
Statistical Analysis

Mariella Paul
paulm@cbs.mpg.de

MPI for Human and Cognitive Brain Sciences
Berlin School of Mind & Brain

mailto:paulm@cbs.mpg.de

Ways to do ERP statistics

● good way 1: hypothesis-driven
● good way 2: data-driven with correction for multiple testing
● “the bad way”: data-driven, no correction for multiple testing

Hypothesis-driven approach

● if you have a hypothesis about a specific ERP component, you can decide to only
analyze the relevant time window / electrodes a priori

● this significantly reduces the amount of multiple testing
● e.g. if you expect an N400, you might choose to only analyze 300 – 600 ms TW

and centro-parietal electrodes

Data-driven approach

● if you do not have an a priori hypothesis about time windows or channels, you
should analyze all channel x time pairs

● with this approach, you run into the multiple comparison problem

The multiple comparison problem

The multiple comparison problem (MCP) applies to all kinds of data when you want to
run more than one dependent statistical analysis

MCP: example

● assume you have accuracy data from an experiment with 3 different conditons,
and you want to statistically compare the accuracies of each conditon

● you decide to run three tests: cond 1 vs cond 2, cond 2 vs cond 3 and cond 1 vs
cond 3

● because these tests are dependent, you need to adjust your alpha
● Bonferroni correction: alpha/# of tests
● in this case: 0.05/3 = 0.017

MCP with EEG data

in EEG data we have A LOT of dependent data

● usually hundreds of trials (let's assume 100)
● consisting of time samples (let's assume 250)
● measured on dozens channels (let's assume 30)
● we would end up with 100*250*30 = 750 000 tests
● and with Bonferroni correction, would have to adjust alpha to 0.05 / 750 000 =

0.0000667 -> no effect would ever be significant!

Cluster-based permutation test (CBPT)

● the cluster-based permutation test (Maris and Oostenveld, 2007) solves the
MCP in an elegant way

● it creates clusters of channel x time pairs
● effects are only considered to be significant if they are significant over several

channel x time pairs, i.e. if they last several milliseconds and are distributed
over several electrodes

Maris and Oostenveld (2007) J. Neurosci. Methods

CBPT: real t-statistic

1. define neighborhood relationships for electrodes (needed for clustering)

CBPT: real t-statistic

1. define neighborhood relationships for electrodes (needed for clustering)
2. for each condition, collect all trials

CBPT: real t-statistic

1. define neighborhood relationships for electrodes (needed for clustering)
2. for each condition, collect all trials
3. calculate t-values for channel-time pairs for these conditions and sum them over

clusters (real t-statistic)

CBPT: random t-statistic

1. create a subset 1 and randomly draw as many trials from both conditions as
there are in condition A; put the rest of the trials in subset 2

CBPT: random t-statistic

1. create a subset 1 and randomly draw as many trials from both conditions as
there are in condition A; put the rest of the trials in subset 2

2. calculate t-values for cluster-time pairs for these subsets and sum them over
clusters (random t-statistic)

CBPT: random t-statistic

1. create a subset 1 and randomly draw as many trials from both conditions as
there are in condition A; put the rest of the trials in subset 2

2. calculate t-values for cluster-time pairs for these subsets and sum them over
clusters (random t-statistic)

3. repeat steps 1 and 2 a large number of times (resulting many random
t-statistics)

compare real t-statistic with random
t-statistics:
if real t-statistic is 2 or more standard
deviations (SD) away from the median
of random t-statistics, consider the
real t-statistic to be significant

CBPT: compute significance

2 SD

t-statistics are normally distributed

„the bad way“: visual inspection

● some papers only analyze certain time windows based on “visual inspection”
● this usually means they looked at their data and chose the time window that

looked like it might contain a significant effect

What's the problem with this approach?

CBPT in FieldTrip

● we’ll perform a cluster-based permutation test in FieldTrip using
ft_timelockstatistics

● but first, which conditions do we want to compare?

Open the FieldTrip Tutorial on CBPT to work along

http://www.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock

Neighborhood

● the first step of the cluster-based permutation test involves defining
neighborhoods

● let’s do this in FieldTrip using ft_prepare_neighbours with
cfg.method = ‘triangulation’

Specify the cfg

● before we use ft_timelockstatistics, we need to set up the cfg. Specify:
○ the channels
○ the latency

● cfg.method determines how we create the random t-statistics
● we’ll use cfg.method = 'montecarlo'
● this determines what other cfg options we have
● look at the reference documentation of ft_statistics_montecarlo to see

what our options are

● cfg.correctm determines the way ft_timelockstatistics corrects for multiple
testing and should be 'cluster'

● cfg.minnbchan determines the minimum number of channels to be included
in a cluster; we’ll use 2 since we have relatively few electrodes

● cfg.neighbours - this is where you should specify the neighborhood
structure we defined earlier

● cfg.tail defines one- or two-sided test; we want a two-sided test

Specify the cfg

● cfg.alpha determines the alpha value of the statistical test per tail. Given
that we’re running a two-sided test, what alpha do we need?

● cfg.numrandomization determines how many random t-statistics are
computed; this should be a large number, for now, let’s take a 1000

● what settings are there for cfg.statistics and which one do we want?
○ dependent samples are within-subject, independent samples

between-subject

Specify the cfg

Design config

● in cfg.design, you need to specify a matrix describing the design:
● e.g. imagine an experiment with 4 trials in the first condition and 3 trials in the

second condition:
design = [1 1 1 1 2 2 2]

● use the trial field of your data structures to compute the number of trials in
each condition

ft_timelockstatistics and plotting

● now we’ve finally got the cfg set up and can use ft_timelockstatistics!
● you can check the fields poscluster and negcluster of the output of

ft_timelockstatistics to see if there are any significant clusters
● plot the results by adapting the code for plotting at the bottom of the FieldTrip

Tutorial on CBPT
● as a last step, use ft_analysispipeline to output the analysis pipeline

http://www.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock
http://www.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock

