variation within a species are genetic drift, mutation,
recombination, and selection and is the subject of population
genetics. The key modeling tool in population genetics is coales-
cent theory. Classical coalescent theory describes the genetic ances-
try of a sample of homologous DNA sequences from the same
species. This genealogical description includes times to common
ancestry, which is measured back into the past.

Molecular phylogenetics and population genetics have accu-
mulated 30 years of specific methodological developments. The
convergence of these two fields and their key mathematical tools
is needed in order to fully understand genomic sequence align-
ments because comparing genealogies and phylogenies is at the
heart of the study of the speciation process (4).

We describe the interplay between population genetics and
phylogenetics by reviewing the methods and models that have

Species 1 Species 2

Ancestor

Speciation

Position along genome

Divergence time

Recombination event

Fig. 1. Left: Isolation model of two species. Right: The coalescent process along the genomes of the two species. By
comparing the two genomes, we obtain information about the split time of the species and the ancestral population size.
Furthermore, the break points along the genomes correspond to recombination events, so we also have information about
the recombination process.
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been developed to understand evolutionary history from genomic
data (see Table 1 for a comparative summary of all methods).

2. Coalescent
Theory and
Speciation

We start by describing the standard coalescent model within one
population. The coalescent model describes the shape of the gene-
alogy of several sequences sampled from a single population. For
more information on the coalescent, we refer to refs. 5 and 6. In
subsequent sections, we extend the standard model to include two
or more populations. In the cases where multiple populations are
present, we describe both the isolation model and the isolation-
with-migration (IM) model.

2.1. The Standard

Coalescent Model

The standard coalescent model is a continuous-time approximation
of the neutral Wright–Fisher model. In the Wright–Fisher model,
the number of chromosomes 2N (we consider diploid organisms) is
fixed in each nonoverlapping generation. Each chromosome in a
new generation chooses its ancestor uniformly at random from the
previous generation.

Consider two chromosomes. The probability of the two chro-
mosomes choosing the same ancestor is 1/(2N) and the probability
of the two chromosomes not finding a common ancestor is 1 � 1 /
(2N). Let R2 denote the number of generations back in time when
the two individuals find amost recent common ancestor (MRCA). By
repeating the argument above, the probability of the two chromo-
somes not finding a common ancestor r generations back in time is

PðR2>rÞ ¼ 1� 1

2N

� �r
:

If we scale time t in units of 2N, i.e., set r ¼ 2Nt, we get

PðR2>rÞ ¼ 1� 1

2N

� �r
¼ 1� 1

2N

� �2Nt

� e�t ;

where the approximation is valid for large N. In coalescent time
units, the waiting time T2 ¼ R2 / (2N) before coalescent of two
individuals is, therefore, exponentially distributed with mean one.

These considerations can be extended to multiple individuals.
In general, the time Tn before two of n individuals coalesce is

exponentially distributed with rate
n
2

� �
.

The waiting time Wn for a sample of n individuals to find the
MRCA is given by

Wn ¼ Tn þ Tn�1 þ � � � þ T2;
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where Tk are independent exponential random variables with

parameter
k
2

� �
; see Fig. 2 for an illustration.

It follows that the mean of Wn is

EWn ¼
Xn
k¼2

ETk ¼
Xn
k¼2

2

kðk � 1Þ ¼ 2
Xn
k¼2

1

k � 1
� 1

k

� �
¼ 2 1� 1

n

� �
:

Note that EWn " 2 for n ! 1.
The variance of Wn is

Var½Wn� ¼
Xn
k¼2

VarTk

¼
Xn
k¼2

k
2

� ��2

¼ 8
Xn�1

k¼1

1

k2
� 4 1� 1

n

� �
3þ 1

n

� �
:

Note that VarWn " (8p2 / 6 � 12) ¼ 1.16 for n ! 1.
The consequences of these calculations are that when we only

sample within a population we are limited to relatively recent
events. The expected time for a large sample to find its MRCA is
approximately 2(2N) ¼ 4N generations with standard deviationffiffiffiffiffiffiffiffiffiffi
1:16

p � ð2N Þ ¼ 2:15N generations. As a consequence, a neutral
sample within a population contains little information beyond 6N
generations.

Humans have a generation time of approximately 20 years and
an effective population size of approximately N ¼ 10,000, and
therefore 6N generations correspond to approximately 1.2 million
years (My) for humans. Therefore, human diversity at neutral loci
contains little demographic information beyond 1.2 My.

T2

W5

T3

T4

T5

Fig. 2. Illustration of the coalescent process. The waiting time before two out of n
individuals coalesce is Tn and the time before a sample of n individuals find common
ancestry is Wn.
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2.2. Adding Mutations

to the Standard

Coalescent Model

Now, suppose mutations occur at a rate u per locus per generation.
In a lineage of r generations, we then expect rumutations or in the
coalescent time units with r ¼ 2Nt we expect 2Ntu mutations. We
let y ¼ 4Nu be the mutation rate parameter. Since u is small, we
can make a Poisson approximation of the Binomial number of
mutations in a lineage of r generations

Binðr;uÞ ¼ Binð2Nt ; y=ð2� 2N ÞÞ � Poisðty=2Þ:
We have, thus, arrived at the following two-step process for

generating samples under the coalescent: (a) generate the geneal-
ogy by merging lineages uniformly at random and with waiting

times exponentially distributed with rate
n
2

� �
when n lineages are

present; (b) on each lineage in the tree, add mutations according to
a Poisson process with rate y/2.

Another possibility is to scale the coalescent process such that
one mutation is expected in one time unit. In this case, the expo-

nentially distributed waiting times in (a) have rate
n
2

� �
ð2=yÞ, and

in (b) the mutations are added with unit rate. We use the latter
version of the coalescent-with-mutations process below.

2.3. Taking

Recombination

into Account

For species where recombination occurs, different parts of the
genome come from distinct ancestors, and therefore have a distinct
history. Figure 3 exemplifies this phenomenon for two species.
It displays the genealogical relationships for two sequences which
underwent a single recombination event. In the presence of recom-
bination, each position of a genome alignment therefore has a
specific genealogy, and close positions are more likely to share the
same one (recall Fig. 1). The genome alignment can, therefore,
be described as an ordered series of genealogies, spanning a variable
amount of sites, and then changing because of a recombination
event (4). A single genome, thus, contains different samples

1 2 3 4 1 2 3 4 1 32 4

a b c

Fig. 3. Ancestral recombination graph for two species, (a) genealogy of four sampled sequences from two species.
The bold line shows the divergence of two sequences of interest, (b) a single recombination event happened between
the lineages of sequences 3 and 4 (horizontal line) so that in a part of the sequences the genealogy is as depicted by the
bold line and therefore displays an older divergence, (c) the corresponding ancestral recombination graph. Dotted lines
show the portions of lineages which are not present in the sample composed of sequences 1 and 3. When going backward
in time, a split corresponds to a recombination event and a merger is a coalescence event.
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from the distribution of the age of the MRCA, and the distribution
contains information about the ancestral population size and
speciation time.

3. Models of
Speciation

In this section, we extend the standard coalescent model. We
consider coalescent models with multiple species and introduce
population splits or speciation events. The models that we describe
are shown in Fig. 4 (see also Table 1) and include (a) the two-
species isolationmodel; (b) the two-species isolation-with-migration
models; (c) the three-species isolation model (and incomplete
lineage sorting); and (d) the three-species isolation-with-migration

T

NA NA

NA2NA2

NA1
NA1

Isolation model with two species

T N2N1

N1

N3

N2

m1→2

m2→1

mA1→3

m1→3
m2→3m1→2

m2→1 m3→2
m3→1

m3→A1

Isolation-migration model with two species

Isolation model with three species

T2

T1

T2

T1

Isolation-Migration model with three species

a b

c d

Fig. 4. Speciation models and associated parameters. In all exemplified models, effective population size is constant
between speciation event, represented by dash lines. The timing of the speciation events, noted T are parameters of the
models, together with ancestral effective population sizes, noted NA. In some cases, contemporary population sizes can
also be estimated, and are noted Ni, where i is the index of the population. Models with postdivergence genetic exchanges
have additional migration parameters labeled mfrom!to. The number of putative migration rates increases with the number
of contemporary populations under study, and some models might consider some of them to be equal or eventually null to
reduce complexity.
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model. We also discuss the general multiple-species isolation-
with-migrationmodel. The two-species isolationmodel is introduced
in ref. 7 and the isolation-with-migration model is introduced in
ref. 8.

3.1. Isolation Model

with Two Species

If the sequences are sampled from two distinct species that have
diverged a time T ago (see Fig. 4a), then the distribution of the age
of the MRCA is shifted to the right with the amount T, resulting in
the distribution

fT2
ðtÞ ¼ 0 if t<T

2
yA
e �2ðt�T Þ

yA
if t>T

�
:

The mean time to coalescent is E[T2] ¼ T + yA/2 and the
average divergence time between two sequences is twice this quan-
tity, that is, 2T + yA. Since yA ¼ 4NAu, it follows that the larger the
size of the ancestral population, the bigger the difference between
the speciation time and the divergence time.

The variance of the divergence time is Var[T2] ¼ y2 / 4. With
access to the distribution of divergence times, we could estimate the
speciation time and population size from the mean and variance of
the distribution. Unfortunately, we do not know the complete
distribution of divergence times and it is not immediately available
to us because long regions are needed for precise divergence esti-
mation but long regions have experienced one or more recombina-
tion events.

3.2. Isolation Model

with Three or More

Species and

Incomplete

Lineage Sorting

Now, consider the isolation model with three species depicted in
Fig.4c. Suchamodel is oftenused for thehuman–chimpanzee–gorilla
(HCG) triplet (e.g., refs. 9–11).

The density function for the time to coalescence between
sample 1 and sample 2 is given by

fT2
ðtÞ ¼

0 if t<T
2
yA1

e �2ðt�T1Þ
yA1

if T1<t<T12

P12
2
yA2

e �2ðt�T12Þ
yA2

if t>T12

8><
>: ; (1)

where

T12 ¼ T1 þ T2 and P12 ¼ e
�2ðT12�T1Þ

yA1

is the probability of the two samples not coalescing in the ancestral
population of sample 1 and sample 2. In the upper right corner of
Fig. 5, we plot the density (Eq. 1) with parameters that resemble
the HCG triplet.

If sample 1 and sample 2 do not coalesce in the ancestral
population of sample 1 and sample 2, then the three trees
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((1,2),3), ((1,3),2), and ((2,3),1) are equally likely. The probability
of the gene tree being different from the species tree is, thus,

PrðincongruenceÞ ¼ 2

3
P12 ¼ 2

3
e
�2ðT12�T1Þ

yA1 : (2)

The event that the gene tree is different from the species tree is
called incomplete lineage sorting (ILS). ILS is important because
species tree incongruence often manifests itself as a relatively clear
signal in a sequence alignment and thereby allows for accurate
estimation of population parameters. In Fig. 6, we show the (in)
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Fig. 5. Illustration of the density for coalescent in various models and data layout. The curves are the probability density
functions. In the most simple case with two species, a constant ancestral population size, and a punctual speciation (top left
panel), more genomic regions find a common ancestor close the species split (the vertical line) while a few regions have a
more ancient common ancestor, distributed in an exponential manner (see Eq. 1). If speciation is not punctual and migration
occurred after isolation of the species, then some sequences have a common ancestor which is more recent than the
species split and the distribution in the ancestor becomes more complex (bottom left panel, see Eqs. 4 and 6). When a third
species is added (right panel), then another discontinuity appears and all distributions depend on additional parameters,
particularly when migration is allowed. We use yA1 ¼ 0.0062, yA2 ¼ 0.0033, and t1 ¼ 0.0038 (the first vertical line),
t2 ¼ 0.0062 (the second vertical line) corresponding to the HCG triplet. Ancestral population sizes are taken from the
simulation study in Table 6 in ref. 14: y1 ¼ 0.005 and y2 ¼ 0.003. Migration parameters are all set to 50.
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congruence probability (Eq. 2). We also refer to Subheadings 7.1
and 7.2 for more discussion of ILS.

In the three-species isolation model, the mean coalescent time
for a sample from population 1 and a sample from population 2 is
given by

E½T2� ¼ T1 þ ð1� P12Þ yA1
2

þ P12
yA2
2

: (3)

Burgess and Yang (12) describe the speciation process for
humans (H), chimpanzees (C), gorillas (G), orangutans (O), and
macaques (M) using an isolation model with five species.
The HCGOM model contains four ancestral parameters yHC,
yHCG, yHCGO, and yHCGOM. In this case, Eq. 3 extends to

E½T2� ¼ THC þ ð1� PHCÞ yHC

2
þ PHCð1� PHCGÞ yHCG

2

þ PHCPHCGð1� PHCGOÞ yHCGO

2

þ PHCPHCGPHCGOð1� PHCGOMÞ yHCGOM

2
:

3.3. Isolation with

Migration Model with

Two Species and Two

Samples

The isolation-with-migration model with two species is shown
in Fig. 4b. The IM model has six parameters: the mutation rate-
s y1, y2, and yA, the migration rates m1 and m2, and the speciation
time T. We let Y ¼ (y1, y2, yA, m1, m2, T) be the vector of
parameters.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0
Incomplete Lineage Sorting

(τ123 − τ12)/θ12

P
ro

ba
bi

lit
y

congruence
incongruence

((human,chimpanzee),gorilla)

Fig. 6. Probability (Eq. 2) of gene tree and species tree being incongruent. In case of the HCG triplet, we obtain
(T12 � T1)/yA1 ¼ (0.0062 � 0.0038)/0.0062 ¼ 0.39 which corresponds to an incongruence probability of 30%.
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Wang and Hey (14) consider a situation with two genes. Before
time T, the system is in one of the following five states.

S11: Both genes are in population 1.

S22: Both genes are in population 2.

S12: One gene is in population 1 and the other is in population 2.

S1: The genes have coalesced and the single gene is in population 1.

S2: The genes have coalesced and the single gene is in population 2.

The instantaneous rate matrix Q is given by

S11 S12 S22 S1 S2
S11 � 2m2 0 2=y1 0

S12 m1 � m2 0 0

S22 0 2m1 � 0 2=y2
S1 � m2

S2 m1 �

:

Starting in state a, the density for coalescent in population 1 at
time t < T is given by (13)

f1ðtÞ ¼ ðeQtÞaS11
2

y1

� �
; (4)

the density for coalescent in population 2 at time t < T is

f2ðtÞ ¼ ðeQtÞaS22
2

y2

� �
; (5)

and the total density for a coalescent at time t < T is

f ðtÞ ¼ f1ðtÞ þ f2ðtÞ: (6)

Here, eA ¼ P1
i¼0 A

ii! the matrix exponential of the matrix A and
(eA)ij is entry (i,j) in the matrix exponential.

After time T, the system only has two states: SAA corresponding
to two genes in the ancestral population and SA corresponding to
one single gene in the ancestral population. The rate of going from
state SAA to state SA is 2/yA. The density for coalescent in the
ancestral population at time t > T is, therefore,

f ðtÞ ¼ ðeQT ÞaS11 þ ðeQT ÞaS12 þ ðeQT ÞaS22
h i 2

yA
e
� 2

yA

� �
ðt�T Þ

: (7)

In Fig. 5, we illustrate the coalescent density in the two-species
isolation with migration model.

The likelihood for a pair of homologous sequencesX is given by

PðX jYÞ ¼ LðYjX Þ ¼
Z 1

0

PðX jtÞf ðt jYÞdt ; (8)
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where f(t) ¼ f(t|Y) given by Eqs. 6 and 7 is the density of the two
sequences finding an MRCA at time t and P(X|t) is the probability
of the two sequences given that they find an MRCA at time t.
The latter term is calculated using a distance-based method.
One possibility is to use the infinite sites model, where it is assumed
that substitutions happen at unique sites, i.e., there are no recurrent
substitutions. In this case, the number of differences between the
two sequences follows a Poisson distribution with rate 1.

For an application of the isolation-with-migration model with
two sequences, we refer to ref. 14; a discussion of their approach
can be found in ref. 15.

3.4. Isolation with

Migration Model

with Three or More

Species and Three

or More Samples

Hey (16) considers the multipopulation isolation-with-migration
model. Recall from Fig. 4b that the two-population IM model
has six parameters: two present population sizes, one ancestral
population size, one speciation time, and two migration rates.
The three-population IM model in Fig. 4d has 15 parameters:
three present population sizes, two ancestral population sizes,
two speciation times, and eight migration rates. In general, a k-
population IM model has 3k � 2 + 2(k � 1)2 parameters:

l k present population sizes

l (k � 1) ancestral population sizes

l (k � 1) speciation times

l 2(k � 1)2 migration rates

See Subheading 7.3 for a derivation of the number of migration
rates in the general k-population model. For k ¼ 5, 6, and 7, we
obtain 45, 66, and 91 parameters, respectively. Because the number
of parameters becomes very large even for small k, Hey (16) sug-
gests adding constraints to the migration rates, e.g., setting some
rates to zero or introducing symmetry conditions, where rates
between populations are the same.

4. Approximating
the Ancestral
Recombination
Graph In this section, we discuss the three methods of taking recombina-

tion into account. The three methods are visualized in Fig. 7c–e
and correspond to (1) independent loci, (2) site patterns, and (3)
hidden Markov model (HMM).

4.1. The Independent

Loci Approach: All

Recombination

Between, No

Recombination Within

The simplest way to handle issues relating to the ancestral recom-
bination graph is to divide the data into presumably independent
loci. Such analyses are, therefore, restricted to candidate regions
that are not too large (to avoid including a recombination point)
and not too close (to ensure that several recombination events
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happened between loci). Each region can, therefore, be described
by a single underlying tree, reducing the analytical and computa-
tional load. This approach cannot be used when the species under
study are too distantly related, as recombination events will have

Fig. 7. The coalescent process along genomes, (a) four archetypes of coalescence scenarios with three species,
exemplified with human, chimpanzee, and gorilla. In the first scenario, human and chimpanzee coalesce within the
human–chimpanzee common ancestor. In the three other scenarios, all sequences coalesce within the common ancestor
of all species, with probability 1/3 depending on which two sequences coalesce first, (b) example of genealogical changes
along a piece of an alignment. The alignment was simulated using the true coalescent process and parameters
corresponding to the human–chimpanzee–orangutan history. The blue line depicts the variation along the genome of
the human–chimpanzee divergence. The background colors depict the change in topology, red and yellow corresponding
to incomplete lineage sorting. Every change in color or break of the blue line is the result of a recombination event. (c–e)
Three possible ways of approximating the ancestral recombination graph. In (c), a number of small loci are analyzed
independently under an assumption of no recombination within loci, which allows to estimate the probability distribution of
sequence divergence. In (d), the alignment is summarized in terms of counts of site patterns, and in (e) the data is analyzed
in terms of a hidden Markov model along the sequence, with distinct genealogies featuring various divergence times
as hidden states. The underlying model includes transition probabilities between genealogies along the genome.
See Subheading 4 for more details.
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fragmented the ARG up to a point, where no single region size
without recombination can be defined.

Using 15,000 loci distant from 10 kb totaling 7.4 Mb and isolation
model introduced above, (Table 2, “Model (b) Sequencing errors”
in (12)) find yHC ¼ 0.0062, yHCG ¼ 0.0033, yHCGO ¼ 0.0061,
and yHCGOM ¼ 0.0118 and THC ¼ 0.0038, THCG ¼ 0.0062,
THCGO ¼ 0.0137, and THCGOM ¼ 0.0260. They get ETHCG

¼ 0.0062 (corresponding to a 1.2% divergence between human and
chimpanzee) and THC ¼ 0.0038. Therefore, 38/62 ¼ 0.61 ¼ 61%
of the divergence between humans and chimpanzees is due to specia-
tion and 39% is due to ancestral polymorphism. Converting those
estimated in time units requires an estimate of the substitution rate,
either absolute or deduced from a scaling point.Usingu ¼ 10�9 as an
estimate for substitutions per year, this leads to an estimate of 3.8 My
for the human–chimpanzee speciation, a very recent estimate. Using
the same data, Yang (11) showed that the isolation with migration
model was preferred. Yang finds a more ancient speciation time THC

¼ 0.0053 (5.3Mywithu ¼ 1e � 9)whenmigration is accounted for
(was THC ¼ 0.0044 without migration).

4.2. Site Pattern

Analysis

Patterson et al. (17) used a different approach based on site patterns.
They sequenced fragments of DNA from a western lowland gorilla
and a spidermonkey,which they combinedwithwhole-genome reads
from the orangutan and macaque, and built a genome alignment
using the human scaffold. The resulting 20-Mb data set was
extended and/or used thereafter by refs. 9–12. Patterson et al.
counted the frequencies of all possible site patterns in the resulting
HCGOM alignment. These patterns can be sorted depending on
which genealogy they support: ((H,C),G),O, ((H,G),C),O, ((C,G),
H),O, etc. They introduced a model that allowed them to estimate
speciation time and ancestral population sizes from the frequencies
of the observed patterns, independently of the recombination rate.
The only requirement is that recombination occurred to enable
the various patterns to be observed, which is warranted by the
large genomic region they used. This method makes very little
assumption on the data, particularly regarding recombination,
and uses ILS as its only source of signal for estimating population
parameters. However, it ignores alternative sources of signal, like
singletons, which carry information about the local sequence diver-
gence. Such an approach is, therefore, limited to simple models of
speciation, and cannot easily be extended to more complex scenarios
like isolation with migration.

Patterson et al. inferred a recent speciation time for human and
chimpanzee, below 5.4 My. They also found a most recent diver-
gence on the X chromosome, which they interpret in terms of
complex speciation event with hybridization. Alternative explana-
tions for this observation were provided (18, 19).
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4.3. The Markov

Assumption

Along Sites

The work by Hobolth et al. (9) used site patterns in a different way.
With a hidden Markov model, they used the correlation of patterns
along the genome to reconstruct the site-specific genealogy, includ-
ing divergence times. They further used these divergence estimates
together with the inferred amount of incomplete lineage sorting
to compute the speciation times and ancestral population sizes.
In this approach, the recombination rate is embedded into the
transition matrix of the hidden Markov chain, which specifies the
probabilities of transition from one genealogy to the other along
the genome. Hobolth et al. showed that this matrix is constrained
by symmetric relationships, and estimated the remaining three
parameters together with the divergence parameters. Dutheil
et al. (10) extended this approach by identifying further constraints
on the parameters and fully expressing the divergence times and
probabilities of transition between genealogies as function of the
speciation times, ancestral population sizes, and recombination
rate, therefore allowing their direct estimation. The analytical
expressions of the parameters as function of populational quantities
are, therefore, difficult to obtain, notably for the transition prob-
abilities, even in the simplest case.

Mailund et al. (20) used a different approach to compute these
for the two-species isolation model. They used a continuous Mar-
kov chain to model the evolution of a pair of contiguous positions.
This model features two types of events: when going backward in
time, the two positions can either coalesce (with a rate proportional
to the effective population size) or split (with a rate equal to the
recombination rate). The transition probabilities between genealo-
gies are immediately available from the joint pair of contiguous
positions and the Markov assumption. This approach can be
generalized to more species are and potentially allows for more
realistic demographic scenarios, for instance allowing migration
between populations.

The coalescent HMM framework, thus, models recombina-
tion, which is assumed to be constant in all lineages and along the
alignment. The model further assumes that the probability of
switching from one genealogy to another when we walk along a
genome alignment only depends on the genealogy at the previous
position, that is, the process of genealogy change along the genome
is Markovian. This is an approximation of the true coalescent
process that greatly simplifies calculation (21). Dutheil et al. (10)
and Mailund et al. (20) used simulated data sets under a coalescent
process with recombination to show that this assumption had,
however, little influence on the parameter estimates. Using this
approach, Hobolth et al. estimated a speciation time between
human and chimpanzee around 4.1 My and a large ancestral effec-
tive population size of 60,000 for the human– chimpanzee ances-
tor. Dutheil et al. (10) found similar estimates with the same data
set while accounting for substitution rate variation across sites, and
estimated an average recombination rate of 1.7 cM/Mb.
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5. Specific Issues
Faced When
Dealing with
Genomic Data In previous sections, we discussed population genetic models

for between-species comparisons and methods for parameter esti-
mation. We now describe several pitfalls encountered when analyz-
ing whole-genome data sets, including sequencing errors and
alignment errors, but also computational and statistical issues related
to the data sets of large dimension that are underlying genomics
analyses.

5.1. Sequencing Errors

and Rate Variation

Sequencing errors are a well-described source of bias in population
genetics analyses, resulting in an excess of singletons (22). When
full genome sequences are used, the issue becomes more complex as
the error rate differs between and within sequences not only due to
coverage variation, but also properties of the genome (base com-
position, repeated elements, etc.). Such errors result in a departure
from the molecular clock hypothesis, thus potentially leading to
biases in parameter estimates, such as asymmetries in genealogy
frequencies (23, 24). In this respect, data preprocessing becomes
a crucial step in any genomic analysis. Methods would also benefit
in many cases of inclusion of a proper modeling of such errors.
Burgess and Yang noticed that sequencing errors can be seen as a
contemporary acceleration in external branches, resulting in an
extra branch length (12). Such an extra length can be easily accom-
modated in many models. It has to be noted that only a differential
in error rates between lineages results in a departure frommolecular
clock, and in such approaches one still has to consider that at least
one sequence is error free. In addition, as noted by the authors,
assuming a constant error rate over all genomic positions may also
turn out to be inappropriate, and better models should allow this
rate to vary across the sequence. Such approaches still have to be
explored. Moreover, sequencing errors are not distinguishable
from lineage-specific acceleration (or deceleration in another
species). In that respect, sequence quality scores can be a valuable
source of information. They are currently used to preprocess
the data by removing doubtful regions, but can ultimately be
used in the modeling framework.

The rate of substitution also varies along the genome which
potentially affects the reconstruction of sequence genealogy, a phe-
nomenon well known by phylogeneticists. There, things are a bit
easier, as the tools developed for phylogenetic analysis can in most
cases be applied with a reasonable cost. This generally consists in
assuming a prior distribution of the site-specific rate, and integrate
the likelihood over all possible rates (10, 12, 14). Alternatively, one
can also use one or more outgroup sequences to calibrate the rate,
as in refs. 17, 25.
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5.2. Aligning Genomes To sequence errors, one should add assembly errors due to the
sequencing technology. Assembling reads can be error prone in
case of repeated or duplicated regions, which ultimately can lead to
compare nonorthologous regions. In addition to this technical issue,
genome data are intrinsically fragmented firstly because of chromo-
somal organization, but also because of rearrangements that prevent
molecule-to-molecule alignment from one species to another.
A genome data set is, therefore, a set of distinct alignments, one per
syntheny block. Building the genome alignment, that is, recovering
the syntheny structure, is, therefore, performed with potential issues
that are close in effect to the assembly errors. Finally, as all compara-
tive methods rely on an input alignment, any artifact affecting the
alignment process itself is relevant. As populational methods are
based on closely related species, alignment programs are, however,
expected to perform accurately, and alignment errors should be
negligible compared to other sources. So far, the only way to deal
with such errors is to restrict the analysis on regions, where orthology
can be unambiguous resolved, mostly by removing short syntheny
blocks and regions that contain a high proportion of repeated
elements, gaps, and duplications.

5.3. Computational Load Dealing with genomic data heavily relies on computer perfor-
mance. Depending on the genome sizes and the method used,
the analysis may cover from millions to billions of genomic posi-
tions. As most methods rely on maximum likelihood or Bayesian
inference, efficient algorithmics and software implementation are
much needed. Fortunately, the data structure here comes handy:
independent parts of the genomes, like chromosomes, syntheny
blocks, or even loci, depending on the methodology used, can be
analyzed separately, therefore enabling easy parallelization for use
of computer grids. Aside to the computational issue, the genomic
area also dramatically changed the structure of the result tables.
While analyzing per-gene result sets, consisting of a few dozen
thousand rows, is still feasible with statistical software like R, it
becomes much more problematic when per-site result sets are
considered. As our understanding of genome evolution grows, we
are more keen on fishing specific regions with a peculiar demo-
graphic or selective history. Such data sets typically reach sizes
of several millions rows. While they can still be loaded into the
memory of computers with strong configuration, a single pass on
the table for retrieving information becomes prohibitive, which
becomes problematic when several sets are to be compared (for
instance, in order to compare a window-based calculation with
gene annotations). The only alternative currently available is to
use database engines, with proper indexing algorithms. Such data-
bases are currently used in genome browsers, like the UCSC
genome browser. In that respect, cross-information storage and
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retrieval, as well as Web-based services, will become even more
crucial for genome data analysis.

5.4. Statistical

Challenges

The genetics to genomics shift also leads to new challenges in data
analysis. When tests are performed, for instance when comparing
models of speciation like in ref. 11, the global false discovery rate
has to be properly controlled for. As genomes are not analyzed in
one single analysis (at least full chromosomes are analyzed indepen-
dently, but in most cases chromosomes are also split into several
parts), multiple testing issues occur. Multiple testing also matters
when candidate regions are scanned for, for instance for specific
selection regime. Verhoven et al. (26) offer a nice tutorial present-
ing appropriate statistical methods for handling multiple testing.
A related matter, when performing several types of tests on a wide
set of genomics regions, is the so-called overoptimism issue, also
named “data optimization” (27). This concerns the selection of
data sets in order to increase the significance of results, resulting in a
potential bias. In genomics, the data set selection often takes the
form of an extensive filtering of the data in order to exclude regions
with potential paralogous sequences, low complexity, or known
functional role. It, therefore, appears important to emphasize to
which peculiar region of the genome the obtained conclusions
apply to, and eventually report how they change when other
regions are included (see, for instance, ref. 12).

6. Discussion

Studying the speciation process with genome data implies new
modeling challenges, as the basic configuration of a population
genetics data set is drastically changed: instead of having a few loci
sequenced in several individuals, we have an (almost) exhaustive set
of loci sequenced in one individual for a few species. The change
involve the spatial dimension, but also time, as the process under
study occurred much further back in time than the ones that are
commonly studied with a “standard” population genetics data set.
The use of the spatial signal has a major consequence, namely, that
recombination has to be dealt with, even if it is not directlymodeled.

Apart from these considerations, ancestral population geno-
mics, as population genetics, heavily relies on the study of sequence
genealogy, its shape, as well as its variation. The underlying models
build on existing intraspecies population modeling, as they
only need to add the species divergence process, that is, a moment
in time where two populations stop exchanging genetic
material and evolve fully independently. The simplest isola-
tion model assumes that the speciation is instantaneous while the
isolation-with-migration model assumes that the two neo-species
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can still exchange some material, at least for a certain time after the
split. Such a model is not different from a pure isolation model,
where the ancestral population is structured into two subpopula-
tions: in the first case, the speciation time is defined as the time of
the split while in the second case it is the time of the last genetic
exchange. Recent work on primates (11) suggests that the specia-
tion of human and chimp was not instantaneous. If the average
divergence of the human and chimpanzee is a bit more than 6 My
(using widely accepted mutation rate), then the split of the two
species initiated around 5.5 My ago, and the last genetic exchange
can be dated around 4 My.

The fact that we sample a large number of positions in the
genome, thus, appears to have the power to counterbalance
the reduced sampling of individuals within population, allowing
the estimation of demographic parameters in the ancestor. None-
theless, complexity limits are rapidly reached when considering, for
example, three closely related species that can exchange migrants.
More complex demographic scenarios, incorporating for instance
variation in population sizes, will also add additional parameters
that might not all be identifiable.

If the ancient speciation processes have left signatures in the
contemporary genomes, we do not know yet how far back in time
this is true. Intuitively, the signal is maximal when the variation
in divergence due to polymorphism is large enough compared
to the total divergence. The divergence due to polymorphism is
proportional to the ancestral population size while the divergence
of species is only dependent on the time when it happened. So the
further back in time we are looking at, the bigger the population
sizes need to be so that the ancient polymorphism leaves a signature
in the total divergence time. In addition to this, one has to take into
consideration sequence saturation due to the too large number
of substitutions that accumulated since ancient split and the fact
that demographic scenarios’ complexity increases with time. For
instance, when considering the evolution of a species over several
millions of generations, the probability that a bottleneck, resetting
the signal from past events, occurred once is not negligible.

The population genomics era is just ahead, where we will have
full individual genomes for closely related species. Such data sets
are the key to understand the detailed evolutionary processes that
are linked to the formation and evolution of species, as they will
open windows to new periods in time. Analyzing such data sets
with the current methodologies, however, offers major challenges:
(1) developing the appropriate computational tools able to handle
such data sets with current machines (both in terms of processor
speed and memory usage) and (2) design realistic models with
enough complexity to capture the most important historical events
while remaining computationally tractable.
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7. Exercises

7.1. ILS in Primates Assuming that there are 5My between the speciation times of human
with the gorilla and the orangutan, that the HG ancestral effective
population size was 50,000, what is the expected amount of ILS
among human, gorilla, and orangutan? Assuming that another 2.5
My separates the speciations of human with chimpanzee and gorilla,
with an HC effective ancestral population size of 50,000, what is the
expected amount of ILS among human, chimpanzee, and orangutan?
We assume a generation time of 20 years for all extent and ancestral
primates.

7.2. Estimating

Ancestral Population

Size from the Observed

Amount of ILS

Given that 30% of incomplete lineage sorting is observed among
human, chimpanzee, and gorilla and assuming a generation time of
20 years and that 2.5 My separate the splits between human/
chimpanzee and human–chimpanzee/gorilla, what is the effective
ancestral population size compatible with this observed amount?
Using Burgess and Yang’s method (12), a researcher finds a higher
estimate of Ne than expected. What could explain this discrepancy?

7.3. Number of

Migration Rates in the

General k-Population

IM Model

In this exercise, we show that a k-population IM model has 2
(k � 1)2 migration rates.

1. Starting at the bottom of the k-population IM model, argue
that the number of migration rates at the level of k populations
is k(k � 1).

2. Moving up to the next level where (k � 1) populations are
present (one of them being an ancestral population, we assume
that there two-speciation events are never simultaneous),
argue that the new ancestral population introduces 2(k � 1)
new migration rates.

3. Moving up yet another level where (k � 2) populations
are present, argue that the new ancestral population introduces
2(k � 2) new migration rates.

4. Show that the total number of migration rates is 2(k � 1)2.
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