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Abstract 

Ageing is a major risk factor for the development of many diseases, prominently 

including neurodegenerative disorders such as Alzheimer and Parkinson disease. A 

hallmark of many age-related diseases is the dysfunction in protein homeostasis 

(proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a 

complex proteostasis network, comprising molecular chaperones as well as 

proteolytic machineries and their regulators, operates to ensure the maintenance of 

proteostasis. These factors coordinate protein synthesis with polypeptide folding, the 

conservation of protein conformation and protein degradation. However, sustaining 

proteome balance is a challenging task in the face of various external and endogenous 

stresses that accumulate during ageing. These stresses lead to the decline of 

proteostasis network capacity and proteome integrity. The resulting accumulation of 

misfolded and aggregated proteins affects in particular postmitotic cell types such as 

neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur 

during ageing inform on strategies to improve proteostasis. The possibilities of 

pharmacological augmentation of the capacity of proteostasis networks hold great 

promise for delaying the onset of age-related pathologies associated with proteome 

deterioration and for extending healthspan. 
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Introduction  

Most proteins must fold into well-defined three-dimensional structures and need to 

remain folded throughout their life-time in order to perform their biological functions. 

Moreover, the abundance of each of the thousands of different proteins in a 

mammalian cell must be carefully controlled. We now appreciate that this state of a 

balanced proteome, referred to as protein homeostasis (or ‘proteostasis’1), depends on 

an extensive network of molecular chaperones, proteolytic systems and their 

regulators, comprising approximately 2000 proteins in human cells2. Understanding 

the organization of this network and its regulation in response to external and 

endogenous stresses is of fundamental importance in biology and medicine, as the 

failure to maintain proteostasis is associated with ageing and numerous degenerative 

diseases3,4. 

The proteostasis network serves to ensure that correctly folded proteins are 

generated at the right time and cellular location, and in amounts allowing 

stoichiometric assembly in case of oligomeric protein complexes. Additionally, it 

prevents proteins from misfolding and aggregation. Beyond regulation of folding, the 

proteostasis network also ensures that superfluous and misfolded protein species are 

removed, either by autophagy or degradation mediated by the proteasome. Together, 

these mechanisms avoid the accumulation of protein aggregates, which can be 

potentially toxic (Fig. 1a). Key effectors of the proteostasis network are molecular 

chaperones, which ensure proper protein folding and conformational maintenance and 

cooperate with the degradation machinery. Proteostasis is disturbed in various 

pathologic conditions, prominently including diseases associated with the old age, 

such as neurodegenerative disorders. This suggests that the capacity of the 

proteostasis network declines with ageing.  
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Recent advances in transcriptome and proteome analysis now make it possible 

to quantify and measure changes in thousands of different transcripts and proteins. 

Applying these techniques to the studies of ageing in model organisms, such as the 

nematode Caenorhabditis elegans, has provided us with new insight into the decline 

of the proteome during ageing and enables us to identify critical components of the 

proteostasis network that may be amenable to pharmacological manipulation. 

In this Review we discuss our present understanding of the organization of the 

proteostasis network and its role in health and disease. We describe the age-dependent 

changes in the soluble and insoluble proteome gathered from studies of model 

organisms, and we summarize current concepts of aggregate toxicity in 

neurodegenerative diseases and other pathologies associated with ageing. The 

prospects of targeting proteostasis networks to reduce the burden of toxic protein 

aggregates and hamper the development and/or progression of degenerative diseases 

associated with ageing will also be discussed. 

 

The proteostasis network 

Maintaining a balanced proteome requires cells to coordinate the functions of three 

interlinked arms of the proteostasis network: protein synthesis and folding, 

conformational maintenance and degradation (Fig. 1a). 

 

Protein synthesis and folding. 

The proteomes of eukaryotic cells are highly complex, ranging from ~6,000 different 

proteins in fungi5 to over 10,000 proteins in human cells6, with proteome composition 

varying between cell types and tissues. Recent large-scale sequencing data indicate 

the presence of a high number of single nucleotide variants in protein coding regions 
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in the human population7. Mutations can affect protein stability and folding kinetics8, 

possibley resulting in metastable proteins that engage components of the proteostasis 

network9,10. Proteins also vary greatly in abundance, from fewer than 50 copies per 

cell in case of certain transcription factors up to more than 107 molecules for histones, 

cytoskeletal or ribosomal proteins11,12. Protein abundance must be carefully controlled 

to support cell signalling, the proper flux of substrates through metabolic pathways 

and to allow the stoichiometric assembly of large macromolecular machines, such as 

ribosomes or mitochondrial respiratory chain complexes. 

The majority of newly-synthesized proteins must fold into defined three-

dimensional structures in order to attain biological function, with the notable 

exception of proteins with intrinsically disordered regions that may acquire structure 

only when interacting with partner molecules13,14. Generally, the folded (or native) 

states of proteins are thermodynamically favorable and all the information necessary 

for folding is contained within the amino acid sequence of the newly-synthesized 

polypeptide chain. However, proteins must navigate a complex energy landscape 

during folding, putting them at risk of adopting kinetically stable (meaning, 

populating local energy minima) non-native structures (Fig. 1b). These misfolded 

states also tend to engage in non-productive intermolecular interactions, forming 

aggregates that may be thermodynamically more stable than the native state. While 

the folding process was originally thought to occur spontaneously, we now know that 

many proteins, especially those with more complex structures and/or containing 

multiple domains, require molecular chaperones to fold efficiently and at a 

biologically relevant time scale. We define a molecular chaperone as any factor that 

interacts with and aids in the folding or assembly of another protein without being 

part of its final structure15. Mechanistically, chaperones prevent aggregation and 
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promote folding through ATP-dependent and independent mechanisms of protein 

binding and release (for recent reviews see refs.16-20). They are classified into different 

protein families - small heat shock proteins (sHSP), HSP60, HSP70, and HSP90 

(Table 1) - and typically recognize exposed hydrophobic amino acid residues and 

unstructured polypeptide backbones in their substrate proteins, which are unifying 

features of non-native conformation. In some cases electrostatic interactions between 

chaperones and clients also have a role21,22. Chaperones that participate broadly in the 

folding of newly-synthesized proteins (de novo folding) act during and after 

translation to prevent (or reverse) misfolding and aggregation (Fig. 1a and 1b). 

Approximately two thirds of proteins must be transported from their site of 

synthesis in the cytosol to their functional location in a specific subcellular 

compartment23. For proteins destined for the endoplasmic reticulum (ER) and further 

for the secretory pathway or for the mitochondria, cytosolic chaperones prevent 

premature folding before the polypeptide reaches its target organelle and shield 

transmembrane regions from the aqueous cytosol18,24. Binding of organellar 

chaperones at the trans-side of the membrane may then provide the driving force for 

translocation across the membrane25,26. Proteins destined for the nucleus and 

peroxisomes, and so-called tail-anchored proteins fold before transport. 

 

Maintenance of conformational stability. 

The folded structures of proteins are in most cases only marginally stable. This 

implies that a substantial proportion of protein species may populate (partially) 

unfolded states (Fig. 1b), especially in the presence of additional destabilizing factors, 

such as mutations or external stresses (e.g. elevated temperature, heavy metals or 

presence of reactive oxygen species). Polypeptides in non-native conformations, i.e. 
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nascent chains, folding intermediates and misfolded states, tend to aggregate owing to 

the exposure of hydrophobic amino acid residues and unpaired -strands. Aggregation 

removes proteins from the pool of functionally active molecules, and thereby leads to 

a reduction of function of the aggregated protein. Moreover, aggregate species may be 

cytotoxic in a manner unrelated to their biological role, as will be discussed below. 

To avoid the accumulation of misfolded proteins and cytotoxic protein 

aggregation, the proteostasis network contains molecular chaperones, for many of 

which transcription is induced under stress conditions through compartment-specific 

signalling pathways. The main cytosolic response to stress is the heat shock response, 

which is controlled by a group of transcription factors known as heat shock factors. 

By binding to heat shock elements in promotor regions these factors control various 

genes encoding chaperones (heat shock proteins) and other factors of the proteostasis 

network. The best studied of these is heat-shock transcription factor 1 (HSF1). In non-

stressed cells HSF1 is present in an inactive complex with the chaperones HSP90 (ref. 

27) and HSP70 (ref. 28). The presence of non-native proteins is thought to result in 

titration of these chaperones away from HSF1, which then allows HSF1 to trimerize 

and induce the transcription of heat shock protein-encoding genes29. Concomitantly 

with the induction of members of the proteostasis network, general protein synthesis 

is attenuated upon stress, which reduces the production of new clients of the 

proteostasis network. Once the proteotoxic stress has ceased and sufficient free 

chaperone capacity is reestablished, these factors rebind HSF1 and the system returns 

to balance30. Similar signalling pathways to counter aberrantly folded and/or unfolded 

proteins are present in the ER and in mitochondria31,32. 

With few exceptions, homologues of stress-inducible chaperones are also 

constitutively expressed both in the cytosol and within organelles, including the HSP 
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families mentioned above16,18. They form cooperative networks to maintain non-

native protein species in solution and mediate their refolding to achieve functional 

structures (remodelling; Fig. 1a). A distinct set of chaperones function in the 

conformational maintenance of the secreted proteome in the extracellular space33. 

 

Protein degradation. 

In combination with controlled protein synthesis, regulated degradation of proteins is 

an important mechanism to adjust the levels of functional proteins, thereby regulating 

important cellular processes such as mitosis34 and adapting protein levels in response 

to environmental changes35,36. Protein degradation is also a key mechanism to avoid 

accumulation of misfolded or faulty protein species, including mutant proteins and 

unassembled subunits of multiprotein complexes. Proteins are degraded by two major 

proteolytic pathways, the ubiquitin proteasome system (UPS) and the 

autophagosomal–lysosomal pathway37-39. While degradation by the UPS requires 

ATP-dependent unfolding of single substrate proteins, the autophagy pathway allows 

the degradation of protein aggregates and whole organelles. In both proteolytic 

systems, molecular chaperones cooperate in the recognition of misfolded protein 

species and help to maintain them in a degradation competent state40-42. 

 In targeting aberrant proteins for degradation, the UPS cooperates with the 

major cytosolic chaperone systems, HSP70 and HSP90, and with chaperone cofactors 

containing E3 ubiquitin ligase activity, such as the carboxy terminus of HSP70-

interacting protein (CHIP). CHIP interacts via its tetratricopeptide repeat (TPR) 

domain with the carboxy-terminus of HSP70 or HSP90 to ubiquitylate folding-

incompetent proteins — characterized by a long chaperone residence time43 — which 

targets them to the proteasome. In addition, CHIP has the ability to prevent 
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aggregation in the absence of these chaperones44. Other components of the UPS, the 

yeast E3 ligase San1 and the metazoan E2 ubiquitin-conjugating enzyme UBE2O also 

have inbuilt chaperone properties and bind surplus or misfolded proteins directly45,46. 

UBE2O mediates ubiquitylation without a separate E3 ligase and in reticulocytes 

mediates the removal of α-globin subunits that failed to assemble with -globin in the 

process of haemoglobin assembly46. In other proteins, co-translational modifications, 

such as N-terminal acetylation47, function as signals for UPS-mediated degradation 

when exposed in unassembled subunits. Chaperones also assist in the degradation of 

misfolded proteins by autophagy48. HSC70 (the constitutively expressed member of 

the HSP70 family) and its co-chaperone BAG3 are involved in the degradation of 

aggregates in a process known as chaperone-assisted selective autophagy 49,50. HSC70 

also participates in the degradation of soluble cytosolic proteins containing a KFERQ 

sequence motif by chaperone-mediated autophagy in lysosomes51,52 and endosomal 

microautophagy in late endosomes and multivesicular bodies 42,53. 

 

Sources of misfolded protein species 

Misfolded protein species originate from multiple sources and pose a constant danger 

to the cell. Conformational stress conditions, such as heat stress, oxidative stress54 or 

exposure to toxic agents like cadmium55 may cause a subset of proteins to unfold, 

which increases their risk of aggregating. In contrast to proteins with intrinsically 

disordered regions, some of which inherently possess a high capacity for toxic 

aggregation, this unfolding step is necessary for the aggregation of globular proteins 

such as superoxide dismutase 1, which is associated with amyotrophic lateral sclerosis 

(ALS)56. Moreover, the protein synthesis and folding process is imperfect, despite the 

presence of abundant chaperone systems, and it has been estimated that 5-30% of all 
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newly-synthesized proteins do not properly fold and need to be targeted for 

immediate degradation57-59. It is well established that folding efficiencies are 

substantially lower for specific proteins, such as the cystic fibrosis transmembrane 

conductance regulator (CFTR) and other multi-pass membrane proteins. In the case of 

CFTR, only ~25% of synthesized protein matures to the functional chloride channel, 

with disease-causing mutations reducing folding efficiency even further60,61. For some 

mutations of superoxide dismutase 1 that are associated with familial ALS, it has been 

shown that initial folding steps are delayed, generating aggregation-prone folding 

intermediates62. 

Defective mRNAs are another notable source of aberrant protein products. 

Translation of mRNAs lacking a stop codon (so-called non-stop mRNAs, arising from 

truncation or premature cleavage of the transcript and polyadenylation) results in 

ribosome-stalled polypeptide chains that are folding-incompetent. These chains must 

be removed by ribosome quality control (RQC) machinery and proteasomal 

degradation63 (see Box 1) to avoid aggregation64-66. The importance of the RQC 

pathway is exemplified by the fact that its failure is associated with age-dependent 

neurodegeneration in a mouse model67. Likewise, tRNA availability may limit 

translation rates, resulting in protein aggregation, perhaps by increasing the likelihood 

of misreading or frameshifts, or by increasing the risk that nascent chains occupy non-

productive folding intermediates68.  

Inefficient import into the target organelles, for example into mitochondria or 

the ER, will cause cytosolic accumulation of these proteins and constitutes another 

cause of proteotoxicity69. Many secretory proteins require the oxidizing environment 

of the ER for disulfide bond formation and consequently fail to fold in the reducing 
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environment of the cytosol, generating potentially toxic species that need to be 

eliminated70.  

 

Pathology of protein aggregates  

More than 100 years ago, Alois Alzheimer described the appearance of protein 

“plaques” in the cerebral cortex of a 56 year old patient71. Protein aggregate deposits 

in fibrillar (amyloid -like) form are now widely recognized as a hallmark of many 

neurodegenerative diseases and other mostly age-dependent pathologies, such as type 

II diabetes72,73. It is generally believed that aggregate formation confers a toxic 

property to the disease protein (‘toxic gain of function’). This contrasts with other 

diseases associated with protein misfolding, where the defect is often due to mutations 

that cause loss of function74. Cystic fibrosis is one of the most prominent examples of 

this latter group of diseases75. 

 

Formation of pathological aggregates. 

The process of pathological aggregation is characterized by the formation of amyloid 

fibrils as the end point. Intermediates in this process include soluble oligomeric and 

protofibrillar states that are structurally less ordered than the fibrils and are thought to 

contribute strongly to toxicity. Amyloid fibrils are characterized by ordered cross-β 

structure, i.e. parallel or anti-parallel β-strands running perpendicular to the long fibril 

axis, and have distinct tinctorial properties76-79. Fibrils form via a nucleation-

dependent polymerization pathway, often associated with a long lag-time80. Several 

possible microscopic processes underlie the characteristic sigmoidal aggregation 

curves: primary nucleation of monomers in solution or on surfaces, elongation of 

fibrils through monomer addition to fibril ends, secondary nucleation of oligomers on 
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the surface of already existing fibrils and fibril breakage73,81,82. Preformed fibrils or 

fragments thereof may function as seeds for new, accelerated fibril formation. In 

addition, prion-like cell-to-cell propagation of such seeds is thought to cause the 

spreading of aggregates in the brains of patients suffering from Alzheimer or 

Parkinson disease83-86. 

Notably, amyloid fibrils are not necessarily harmful to cells, as demonstrated 

by an increasing list of non-disease related amyloids with various cellular functions87, 

including the Curli fibrils of Escherichia coli that mediate the attachment of virulent 

bacteria to epithelial surfaces88 and the mammalian premelanosome protein Pmel17 

that provides a template for melanin polymerization89. Rather, toxicity arises when 

various aggregation intermediate states, primarily soluble oligomers (non-fibrillar or 

proto-fibrillar species), are formed during the process of fibril assembly. In support of 

this view, ‘functional amyloids’ appear to have been optimized in evolution so that 

their formation is associated with a minimal number of aggregation intermediates90,91. 

How this is achieved is a subject of ongoing research. Soluble oligomers are thought 

to display characteristic structural properties, independent of sequence78,92. They are 

structurally dynamic and expose hydrophobic amino acid residues and unpaired β-

strands to the solvent, features that are largely buried in ordered fibrils. These 

properties of oligomers confer a high degree of interactivity with cellular proteins and 

membranes93-96. However, amyloid fibrils and amorphous aggregates may also engage 

in aberrant interactions with proteins and membranes. The exact differences in 

amount and nature of the interactions of these various aggregate species remain to be 

established. 

A special case of disease-relevant protein aggregation involves liquid–liquid 

phase separation of certain proteins containing low complexity domains, often with 
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prion-like properties97-99. In this process a homogeneous solution of molecules 

spontaneously separates (‘demixes’) into two coexisting liquid phases — a condensed 

phase (a non-membrane bound droplet-like compartment) and a depleted phase (the 

bulk solution). The interface of the condensed droplet forms a boundary that allows 

the selective passage of some molecules but not others. These phase-separated 

assemblies provide a general regulatory mechanism to compartmentalize biochemical 

reactions within cells, enhancing biological reactions or sequestering factors that are 

temporarily not required99,100. Notably, some of these assemblies over time undergo a 

maturation process, which involves a liquid-to-solid phase transition with the 

concomitant formation of structures reminiscent of pathological aggregates. These 

processes can be accelerated by mutations, post-translational modifications, changes 

in the properties of the solution (salt concentration), metabolic state or in response to 

increasing molecular concentration98,101,102. Thus, phase separation could promote 

increased rates of nucleation and/or growth of amyloid-like fibres. A prominent 

example is the aggregation of the predominantly nuclear RNA-binding proteins FUS 

and TDP-43 in the cytosol, mutations of which are associated with ALS102,103. Age-

related changes in the proteome (changes of the balance between synthesis and 

degradation as well as decline in folding capacity; see also below) and metabolome 

(changes in the local microenvironment) can lead to aberrant phase transitions that 

may be a key driver of ageing and disease104. 

 

Mechanisms of aggregate toxicity. 

How aggregates cause toxicity, cellular dysfunction and eventual death is only 

partially understood. A large body of evidence points to multiple mechanisms acting 

in parallel, with specific modes of toxic function being more pronounced in certain 
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disease proteins and cell types. Two principal activities at the cellular level can be 

distinguished: damaging effects on lipid membranes and aberrant interactions with 

macromolecules, primarily soluble or membrane-associated proteins and RNA 

molecules (Fig. 2). 

Experiments in cell culture and studies with model lipid membranes indicate 

that soluble oligomers (ranging in size roughly between 20-60 molecules) have the 

ability to disrupt the integrity of membrane structures in the neuronal synapse and 

other cellular locations by forming pore-like structures105-107 (Fig. 2a). Fibrils, though 

exposing less hydrophobic surfaces than oligomers, may nevertheless have the 

capacity to deform or even pierce endomembranes, as shown in vitro79,108 and 

suggested by recent observations of aggregate deposits in situ by cryo-electron 

tomography109 (Fig 2a). 

The other well-supported mechanism of proteotoxicity relates to the ability of 

aggregates to engage in aberrant interactions with multiple cellular proteins (Fig. 2b), 

such as nucleo-cytoplasmic transport factors, ribonucleoproteins and other proteins 

with key functions96,110-114. The proteins bound by the aggregates tend to be 

metastable and characteristically contain intrinsically disordered regions or low 

complexity domains96,111,115-118. Based on recent studies, these interactions are 

primarily initiated by protein oligomers and are first dynamic in nature, but may result 

in the stable sequestration of target molecules in insoluble aggregate deposits96,114,115. 

Importantly, owing to their ability to recognize and bind misfolded proteins, certain 

chaperones and other proteostasis components are also prone to be sequestered by 

aggregates. As a result, chaperones and regulatory chaperone cofactors, such as 

HSC70 and certain HSP40 regulators of the HSP70 system, are substantially depleted 

from the soluble, active pool, which negatively impacts the proteostasis network by 
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reducing its overall strength and thereby contributes to further aggregate 

accumulation64,119,120. Sequestration of regulatory proteostasis network components 

also impedes the capacity of cells to induce an effective heat shock response115,121. 

Interestingly, the sustained presence of misfolded proteins may lead to a chronic 

stress response activation that is ineffective in preventing aggregation. This state has 

been referred to as a maladaptive stress response and has been shown to impact 

protein folding and exacerbate disease pathology122.  

 Expression of aggregation-prone proteins has also been shown to impair 

protein degradation via autophagy123 and the UPS124-127. Indeed, some disease 

aggregates, such as those formed by C9orf72-encoded glycine-alanine dipeptide 

repeat proteins associated with ALS126 display a remarkably high association with 

proteasome complexes, reflecting an (apparently unproductive) attempt of the UPS to 

degrade aggregate material.  

Overall, protein aggregates have the capacity to interfere with the proper 

function of the proteostasis network. The resulting reduction of available proteostasis 

network capacity increases protein misfolding, setting in motion a vicious feed-

forward cycle that may lead to proteostasis collapse128 (Fig. 2b). 

 

Means of counteracting proteotoxicity 

The functional proteostasis network antagonizes the build-up of aggregates or strives 

to neutralize their toxic effects. This may be achieved by fundamentally different 

strategies. Prevention of aggregation is a primary function of molecular chaperones 

and is achieved by binding of aggregation-prone folding intermediates, followed by 

their refolding or degradation. Preexistent aggregates may be shielded by chaperones 

to block harmful interactions, or be removed by disaggregation or autophagy. 
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Alternatively, toxic aggregate species, such as soluble oligomeric species, may be 

actively converted to large inclusion bodies (containing amorphous or fibrillar 

aggregates), thereby reducing their reactive surfaces for toxic interactions with 

cellular components (Fig. 3).  

 

Chaperone mediated prevention of amyloid formation. 

Chaperone systems interfere with amyloid-like aggregation at different kinetic phases 

of fibril formation. As a result, aggregation may either be completely prevented or the 

equilibrium between aggregate species changed129. Consistent with its central role in 

the chaperone network, the HSP70–HSP40 system has been shown to inhibit primary 

nucleation of fibril assembly and fibril elongation of polyglutamine (polyQ) 

expansion proteins like huntingtin (Htt; mutants of which cause Huntington disease), 

α-synuclein (associated with Parkinson disease) and other neurodegenerative disease 

proteins130-134. HSP40 components have an important role in this process and recruit 

HSP70 to aggregation-prone proteins134,135. The chaperones perform this function by 

interacting with hydrophobic sequence elements of the aggregating disease proteins. 

The cylindrical chaperonin TRiC/CCT also acts to inhibit aggregation of various 

disease proteins129,136,137 and has been shown to specifically prevent the formation of 

toxic oligomers of Htt129. Other chaperones, such as the small BRICHOS domain, 

may coat the surface of fibrils and inhibit secondary nucleation138, thereby interfering 

with the production of toxic oligomers. 

 

Chaperone-mediated disaggregation. 

Interfering with the production of disease protein halts disease progression and allows 

for the dissociation of preexisting aggregates, as shown in mouse models of 
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Huntington disease139,140. Indeed, cells contain specialized chaperone machineries that 

can dissociate aggregates in an ATP-dependent process. In yeast and other fungi, 

AAA+ chaperones of the Hsp100 family mediate protein disaggregation in concert 

with Hsp70 and Hsp40 141,142. In metazoans, which lack Hsp100 family members, a 

network of chaperones including HSP70 and the nucleotide exchange factor HSP110 

(an HSP70 homolog) mediates protein disaggregation143,144. Notably, disaggregation 

entails the danger of generating oligomeric, potentially toxic, protein species and 

therefore must be coupled to the degradation of aggregate material via the UPS or the 

autophagy–lysosomal pathway. How this timely degradation is achieved remains to 

be investigated.  

 

Formation of inclusion bodies. 

In conditions of limited proteostasis capacity, cells may reduce aggregate load by 

actively sequestering smaller aggregates into larger deposits (Fig. 3). Upon heat-

stress, the chaperone Hsp42, a small HSP (sHSP), mediates the rapid concentration of 

misfolded proteins into small cytosolic aggregate foci (also referred to as Q-

bodies)145-148, which may give rise to larger inclusions. Interestingly, this “aggregase” 

function depends on a prion-like, intrinsically disordered sequence of Hsp42 (ref. 149). 

A related protein, Btn2, fulfills a similar role in the nucleus146. Association of sHSP 

with amorphous aggregate deposits is frequently observed and may shield aggregate 

surfaces that are available for interactions and facilitate subsequent disaggregation150.  

Inclusion bodies are actively formed in yeast in the vicinity of the vacuole and 

the nucleus, as well as in the nucleus146,151. Mammalian cells concentrate aggregated 

proteins in so-called “aggresomes” at the microtubule-organizing centre in an ATP 

and microtubule dependent process152. Inclusion bodies may function as a sink to 
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lower the level of small diffusible oligomers, and thereby reduce the reactive surface 

and the amount of bound chaperones, consistent with the reduced capacity of 

aggregate material in inclusion bodies to engage in aberrant interactions96,114. Indeed, 

the presence of inclusion bodies correlates with improved cell survival in cellular 

models of neurodegenerative disease153. Concentration of aggregates in an inclusion 

body can also facilitate the asymmetric inheritance of damaged proteins in dividing 

cells (Fig. 3). This process generates one daughter cell that contains the majority of 

the aggregated proteins, and a second “rejuvenated” daughter154. The lack of cell 

division in postmitotic cells such as neurons can therefore help to explain why these 

cells are especially vulnerable to pathologies associated with protein aggregation. 

Directing aggregation-prone material to specific organelles has been suggested 

as yet another strategy to reduce toxicity155,156 (Fig. 3). For example, the aggregates of 

specific disease proteins have been found to be more toxic in the cytosol than the 

nucleus (and vice versa) and a recent report suggested that upon heat stress, certain 

misfolded proteins can be detected inside mitochondria, although they lack 

mitochondrial targeting sequences157. The physiological significance and the 

underlying mechanism of this observation remain unclear, but it is noteworthy that 

both mitochondria and ER have a higher tolerance for the presence of aggregation-

prone proteins than the cytosol. This is presumably due to increased capacity of these 

compartments to maintain aggregation-prone disease proteins in a soluble state due to 

the presence of compartment-specific chaperone systems158,159. 

 

Age-dependent proteostasis decline 

The age-dependent decline in the ability of cells to maintain a functional proteome is 

regarded as a major driver of age-related cellular dysfunction and degenerative 
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diseases2-4,160,161. The biological reasons why the proteostasis network deteriorates are 

complex, but probably relate to a lack of evolutionary pressure for proteome 

maintenance beyond the point when organisms have produced progeny and passed 

their genome to the next generation. In model organisms such as C. elegans, a 

controlled ageing programme is thought to allocate organismal resources to 

reproduction rather than proteome maintenance162 and most genetic manipulations 

that extend lifespan and improve proteostasis are associated with reduced fecundity 

(see Box 2). 

Recent systemic proteome analyses throughout the lifespan of C. elegans 

provided insight into age-dependent changes in proteome composition163-167. Large-

scale proteome profiling of about 5,000 different proteins revealed extensive 

proteome remodelling and the development of severe proteome imbalance during 

ageing, characterized by extensive changes in the abundance of proteins166. About one 

third of the quantified proteins were found to increase or decrease in abundance by at 

least 2-fold after day 6 of adulthood. These global changes are thought to be caused 

(at least in part) by a dysregulation in miRNA-mediated post-transcriptional gene 

regulation166,168. This age-dependent proteome remodelling was substantially less 

pronounced in long-lived daf-2 mutant worms defective in insulin/insulin-like growth 

factor signalling (see Box 2), indicative of an improved capacity of the proteostasis 

network. The extensive proteome remodelling observed during ageing in C. elegans 

differs from observations in tissues of aged mice, where only minor proteomic 

changes were detected with a similar experimental approach169. Thus, mammals 

appear to devote greater resources to maintaining proteome balance, limiting age-

dependent cell-type and organelle-specific proteome changes170. 
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A hallmark of the ageing proteome is the loss of protein solubility and the 

accumulation of aggregates. C. elegans has been used extensively as a model to study 

this process163,164,166. A recent quantitation of ~2,100 aggregating proteins166 tested 

the view that proteins have been optimized in evolution to maintain solubility at their 

physiological concentrations (prior to age-dependent proteome deregulation), but 

aggregate when exceeding that concentration171 (referred to as critical concentration). 

The analysis confirmed that proteins of low abundance tend to have higher 

aggregation propensities during ageing compared to abundant proteins. Nevertheless, 

highly abundant proteins were found to predominantly contribute to total aggregate 

load, despite their higher intrinsic solubility166. Apparently, the solubility of abundant 

proteins is insufficient to protect them from age-dependent aggregation since the 

proteome and proteostasis network changes associated with ageing (see the following 

paragraph) result in these proteins eventually exceeding the critical concentration, a 

phenomenon referred to as supersaturation171,172.  

During ageing the proteostasis network becomes increasingly burdened by 

increasing loads of misfolded proteins and proteins that have been damaged by 

oxidative stress173, particularly in non-dividing, long-lived cells such as neurons9,174. 

In addition, at least in human brain, the expression of ATP-dependent chaperones is 

repressed during ageing, which may further promote protein misfolding and 

aggregation (Fig. 2b)175. Once the capacity of the proteostasis network drops below a 

critical level, aggregation-prone proteins can no longer be maintained in a soluble 

state. As shown in cellular and organismal models, this threshold is lowered in the 

presence of additional forms of stress, such as proteasome inhibition176 or the 

presence of mutations that structurally destabilize specific proteins and promote 
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misfolding10,177.The additional pressure on the proteostasis network causes further 

protein aggregation in a positive feedback loop125,128 (Fig. 2b). 

Notably, stem cells are more resistant to age-dependent proteostasis network 

decline than differentiated cells. It has been demonstrated that human embryonic stem 

cells exhibit elevated levels of proteasome activity for degrading misfolded 

proteins178. Furthermore, human pluripotent stem cells support the efficient assembly 

of the TRiC/CCT chaperonin complex, apparently by enhancing the expression of one 

of its eight subunits, CCT8 (ref. 179), which limits complex assembly when present in 

substoichiometric amounts. Asymmetric division of stem cells might also have a role 

in maintaining a balanced proteome, with the differentiating cell inheriting the 

damaged proteins180-182. These mechanisms may contribute to the maintenance of 

stem cells throughout the animal lifespan. Interestingly, the neural stem cell pool in 

the brain of adult mice comprises quiescent and activated populations with differences 

in their proteostasis network. While activated stem cells have active proteasomes, 

quiescent stem cells were recently shown to rely on large lysosomes for aggregate 

removal. Lysosomal damage accrued during ageing may reduce the ability of 

quiescent cells to dispose of aggregates and to activate181. 

 

Pro-longevity adaptations 

Studies in model organisms including C. elegans, Drosophila melanogaster and 

mouse indicate that the ability of the organism to maintain proteostasis correlates 

strongly with both lifespan and healthspan (i.e. the time during which the organism 

maintains its functional capacity). Accordingly, adaptations in each arm of the 

proteostasis network (Fig. 1a), either genetic or through environmental effects, have 

been shown to prolong lifespan. For example, inhibition of the insulin/insulin-like 
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growth factor signalling pathway (daf-2 mutant in C. elegans), the major lifespan 

extending manipulation in the worm183,184, results in a profound upregulation of stress 

resistance through transcriptional activation of chaperone pathways and increased 

defence against oxidative stress (Box 2).  

 

Changes in protein synthesis and degradation. 

Protein synthesis is a primary node of proteostasis control and its regulation is critical 

for cell growth and maintenance of intracellular protein pools. Notably, with 

increasing age, rates of protein synthesis tend to decline165,185,186. As shown in 

C. elegans, the levels of both cytosolic and mitochondrial ribosomes undergo 

substantial reduction during ageing (Fig. 4a), especially in the long-lived daf-2 

mutant worms166. The decline in ribosome abundance may function as an adaptive 

response to the increased proteotoxic challenges that occur in ageing. Attenuating 

global translation reduces the production of faulty proteins, thereby easing the burden 

on molecular chaperones and degradation systems. Indeed, transient inhibition of 

translation via phosphorylation of translation initiation factor 2α (eIF2α) is an 

important strategy to protect cells from protein misfolding stress187 and is prominently 

associated with the unfolded protein response of the ER and the integrated stress 

response 31,188. Reduction of protein synthesis has beneficial effects, including 

lifespan extension in worms189-192. 

An imbalance between the production of misfolded proteins and available 

proteasome capacity is implicated in various age-related pathologies128,193, and a 

decline in proteasome function has been observed during ageing in model organisms 

in various tissues and cell types194-196. In C. elegans, the abundance of proteasomal 

subunits was found to increase with age166 (Fig. 4a), apparently reflecting an attempt 
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of the organism at removing aberrant protein species. Upregulation of proteasomes 

was further enhanced in the daf-2 mutant.  

 

Adaptations in the chaperone network. 

During human brain ageing, the expression of ATP-dependent chaperones (HSP70 

and HSP60) is repressed, which may contribute to the decline of the capacity to 

counteract protein misfolding175. Notably, in C. elegans, the levels of HSP70 and 

HSP90 chaperones as well as their co-chaperones change only moderately during 

ageing165,166, whereas multiple sHSP increase dramatically (~15-60-fold), especially 

in the daf-2 mutant166, along with proteins involved in oxidative stress defence that 

prevent oxidative stress and resulting protein damage166 (Fig. 4a). Upregulation of 

sHSP is also observed in D. melanogaster197, as well as in mammalian skeletal 

muscle198 and brain during ageing170, suggesting that it is a general phenomenon.  

 

Controlled protein aggregation. 

During ageing in C. elegans several types of sHSP were found to be highly insoluble 

with a high rate of accumulation in the aggregate fraction166 (Fig. 4b). Similar 

observations have been made in vertebrate systems, including human skeletal muscle 

as well as in bacteria 198-200. The recruitment of these chaperones into the insoluble 

fraction may reflect a controlled attempt of the organism to sequester protein 

aggregates, consistent with age-dependent formation of aggregates (as inclusion 

bodies) being a regulated, protective response to lower the pressure on the 

proteostasis network166. The age-dependent increase in sHSP levels may thus reflect a 

shift in defence strategies from preventing aggregation to selective sequestration of 

dangerous protein species in aggregate deposits (Fig. 4b). In support of this 
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possibility, enhanced aggregation of a subset of proteins with an enrichment of 

unstructured regions, along with certain sHSP, was observed in long-lived daf-2 

mutant worms166. Indeed, overexpression of a sHSP (HSP-16) is sufficient to extend 

the lifespan of C. elegans201. This hyper-aggregation under control of insulin/IGF-1 

signalling may be a failsafe protective mechanism to reduce the concentration of 

potentially harmful oligomeric aggregate species, when the first-line defences to 

prevent aggregation — including prevention of misfolding and remodelling of 

misfolded proteins — fail202-204. These findings are consistent with the view that 

soluble oligomers are the major proteotoxic species in neurodegenerative diseases and 

that their sequestration into insoluble aggregates reduces proteotoxicity (Fig. 3). 

 

Conclusions and perspective 

Proteins are essential for most cellular functions. To maintain a functional and 

balanced proteome cells invest in an extensive machinery comprising molecular 

chaperones, proteases and other factors. While this sophisticated machinery is 

sufficient to fulfill its task in young and healthy individuals, its activity declines over 

time and at some point is no longer able to combat the accumulated effects of 

proteotoxic insults. As a consequence, ageing is associated with loss of proteome 

balance and widespread protein aggregation, facilitating the development of 

degenerative pathologies, such as Alzheimer or Parkinson disease. 

 As shown first in a mouse model of Huntington disease, the proteostasis 

network is able to clear aggregates when further synthesis of mutant protein is 

blocked, allowing the (partial) reversal of disease phenotypes140. Accordingly, 

reducing the expression of aggregation-prone proteins with antisense oligonucleotides 

has been shown to be beneficial, even when aggregates have already formed139,205. 
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Other approaches are the removal of toxic aggregates using specific antibodies and 

clearance of aggregate-antibody complexes through phagocytosis206,207 or the use of 

small-molecule kinetic stabilizers that bind the native state of disease proteins and 

prevent their aggregation. A successful example of this latter approach is the small 

molecule Tafamidis that stabilizes transthyretin tetramers and prevents their 

dissociation, which is the rate limiting step in transthyretin amyloidogenesis208. 

However, all these approaches are disease specific and in some cases limited to a 

particular protein mutation. In contrast, augmentation of the proteostasis network has 

the potential to provide a general means to postpone a range of age-related 

degenerative conditions or slow their progression209. Notably, germ cells and some 

stem cells have mastered the unlimited propagation and preservation of a healthy 

proteome. This would suggest that it is possible to carefully augment the proteostasis 

network and thereby delay the onset or slow the progression of age-dependent 

degenerative diseases. In principle, this may be achieved by pharmacologically 

modulating the transcriptional circuits that regulate the different arms of the 

proteostasis network210. 

Increasing organismal protein folding capacity is one potential approach to 

enhance proteostasis capacity. Expression of individual chaperones and co-

chaperones or pharmacologic activation of stress responses (heat shock response, 

unfolded protein response) have been demonstrated to ameliorate phenotypes 

associated with protein aggregation in cellular and organismal models including yeast, 

C. elegans, D. melanogaster, mammalian cells and the mouse129,130,211-220. 

Furthermore, the exogenous delivery of a recombinant fragment of the chaperonin 

TRiC/CCT was shown to modulate cellular phenotypes of Huntington disease221. 

Downregulating protein synthesis, thereby reducing the pressure on the chaperone 
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machinery, is another strategy to improve proteome quality, mimicking the 

attenuation of translation associated with activation of unfolded protein response 

pathways187,222. 

Enhancing the cellular capacity to dispose of toxic protein species by 

upregulating proteolytic activity is yet another way to boost the cellular capacity to 

maintain proteostasis. Small molecule inducers of autophagy, such as rapamycin (and 

its analogs), show benefits in animal models of different neurodegenerative 

diseases223. Accelerated degradation of proteasomal substrates may result from 

inhibition of deubiquitylating enzymes224 or upregulation of proteasome 

assembly178,225. 

Notably however, modulation of the proteostasis network comes at a cost, as it 

has been pointed out that increasing proteostasis capacity and stress resistance may 

favour cancer progression226. This pro-tumorigenic effect stems from the fact that 

cancer cell proliferation depends on the function of multiple mutant proteins that 

require stabilization by the chaperone network227. Accordingly, inhibition of 

chaperones such as HSP90 may be beneficial in the treatment of certain cancers228.  

Overall, as our understanding of the cellular and organismal proteostasis 

networks improves further, there is justified hope that this knowledge will result in 

actual benefits to patients with degenerative diseases resulting from protein 

aggregation and may provide strategies to increase human healthspan.  
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Box 1 |Ribosomal quality control 

Cells constantly produce faulty mRNA molecules, including truncated and 

prematurely polyadenylated forms that lack a stop codon (non-stop mRNA). Their 

translation results in aberrant nascent polypeptide chains that stall on the ribosome 

and must be degraded by a specialized ribosomal quality control machinery 

(RQC)63,229. Ribosome stalling and RQC can also occur due to inhibitory mRNA 

stem-loop structures and suboptimal decoding of mRNA codons at the ribosome (no-

go mRNAs). In the case of premature polyadenylation, translation of the polyA tail 

generates a C-terminal polylysine tract, which may aggravate stalling in the 

negatively charged ribosomal tunnel. In the yeast Saccharomyces cerevisiae, the RQC 

machinery comprises the E3 ubiquitin ligase Ltn1, the nucleotide-binding protein 

Rqc2 (NEMF in human), Rqc1 (TCF25 in human) and the AAA+ ATPase Cdc48 

(VCP or P97 in human) and its cofactors230,231. The stalled ribosome is recognized by 

the ubiquitin ligase Hel2 (Znf598 in mammals) and splitting factors. Rqc2 binds the 

60S subunit containing the stalled nascent chain and recruits Ltn1. Rqc2 elongates the 

stalled chain in a mRNA independent fashion by adding Ala and Thr residues to its C-

terminus (so-called CAT-tails)232,233. Ltn1 ubiquitylates the stalled chain for 

recognition and extraction by Cdc48 (dependent on Rqc1), followed by proteasomal 

degradation. Deletion of Ltn1 causes stalled proteins to aggregate in a manner 

mediated by their CAT-tails64,65,234. In yeast cells these aggregates cause impairment 

of the proteostasis network by sequestering chaperone regulators, such as the Hsp40 

Sis164,65. Mutation of Ltn1 causes neurodegeneration in a mouse model67. 

N-terminal signal sequences of stalled nascent chains can drive their import 

into mitochondria or ER. The cytosolic protein Vms1 is an additional RQC 

component protecting mitochondria against toxic effects of CAT-tail aggregates235. 
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Vms1 binds to the outer mitochondrial membrane (OM)236 and antagonizes the 

function of Rqc2 on 60S ribosomes at the OM235 by acting as a peptidyl-tRNA 

hydrolase237,238. As a result, stalled chains are released for import into the 

mitochondria before CAT-tails can be synthesized. 

 

Box 2 |Signalling pathways that modulate ageing and proteostasis 

Studies in model organisms showed that ageing and longevity are genetically 

regulated. Lifespan extension is achieved in three main ways: inhibition of the 

insulin/insulin-like growth factor 1 signalling (IIS) pathway, reduction of food intake, 

or attenuation of the mitochondrial electron transport chain (ETC). 

Insulin/insulin-like growth factor-1 signalling   

Identified in Caenorhabditis elegans as a lifespan-regulating signalling pathway183, 

IIS is conserved from worms to human and controls ageing, stress resistance and 

proteostasis by negatively regulating the nuclear translocation of transcription factors 

DAF-16 (FOXO; forkhead box O in mammals), HSF-1 (heat shock transcription 

factor-1) and SKN-1 (NRF-1; nuclear respiration factor 2 in mammals), which induce 

the expression of protective stress response pathways, such as the upregulation of 

chaperones and proteins protecting against oxidative damage (see Figure). Binding of 

insulin/insulin-like ligands to the DAF-2 receptor activates its tyrosine kinase activity 

and recruits AGE-1 (PI3K; phosphatidylinositol 3-kinase in mammals). This 

ultimately leads to phosphorylation of the downstream transcription factors, 

preventing their translocation into the nucleus. In contrast, reduced IIS in daf-2 or 

age-1 mutant worms blocks this phosphorylation, allowing entry of DAF-16, HSF1 

and SKN-1 into the nucleus for induction of genes required for extending lifespan and 

promoting stress resistance and enhancing proteostasis. 
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Dietary restriction 

Dietary restriction (i.e. reduced food intake without malnutrition) is the most robust 

intervention to increase lifespan and delay age-related dysfunction from yeast to 

mammals. In C. elegans, various cellular energy sensors such as AMPK (AMP-

activated protein kinase) and TOR (target of rapamycin) mediate the beneficial effects 

of dietary restriction, supporting activation of PHA-4 (FOXOA in mammals), DAF-

16, HSF-1 and SKN-1. In addition, dietary restriction has been shown to induce 

autophagy.  

Mitochondrial electron transport chain  

Mutations affecting the mitochondrial ETC increase lifespan in C. elegans239-241. Such 

mutations cause (partial) uncoupling of the ETC and production of reactive oxygen 

species (ROS), which upregulates the mitochondrial unfolded protein response 

(UPRMito). As long as ROS production is limited, this mechanism leads to a beneficial 

effect (hormesis). Details of the signalling pathways involved are just emerging: 

Mitochondrial stress causes chromatin remodeling in C. elegans, which is required for 

activation of UPRMito and stress-induced longevity. Two conserved histone lysine 

demethylases function as positive regulators of the ETC longevity pathway241-243. 

Recently it has been reported that mild mitochondrial stress is sufficient to maintain 

proteostasis, healthspan and stress resistance in an HSF1-dependent manner244, 

suggesting that the ETC is a central regulator of cytosolic proteostasis.  
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Figure legends: 

Figure 1 |The proteostasis network prevents the formation of toxic aggregates 

 (a) The proteostasis network contains all the factors that are necessary to control the 

functional levels of proteins in their native state and minimize non-productive or 

harmful off-pathway reactions (generation of unfolded proteins or aggregates; red). 

Proteostasis network components, which comprise approximately 2000 proteins in 

human cells, can be operationally assigned to three major arms: protein synthesis and 

folding (green), conformational maintenance (blue) and degradation (purple). In 

humans approximately 300 different molecular chaperones175 orchestrate these 

processes and function in folding, refolding and disaggregation reactions. They 

cooperate with the ubiquitin proteasome system and the autophagy–lysosomal 

machinery in the degradation of misfolded proteins and aggregates. (b) Proteins 

sample diverse conformations during folding, increasingly forming native 

intramolecular contacts as they progress downhill along a rugged energy landscape 

towards the thermodynamically stable, native state. Folding intermediates and 

misfolded states may accumulate as kinetically trapped species that need to traverse 

free energy barriers to form functional proteins. Intermolecular contacts between non-

native states may result in formation of various aggregates, oligomers, amorphous 

aggregates and amyloid fibrils, of which the latter may even be thermodynamically 

more stable than the native state. Molecular chaperones enhance on-pathway reactions 

that support progression of folding intermediates towards the native state and block 

off-pathway reactions that lead to misfolded and aggregated species. Various factors, 

such as mutations, stress, translation aberrations or defects in mRNA inhibit the on-

pathway reactions, favouring protein misfolding and aggregation. 
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Figure 2 | Mechanisms of aggregate toxicity 

(a) Oligomeric aggregates may form pores in cellular membranes105,106 (left panel), 

while fibrillar aggregates can interact with and deform membranes108,109 (right panel). 

(b) Chronic expression of aberrantly folded proteins caused by disease, ageing or 

external stress reduces proteostasis capacity by sequestering or otherwise inhibiting 

proteostasis network components, including (but not limited to) proteasomes126,127, 

chaperones119,120, nucleocytoplasmic transport factors 111 and factors necessary to 

mount a successful stress response115,121. This will result in further misfolding and 

aggregation of endogenous proteins. These additional misfolded species in turn 

engage the proteostasis network, thereby further reducing available proteostasis 

capacity and driving a positive feedback loop that eventually leads to proteostasis 

collapse. 

 

Figure 3 | Mechanisms to counteract aggregate toxicity 

Cells employ various strategies to counteract the accumulation of toxic protein 

aggregates. Chaperones function to prevent aggregate formation, disassemble 

preexisting aggregates and facilitate the refolding of disaggregated proteins to the 

native state, or conformationally remodel toxic aggregates into less toxic or non-toxic 

forms. Notably, chaperone-mediated disaggregation of more complex aggregates such 

as amyloid fibres is linked to the generation of smaller oligomers, which are 

potentially more toxic than the larger aggregates. Thus, disassembly should be 

coupled to efficient degradation of abnormal protein species. Alternatively, the 

interactive surface area of the aggregate can be reduced by concentrating oligomeric 

species into large inclusions, which may contain fibrillar or amorphous aggregate 

material, or by shielding the aggregate surface with chaperones such as small heat 
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shock proteins (sHSP). Aggregation-prone proteins can also be sequestered in sub-

cellular locations, such as the nucleus or mitochondria, which show a higher tolerance 

for aggregation-prone proteins than the cytosol. In dividing cells it is also possible to 

retain the aggregated proteins in only one of the daughter cells through asymmetric 

cell division, thereby generating a rejuvenated daughter cell.  

 

Figure 4 | Pro-longevity changes in the proteostasis network during ageing in C. 

elegans  

(a) Schematics representing changes in abundance of cytosolic and mitochondrial 

ribosomes, molecular chaperones (small heat shock proteins (sHSP) and HSP70–

HSP90 system), oxidative defence machinery and proteasome complexes in wild-type 

and long-lived daf-2 mutant Caenorhabditis elegans worms as the animals age from 

day 1 of adulthood to day 22 (based on data from ref. 166). Note that despite the 

increased abundance of the components of proteostasis networks, the activity of these 

mechanisms may nevertheless be insufficient to counteract the burden of misfolded 

proteins in aged wild-type animals. (b) Proteome protective activity of sHSP during 

ageing in wild-type and daf-2 worms. Young adult worms maintain a balanced 

proteome by effectively clearing misfolded proteins. Ageing is associated with 

proteome imbalance, due to inefficient clearance of proteins, misregulated 

transcription and loss of the relative stoichiometries of protein complexes166. This 

results in supersaturation171,172 and aggregation of a subset of proteins and the 

accumulation of potentially toxic oligomer species. sHSP increase in abundance 

during ageing and have a protective role by sequestering soluble oligomers into 

insoluble inclusions and by shielding interactive aggregate surfaces. The stronger 

upregulation of sHSP in the daf-2 mutant allows for more effective sequestration of 
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potentially dangerous aggregate material, maintaining proteome balance as the 

animals age. 

 

Table 1: Main chaperone families and their functions in eukaryotes 

 

Molecular chaperone family 
 

Function 

HSP70 

~70 kDa 

ATP-dependent 

Major chaperone family, comprising at least 

eight homologous chaperone proteins located 

in the cytoplasm, mitochondria and the ER. 

These chaperones are required for 

aggregation prevention, folding of newly-

synthesized proteins and for conformational 

maintenance. They also cooperate with 

HSP40 and HSP110 in protein 

disaggregation.  

HSP40 (also known as J proteins) 

~40 kDa 

A diverse group of proteins, all containing the 

HSP70-interacting J-domain, with 

homologues in the cytoplasm, mitochondria 

and the ER. They function as co-chaperones 

of HSP70 and regulators of the HSP70 

ATPase cycle of protein substrate binding and 

release. They recruit HSP70 to different 

substrates and cellular locations.  

HSP110 

~100 kDa 

Serves as a nucleotide exchange factor for 

HSP70. Cooperates with HSP70 in protein 

folding, degradation of misfolded proteins 

and is critical for protein disaggregation in 

metazoans. 

HSP90 

~90 kDa 

ATP-dependent 

Functions as a homodimer in the folding and 

conformational regulation of functionally and 

structurally diverse client proteins that are 

involved in many different cellular pathways. 

Major substrate classes are kinases, steroid 

receptor molecules and other signaling 

proteins. Cooperates with multiple co-

chaperones containing TPR (tetratricopeptide 

repeat) domains. 

HSP60 

~60 kDa subunit 

ATP-dependent 

The chaperonin of mitochondria. Consists of 

two heptameric rings composed of ~60 kDa 

subunits, which are stacked back-to-back. 

Cooperates with a cofactor, HSP10, and is 

required for the folding of a subset of 

mitochondrial proteins following their import 

from the cytosol.  

TRiC/CCT 
~1 MDa 

The chaperonin of the eukaryotic cytosol. 

Consists of two octameric rings composed of 
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ATP-dependent ~60 kDa subunits, which are stacked back-to-

back. Required for the folding of a subset of 

cytosolic proteins, including actin and 

tubulins. TRiC has also been shown to 

interfere with the aggregation of Huntingtin. 

Hsp100  

~100 kDa subunit 

ATP-dependent 

A family of proteins in fungi, bacteria and 

chloroplasts in plants (comprising Hsp104, 

Hsp78, ClpA, ClpB, ClpC, ClpX and HsIU) 

that belongs to a large superfamily of AAA+ 

ATPases. These chaperones are typically 

composed of hexameric rings. Hsp104 in 

yeast and other fungi mediates protein 

disaggregation in cooperation with Hsp70 and 

Hsp40. 

Small HSP 

~12-45 kDa subunit 

ATP-independent chaperones that form large 

(~1 MDa) heterogeneous oligomers. Subunits 

contain a conserved α-crystallin domain, 

which is packed with β-sheets and involved in 

oligomerization. 10 different forms in human 

(HspB1-10). Prevent aggregation by binding 

to non-native states (‘holdase’-function) in 

aggregation prevention but also mediate 

sequestration of misfolded proteins into less 

toxic aggregates. 
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Glossary 

Intrinsically disordered regions 

Regions of a protein that lack stable, well-defined tertiary structure; often functionally 

relevant in interactions with partner proteins. 

Tail-anchored proteins 

Membrane proteins that are post-translationally inserted into the membrane. They 

contain a transmembrane sequence near the carboxy-terminus. 

E3 ubiquitin ligase 

An enzyme that mediates the transfer of ubiquitin from an E2 ubiquitin-conjugating 

enzyme to a protein substrate. 

E2 ubiquitin-conjugating enzyme 

An enzyme that catalyzes the second step in the enzymatic cascade for the transfer of 

ubiquitin to protein substrates. 

Reticulocyte 

An immature red blood cell. 

Co-chaperone 

A factor that assists or regulates the function of a molecular chaperone; some co-

chaperones also have chaperone activity in binding non-native proteins. 

Chaperone-assisted selective autophagy 

Degradation pathway of chaperone-bound proteins in lysosomes. 

Chaperone-mediated autophagy 

Chaperone-dependent degradation pathway of soluble cytosolic proteins that involves 

translocation of the substrate protein across the lysosomal membrane. 

Endosomal microautophagy 

Degradation of cytosolic proteins by late endosomes/multivesicular bodies. 
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Amyloid 

A fibrillar aggregate, composed of polypeptides forming cross- structure that has 

defined tinctorial (dye-binding) properties. 

Low complexity domains 

Sequences of low amino acid diversity that are often intrinsically unstructured . 

Polyglutamine (polyQ) expansion 

Pathogenic elongation of a polyglutamine stretch in a protein caused by an increased 

number of CAG trinucleotide repeats; described in a group of unrelated genes. 

Chaperonin 

A class of molecular chaperones forming large, double-ring complexes that 

transiently enclose substrate protein for folding (examples include HSP60 in 

mitochondria and TRiC/CCT in the eukaryotic cytosol). 

BRICHOS domain 

A domain found in several proteins associated with dementia, respiratory distress and 

cancer, including BRI2, Chondromodulin-I and surfactant protein C. BRICHOS 

domains have intramolecular chaperone-like activities and inhibit misfolding and 

aggregation 

Critical concentration 

The concentration up to which a protein remains soluble; exceeding this concentration 

results in insolubility and aggregation. 

Unfolded protein response 

Cellular stress response pathways that serve to increase protein folding capacity of the 

endoplasmic reticulum (UPRER) or the mitochondria (UPRMito). 

Integrated stress response 
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A conserved signalling pathway that responds to a variety of cellular conditions and 

attenuates protein translation via phosphorylation of the translation initiation factor 

eIF2α. 

Transthyretin 

Tetrameric transport protein that binds the thyroid hormone thyroxin and retinol-

binding protein. Mutant forms dissociate into subunits and aggregate, resulting in 

transthyretin amyloidosis.  

Hormesis 

An adaptive response of an organism or biological system towards a low dose of a 

toxic agent or physical conditions (e.g. reactive oxygen radicals or thermal stress) that 

preconditions the organism to tolerate a higher dose of the same toxic agent. 
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