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Abstract 

A central goal of nanotechnology is the precise construction of nanoscale heterostructures 

with optimized chemical, physical or biological functionalities. It is known that function 

stems from structure but, in addition, function always involves nonequilibrium conditions 

and energy flow. The central topic of this thesis is the ultrafast energy flow in nanoscale 

heterostructures and how this energy flow drives ultrafast structural changes. The main 

experimental technique of this work is femtosecond electron diffraction, which probes the 

lattice response to electronic excitations. The nanoscale heterostructures contain metallic 

(Au) nanostructures of well-defined 0D or 2D morphology, supported on 2D substrates. 

In photoexcited heterostructures, thermal equilibrium is restored by electron-lattice 

interactions, within each component, and electronic and vibrational coupling across their 

interface. A newly developed model of ultrafast energy flow is used to measure the 

microscopic couplings, like electron-phonon coupling and interfacial vibrational coupling 

in nanoscale heterostructures using the observed Debye-Waller dynamics. Ultrafast 

energy flow in supported metallic nanostructures can initiate a rich variety of real-space 

motions like anharmonic lattice expansion and surface premelting, which manifest as 

distinct and quantifiable observables in reciprocal-space. These phenomena have been 

studied for Au nanoclusters on amorphous thin-film substrates. Au nanoclusters are found 

to exhibit ultrafast surface premelting at atypically low lattice temperatures and 

pronounced electron-lattice nonequilibrium conditions. Femtosecond electron diffraction 

is mostly used to study ultrafast motions related with phonons but in ultrasmall 

nanocrystals a new observable arises: the motion of the phonons’ frame of reference, 

meaning the crystal itself. This has been demonstrated for Au nanoclusters attached on 

graphene using femtosecond electron diffraction experiments, molecular dynamics and 

electron diffraction simulations. The substrate has a significant effect on the energy flow 

and the structural motions of ultrasmall, adsorbed nanostructures and, inversely, metallic 

nanostructures can alter fundamental properties of semiconducting substrates. Surface 

decoration with plasmonic, quasi-2D nanoislands of Au sensitizes WSe2 to sub-band-gap 

photons, causes nonlinear lattice heating and accelerates electron-phonon equilibration 

times. Conclusively, nanoscale heterostructures have a rich variety of nonequilibrium 

phenomena that affect their structure at ultrafast timescales. Ultrafast diffractive probes, 

like femtosecond electron diffraction, can provide a detailed, quantitative understanding 

of this relationship.  
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Kurzfassung 

In dieser Doktorarbeit wird der ultraschnelle Energietransfer in nanoskaligen 

Heterostrukturen sowie die dadurch verursachten ultraschnellen Strukturänderungen 

untersucht. Die wichtigste Methode dieser Arbeit ist Femtosekunden-Elektronenbeugung. 

Diese Methode untersucht die Reaktion des Kristallgitters auf elektronische Anregung. 

Die Heterostrukturen bestehen aus Gold-Nanostrukturen mit wohldefinierten 0D oder 2D 

Strukturen, die auf 2D Substraten aufgebracht sind. In mit Licht angeregten 

Heterostrukturen wird das thermische Gleichgewicht durch Elektron-Phonon-Kopplung 

in den einzelnen Materialien sowie durch elektronische und phononische Kopplung 

zwischen den Materialien wiederhergestellt. Ein neu eingeführtes Modell für 

ultraschnellen Energietransfer wird verwendet, um die ultraschnellen Veränderungen der 

Gittertemperatur zu beschreiben. Das Modell ermöglicht es, aus der gemessenen Debye-

Waller-Dynamik mikroskopische Größen wie Elektron-Phonon-Kopplung und Phonon-

Phonon-Kopplung an der Grenzfläche der nanoskaligen Heterostrukturen zu extrahieren. 

Ultraschneller Energietransfer in metallischen Nanostrukturen können eine Vielzahl an 

Veränderungen im Kristallgitter hervorrufen, z.B. Gitterausdehnung und Schmelzen der 

Kristalloberfläche. Diese Veränderungen gemessen werden, für 0D Gold Nanostrukturen 

die auf 2D Substraten aufgebracht sind. Au-Nanocluster zeigen ultraschnelles Schmelzen 

der Kristalloberfläche bei außergewöhnlich niedrigen Gittertemperaturen und 

ausgeprägtem Nichtgleichgewichtszustand zwischen Elektronen und Gitter. 

Femtosekunden Elektronen Beugung ist eine Methode, die am häufigsten bei der 

Untersuchung durch Phonen induzierter ultraschneller Bewegungen von Atomen 

Anwendung findet. In ultrakleinen Nanokristallen stellt sich aber ein neue 

Herausforderung dar: der Referenzrahmen der Bewegung der Phononen, was der Kristall 

selber ist. Demonstriert wurde das für Gold 0D Nanostructuren, die auf Graphen. Das 

Substrat hat einen signifikanten Einfluss auf den Energiefluss und die strukturelle 

Bewegung von ultrakleinen, adsorbierten Nanostrukturen und in inverser Weise können 

metallische Nanostrukturen due fundamentalen Eigenschafter halbleitender Proben 

verändern. Wenn WSe2 mit plasmonische quasi-2D Gold-Nanoinseln bedeckt wird, 

ändern sich dessen Eigenschaften so, dass Photonen unterhalb der Bandlücke absorbiert 

werden können. Die resultierende Erwärmung des Gitters folgt einem nichtlinearen 

Zusammenhang mit der Fluenz des einkoppelnden Lasers und die Elektron-Gitter 

Relaxationszeit  ist reduziert.  
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Chapter 1. Introduction 

1.1 Energy flow and structural changes in nonequilibrium states 

A central concept in all branches of physics, chemistry and biology that deal with large 

amounts of particles is thermodynamic equilibrium. In thermodynamics, equilibrium and 

nonequilibrium are described in terms of how energy is shared among the numerous, 

microscopic degrees of freedom. In thermodynamic equilibrium, the energy is stored 

equally in all microscopic degrees of freedom. In nonequilibrium states the various 

microscopic degrees of freedom can have different energy contents. All interesting 

physical phenomena, for instance the ones that take place in devices, chemical reactions 

or biological systems, occur in nonequilibrium conditions. Nonequilibrium states have a 

finite lifetime, since microscopic couplings are eventually restoring thermodynamic 

equilibrium. Measuring microscopic couplings in solid state systems is one of the central 

objectives of the current work. This introductory section discusses in more detail the ideas 

of equilibrium and nonequilibrium in condensed-matter systems and motivates the 

development of time-resolved experimental techniques. 

Ground state structure of solids. The macroscopic properties of solids originate from 

the structure and interactions of their microscopic building blocks: the electrons and the 

nuclei. In crystalline solids, atoms are distributed on periodic lattices. Due to the lattice 

periodicity, electronic and nuclear motions are both governed by wavefunctions (Ψ(𝑟)) of 

the form [1]: 

Ψ(𝑟) = 𝑒𝑖�⃗⃗�∙𝑟𝑢𝑘(𝑟) ,  R 1.1 

where �⃗⃗� is the crystal momentum. This mathematical expression (Bloch state) describes a 

plane wave (𝑒𝑖�⃗⃗�∙𝑟) that is modulated by the lattice periodicity (𝑢𝑘(𝑟)). Using relationship 

(R 1.1) and the expressions for the electromagnetic interactions of electrons and nuclei 

(Hamiltonian), it is possible to derive relationships between the energies and the crystal 

momenta of electrons in solids (electronic band structure). A similar procedure can be 

carried out for the nuclear motions (vibrations) and in this case the quasiparticle 

excitation is termed phonon. The predicted electronic and vibrational states are populated 

according to the Fermi-Dirac and Bose-Einstein statistics, respectively. In thermodynamic 

equilibrium, both electrons and phonons are characterized by a single temperature.  
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The ground-state structure of solids, and the statistical assumptions related with 

thermodynamic equilibrium, can explain several properties of materials [2]. The 

electronic band structure can be used to categorize solids as conducting, semiconducting 

or insulating and, in addition, it can tell if a solid is absorbing or transparent at a given 

wavelength of light. The phononic band structures of materials can be used to understand 

their elastic properties, heat capacities, and speed of sound. Driven by the necessity of 

categorizing solids and selecting them for various technological applications, scientists 

have developed a plethora of theoretical and experimental techniques for studying 

ground-state properties.  

From the theory perspective, an important example is density functional theory (DFT). In 

its most basic form, DFT is inherently connected with the ground state structure of 

materials [3]. Regarding experimental mapping of band structures in equilibrium, some 

examples are static photoemission spectroscopy [4] for electrons and inelastic neutron 

scattering [5] for phonons. In addition, several optical spectroscopies can study electronic 

transitions and phonons in equilibrated, condensed matter systems. Here only few are 

mentioned that probe lattice dynamics. These are the Infrared, Brillouin and Raman 

spectroscopies [6] that measure the energy of long-wavelength phonons in a large variety 

of materials.  

Electron-lattice nonequilibrium. Characterization of a material requires a detailed 

knowledge of the ground-state structure properties. However, the ground state description 

is incomplete once the material is used for a certain function. The various electronic and 

phononic states can be assigned a unique temperature only in perfect thermodynamic 

equilibrium. In a functional material some nonequilibrium conditions among its building 

blocks will always arise. In essence, function is always accompanied by some form of 

nonequilibrium. 

The simplest example is related with electrical conduction in metals. In metals, static 

electric fields set the electrons in motion but there is no direct interaction between the 

electric field and the phonons. Electrons get accelerated from the external electric field, 

gain energy and scatter on the lattice and on defects. The inelastic scattering events 

produce phonons. This is the well-known phenomenon of Joule heating. Generation of 

excited charge carriers and subsequent emission of phonons takes place also when the 

external electric field is that of a laser pulse or other form of light. In semiconductors, 
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when the photon energy is sufficient, light excites electrons in the conduction band (holes 

in the valence band), which then interact with phonons and cause lattice heating. 

Obviously, such phenomena are very important for electronics and opto-electronics. 

Thus, it is essential to develop experimental techniques that quantify the strength of 

electron-phonon interactions.  

The general importance of electron-lattice interactions can be made clear by a close 

inspection of the relationship R 1.1. The nuclear positions enter the general form of the 

electronic wavefunction and hence electrons and phonons are always coupled. Having 

accurate knowledge of electron-lattice interactions can be beneficial even for a refined 

view of the ground state itself. One important example is superconductivity. 

Superconductivity (BCS-type) is a ground-state property and it arises due to attractive 

interactions among electrons that are mediated by phonons [7] (electron-phonon 

coupling).  The connection between thermal relaxation of electrons in metals and 

superconductivity is discussed in the theoretical work of Philip B. Allen  [8].  

Structural changes in solid-state systems. As mentioned before, the electronic and 

phononic band structures in equilibrium can be used to categorize materials. Yet, the 

recent ability to study materials at ultrafast timescales has revealed that even the band 

structure itself [9] and the entire atomic arrangement [10] can change for a brief period of 

time. Moreover, using the electronic band structure in equilibrium, to categorize a 

material as metallic or insulating, might be a problematic concept in some nonequilibrium 

conditions. For instance, several insulating materials have been found to transform into 

metals for a brief period of time [11], [12].   

The electronic structure of materials can change at ultrafast timescales and, since 

electrons make up the chemical bonds between the atoms, the atomic positions will also 

be affected. The phononic band structure of a material in equilibrium can be used to 

predict its stiffness and other properties related with atomic vibrations. Interestingly, in 

conditions far from thermodynamic equilibrium, the vibrational properties of materials 

can change. For instance, Au can get harder [13] and Bi can get softer [14] when the 

electrons are much hotter than the lattice. These are only few of the many examples 

where conclusions drawn from equilibrium experiments and theories become invalid in 

nonequilibrium conditions. The current work deals with ultrafast changes of the atomic 

structure of materials with nanoscale dimensions.  
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Nonequilibrium in chemical phenomena. Being able to observe nonequilibrium states 

is important for physical processes in solids but also for a wide range of phenomena 

encountered in molecular physics and chemistry. Perhaps the most important example for 

chemistry is the so-called intermediate state, or the activated complex as described in the 

work of Eyring [15]. In the description of Eyring every chemical reaction pathway is 

crossing a short-living, nonequilibrium atomic arrangement called the activated complex. 

In nonequilibrium states an excess amount of energy can be transiently stored in specific 

microscopic degrees of freedom. This situation is similar with the thermal fluctuations 

described by Eyring. Nonequilibrium states can be triggered at a selected time by an 

external stimulus, like pulses of light, current or heat, opening up the way for numerous, 

interesting, time-resolved experiments and laser-based applications. The ability to 

observe in real-time the transition from chemical reactants, to activated complexes and 

final chemical products is a novel, fertile field for experimentalists [16]. Some recent 

works in this direction have dealt with motions and transformations of Carbon rings and 

chains [17], CF3I molecules [18] and catalytic oxidation of CO [19] on ultrafast 

timescales. 

 

1.2 Time-resolved investigations of solids 

In view of the previous discussion, there are two important aspects of nonequilibrium 

phenomena in solid-state physics and chemistry. First, it is important to know how energy 

flows among the various microscopic degrees of freedom. Second, nonequilibrium 

conditions and energy flow can trigger structural transformations. This section introduces 

the experimental procedures that can be followed in order to address these points. 

The periodic lattice of crystalline solids and the electronic and phononic band-structures 

are accessible with several experimental techniques. All experiments involve scattering of 

some type of radiation from the investigated solid-state system. When the used radiation 

is continuous, scattering experiments are most appropriate for studying the ground-state 

structure of materials. In close to equilibrium conditions it is possible to measure coupling 

between subsystems, for instance electron-phonon coupling, through the energy 

(frequency) broadening of the investigated electronic [20] or phononic [21] states. The 

main drawback of this approach is that several types of coupling can contribute to the 
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observed spectral broadening. This makes difficult to acquire an accurate microscopic 

description based solely on spectroscopic data.  

For the purpose of measuring microscopic couplings and observing nonequilibrium states, 

the scattered radiation is ideally pulsed in order to record time-dependent snapshots of the 

system. The pulse duration needs to be shorter than the characteristic lifetime and 

interactions of nonequilibrium states. Assuming that electronic and phononic states lie in 

the 𝑒𝑉  ( 1 𝑒𝑉 ≅ 1.6 ∙ 10−19 𝐽 ) and 𝑚𝑒𝑉  energy-range, respectively, and from the 

Heisenberg uncertainty principle (Δ𝐸 ∙ ∆𝑡 ≥ ℎ), the lifetime of nonequilibrium states and 

interactions can be as short as picoseconds (1 𝑝𝑠 ≅ 10−12 𝑠) and femtoseconds (1 𝑓𝑠 ≅

10−15 𝑠). Electronic circuits that record, transfer and store data are not sufficiently fast 

for real-time measurements of electron-lattice interactions. Instead, the pulses of the 

probing radiation need to be used in a stroboscopic, pump-probe manner. Pump-probe 

experiments use an intense ‘pump’ pulse (usually a laser pulse) to initiate some 

nonequilibrium dynamics and a weaker ‘probe’ pulse to study the transient, 

nonequilibrium states. The probing pulses can be electrons or electromagnetic waves 

ranging from THz to X-rays. According to the probe, the excited material can be studied 

by means of diffraction, microscopy or spectroscopy. The pump-probe principle is 

explained in more detail in Chapter 2. 

Equation R 1.1 and the relevant discussion, made clear that all properties of crystalline 

solids are connected with their crystal structure. For this reason, a useful objective is to 

study the crystal structure of materials in equilibrium and nonequilibrium conditions. One 

of the main techniques for studying crystal structures is diffraction. The first diffraction 

experiments used X-rays and were reported by Walter Friedrich, Paul Knipping and Max 

Laue in 1912 [22]. Diffraction with electrons was first shown in 1927 by George Paget 

Thomson, Clinton Joseph Davisson and Lester Halbert Germer [23]. The transition from 

structural characterization with continuous streams of electrons, to studies of structural 

dynamics with pulses of electrons, was achieved in 1982 by Steve Williamson and Gerard 

Mourou [24]. These early, time-resolved diffraction experiments investigated phase 

transitions with a time-resolution that was in the order of picoseconds.  

In time-resolved investigations, the solid is considered as a collection of interacting 

subsystems. Interactions strengths, or coupling constants, are then extracted with time-

dependent equations that describe energy flow between the subsystems and fit some of 
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the observables. The three major subsystems of a solid are the electrons, the spins and the 

phonons (figure 1.1). Certain time-resolved techniques are mostly sensitive in the 

response of only one subsystem. The use of these techniques simplifies the interpretation 

of the observed dynamics. For example, time-resolved diffraction is sensitive to the lattice 

dynamics [25], [26], time-resolved photoemission is sensitive to the electron dynamics 

[9], [27] and time-resolved magneto-optic Kerr effect is mostly sensitive to the spin 

dynamics [28]. If the nonequilibrium conditions trigger some structural change, time-

resolved diffraction can detect it in the most direct way. 

 

 

Figure 1.1: The subsystems of a solid, their interactions and examples of 

experimental techniques. The most simple, dynamic picture of a solid contains 

electrons, phonons and spins coupled with each other. Arrows with notations e-ph, ph-s 

and e-s stand for electron-phonon, phonon-spin (spin-lattice) and electron-spin (spin-

orbit) interactions respectively. Certain time-domain techniques can selectively probe 

excitations in one of the three subsystems. In the case of the lattice (phonons) such a 

technique is time-resolved diffraction. Adapted from reference [29]. 
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1.3 The case of nanostructures 

Since the establishment of solid-state physics, the first diffraction and the first time-

resolved diffraction experiments, the materials of technological interest have greatly 

evolved. The present work is concentrated on the case of nanomaterials or nanostructures.  

Nanostructures are spatially confined solids with at least one of their dimensions ranging 

between one and one hundred nanometers (1 nm=10-9 m) [30], [31]. A nanostructure can 

be strongly confined in some dimensions of space and very extended in the other 

directions of space. From this point of view, the nanostructures are also termed low-

dimensional materials. Some examples are (i) 0D nanostructures (confinement in all 

directions) like nanoclusters, (ii) 1D nanostructures like nanowires (iii) and 2D 

nanostructures like graphene (a two-dimensional layer of sp2 Carbon atoms). Another 

important aspect of nanostructures is that, due to their small volume, the percentage of 

atoms that are located close to surface is drastically enhanced compared to bulk materials 

(high surface-to-volume ratio). For experiments and applications, nanostructures are 

deposited on various substrates hence the corresponding samples are practically, always 

heterogeneous. Nanostructures can posse several interesting functionalities, very different 

than their bulk counterparts.  

One of the first who envisioned the use of nanostructures in technological applications 

(nanotechnology) was Richard Feynman. Feynman introduced the concept of 

nanotechnology in his famous lecture “There's Plenty of Room at the Bottom” in 1959. In 

view of the developments in microelectronics and electron microscopy, Feynman gave 

another lecture in 1984 titled “Tiny machines”, in which he proposed the use of small 

clusters of Au, containing ~100 atoms, for information storage. Likely, information 

storage was used as an illustrative example and many more interesting aspects aroused.  

In the lecture “Tiny machines”, some member of the audience questioned the durability of 

nanomaterials in realistic conditions. If nanomaterials are delicate arrangements of few 

atoms, can they withstand external perturbations? 

The initial answer to this question was based on the ground-state description of materials. 

Atoms in nanostructures, as in molecules and crystals, have short-range order and this 

order is not affected by thermal fluctuations, providing that the temperature is not too 

high. Yet, all interesting functionalities occur in nonequilibrium conditions where the 
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temperature is an ill-defined quantity. Oppositely to thermal states, which have universal 

characteristics, nonequilibrium states depend on various factors like the external stimulus 

that initiates them, the chemical environment and more. Due to the complexity of 

nonequilibrium states the durability of nanomaterials cannot be judged by a single 

number, meaning the temperature, and it is necessary to examine the nonequilibrium 

interactions that arise when the nanostructure performs a certain function. Some 

nonequilibrium interactions will take place within the nanostructure, for instance 

electron-phonon interactions. Since the nanostructures are small and surface effects are 

important, interactions with neighboring materials should also play an important role.  

In order to observe nanostructures one needs to exploit radiation with De Broglie 

wavelength much smaller than their characteristics size (λ<<1 nm) and large scattering 

cross-section with matter; the most convenient being electrons. The Au nanoclusters, used 

by Feynman as a model system in nanotechnology, have been extensively studied with 

transmission electron microscopy (TEM) and, interestingly, they were found to be highly 

mobile and fragile systems. Au nanoclusters can exhibit structural changes induced by 

electron-irradiation [32], [33]. Electron microscopy has also revealed that atoms on the 

surface of nanoclusters are in constant, diffusive motion [34]. In nanoclusters, surface 

roughening and surface melting occur at temperatures lower than the melting point of 

their bulk counterparts [35]. Apart from Au, interesting order-disorder transitions have 

been observed in many nanomaterials, for instance Bi nanoparticles [36].  

Figure 1.2 illustrates the structural instabilities of confined, metallic systems. The four 

charts show four snapshots of a single Au nanocluster recorded with a scanning 

transmission electron microscope (Reproduced with permission from Professor Richard 

Palmer, Swansea University, and Dawn Foster, Birmingham University). From these 

images it becomes obvious that the atoms of nanoclusters are extremely mobile. 

Occasionally, the atoms form hexagonal patterns, parallel lines, zig-zag structures or 

completely random fluctuations. The surface is very rough and atoms are occasionally 

detaching from the nanocluster.  
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Figure 1.2: Four snapshots of a single Au nanocluster observed in the electron 

microscope. The atoms of the nanocluster are highly mobile and form short-living 

patterns such as hexagonal arrangements, parallel lines, zig-zag structures, surface 

imperfections and completely random fluctuations. Credits: Professor Richard Palmer, 

Swansea University, and Dawn Foster, Birmingham University, reproduced with 

permission. 

 

How fast can these motions be? The Debye temperature of Au nanoclusters of similar size 

is in the order of 149 K [37]. The Debye frequency 𝑣𝑚 = 𝑘𝐵Θ𝐷 ℎ⁄ = 3 𝑇𝐻𝑧 corresponds 

to a period of 300 fs. This means that in order to resolve atomic motions in Au 

nanoclusters the instrumental time-resolution needs to be 300 fs or less. The time-

resolution of in situ TEM setups is in the order of milliseconds. Instead, the required 

time-resolution can be achieved by time-resolved electron diffraction [38]. In order to 

cope with the multifarious instabilities that are encountered in nanoscale systems, the 

main experimental technique employed here is time-resolved electron diffraction with 

time-resolution in the order of 100 femtoseconds.  

 

1.4 Applications and nonequilibrium phenomena in nanostructures 

The general statement that functionalities are accompanied by nonequilibrium physics is 

now clarified for some of the most frequent applications of nanostructures. A brief review 

of nanostructures’ applications is useful in order to narrow down the objectives and to 

maximize the impact of the present work. 

Electronics and optoelectronics. Perhaps one of the most promising application of 

nanostructures is the miniaturization of electrical circuits [39]. One example is the 
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envisioned 2D transistor made from atomically thin layers of different materials [40]. For 

an efficient design, construction and control of spatially confined electrical circuits, it is 

essential to know how electrons and phonons interact and how they are transmitted 

through the various interfaces [41], [42]. Nanostructures are also useful for optoelectronic 

applications. One example is nano-antennas made of nanoscale Au and graphene [43] and 

ultrathin WSe2 on nanostructured Au with enhanced fluorescence [44]. Again, ultrafast 

energy flow is playing an important role in order to understand how energy is transferred 

from the laser field to all the microscopic subsystems of the material.  

Plasmonics. Experiments and applications that exploit metallic nanostructures to enhance 

light-matter interactions are termed plasmonics [45], [46]. Plasmonic nanostructures are 

usually made of noble metals like Au or Ag. Due to spatial confinement, the free charge 

carriers in plasmonic nanostructures can oscillate in phase with an external 

electromagnetic field and the structure is acting as a nano-antenna [46]. In the vicinity of 

the nano-antenna (near-field) the electromagnetic forces are enhanced. The near-field 

enhancement can be exploited in several applications. Neighboring nano-antennas can 

become coupled and transmit energy and information in space [47], [48]. Other 

applications include the local enhancement of light-matter interactions for detection of 

single molecules by spectroscopic methods [49]. However, light-induced heating of 

plasmonic nanostructures can easily result in irreversible, structural and morphological 

changes [50], which is a limiting factor for practical applications. 

Femtochemistry. In the vicinity of metallic nanostructures, the enhanced density of 

electromagnetic energy and the generation of excited charge carriers can drive chemical 

reactions like dissociation of molecules [51]. Such applications belong to the field of 

femtochemistry. Femtochemistry deals with chemical reactions that are driven by light at 

ultrafast timescales [52]. Once again, ultrafast energy flow is important in order to 

understand the ultrafast damping of plasmonic oscillations and their transformation into 

hot electrons and eventually phonons. Electron-phonon interactions are competing 

processes for the electron-adsorbate interaction and hence they play an important role in 

femtochemical reactions [52], [53].  

Catalysis. Beyond laser-based methods, metallic nanostructures are often used in 

chemistry as highly efficient catalysts for specific reactions [54]. One important and 

widely studied case is the catalytic transformation of the hazardous CO to the less 
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dangerous CO2, using Au nanostructures on TiO2 [55], [56]. Although catalysis is largely 

explored with static techniques (techniques with a minimum time-resolution of 

milliseconds or seconds), nonequilibrium conditions are obviously playing a role, based 

on the ideas of Eyring mentioned in section 1.1. Charge transfer is an essential part of 

catalysis [57] and photo-catalysis [58] with small, metallic nanostructures on 

semiconducting substrates and thus electron-lattice and nanostructure-substrate 

interactions are important. Catalytic chemical reactions can result in the generation of hot 

electrons [59].  Hot electrons are also encountered in laser-based experiments and their 

lifetime is limited by electron-phonon interactions. From this point of view, time-

resolved, laser-based experiments might be proven useful for an in-depth understanding 

of surface chemical reactions and catalytic properties.  

Beyond electrons, ultrafast motions of atoms are also crucial for the performance of 

catalysts. In catalysis, motions of surface atoms and imperfections play a dual role. On 

the one hand, diffusion of surface atoms leads to sintering [60] and inhibits catalytic 

activity [55], [56]. On the other hand, mobile surface atoms [61] and surface vacancies 

[62] are promoting the catalytic activity. Catalytic active sites are associated with atomic 

diffusion processes that occur in the picosecond timescale [61]. The exact role of atomic 

motions in catalysts is a very interesting and open subject.  

Motions of supported nano-objects. Nanostructure on surfaces can translate and rotate 

in the picosecond timescale. In order to investigate translational and rotational diffusion 

or ballistic transport the usual model system is Au nanoclusters on graphene and graphite 

[63]–[65]. Translational and rotational diffusion of nanoclusters on surfaces is important 

for bottom-up synthesis of nanostructures, epitaxial growth [64] and sintering of 

nanocatalysts [60]. So far, there are no studies, to the best of the author’s knowledge, 

which examined if such real-space motions produce reciprocal-space observables that are 

accessible by ultrafast diffractive probes. 

Thermoelectrics. Solid-state systems with nanoscale heterogeneities are also used for 

thermoelectrics. Thermoelectric devices generate electricity in the presence of a 

temperature gradient. Various reports have shown that nanostructuring can enhance the 

performance of thermoelectrics [66]–[68]. The enhanced performance might be due to 

decreased, lattice-thermal-conductivity in systems with nanoscale heterogeneities [69]. 

Electron-phonon interactions and transmission of phonons across interfaces come again 
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into play, strengthening further the technological impact of time-resolved techniques that 

can probe interfacial energy flow, for instance time-resolved diffraction [70].  

Solar cells and solar catalysts. Decorating the surface of a semiconductor with metallic 

nanostructures can enhance the light-induced generation of excited carriers. Metallic 

nanostructures can modify the properties of semiconducting surfaces mainly by hot 

electron injection [53] and plasmonic coupling [71]. These phenomena might be applied 

to photocatalysis [58], for instance water-splitting by visible light [72], and photovoltaics 

[73] for clean energy production. 

 

1.5 State of the art and methodology of the present work  

The applications mentioned in the previous section have some common, crucial aspects. 

First, all nanomaterials for practical applications are heterogeneous and, often, the support 

is playing a very active role. Second, most applications involve metal / semiconductor 

interfaces.  Third, ultrafast energy flow is crucial and, sometimes, it can trigger structural 

changes. In view of these three points, the present section reviews the state of the art, 

regarding time-resolved diffraction studies of heterogeneous, nanoscale metal / 

semiconductor systems and, finally, it presents the methodology of the present work.  

Time-resolved electron diffraction has been used to observe various nonequilibrium 

lattice motions, for instance, coherent oscillations [74], [75] and phase transitions [76], 

[77]. Morevoer, time-resolved electron diffraction can be used to quantify the coupling 

strength between electrons and phonons (see [78] and references therein). So far, time-

resolved electron diffraction was mostly applied on homogeneous elements and 

compounds. Fewer studies are focused on the role of heterogeneity on the observed 

structural dynamics. Some recent examples are the works of Sokolowski-Tinten et al. 

[79], Pudell et al. [80] and Witte et al. [81]. The amount of time-resolved diffraction 

studies that deal with spatially confined solids (1-10 nm) is also limited. Ruan et al. [82] 

have studied Au nanoparticles, with a radius of 2 nm, in conditions close to melting. 

Frigge et al. studied atomic wires of In on a Si surface [10], [76]. Witte et al. studied few 

monolayer thick Pb on Si [81]. Other studies include Bi nanoparticles (10-20 nm) by 
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Esmail et al. [83], GaAs quantum dots (11-46 nm) by Vanacore et al. [84] and PbSe 

quantum dots (5-6 nm) by Wang et al. [85]. 

The present work aims to advance the field with comparative studies of prototypical 

nanoscale heterostructures. In all cases, the one component of the heterostructure is a 

solid with strong spatial confinement. The role of heterogeneity is studied in detail by 

depositing the same nanostructures on different substrates with membrane-like 

morphology (two-dimensional, 2D substrates). The nanostructures are either spatially 

confined in all directions of space (0D nanostructures), or only vertical to the substrate 

(2D nanostructures). All nanostructures are made of a simple metal (Au) and all 

substrates are semiconducting. Nanoscale metal/semiconductor heterostructures are 

prototypical systems for electronic and optoelectronic [43], [53], catalytic [55] and 

photocatalytic [51] applications. The synthesis of the metallic nanostructures has been 

carried out with modern physicochemical methods like size- and shape-selected synthesis 

of nanoclusters [86] and deposition on thin-films and layered crystals [87] (Chapters 3, 4 

& 5) or epitaxial growth on layered crystals (Chapter 6).  

 

1.6 Structure of the thesis 

The present work reports time-resolved electron diffraction studies of prototypical:  

(i) 0D metal / 2D semiconductor heterostructures,  

(ii) 2D metal / 2D semiconductor heterostructures. 

Any structural motion is driven by energy flow among the microscopic subsystems. For 

all investigated systems the author have modelled the microscopic energy flow taking into 

account heterogeneity. These models include: 

(i) Intrinsic interactions for each material (e.g. electron-phonon coupling), 

(ii) Extrinsic interactions between materials (e.g. interfacial phonon transmission). 

The next step is to examine under which circumstances nonequilibrium conditions change 

the crystal structure and the morphology of nanostructures. The various lattice motions 

and structural changes that have been observed are summarized as follows: 

(i) Lattice expansion of 0D nanostructures, 
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(ii) Partial surface melting of 0D nanostructures, 

(iii) Rotational motions of 0D nanostructures, 

(iv) Modified structural dynamics of 2D semiconducting crystals induced by 

surface-decoration with 2D metals. 

In more detail, Chapter 2 of the thesis introduces the femtosecond electron diffraction, 

the main experimental technique used by the author. In addition, it explains the various 

physical phenomena that are investigated and the theoretical and computational methods 

that were employed. 

Chapters 3 deals with the ultrafast structural dynamics, in response to electronic 

excitations, in heterostructures composed of Au923 nanoclusters (0D) on thin-film 

substrates (2D) with the use of femtosecond electron diffraction. In photo-excited, 

supported nanoclusters thermal equilibrium is restored through intrinsic heat flow, 

between their electrons and their lattice, and extrinsic heat flow between the nanoclusters 

and their substrate. For an in-depth understanding of this process, the two-temperature 

model have been modified for 0D/2D heterostructures and used to describe energy flow 

among the various subsystems, to quantify interfacial coupling constants, and to elucidate 

the role of the optical and thermal substrate properties.  

In Chapter 4, various forms of atomic motion, such as thermal expansion and lattice 

disordering, are studied through their distinct and quantifiable reciprocal-space 

observables. The anharmonicity of the interatomic potential leads to lattice expansion, 

which becomes evident as a shift of diffraction peaks to lower scattering angles. The 

effective lattice temperature, probed by the Debye-Waller effect, together with the 

observed lattice expansion, are used to measure the expansion coefficient of photo-

excited nanoclusters. In addition, when lattice heating of Au nanoclusters is dominated by 

intrinsic heat flow, a reversible disordering of atomic positions occurs, which is absent 

when heat is injected as hot substrate-phonons. The present analysis indicates that hot 

electrons can distort the lattice of nanoclusters, even if the lattice temperature is below the 

equilibrium threshold for surface pre-melting. Based on simple considerations, the effect 

is interpreted as activation of surface diffusion due to modifications of the potential 

energy surface at high electronic temperatures. The chapter is concluded with a 

discussion of the implications of such a process in structural changes during surface 

chemical reactions. 
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In Chapter 5, femtosecond electron diffraction is combined with molecular dynamics and 

electron diffraction simulations to study size-selected Au nanoclusters on few-layer 

graphene. The dynamics of diffraction peaks’ intensities reveal that the nanoclusters 

exhibit ultrafast, constrained rotations in addition to atomic vibrations. The crystallinity 

of the substrate is imposing a preferred orientation of the nanoclusters’ lattices in 

equilibrium. The nanoclusters’ orientation becomes evident from their electron diffraction 

pattern. Ultrashort laser pulses are then used to induce vibrational and rotational 

excitation of the nanoclusters and the resulting, time-dependent diffraction patterns are 

probed with femtosecond electron diffraction. Rotational motions of nanoclusters are 

impulsively excited, i.e. on the timescale of electron-phonon relaxation, and therefore 

participate in the overall non-equilibrium dynamics of nanoscale heterostructures. The 

chapter concludes with modelling of the ultrafast energy flow in atomic vibrations and 

nanocluster librations and comparison of their energetic contributions. 

Chapter 6 is devoted to the study of quasi-2D nanoislands of Au on the layered 

semiconductor WSe2. It is found that the Au nanolattices have an epitaxial relationship 

with the underlying WSe2 surface. Before proceeding with the time-resolved experiments, 

the heterostructure is studied in detail with electron microscopy, linear optical absorption 

and angle-resolved photoemission spectroscopy. Femtosecond electron diffraction is then 

used to study intrinsic and extrinsic energy flow in the heterostructure. The main finding 

of this work is that the semiconducting WSe2 can be excited at ultrafast timescales even 

with photons that are within its optical gap, providing that its surface is decorated by Au. 

The resulting lattice heating is distinctively faster than what has been observed previously 

for resonant excitation of pure WSe2. Moreover, lattice heating follows a clear, nonlinear 

relationship with the energy input from the incident laser pulse. These results are a strong 

indication that electronic excitations in WSe2, mediated by plasmons and electrons of Au 

nanostructures, have very different nature than electronic excitations caused by photons. 
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Chapter 2. Experimental & computational methods 

 

This chapter explains the experimental and computational methods that were employed 

by the author of this work. The introduction on the working principle of femtosecond 

electron diffraction (FED) contains some practical information and conceptual insights in 

order to assist the growing number of new members and external users that employ the 

apparatus for their scientific interests. The initial experimental apparatus has been 

designed and constructed by Dr. Lutz Waldecker, in collaboration with Dr. Roman 

Bertoni and under the supervision of Dr. Ralph Ernstorfer [29], [38]. In the frame of the 

current doctoral thesis, the setup was moved in a clean-room facility and partially 

redesigned to increase its stability and to implement a new laser system with non-linear 

optics that allow pumping with various photon energies. Other changes included a 

modified design of the magnetic lens manipulator and cooling, a new geometry for pump-

probe experiments, where the sample is tilted, and various modifications in the UHV 

chamber and the non-linear optics. Finally, it should be mentioned that Chapters 3, 4 and 

5 have mostly used the original design and Chapter 6 the upgraded one.    

 

2.1 Femtosecond electron diffraction 

This work employs time-resolved, high-energy, electron diffraction with a temporal 

resolution in the order of 100 fs (1 fs=10-15 s) [38]. Due to its temporal resolution, the 

technique is termed femtosecond electron diffraction (FED). FED makes use of the 

photoelectric effect to produce ultrashort pulses of electrons using ultrashort pulses of 

photons. The ultrafast lattice dynamics of crystalline materials can then be recorded in a 

‘pump’ (with photons) and ‘probe’ (with diffracted electrons) principle that is shown in 

figure 2.1. 

The pulses of photoelectrons are accelerated by an electric voltage, enter the field-free 

area and get diffracted by the lattice. The arrival of the electrons on the sample occurs at 

selected time-delays (𝛿𝜏) relatively to the arrival of an ultrashort laser pulse. Both the 

laser pulse and the electrons arrive at nearly normal incidence on the sample. The signal 

of several thousand diffraction patterns is integrated for each time-delay using an electron 
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camera. The diffraction pattern that is finally recorded corresponds to a snapshot of the 

average atomic positions at time 𝛿𝜏 after photoexcitation. The uncertainty in determining 

the time-delay stems from the finite pulse duration of electrons and photons. In FED, the 

main limiting factor of temporal resolution is the electron pulse duration. The recipe for 

FED, shown in figure 2.1, has three main ingredients: the laser pulses, the photoelectron 

pulses and the device that guides the electrons and records the diffraction patterns. These 

elements are separately described in the three following sections.  

 

 

Figure 2.1: Schematic illustration of the pump-probe principle in FED. An electron 

pulse (probe) arrives at a selected time delay (𝛿𝜏) after excitation with a photon pulse 

(pump). The diffraction pattern recorded by the camera corresponds to a reciprocal-

space snapshot of a very precise instance after optical excitation. In this type of 

experiments, both the electrons and the photons arrive at nearly normal incidence. 

 

2.1.1 Ultrashort laser pulses 

Oscillator. The ability to produce ultrashort laser pulses is based on the so-called Ti:Sa 

oscillator [88]. This device produces laser pulses with a central wavelength of 800 nm 

and pulse durations in the order of tens of femtoseconds. The working principle is based 

on the so-called Kerr-lens mode-locking. The gain medium of Ti:Sa lasers has a refractive 

index that increases as the intensity of the electromagnetic wave increases. Some 

spontaneous process, for instance knocking a mirror of the cavity, can alter the phases of 

the various modes of the electromagnetic field such that they combine and form a pulse. 

The pulse is characterized by higher peak intensities than individual continuous waves. 

Due to Kerr-lens mode-locking, the pulses are self-focused and favorably enhanced by 
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the active medium. In this way, all the continuous-wave radiation is depleted, and the 

produced pulses can be used for pump-probe experiments. The previously used oscillator 

was mode-locked by manual, mechanical motions of one cavity mirror and needed 

regular alignment. The oscillator in the current form of the setup (Vitara from Coherent) 

is completely automatized and mode-locking is achieved in a short period of time. 

Amplifier. The pulse energy of oscillators (in the order of nano-Joules) is insufficient for 

triggering energetically demanding phenomena in condensed-matter systems. For this 

reason, the pulses are additionally enhanced in devices called amplifiers. Amplifiers, are 

repeatedly passing the pulses of Ti:Sa oscillators from a second gain medium to enhance 

their energy. To avoid destroying the gain medium the oscillator pulses are stretched in 

time, before amplification, and recompressed before exciting the device. In addition, the 

oscillator is delivering pulses with a repetition rate of 80 MHz, but the amplifier (in the 

current experiments) has a repetition rate of 1-4 kHz. These repetition rates allow the 

investigated sample to lose the excess heat to the environment before the arrival of the 

next pulse (reversibility and absence of static heating). The original setup used a multi-

pass Ti:Sapphire amplifier with central wavelength 800 nm, energy per pulse of 1 mJ and 

30 fs pulse duration and repetition rate 1 kHz.  In the course of the present thesis, the 

experimental apparatus was upgraded in order to implement a commercial, regenerative 

amplifier laser system (Astrella, Ultrafast Ti:Sapphire Amplifier, from Coherent) with 

central wavelength 800 nm, pulse duration 42 fs, repetition rate 4 kHz and energy per 

pulse of 1.6 mJ.  

Nonlinear frequency conversion. Although the pulses of amplifiers are sufficiently 

powerful for most applications, they are still limited regarding their photon energy. The 

central wavelength of the amplified pulses is still equal with 800 nm. In order to study a 

broad range of phenomena in metals, semiconductors and insulators, the frequency of the 

pulses is converted using crystals with nonlinear optical response. One example is second 

harmonic generation (SHG) inside Barium Borate (BaB₂O₄ or simply BBO). When 800 

nm radiation is focused in BBO, the material absorbs two photons from the laser field and 

emits one photon with double energy (400 nm). The emerging 400 nm radiation has been 

used to excite ultrasmall, Au nanoclusters in Chapters 3-5. In addition, the experimental 

setup was upgraded in order to include commercial, automatized nonlinear optics setups. 

These devices are termed ‘TOPAS’ and ‘Near-UV/Vis’ (from Light Conversion) and 

deliver wavelengths from 250 nm to 2.5 μm. These tunable photon sources for pumping 
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have been used in Chapter 6. Owning to nonlinear optics it becomes possible to excite 

and study a broad range of materials like large-band-gap insulators, narrow-band gap 

semiconductors and metals. For an overview of nonlinear light-matter interactions that 

alter the frequency of light see the work of Boyd [89].  

 

2.1.2 Photoelectron pulses 

Electrons from two-photon emission. Having ultrashort laser pulses enables the 

production of ultrashort electron pulses using the photoelectric effect. In the current setup 

the used pulses contain ~103 electrons each. One important requirement is that each 

photoelectron is emitted with nearly zero, initial kinetic energy. When this holds true, all 

electrons are accelerated uniformly towards the sample and the pulse-duration and time-

resolution are minimized. In addition, a small energy spread of the electrons is beneficial 

for the quality of diffraction patterns. To minimize the initial energy of electrons and their 

final energy spread, the energy input in every electron needs to match the work function 

of the metallic cathode. This is again achieved by a nonlinear optics setup called NOPA 

(noncollinear optical parametric amplifier) [90].  Before going into details about this 

setup, figure 2.2 illustrates the central concepts behind its use.    

 

 

Figure 2.2: Production of ultrashort electron pulses from ultrashort pulses of 

photons with tunable wavelengths. (a) Various NOPA spectra (colored solid lines, 

left vertical axis) and the frequency-dependent counts produced by photoelectrons on 

the camera (black squares and line, right vertical axis). (b) Schematic of the two-photon 

photoemission process. The energy of the photons is tuned so that the two-photon 

energy is nearly equal with the cathode’s work function. In this case, the initial 

momentum of electrons is close to zero, leading to a better time-resolution and better 

transverse coherence.   
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The NOPA setup converts the 800 nm radiation, emerging from the amplifier, to the 490-

570 nm range. Figure 2.2.a shows some example spectra of the NOPA (left axis of the 

diagram). In the same figure, the number of camera counts (directly proportional to the 

number of electrons) is plotted as a function of the central wavelength with black squares 

and lines (right axis of diagram). Photoemission emerges around 530 nm, which 

corresponds to a photon energy of 2.38 eV. This critical photon energy depends on 

various factors but most importantly on the material of the cathode, which is Au in the 

used setup. Figure 2.2.b shows what happens inside Au when it is irradiated by the 520 

nm pulses. If the intensity is sufficient, an electron of Au can absorb two photons, cross 

the energy barrier and move to the vacuum. The used radiation needs to have minimum 

photon energy (maximum wavelength) to minimize the energy spread but, 

simultaneously, it should produce a sufficient amount of electrons for recording 

diffraction patterns with low signal-to-noise ratio. The schematic in figure 2.3 shows the 

NOPA setup. A total power of 170 mW (800 nm) is inserted into the NOPA setup from 

the amplifier (the rest of the power is used for diagnostics like stability measurements) 

and produces 3 mW of power for the electron gun.  

 

Figure 2.3: Current design of the NOPA setup. The scale bar (10 cm) is used to 

show the actual distances between the optical components. For more details see the 

main text. 
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A telescope is decreasing the beam diameter by 50%. The beam is split into two arms at a 

ratio of 9/1 for SHG and WL generation, respectively. The weak pulses transmit through 

an iris and a neutral density filter and get focused with a lens of 30 mm focal distance in a 

Sapphire crystal with a thickness of 3 mm for WL generation. Wavelengths shorter than 

700 nm are filtered out and the WL is finally refocused with a second lens of 30 mm focal 

distance. The intense pulses are used for SHG (400 nm) in a BBO crystal (type I, 

Altechna), 6x6 mm wide, 0.5 mm thick, with θ=29.2o and φ=90o and protective coatings 

for 400 and 800 nm. The 800 nm radiation is focused with a lens of 200 mm focal 

distance and the emerged 400 nm light is collected with a lens of 150 mm focal distance. 

The residual 800 nm radiation is rejected with the use of two mirrors that are reflecting 

only the 400 nm light.  

In the final BBO, energy is transferred from the intense SHG to the WL pulses and 

specific wavelengths are amplified. The BBO for NOPA (type I, Altechna) is 5x5 mm 

wide, 2 mm thick, and has angles for crystal cut of θ=29o and φ=90o. The protective 

coating is for 400-600 nm wavelengths and the surface quality is appropriately high. The 

resulting, amplified light has wavelengths in the order of 490-570 nm and it is used to 

produce electrons. The SHG light and the Idler (emission of infrared photons so that 

energy and momentum are conserved) are rejected with a beam dump.  

Photon pulses coming out of the NOPA have increased pulse duration due to dispersion in 

the various transmitting optical elements and for this reason they get recompressed with a 

two-prism compressor. The two-prism compressor is a device that recompresses the pulse 

by guiding its faster frequency components into longer travel paths. Finally, a delay-stage 

is fine tuning the propagation time in the probe arm in order to adjust the pump-probe 

delay. After the NOPA and the prism compressor the pulses need to have a spherical, 

homogeneous mode in order to increase the coherence of the electron beam. Spatial 

coherence and in particular the transverse coherence length (normal to the direction of the 

beam), are factors that determine the quality of the diffraction patterns and resolution in 

reciprocal space [91]. 

 

2.1.3 Electron diffractometer 

Photocathode. The photoelectrons are produced and accelerated in an electron gun, 

which delivers them in the field-free area, where the sample is located. The photocathode 
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is shown in figure 2.4. The focused NOPA pulses travel in the cathode’s interior and 

arrive on its central, upper surface, which supports a transparent, circular Sapphire 

crystal. The surface of Sapphire is covered with 2 nm of Cr (for adhesion) and 20 nm of 

Au (for photoemission). The cathode’s surface is polished to optical quality in order to 

maintain strong electric fields without arcing. The cathode is placed 6-10 mm from a 

grounded Si wafer that acts as the anode (with a 100 μm hole on its center for the 

electrons to exit).  

 

Figure 2.4: Photocathode. The NOPA pulses are focused on the cathode were they 

produce electrons for the FED experiment. The NOPA focus is in the order of 70-90 

μm in the current apparatus.  

 

On the one hand, shorter cathode-anode distances (close to 6 mm) result in higher electric 

fields, shorter propagation times for the electrons and, subsequently, better time-

resolution. On the other hand, the longer cathode-anode distances (close to 10 mm) 

maximize the lifetime of the cathodes (typically in the order of months). The lifetime of 

the electron gun is limited by spontaneous arc discharges that damage the Au surface and 

create permanent electric currents.  

Ultrahigh voltage. The electron gun and the entire electron diffractometer are placed in 

an ultrahigh vacuum chamber (minimum pressure in the order of 10-9-10-10 mbar). The 

diffractometer’s design allows high temporal resolution (100-300 fs) with multi-electron 

pulses (103 to 104).  For pulses containing more than one electron, the pulse duration is 

constantly rising due to Coulomb repulsion (space charge forces) [92]. The pulse duration 

is kept short by accelerating the electrons to velocities of ~0.5 c so that space charge 

forces do not act for long time. Accelerating voltages of 60-100 kV are supplied by a DC 

high voltage power supply (Heinzinger). At these voltages the electron velocities are in 

the order of 0.45-0.55 c and the propagation time is 12-15 ps until reaching the sample. 
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Pulse broadening due to Coulomb repulsion can also be minimized by making the 

diffractometer as compact as possible [38], [91]. This is achieved by placing the magnetic 

lens after the sample and limiting the gun-sample distance to few millimeters. In view of 

all the above factors, the instrumental time-resolution can be as short as 100 fs [38]. The 

time-resolution of the employed setup is based on the maximum compactness of its 

design. The alternative is to compress the electron pulses before their arrival on the 

sample using oscillating electric fields.  The author of this work has constructed a replica 

of the electron gun for a scientific collaboration with the group of Dr. Peter Baum 

(Ultrafast Electron Imaging Research Group, MPQ-LMU). In these experiments terahertz 

radiation was used for compression of the electron pulses (~3 e- per pulse, 75 kV) and 

gave pulse durations of 28 fs (FWHM), more details can be found in the work of D. 

Ehberger et al. [93]. 

In the diffractometer, the magnetic lens (figure 2.5) was redesigned in order to increase 

its stability. The manipulator was exchanged and the new rod is thicker and longer 

resulting in better mechanical stability (figure 2.5.i). The magnetic lens is surrounded by 

Cu that is used to subtract heat and improve thermal stability (figure 2.5.ii).  The lower 

part of the whole construction is connected with a cable made of Al foil that is damping 

mechanical vibrations (figure 2.5.iii).  

 

 

Figure 2.5: The magnetic lens used for recording the electron diffraction patterns. 

The magnetic lens in the upgraded apparatus is supported by a more stable rod (i), 

enclosed inside Cu for better thermal stability (ii) and connected to a cable made from 

Al foil for damping of vibrations (iii).  
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2.1.4 Apparatus & laboratory  

The simple experimental scheme of figure 2.1 is realized with an apparatus that combines 

the femtosecond laser system with the non-linear optics and the electron diffractometer 

that were explained in the three previous sections. The current, upgraded design is shown 

in figure 2.6. The amplifier pulses are split into the pump arm (light red area) and the 

probe arm (light green area) at a ratio of 9 to 1. 

 

Figure 2.6: Schematic illustration of the experimental apparatus in its present 

form. The output of a 4 kHz amplifier laser system is splitted into two arms: the pump 

and the probe. The photon energy of the pump pulses is tunable. The probe pulses are 

transformed from 800 nm to ~540 nm radiation and finally into electron pulses at a 

metallic (Au) cathode. The FED experiment takes place in ultrahigh vacuum (UHV) 

conditions. For normal incidence, the angle between the pump and probe directions is 

in the order of 5o to achieve velocity matching. An alternative configuration, where the 

pump and the probe beams form a 90o angle, can be achieved with the ‘side pump’ 

optical path. 

 

In the frame of this doctoral work, the FED setup has been reassembled in a clean room 

facility (see figure 2.7). Inside the clean room, the temperature and the humidity of the 

environment is kept constant offering a more stable operation of the femtosecond laser 

system. The humidity is kept at (40±4)% and the temperature at (22±0.1) oC 

(measurement carried out during the first two weeks of 2019). The experimental layout 

was redesigned to minimize the heat generated close to the optical table as this improves 

the long-term stability. All the electrical devices that produce heat but need to be 

accessible for every day operation are located inside water-cooled racks (fig. 2.7.i). The 

optical table and the electron diffractometer are shown in fig. 2.7.ii. All other electrical 

devices are placed inside a neighboring, isolated room, called the hot-room (fig. 2.7.iii).  
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Figure 2.7: The femtosecond electron diffraction setup and the clean-room 

laboratory. The diffractometer (i), is connected to a water-cooled rack (ii) and to a 

neighboring room (iii) where all the heat-generating electrical devices are kept. This 

ensures stable laboratory conditions. 

 

The fluctuations of the amplifier and the NOPA outputs (see figure 2.8) are in the order 

of 0.15% and 0.18%, respectively. 

 

 

Figure 2.8: Power fluctuations of the amplifier and NOPA outputs. (a) The 

fluctuations of the amplifier output are 0.15%, relatively to the average power. (a) The 

fluctuations of the NOPA output are in the order of 0.18%. 
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For all the experiments reported in this work, diffraction and pumping have been carried 

out at near normal incidence. However, it is also interesting to perform pump-probe 

experiments with a tilted crystalline sample. Tilting the sample allows the observation of 

lattice motions that occur perpendicular to the crystal surface. The author of this thesis 

have implemented such a functionality in the FED setup, which has been used by 

Waldecker et al. [75] for studying the lattice dynamics of laser-excited antimony. Sample 

tilting and velocity-matching are achieved with the use of an appropriate sample holder. 

Figure 2.9.a shows the geometry of the experiment. For the tilted geometry, velocity-

matching is achieved when 𝑣𝑒 𝑐⁄ = tan 𝜃 ,  where 𝑣𝑒  is the velocity of electrons that 

depends on the acceleration voltage, 𝑐  is the speed of light and 𝜃  the angle between 

electrons and photons. For an acceleration voltage of 93 kV, the sample’s tilt is 28o. The 

laser pulses enter the UHV chamber from a side window (see fig. 2.6). Subsequently, the 

laser pulses get translated by two prism-shaped mirrors (figure 2.9.b) so that they reach 

the sample. The sample holder has the desired angle (figure 2.9.c) for four out of twelve 

of the samples. Figure 2.9.d shows the entrance-holes for electrons and photons.  

 

 

Figure 2.9: Pump-probe experiments with titled crystals. (a) Geometry of the 

experiment. (b) Optics for guiding the pump pulses inside the UHV chamber. (c) 

Sample holder where four of the samples are tilted with 23o degrees for experiments 

that are carried out with 93 kV electrons. (d) Another view of the sample holder where 

the entrance-holes for the laser beam are visible. For more details see the main text.  
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2.2 Analysis of diffraction patterns 

This section illustrates the diffraction patterns acquired with FED, how the diffraction 

patterns are analyzed and the physical meaning of the various, extracted quantities. 

 

2.2.1 Typical forms of diffraction patterns 

Some examples of diffraction patterns acquired with FED are shown in figure 2.10. The 

diffraction pattern of figure 2.10.a corresponds to free-standing, thin-films of 

polycrystalline Au. Due to the random orientation of crystalline domains the diffraction 

pattern contains Debye-Scherrer rings. Figure 2.10.b shows the diffraction pattern of 

single-crystalline, multilayer flakes of WSe2. In this case the diffracted electrons form 

spots.  

 

 

Figure 2.10: Electron diffraction patterns of polycrystalline and single crystalline 

materials for normal incidence of electrons. (a) Debye-Scherrer rings of free-

standing, polycrystalline films of Au. (b) Diffraction spots of free-standing, single-

crystalline flakes of WSe2. 

 

Generally, in homogeneous, free-standing, membrane-like samples, one needs to extract 

the intensity of the Bragg spots [94] or the Debye-Scherrer rings [78] and the intensity 

distribution of the inhomogeneous background [94].  
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2.2.2 Subtraction of background and fitting of diffraction peaks 

This section explains the analysis of diffraction patterns for ultrasmall, zero-dimensional 

nanostructures on membrane-like, amorphous substrates. All measured diffraction 

patterns are processed by subtracting the dark counts of the electron camera and applying 

a flat-field that corrects the inhomogeneous efficiency of the pixels.  

The processed diffraction patterns in Figures 2.11.a and 2.11.b belong to Au nanoclusters 

with 923 atoms (Au923) on a-C membranes of 20 nm thickness and bulk-like, free-

standing, thin-films of Au with a thickness of 30 nm, respectively. Upon initial inspection 

the diffraction patterns of Au nanoclusters and bulk Au are similar. Further, quantitative 

analysis requires accurate determination of the radii, widths and intensities of the Debye-

Scherrer rings, which is explained in the following. 

Because the diffraction patterns are isotropic, their diffraction intensity is radially 

averaged and plotted as a function of distance (S) from the zero-order peak (figure 2.11.c, 

blue solid line). The most intense peak of the diffraction pattern (zero-order) is located at 

its center (see fig. 2.11.a). This contribution to the signal is approximated by the dashed-

dot green line (fig. 2.11.c) and it is subtracted by the radial-average of Au923 / a-C. In 

addition, a diffraction pattern of the bare a-C substrate is measured at the same conditions 

and the signal is also radially averaged (brown dash-dot line, fig. 2.11.c). The radial-

average of the bare a-C substrate is also subtracted from the Au923 / a-C. 

The remaining, diffraction intensity (solid black line, fig. 2.11.c) is solely due to electrons 

that scatter in the Au923 nanoclusters. The distance from the zero-order (S), which can be 

directly measured in pixels, is transformed into the scattering vector that is measured in 

Å-1. This transformation is based on literature values for the crystallographic planes of 

FCC Au. Figure 2.11.d shows the final diffraction pattern of Au923 nanoclusters (blue 

data-points) and the fitting (red line). The fitting contains a number of peaks and a finite 

background between them. The peaks are due to the electrons that get elastically scattered 

by the crystal-planes of the Au923 nanocrystals. The finite signal between the peaks 

constitutes the background of inelastically scattered electrons.  

The background of inelastically scattered electrons has been fitted globally (the same 

function for all scattering angles and all peaks) and, for testing purposes, locally (for 

individual peaks or groups of peaks). For the global fitting, the functions that were used 

were either third order polynomials or a linear combination of a Lorentzian peak (at S=0) 



Chapter 2. Experimental & computational methods 

41 
 

and a function that decays as 1/S2. For the local fitting, simple linear functions were used. 

Both procedures (local and global fitting of background) were followed to check that the 

extracted dynamics of the peak profiles do not originate from the choice of the 

background and to estimate the uncertainty of the fitting.  

 

 

Figure 2.11: Analysis of diffraction patterns for Au923 nanoclusters supported on 

amorphous substrates. (a) The diffraction pattern of supported Au923 NCs. (b) The 

diffraction pattern of free-standing, bulk-like, thin-films of Au (30 nm thickness) 

shown for comparison. The diffraction patterns are radially averaged in order to extract 

the intensity as a function of the scattering angle. (c) The radially averaged intensity for 

Au923 NCs on Si-N (blue), the substrate contribution (brown) and the zero order 

estimated contribution (green). The background-free radial average is shown with 

black. (d) The background-free, radial average of Au923 NCs on a-C (blue datapoints) 

and a fit using pseudo-Voigt peak-profiles (red line).  

 

The peaks of elastically scattered electrons are fitted with pseudo-Voigt profiles, meaning 

a linear combination of one Lorentzian and one Gaussian function. An initial estimation 

of the height (h), width (w), position (p) and Gaussian-Lorentzian mixing factor (n) of 

each peak is used as the starting point of the fitting. The typical upper and lower 

constraints for the fitted parameters are [10∙h, 10∙w, 1.2∙p, 1] and [0.01∙h, 0.1∙w, 0.8∙p, 0], 

respectively. The extracted quantities for the diffraction peaks are their intensities 
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(arbitrary units), their positions (Å-1) and their widths (Å-1). The width is defined to be 

equal for the Lorentzian and the Gaussian contributions of the pseudo-Voigt function. 

This procedure is followed for the diffraction patterns of all pump-probe delays. 

 

2.2.3 The observables of diffraction 

The previous section have demonstrated the procedure for extracting the intensity, the 

position and the width of diffraction peaks. In FED, as in conventional electron 

diffraction, the electrons scatter on the various crystal planes of the sample (real-space), 

interfere, and form diffraction peaks (reciprocal-space) on the detector.  This section 

explains the real-space atomic motions in solids and their experimental signatures in 

reciprocal-space. The main assumption is that diffraction is kinematic, meaning that there 

is no multiple scattering. This assumption is based on the nanoscale dimensions of all 

investigated samples. The equations that follow are based on the work of Peng et al. [95]. 

The radiation used in diffraction experiments can be electrons, X-rays and neutrons. After 

passing from a solid the radiation forms certain patterns on the detector. With appropriate 

analysis, these patterns can reveal the crystal structure of the investigated sample in great 

detail. Depending on the type of radiation, diffraction is more sensitive to the nuclear 

positions or the electron orbitals. For instance, X-rays are electromagnetic waves and they 

interact more strongly with the electron orbitals by polarizing them, while electrons 

interact with the electron orbitals and the atomic nuclei with Coulomb interactions.  

The scattering amplitude of the radiation from the crystal is called structure factor 𝐹 and 

it is given by: 

𝐹(�⃗�) = ∑ 𝑓𝑗
𝑒 exp[𝑖�⃗� ∙ 𝑟𝑗]

𝑗

 . R 2.1 

The summation is carried out over all the atoms in the unit cell. The 𝑓𝑗
𝑒  is the atomic 

scattering factor (or atom form factor) for the j-th atom and when the scattered radiation 

is electrons, �⃗� is the scattering vector that is a linear combination of the axis vectors of 

the reciprocal lattice and 𝑟𝑗 is the position vector of the j-th atom with respect to the origin 

of the unit cell. The value of the structure factor depends on the Miller indices of the 

crystallographic planes that scatter the radiation. For Au and generally FCC metals: 𝐹 =

4𝑓𝑗
𝑒  when ℎ, 𝑘, 𝑙 have the same parity and 𝐹 = 0 otherwise. 
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The atomic scattering factors depend on the angle of scattering, the wavelength and the 

type of radiation (𝑓𝑗
𝑒 = 𝑓𝑗

𝑒(sin 𝜃 𝜆⁄ )). The electron diffraction simulations presented in 

Chapter 5 used the method of Coleman et al. [96]. The atomic scattering factors were 

parametrized with 5 Gaussian distributions according to the work of Peng et al. [97].  

The observable of diffraction is the scattered intensity. The intensity is calculated from 

the structure factor according to: 

𝐼 = |𝐹|2 . R 2.2 

The equations so far did not take into account that the atoms are moving around the lattice 

points and this can affect the intensity. The thermal motion of the atoms can be 

approximated by modifying the expression for the structure factor. The new form of the 

structure factor: 

𝐹(�⃗�) = ∑ 𝑇𝑗 𝑓𝑗
𝑒 exp[𝑖�⃗� ∙ 𝑟𝑗]

𝑗

 , R 2.3 

includes one additional quantity, the 𝑇𝑗, which is the so-called temperature factor. The 

temperature factor creates a Gaussian uncertainty of atomic positions due to thermal 

motions and it is given by: 

𝑇𝑗 = exp [−
1

2
< (�⃗� ∙ �⃗⃗�𝑗)

2
>] , 

R 2.4 

where �⃗⃗�𝑗  is the instantaneous displacement of the j-th atom in the unit cell and the 

averaging is over all possible configurations in thermal equilibrium. Assuming that the 

thermal vibrations are harmonic and isotropic, it is possible to derive a relationship of the 

form: 

𝑇𝑗 = exp[−𝐵𝑠2] , R 2.5 

where 𝑠 is a slightly different definition for the scattering vector (𝑠 = 𝑔 2𝜋⁄ ) and 𝐵 =

8𝜋2 < 𝑢𝑗
2 > 3⁄  is the Debye-Waller factor. The Debye-Waller factor is proportional to 

the atomic mean-square-displacement < 𝑢𝑗
2 >  and thus diffraction can be used to 

quantify atomic motions. For materials with one atom per unit cell (e.g. Au) the index 𝑗 is 

dropped. In the FED experiments the time-dependent atomic mean-square-displacement 

( < 𝑢2 >(𝑡) ) can be calculated from the time-dependent intensity ( 𝐼ℎ𝑘𝑙(𝑡) ) with the 

relationship: 
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𝐼ℎ𝑘𝑙(𝑡) = 𝐼ℎ𝑘𝑙(𝑡 < 0) ∙ exp [−
4𝜋2

3𝐷ℎ𝑘𝑙
2 (< 𝑢2 >(𝑡) −< 𝑢2 >(𝑡<0)) ] . 

R 2.6 

This relationship reveals the first observable of diffraction, namely, the intensity of 

diffraction peaks that is used to quantify the vibrational excitation (see figure 2.12.a). 

The next observable of diffraction is the position of diffraction peaks. Additive 

interference can happen when the scattering vector is a linear combination of the axes 

vectors of the reciprocal lattice and due to this: 

|𝑠| =
1

𝐷ℎ𝑘𝑙
 . 

R 2.7 

Hence, the position of diffraction peaks can be used to observe changes of the volume of 

the unit cell. Crystal (contraction/) expansion leads to (expansion/) contraction of its 

diffraction pattern (see figure 2.12.b).  

Finally, the width of diffraction patterns depend on the number of scattering centers 

(lattice points) of the crystal. If a crystal loses atoms, or if a crystal becomes partially 

melted or amorphous, the width of diffraction peaks is increasing (see figure 2.12.c). In 

order to understand this phenomenon [7] one can calculate the structure factor of a linear 

chain in real space with atomic positions 𝑟𝑗 = 𝑚𝑎, where 𝑚 = 1,2,3, … , 𝑀. The intensity 

is given by:  

𝐼(𝑘) = 𝐹∗𝐹 =
sin2 1

2 𝑀𝑎𝑘

sin2 1
2 𝑎𝑘

 . 

 

R 2.8 

The peaks appear when 𝑘 is an integer multiple of 2𝜋 𝑎⁄  and their width is increasing 

when the number of scattering centers 𝑀  is decreasing. For illustration in more 

dimensions see figure 2.13. This figure shows the image in real- and reciprocal-space of 

two small lattices with M=4 and M=13 atoms; the broadening of diffraction peaks at 

smaller sizes is obvious and it follows a 1/M dependence. A more complete description 

for the correlation between the size of nanocrystals and the width of diffraction peaks, can 

be found in Chapter 4 and it is based on the Williamson-Hall method [98]. This model 

takes into account the effect of inhomogeneous strain in the crystallites.  

The correspondence between real-space atomic motions and reciprocal-space peak 

dynamics, as summarized in figure 2.12, is applicable to 0D nanostructures. For instance, 
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lattice expansion is not an appropriate observable for bulk-like, thin-films. The reason is 

that thin-films are constrained in the two spatial dimensions perpendicular to the electron 

beam and hence lattice expansion remains unobserved for prolonged time delays. 

Similarly, deterioration of crystallinity can be recorded and analyzed quantitatively once 

the crystallite is smaller than the transverse coherence length of the diffracted electrons, 

which is larger than 4 nm [38]. Conclusively, when the crystallite has nanometer scale 

dimensions, the FED experiments provide a rich variety of phenomena that can be 

observed.  

 

Figure 2.12: Various structural changes in real space and the corresponding 

observables of FED in reciprocal space for 0D nanostructures. Vibrational 

excitation, lattice expansion and disorder affect the intensity, position and width of 

diffraction peaks, respectively. 

 

 

Figure 2.13: Illustration of the correlation between the size of the crystallite and 

the width of diffraction spots. 
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2.2.4 Extraction of the lattice energy content 

The next step is to establish a theoretical connection between the atomic mean-square-

displacement < 𝑢2 >  and the vibrational energy or the lattice temperature of the 

material. This will allow measuring microscopic energy transfer rates. The following 

equations are based on the work of Peng et al. [95] and it is assumed that the material is 

isotropic, harmonic and thermalized. The atomic mean-square-displacement is given by 

the squares of the amplitudes of all phonons ( 𝑎𝑞
2 ) in the material according to the 

relationship: 

< 𝑢2 > =
1

2
∑ 𝑎𝑞

2

𝑞

 , 
R 2.9 

where 𝑎𝑞
2 is the square of the amplitude of the 𝑞-th mode and the factor of 1/2 is for time-

averaging a sinusoidal function. The summation is over all the normal modes of the 

crystal. The mean, total energy of each phonon (𝐸𝑞) is given by: 

𝐸𝑞 =
1

2
𝑘𝑞𝑎𝑞

2 , 
R 2.10 

where 𝑘𝑞 = 𝑀𝜔𝑞
2  is the force constant for this phonon. The total mass of the crystal 𝑀 

enters the equation and can be rewritten as 𝑀 = 𝑚𝑁, where 𝑁 is the total amount of 

atoms. The average amplitude of each phonon is given by: 

 

𝑎𝑞
2 =

2 𝐸𝑞

𝑚 𝑁 𝜔𝑞
2

  , 
R 2.11 

The energy of the 𝑞-th phonon is: 

𝐸𝑞 = (𝑛𝑞 +
1

2
) ℏ𝜔𝑞   . 

R 2.12 

The number of phonons 𝑛𝑞 obeys Bose-Einstein statistics: 

 𝑛𝑞 =
1

exp (
ℏ𝜔
𝑘𝐵𝑇) − 1

  . 
R 2.13 

The total mean-square-displacement of atoms can now be written: 

< 𝑢2 > =
1

2
∑ 𝑎𝑞

2

𝑞

= ∑
ℏ

𝑚 𝑁 𝜔𝑞
𝑞

(𝑛𝑞 +
1

2
)  . 

R 2.14 
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The summation over all normal modes can be replaced by an integral of the phonon 

density of states 𝑔(𝜔) with respect to the angular frequency 𝜔. After some calculations 

the exponential of the Bose-Einstein distribution results in the appearance of a hyperbolic 

function. The final result is: 

< 𝑢2 > =
3ℏ

2𝑚
∫ coth (

ℏ𝜔

2𝑘𝐵𝑇
)

𝑔(𝜔)

𝜔
 𝑑𝜔

𝜔𝑚𝑎𝑥

0

  . 

 

R 2.15 

The temperature dependence of < 𝑢2 > is usually parametrized with a fourth order 

polynomial function of temperature and it is experimentally measured with diffraction 

[95]. In reverse, diffraction can also be used to measure the temperature. Most of the 

diffraction signal is due to scattering on the atoms (nuclei plus core-electrons) and the 

contribution of bonding electron orbitals is generally small [95]. Hence, the probed 

temperature is the lattice temperature 𝑇𝐿. At ultrafast timescales the lattice temperature 𝑇𝐿 

can increase due to microscopic couplings with other subsystems such as the electrons. 

The most important microscopic couplings for the current work are discussed in the next 

section. 

 

2.3 Microscopic couplings 

The previous section has discussed that FED can probe the time-evolving energy content 

of the lattice. This section reviews the most usual physical phenomena that trigger 

variations of the lattice energy content.  

2.3.1 Electron-phonon coupling  

The first important coupling for experiments that are based on laser-induced phenomena 

is electron-phonon coupling. The equations bellow are from the work of Allen [8]. The 

work of Allen is based on the transport equations for electrons and phonons (Bloch-

Boltzmann-Peierls equations) [99]. Initially, the electrons and the lattice are in the same 

temperature. An incident laser pulse excites the electrons and establish a hot electron gas 

of temperature 𝑇𝐸 . The electronic temperature will gradually decrease, in order to re-

establish thermodynamic equilibrium with the phonons, according to the rate equation: 
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𝑑𝑇𝐸

𝑑𝑡
= 𝛾(𝑇𝐿 − 𝑇𝐸)  . 

R 2.16 

The coupling constant 𝛾 is given by: 

𝛾 =
3ℏ𝜆 < 𝜔2 >

𝜋𝑘𝐵𝑇𝐸
  . 

R 2.17 

This expression for the electron-phonon coupling constant can be found, for instance, in 

the work of Brorson et al. [100]. The next step is to derive equations for the electron 

distribution 𝑓𝑘  and phonon distribution 𝑛𝑄. These equations can be found in the work of 

Allen. The rate equations for electrons and phonons (𝜕𝑓𝑘 𝜕𝑡⁄  & 𝜕𝑛𝑄 𝜕𝑡⁄ ) ensure that the 

total energy of the system is conserved. To ensure momentum conservation, the phonon 

wavenumber 𝑄 is always: 𝑄 = ±(𝑘 − 𝑘′). The modelled interaction is that of electron-

phonon coupling and it is assumed that electron-electron and phonon-phonon interactions 

are efficient enough so that the electrons and the phonons are always obeying Fermi-

Dirac and Bose-Einstein statistics, respectively. The energy transfer from the electrons to 

the phonons is given by: 

𝜕𝐸𝑒𝑙

𝜕𝑡
=

4𝜋

ℏ
∑ ℏ𝜔𝑄  |𝑀𝑘𝑘′|2 𝑆(𝑘, 𝑘′) 𝛿(휀𝑘 − 휀𝑘′ + ℏ𝜔𝑄)

𝑘𝑘′

  . 
R 2.18 

The summation is performed over all possible transitions from an initial electronic state 

with momentum 𝑘 to a final electronic state with momentum 𝑘′. Each scattering event 

changes the electron’s energy by ℏ𝜔𝑄. It is possible that due to symmetry reasons, some 

of the transitions are completely prohibited or that others are strongly favored. The 

scattering cross-section is quantified by the so-called matrix element |𝑀𝑘𝑘′|2 . The 𝛿 

function ensures that scattering will happen only if the energy difference between the 

initial and the final electronic state (휀𝑘 − 휀𝑘′) is matching the energy of a phonon (ℏ𝜔𝑄). 

The last term to be explained is  𝑆(𝑘, 𝑘′) that is given by: 

𝑆(𝑘, 𝑘′) = (𝑓𝑘 − 𝑓𝑘′)𝑛𝑄 − 𝑓𝑘′(1 − 𝑓𝑘) R 2.19 

The 𝑆(𝑘, 𝑘′) is called the thermal factor. The thermal factor originates, partially, on the 

requirement of having an occupied, initial, electronic state with momentum 𝑘 and at the 

same time an unoccupied, final, electronic state with momentum 𝑘′. The probability that 



Chapter 2. Experimental & computational methods 

49 
 

this requirement (Pauli blocking) is fulfilled is 𝑓𝑘(1 − 𝑓𝑘′). The thermal factor is also 

taking into account the temperature-dependent occupation of phononic states 𝑛𝑄.  

The next step followed by Allen was to calculate the vibrational density of states, 

modulated by the spectrally resolved electron-phonon coupling. This quantity is called the 

electron-phonon spectral function or the Eliashberg function and it is given by: 

𝑎2𝐹(휀, 휀′, 𝜔) =
2

ℏ𝑁𝐶
2𝑔(휀𝐹)

 ∑|𝑀𝑘𝑘′|2𝛿(𝜔 − 𝜔𝑄)𝛿(휀𝑘 − 휀)𝛿(휀𝑘′ − 휀′)

𝑘𝑘′

 , 
R 2.20 

where 휀, 휀′, 𝜔  are the initial and final electronic energy and the phonon frequency 

respectively, while 𝑔(휀𝐹) is the electronic density of states at the Fermi level. The 𝑁𝐶  is a 

normalization factor (inverse of the unit cell volume). 

The Eliashberg function is an important quantity for: (i) the relaxation of electrons in 

laser-excited metals, (ii) the theory of superconductivity and (iii) the inelastic scattering 

events observed in scanning tunneling spectroscopy measurements. In fact, scanning 

tunneling spectroscopy can record directly the Eliashberg function (second derivative of 

the current with respect to the voltage at low temperatures) as shown by Schackert et al. 

[101] and Minamitani et al. [102]. 

The energy transfer rate between electrons and phonons (𝜕𝐸𝑒𝑙 𝜕𝑡⁄ ) can be written as an 

integral [78] that contains the Eliashberg function: 

𝜕𝐸𝑒𝑙

𝜕𝑡
= −

2𝜋𝑁𝐶

𝑔(휀𝐹)
 ∫ 𝑑𝜔 (ℏ𝜔)2𝑎2𝐹(𝜔)

∞

0

 [𝑛(𝜔, 𝑇𝐸) − 𝑛(𝜔, 𝑇𝐿)]  × 

× ∫ 𝑑휀 𝑔2(휀) 
𝜕𝑓(휀, 𝑇𝐸)

𝜕휀

+∞

−∞

  . 

R 2.21 

The factors 𝑛  and 𝑓  are the Bose-Einstein and Fermi-Dirac distributions, respectively. 

The energy transfer rate (𝑊𝑚−3) is connected with the coupling constant (𝑊𝑚−3𝐾−1) 

through the relationship: 

𝐺𝐸−𝑃𝐻 =
1

𝑇𝐸 + 𝑇𝑃𝐻
 
𝜕𝐸𝑒𝑙

𝜕𝑡
   . 

R 2.22 
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Ab-initio calculations of 𝐺𝐸−𝑃𝐻 ,  which were based on the formalism of Allen and the 

Eliashberg function, have been used to study nonthermal structural dynamics in Al [78] 

and Sb [75]. 

2.3.2 Measurement of electron-phonon coupling with FED 

The first requirement of an FED experiment is to selectively excite the electrons in order 

to create a hot Fermi Dirac distribution. Subsequently, energy flows from the electrons to 

the phonons according to the picture of interacting heat baths in figure 1.1 and the 

gradual lattice excitation is detected with electron diffraction. The electronic excitation is 

achieved by irradiating the sample with femtosecond laser pulses at optical or near-

infrared frequencies.  

Figure 2.14 shows a simple schematic illustration of the underlying physical processes. 

Photons are primarily absorbed by the electrons, leaving the lattice unaffected. A detailed 

description of light-matter and electron-electron interactions, during this initial step, is not 

necessary for our scope as explained immediately. Independently of the exact laser-

induced electronic transitions, electron-electron interactions lead to rapid thermalization 

of the electrons. The time for electronic thermalization depends on the excitation density 

and it can be measured by time-resolved photoemission [103]. In order to achieve a 

measurable amount of lattice heating, the typical excitation fluence (0.5-3 mJ/cm2) is 

sufficient for electron thermalization within ~100 fs (upper limit), a timescale that is 

comparable with the instrumental time-resolution. It is worth noting that plasmonic 

oscillations [45], a well-known feature of metallic nanostructures, are part of the short-

living electronic processes and are not explicitly included in the analysis of energy flow. 

Plasmonic excitations in metal NCs are decaying into hot carriers within ~10 fs [104].  

 

Figure 2.14: Schematic illustration of laser induced hot electron generation. (a) 

The occupied states in Au have sp-character at the Fermi level and d-character at deeper 
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energy levels [105]. (b) Absorption of a 400 nm light leads to (de-) population of states 

(below) above the Fermi level including the d-states. (c) Electrons thermalize and 

acquire a Fermi-Dirac distribution of high electronic temperature within 100 fs. (The 

degree of excitation is exaggerated for visualization purposes.) 

 

The thermalized, hot electron gas is cooling by generation of phonons (electron-phonon 

coupling). The next requirement is accomplishing quantitative measurements of ultrafast 

lattice heating using FED. FED has access to all the observables of conventional 

diffraction, which is sensitive to temperature changes [95] (see also section 2.2.4).  

The time-evolving lattice temperature 𝑇𝐿and knowledge of the electronic and lattice heat 

capacities, allows measuring the electron-phonon coupling strength (figure 2.15). 

Electronic and vibrational heat capacities are obtained by the electronic and vibrational 

densities of states according to Fermi-Dirac and Bose-Einstein statistics respectively. 

For bulk-like, free-standing, thin-films of simple metals a widely used approach is the so-

called two-temperature model (TTM) [8], [105], [106]. In TTM, the electrons and the 

phonons are treated as two heat baths with distinct temperatures and heat capacities 

(figure 2.15.a). The two heat baths have different temperatures and can exchange heat at 

a rate 𝐺𝑒−𝑝ℎ . The energy input (from the laser) is expressed as a source term in the 

equation that gives the electronic temperature. For non-magnetic materials (present work) 

the electrons’ spins are not taken into account. All these assumptions transform the 

scheme of figure 2.15.a into a system of two coupled differential equations: 

𝑑𝑇𝐸  (𝑡)

𝑑𝑡
= −

𝐺𝑒−𝑝ℎ

𝐶𝐸

(𝑇𝐸 − 𝑇𝐿) + 𝑆(𝑡)   , 
R 2.23 

 

𝑑𝑇𝐿 (𝑡)

𝑑𝑡
=

𝐺𝑒−𝑝ℎ

𝐶𝐿

(𝑇𝐸 − 𝑇𝐿)   . 
R 2.24 

Equations R 2.23 and R 2.24 are used for a non-linear fit of the experimental lattice 

temperature evolution acquired with equations R 2.6 and R 2.15. A typical time-evolution 

for the two temperatures is shown in figure 2.15.b. These calculations correspond to bulk 

Au. The electronic temperature is reaching a maximum value of around 3000 K. 

Subsequently, the electrons cool down and the lattice is heating up until the two 

temperatures meet at approximately 500 K. The larger temperature change observed for 

electrons is due to the small, electronic heat capacity. 
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Figure 2.15: The two-temperature model (TTM) for a simple metal (Au). (a) In the 

TTM, a non-magnetic metal (here Au) is considered as two heat baths in contact. These 

are the electrons and the lattice (phonons) of the solid. The excess energy, to initiate 

electron-lattice nonequilibrium, is offered by a laser pulse. (b) The evolution of the 

electronic (black solid line) and lattice (red solid line) temperatures in the TTM. 

 

Limitations of the TTM. The TTM is a versatile tool for measuring 𝐺𝑒−𝑝ℎ and it is more 

meaningful than simple phenomenological arguments based on the extraction of simple 

time-constants. Yet, its predictions have been proven to deviate from the exact electron-

lattice equilibration dynamics. The reason is that phonons of different branches can have 

different coupling strength to electrons leading to non-thermal lattice conditions [78]. The 

theoretical work of Allen [8] indicates that the electron-phonon coupling strength can 

vary across the various phonon frequencies.  

The electron-phonon coupling is better described by a spectral function (the Eliashberg 

function) rather than a single constant. In a slightly different notation, involving the 

electronic band structure, Bernardi et al. [107] have shown that individual electronic 

states of Si can show very different electron-lattice interaction strengths in response to 

(solar) light and during the first picosecond. All these considerations point towards the 

need to develop models that are not strictly applicable to well-thermalized lattice degrees 

of freedom.  

The TTM equations represent the energy content of the lattice with a single temperature 

and the electron phonon coupling with a single factor.  To take into account non-thermal 
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phonon distributions, it is essential to have support from ab-initio molecular dynamics 

[75], [78] or to carry out a momentum-resolved analysis of the diffraction patterns [94], 

[108], [109]. These objectives are currently unfeasible for nanoscale heterostructures. 

Heterogeneity and absence of long-range translational symmetry make momentum-

resolved FED studies and ab-initio simulations currently unfeasible. As a result of these 

complications, the presently reported analysis is using a single lattice temperature for 

each component of the heterostructure, which represents an effective measure of the 

average, lattice energy content.  

However, the author of this thesis has developed a fitting algorithm – according to the 

work of Waldecker et al. [78].  – to study incoherent, phonon-phonon interactions in the 

Peierls-distorted, semimetal, Sb [75]. Figure 2.16.a shows the vibrational density of 

states of Sb. Interestingly, the acoustic (red) and optical (blue) phonon spectra are well-

separated in the energy (/frequency) axis. This allows to consider the acoustic and optical 

phonons as two distinct subsystems. The total Eliashberg function results in the 

temperature-dependent electron-phonon coupling shown in figure 2.16.b with a black 

line. The Eliashberg function is based on ab initio simulations of T. Zier, F. H. Valencia, 

M. E. Garcia, and E. S. Zijlstra. The integral of the Eliashberg function has been used to 

separate the contributions of the optical phonons (blue curve in fig. 2.16.b) and the 

acoustic phonons (red curve in fig. 2.16.b). Based on this procedure, optical phonons 

have stronger coupling to the electrons than the acoustic ones.  

Next, the TTM was replaced by the non-thermal lattice model (NLM) [78]. The 

interacting subsystems are three: the electrons, the optical phonons and the acoustic 

phonons. The author has used the vibrational density of states to calculate the heat 

capacity and the atomic mean-square-displacement for each type of phonon. The solution 

of the NLM is shown in figure 2.16.c. Optical phonons become hotter during the first 5 

ps and al lattice temperatures are eventually equilibrated at ~5-6 ps. Yet, the atomic 

mean-square-displacements shown in figure 2.16.d, are very different. In the NLM the 

fitted quantity is the mean-square-displacement and not the lattice temperature.  

The lower-frequency phonons are considerably more efficient in producing a decay of the 

intensity of diffraction peaks. For this reason, a simple fit with the TTM (with linear 

temperature-dependence of the coupling constant) seems to coincide with the ab-initio 

electron-phonon coupling of acoustic phonons (see dashed line in figure 2.16.b).  
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Figure 2.16: The nonthermal-lattice-model (NLM) for a Peierls-distorted 

semimetal (Sb). (a) The VDOS of acoustic phonons (red) and optical phonons (blue) 

exhibits a clear separation in the energy. (b) The total electron-phonon coupling from 

ab initio simulations (black solid line) can be separated into the electron-phonon 

coupling of optical (blue line) and acoustic (red line) phonons. The optical phonons 

have the strongest coupling with the electrons. (c) The simulated temperature 

evolutions of the electrons (black line), optical phonons (blue line) and acoustic 

phonons (red line according to the NLM. During electron-lattice nonequilibrium, the 

optical phonons are transiently getting hotter. (d) The quantity that is finally fitted is 

the atomic MSD. The total MSD (measured by FED) is the sum of the MSD due to 

optical phonons (blue) and the MSD due to acoustic phonons (red). Evidently, the 

strongly coupled optical phonons have a limited effect on the FED measurement. For 

more information see the main text. 
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2.3.3 Interfacial transmission of phonons & electrons 

Intrinsic interactions, such as electron-electron, electron-phonon and phonon-phonon 

interactions, are sufficient for studying energy flow in homogeneous elements and 

chemical compounds. Of course most devices are inhomogeneous since it is necessary to 

bring together different materials to perform some complicated function (see also 

Chapter 1). This is a particularly important aspect for nanoscale devices. In nanoscale 

devices a significant amount of atoms is located at surfaces and interfaces and hence the 

chemical environment plays an important role in energy flow. If the nanostructure is, for 

instance, 3 nm thick and made of Au, it takes only 1 ps for phonons to travel from its top 

to the bottom layer and reach the substrate surface. In this case the extrinsic energy flow 

to the support needs to be taken into account in order to investigate energy flow at 

ultrafast timescales. This work is about energy flow in nanoscale heterostructures and 

hence the transmission of electrons and phonons at the interface needs to be considered. 

The importance of such investigations for present-day applications in electronics is 

discussed in the work of Eric Pop et al. [41]. 

Vibrational coupling. One of the pioneers in the understanding of interfacial energy 

transfer was Pyotr Kapitza who worked in the field of low-temperature physics. Owning 

to his contributions, the interfacial conductance of phonons is also termed Kapitza 

conductance. The following theoretical considerations are based on the works of Challis 

[110] and Stoner et al. [111]. First the interfacial phonon transmission, or vibrational 

coupling 𝑊𝑃𝑃  is defined with the relationship: 

�̇� = 𝑊𝑃𝑃  ΔT   , R 2.25 

 

where �̇� is the heat flux and ΔT the temperature difference across the interface. If the 

vector normal to the interface is �̂�, the interfacial phonon transmission 𝑊𝑃𝑃  is given by: 

𝑊𝑃𝑃 =
1

𝑉
 

𝜕

𝜕𝑇
 ∑ ℏ𝜔𝑘

𝑘

 𝑛(𝜔𝑘, 𝑇) |𝑣𝑘 ∙ �̂�| 𝑡𝑘    , 
R 2.26 

where the summation is over all the phonon modes, ℏ𝜔𝑘 is the energy of one phonon, 

𝑛(𝜔𝑘, 𝑇) is the Bose-Einstein distribution, 𝑣𝑘  is the phonon group velocity and 𝑡𝑘  is a 

transmission coefficient. 



Chapter 2. Experimental & computational methods 

56 
 

According to Challis [110] and Stoner et al. [111], the transmission coefficient expresses 

various processes of interfacial phonon reflection without transmission of energy. 

Reflection at the interface can occur for three main reasons. First, the phonons obey the 

law of Snell, meaning that they get refracted at the interface. If the phonon is transmitted 

from a soft material A to a stiff material B (𝑣𝐴 < 𝑣𝐵, where 𝑣 the speed of sound), then it 

can experience total internal reflection. For total internal reflection the angle of incidence 

(𝜃) needs to be: 

𝜃 > sin−1 (
𝑣𝐴

𝑣𝐵
)    . R 2.27 

Second, the transmission coefficient is never unity, even at normal incidence, and this is 

due to the so-called acoustic mismatch. For electromagnetic waves, reflection at normal 

incidence is due to the discontinuity of the refractive index or the dielectric constant. For 

phonons, reflection at normal incidence is due to the discontinuity of the acoustic 

impedance (𝑍 ), which is defined as the product of the mass density and the sound 

velocity. The transmission coefficient based on this mechanism is: 

𝑡𝑘 =
4𝑍𝐴𝑍𝐵

(𝑍𝐴 + 𝑍𝐵)2
    . 

R 2.28 

Third, a transmission coefficient smaller than unity can also result from the vibrational 

densities of states of the two materials. A phonon in material A with frequency 𝜔𝐴 will 

couple more efficiently with a phonon in material B that has the same frequency. This 

means that for efficient vibrational coupling, the vibrational densities of states of the two 

materials must have significant overlap in the frequency the domain.  

Electronic coupling. Similar relationships and considerations can be made for the 

transmission of electrons across the interface  and in this case the phenomenon is 

described as electronic coupling or electronic Kapitza conductance [112]. Another 

possible mechanism of interfacial energy transfer is when an electron of material A is 

inelastically scattered at the interface and produces a phonon in material B. The detection 

of interfacial polarons in nanoscale heterostructures [113] proves that, in principle, 

interfacial electron-phonon interactions can indeed take place. The contribution of 

interfacial electron-phonon interactions to the interfacial energy flow is discussed in the 

theoretical work of Sergeev [114]. 
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2.4 Molecular dynamics simulations 

For a better understanding of the experimental results it is often desirable to make 

comparisons with molecular dynamics simulations from first-principles. Quantum 

mechanical simulations in nonequilibrium conditions are not feasible for the investigated, 

nanoscale systems due to the lack of translational symmetry and the number of atoms 

(~103). However, because the investigated nanostructures are mesoscopic objects and 

because some of the investigated phenomena are slower than the electron-lattice 

relaxation, the author and his colleagues employed classical molecular dynamics (MD) 

simulations (Chapter 5). Classical MD simulations solve the Newton’s equations and use 

statistical ensembles from classical thermodynamics.  

Finite differences. The atomic trajectories have been solved with the Velocity-Verlet 

algorithm. The time-evolving positions and the velocities are given by: 

�⃗�(𝑡 + 𝛿𝜏) = �⃗�(𝑡) + 𝑣(𝑡) 𝛿𝜏 +
1

2
 �⃗�(𝑡) 𝛿𝜏2    , 

R 2.29 

𝑣(𝑡 + 𝛿𝜏) = 𝑣(𝑡) +
�⃗�(𝑡) + �⃗�(𝑡 + 𝛿𝜏)

2
 𝛿𝜏    . 

R 2.30 

Interatomic potentials. The interatomic interactions are described by 12-6 Lennard-

Jones potentials (unless stated otherwise). These interatomic potentials have the general 

form: 

𝑉𝐿𝐽(𝑟) = 4휀 [( 
𝜎

𝑟
 )

12

− ( 
𝜎

𝑟
 )

6

]    , 
R 2.31 

where 𝑟  is the interatomic distance, 휀  is the maximum depth of the potential energy 

surface and 𝜎  the distance at which the interatomic potential becomes positive and 

repulsive. The parameters of the empirical potentials are based on DFT simulations of 

selected atomic arrangements. For more information see Chapter 5. 

Statistics. All MD simulations have been performed in the NVT ensemble, meaning 

constant number of particles (N), constant volume (V) and constant temperature (T). The 

temperature has been kept constant using the Nosé-Hoover thermostat [115], [116]. 

Conceptually, all thermostats are resembling the two-temperature-model. The first heat 

bath is the simulated system, the temperature of which needs to be fixed. The second heat 

bath is fictitious, it represents the environment and it interacts with all the simulated 

atoms, keeping their average kinetic energy in the order of kBT.  
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Electron diffraction simulations. The real-space trajectories of the MD simulations 

were used to calculate theoretical diffraction patterns. The electron diffraction simulations 

have been carried out using the method of Coleman et al. [96]. The atomic scattering 

factors were parametrized with 5 Gaussian distributions according to the work of Peng et 

al. [97]. Two important parameters for the simulations of the electron diffraction patterns 

are the thickness of the Ewald sphere, which was set to 0.06 Å-1, and the spacing of the 

computational grid for the reciprocal spacing, which was set to 0.007 Å-1. The radius of 

the Ewald sphere was calculated for the energy of the electrons used in the experiment. 

For an energy E=90 keV, the relativistic De Broglie wavelength is λ=3.9 pm and the 

Ewald sphere radius is 26 Å-1.  
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Chapter 3. Ultrafast energy flow in 0D/2D heterostructures 

 

This chapter is devoted to the study of ultrafast energy flow in heterostructures of Au 

nanoclusters (0D) on thin-film substrates (2D) and it is based on the publication: 

‘Ultrafast Heat Flow in Heterostructures of Au Nanoclusters on Thin-Films: Atomic 

Disorder Induced by Hot Electrons’, ACS Nano, 2018, 12 (8), pp 7710-7720, by Th. 

Vasileiadis et al. [117]. The structure of this chapter follows a ‘top-down’ approach, 

starting from the dynamics of bulk Au, after the dynamics of Au nanoislands and finally 

ultrasmall Au nanoclusters.  

The first section (section 3.1) shows the dynamics of electron-lattice equilibration in 

bulk, free-standing, thin-films of Au, as measured by FED. The measurements of 

homogeneous, bulk Au serve as a reference before proceeding with spatially confined and 

heterogeneous samples that contain Au nanostructures. The next section (section 3.2) 

presents FED measurements of Au islands on graphene. The study of these samples 

reveals the effect of heterogeneity in the absence of drastic, spatial confinement. The next 

sections deal with heterostructures that contain ultrasmall Au923 nanoclusters (NCs) on 

various thin-film substrates (0D/2D heterostructures). Section 3.3 describe the 

morphology (3.3.1) and the Debye-Waller dynamics (3.3.2) of the spatially confined 

0D/2D heterostructures. Section 3.4 is devoted in the development of a model for 

ultrafast energy flow in 0D/2D heterostructures (3.4.1) and the various inputs that are 

required (3.4.2). Finally, the model of ultrafast energy flow is used in section 3.5 in order 

to extract the various microscopic coupling constants. Based on the model, it is possible 

to acquire a realistic estimation for the time-evolution of the electronic temperature of the 

NCs, which cannot be observed directly with FED. 

 

3.1 Debye-Waller dynamics of bulk Au 

Using FED to record the ultrafast, structural dynamics of bulk, homogeneous Au is an 

important task before proceeding with heterostructures that contain spatially confined Au. 

The acquired information ensures the validity of the employed experimental and 

computational methods and serves as a reference in order to indicate confinement-
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induced phenomena. Bulk Au has well-known structural dynamics and, hence, the results 

are discussed briefly (a more detailed presentation is carried out for spatially confined 

systems). The samples are free-standing, homogeneous, thin-films of Au suspended on 

Cu TEM grids. The thickness is in the order of 10 nm, meaning that strong spatial 

confinement is not expected. For simple metals, quantum confinement phenomena are 

expected to emerge when the characteristic dimension is equal or smaller than the Fermi 

wavelength (see time-resolved optical measurements in reference [118]), which for Au is 

λF=0.5 nm, or for larger structures (5-15 nm) at ultralow temperatures (T≤90 mK) (see 

transport measurements in reference [119]).  

The time-resolved diffraction patterns of bulk Au (see fig. 2.10.a for the diffraction 

pattern of bulk Au) are recorded with FED at room temperature. Figure 3.1.a shows the 

ultrafast experimental decay of the intensity of various diffraction peaks (circles). All data 

sets can be reproduced by exponential decays (solid lines) with time-constants of 4.5 ps.  

 

 

Figure 3.1: Ultrafast lattice temperature evolution and TTM fitting of bulk, free-

standing, thin-films of Au. (a) Experimental peak-decay of photo-excited Au lattice 

(circles) and exponential decays (solid lines, same color). The indices denote the 

diffraction peak. (b) The predicted electron temperature evolution (black circles) 

together with the fitted lattice temperature evolution (red line).  

 

The decay of the intensity of diffraction peaks is transformed, using the Debye-Waller 

formalism (section 2.2.3), into an effective lattice temperature. The temperature-

dependence of the Debye-Waller factor is found from the work of Peng et al. [95]. The 

resulting lattice temperature evolution can be finally modelled with the TTM (section 
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2.3.4) in order to extract the electron-phonon coupling constant and/or fitted with an 

exponential decay in order to quantify the rapidity of electron-lattice equilibration. Figure 

3.1.b shows the ultrafast lattice temperature evolution of the photo-excited Au film (black 

circles) and the exponential fitting (red line), which gives a time-constant of (4.75±0.35) 

ps. The corresponding width and the scattering angle of the various diffraction peaks in 

this measurement remain unchanged. The dynamics are single-exponential, meaning that 

after ~10 ps the electrons and the lattice are in equilibrium. Thermal relaxation of the 

sample with its environment proceeds in the nanosecond to millisecond timescale.  

Electron-phonon coupling- & time-constants of bulk Au. The extracted electron-

phonon coupling constant from various measurements is 𝐺𝑒−𝑝ℎ = 2.7 ∙ 1016 𝑊/𝑚3𝐾 . 

This value is in excellent agreement with optical pump-probe experiments and TTM 

modelling by Brorson et al. [100] that gave 𝐺𝑒−𝑝ℎ = 2.61 ∙ 1016 𝑊/𝑚3𝐾. Time-resolved 

diffraction studies give a characteristic timescale for electron-lattice equilibration in the 

order of ~4-6 ps [120], [121]. However, the time-constant for electron-lattice 

equilibration depends on the absorbed fluence and the heat capacity in addition to the 

coupling constant (fig. 3.2).  

 

Figure 3.2: Time-constant of electron-lattice equilibration from exponential fitting 

of the TTM solutions. The TTM has been solved for various fluences and the resulting 

lattice temperature evolution has been fitted with an exponential decay in order to 

simulate the apparent time-constant. The time-constant (τe-ph) is plotted as a function of 

the maximum, lattice temperature increase (ΔTL). The maximum time-constant is 

around 5 ps. For small, absorbed fluences (small ΔTL) the time-constant approaches the 

1 ps timescale.  
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Figure 3.2 shows the dependence of the electron-phonon equilibration time on the lattice 

temperature rise, as predicted by the TTM. Generally, processes that take place within 1-6 

ps can be safely associated with electron-lattice equilibration. This information will be 

useful for the FED measurements of spatially confined Au on surfaces. 

 

3.2 Debye-Waller dynamics of Au islands on graphene 

The next sample under investigation is Au (nominal thickness ≥ 3 nm) deposited on few-

layer graphene with evaporation. These samples are heterogeneous but without strong 

spatial confinement. Strong quantum confinement phenomena are not expected, however, 

the large surface-to-volume ratio of these structures facilitates exchange of energy with 

their chemical environment (graphene substrate) at ultrafast timescales. Figure 3.3 shows 

FED measurements of polycrystalline thin-films of Au grown on few-layer graphene.  

Thick Au on C. For a nominal thickness of ~10 nm, Au forms discontinuous films on 

graphene (figure 3.3.a). After excitation, lattice heating cause the diffraction peaks to 

decay (figure 3.3.b), due to the Debye-Waller effect, with a time-constant 𝜏 =

(3.4 ± 0.3) 𝑝𝑠, which can be attributed to electron-lattice equilibration.  

Thin Au on C. For a nominal thickness of 3 nm, Au forms ramified objects resembling 

nanoislands (figure 3.3.c). In this sample the decay of intensity follows bi-exponential 

dynamics with time-constants 𝜏1 = (3.1 ± 0.8) 𝑝𝑠  and 𝜏2 = (40 ± 5) 𝑝𝑠  respectively 

(figure 3.3.d). The fast process can be attributed to electron-lattice equilibration in Au, 

based on its time-constant. The slow process (𝜏2) is significantly slower than electron-

phonon interactions and it can result from interfacial energy flow from the graphene 

substrate through transmission of phonons.  

Previous knowledge on Au / C heterostructures. Previous works with time-resolved 

electron diffraction of Au nanoislands on graphene have observed the same retardation of 

lattice equilibration. The slow process has vanished once the Au/C interface was 

intercalated with organic ligands [122]. The offered, qualitative explanation was as in the 

present work that the slower lattice equilibration is due to phonon transmission from the 

hotter substrate. The present experiments and the comparison of the 10 and 3 nm thick 
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samples shows that interfacial energy transfer to the substrate becomes increasingly 

important as the dimensions of the adsorbed nanostructure become smaller.  

 

 

Figure 3.3: Thickness-dependent lattice dynamics of Au deposited on graphene. 

(a) & (b) Scanning electron microscopy (SEM) image of 10 nm Au deposited on 

graphene and average decay of intensity of diffraction peaks measured by FED, 

respectively. (c) & (b) SEM image of 3 nm Au deposited on graphene and average 

decay of intensity of diffraction peaks measured by FED, respectively. Lattice 

equilibration is achieved within ~10 ps for 10 Au film and within ~100 ps for 3 nm Au.  

 

Ensemble-uncertainty. The samples investigated here are highly polycrystalline and 

polydisperse. Thus, an accurate examination based on the Debye-Waller effect is not 

feasible. The Debye-Waller factor, the lattice heat capacity and other lattice properties 

might vary greatly among the probed islands. Instead, the next sections are devoted to 

supported, Au NCs with very narrow distribution of size and very limited structural 

allotropes. In the case of size-selected NCs, all lattice parameters can be accurately 

identified. 
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3.3 Debye-Waller dynamics of Au923 nanoclusters on thin-films  

Section 3.3.1 reports the morphology of size-selected Au NCs on thin-film substrates and 

section 3.3.2 the FED measurements of their Debye-Waller dynamics on various thin-film 

substrates.  

3.3.1 Synthesis and characterization of Au923 nanoclusters 

The samples contain Au NCs with a precise number of atoms and well-defined geometric 

shapes. This section examines how the NCs distribute on the thin-film, their size and their 

shape. The NCs under investigation have been provided by the scientific group of 

Professor Richard Palmer (Swansea University). Metallic NCs (~10 to 103 atoms) have 

increased stability for certain amount of atoms [123]. In this work, the selected NCs were 

Au923±23 supported on various thin-films. For completeness the next two paragraphs refer 

to the preparation and characterization that they followed. These items of information are 

essential for the FED experiments, because the relative masses of the NCs and of the 

substrate and the overall sample morphology, determine the heat capacities and how 

energy flows. 

The procedure starts with sublimation of Au in a radio frequency magnetron plasma 

sputtering source [124]. Gaseous atoms condensate and form NCs. All NCs enter a mass-

selector (time-of-flight mass filter) in order to select a specific magic number [125]. For 

the presently reported experiments the NCs contained 923±23 Au atoms. The uncertainty 

of the NC size (23 atoms) corresponds to the standard deviation of their size and it 

depends on the diameters of the entrance and exit slits of the mass-selector. Finally, the 

NCs get deposited on selected substrates. Before deposition the NCs are decelerated to 

avoid destruction during impact (soft-landing regime, kinetic energy <2 eV/atom) [126].  

To avoid surface-diffusion, aggregation and coalescence, the substrates are pre-treated by 

ion-bombardment. The created defects act as binding sites for the adsorbed NCs [126], 

[127]. Defect creation by ion bombardment ensures homogeneous dispersion on the 

surface of the substrate. Characterization of the NCs size, surface density and morphology 

is carried out by electron microscopy. The distribution of NCs is visualized with 

aberration-corrected scanning transmission electron microscopy (STEM) in high-angle 

annular dark-field mode (HAADF) and it is shown in figure 3.4.a.  
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Figure 3.4: Electron microscopy of size-selected Au923 NCs. (a) The distribution of 

Au923 NCs on the surface of thin-films of a-C visualized with STEM-HAADF imaging. 

(b) Upper images: high-resolution electron microscopy of individual NCs, Lower 

images: Electron diffraction simulations of ideal single-crystalline (FCC), decahedral 

(Dh) and icosahedral (Ih) geometries that were used to categorize the NCs and perform 

statistics.  

 

For all types of substrate, studied in the present chapter, the surface density was 8 NCs 

per 100 nm2. Most NCs were isolated (75%) and the rest formed dimers and trimers. 

High-resolution electron microscopy and comparison with simulated structures (figure 

3.4.b) were used to identify individual NCs. The single NCs had mostly Decahedral 

(37%) or FCC structure (35%) and the amorphous-like Icosahedral were nearly 

eliminated (3%). The NCs, examined here, have been deposited on two different types of 

substrates. The first type of substrate is light-absorbing, thin-films of amorphous, sp2 C 

(a-C) of 20 nm thickness. The second type of substrate is light-transparent, thin-films of 

Silicon-Nitride (Si-N) with 20 nm thickness. The next section examines and compares the 

ultrafast lattice dynamics of Au NCs on these two types of substrate. 

 

3.3.2 Dynamics of Au923 nanoclusters on absorbing  

and transparent thin-films 

After optical excitation the lattice is perturbed and the intensity, position and width of 

diffraction peaks are changing as explained in figure 2.12. This chapter is focused on the 

time-variations of the intensity only (Debye-Waller effect), which are associated with 

atomic vibrations. The intensity of the peaks is determined as their total area and not the 

height, in order to avoid misconceiving peak-profile changes (structural changes) as 
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Debye-Waller dynamics. Lattice motions such as expansion or surface melting are 

separately examined in the next chapter. The measurements presented here have been 

carried out with sub 100 fs pulses of 400 nm radiation. The experiment with Au923 NCs 

on Si-N has been carried out with an incident fluence of ~2.7 mJ/cm2 and the experiment 

with Au923 NCs on a-C has been carried out with an incident fluence of ~5.1 mJ/cm2. 

Figure 3.5 shows the relative changes of intensity, as a function of pump-probe delay, for 

various diffraction peaks of Au923 NCs on Si-N (fig. 3.5.a) and of Au923 NCs on a-C (fig. 

3.5.b). As expected from the Debye-Waller effect, after photoexcitation all diffraction 

peaks (circles) decay while the inelastic background (black squares and lines) is rising. 

The colored solid lines in figure 3.5.a & b stem from calculations based on the Debye-

Waller effect. Each peak-decay is translated into an effective atomic MSD. The MSD, 

averaged over all peaks, is then translated back into a peak-decay. The aim of this 

procedure is to show that the observed peak-decay obeys the Δ𝐼~𝑒−Δ〈𝑢2〉𝑆2
 dependence 

predicted by the Debye-Waller theory (the importance of this check will be clarified 

further in Chapter 5). 

 

Figure 3.5: Laser-induced decay of diffraction peaks for Au923 NCs on different 

substrates. (a) Peak-decay of size-selected Au923 on 10 nm Si-N. (b) Peak-decay of 

size-selected Au923 on 20 nm a-C. Black squares and lines shown the rise of the 

inelastic scattering background. The open circles give the experimental relative decay 

of various diffraction peaks of Au923 NCs and the solid lines the predicted evolution 

based on the Debye-Waller effect. 
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For Au923 on Si-N the peaks shown initially a decay (lattice heating) with a time-constant 

τ1=5.0 ± 0.7 ps. Subsequently, the peak intensity is increasing without fully recovering 

(lattice cooling) with a time-constant of τ1=120 ± 50 ps. For Au923 on a-C the initial decay 

of intensity is suppressed and has a time-constant τ1=6 ± 2 ps, while ~60% of the peak 

decay is due to a slower process that has a time-constant τ2=80 ± 40 ps.  

The observed dynamics differ markedly on the two substrates despite the fact that the 

NCs are the same. A qualitative, for now, explanation is as follows. During the first ~10 

ps, the energy content of the lattice is increasing, mainly due to intrinsic electron-phonon 

coupling in Au NCs. The processes occurring at a timescale of ~100 ps can be explained 

as interfacial energy transfer to the substrates (see also the dynamics of bulk-like Au 

islands on graphene in section 3.2).  

On the one hand, the Si-N substrate is transparent and hence it remains unexcited at room 

temperature immediately after photo-excitation. The NCs lattices equilibrate with the hot 

electrons and simultaneously their excess heat is transmitted at a slower pace to Si-N to 

restore thermodynamic equilibrium at the interface. On the other hand, the a-C substrate 

can absorb the incident radiation and deplete the laser pulse. In that case, a-C is at a 

higher temperature after electron-lattice equilibration and heat is transmitted towards the 

NCs. For this reason, the slow process has the reverse effect on a-C and on Si-N. The 

interpretation offered so far is solely based on qualitative arguments. For a quantitative 

description, the observed peak-decay should be translated into an effective lattice 

temperature and a model of ultrafast energy flow needs to be applied.  

 

3.4 Model of energy flow in 0D/2D heterostructures 

Section 3.4.1 introduces a model of ultrafast energy flow that aims for a quantitative 

description of the substrate-dependent Debye-Waller dynamics of Au NCs (shown in 

3.3.2). Section 3.4.2 allocates the various inputs of the model, namely the electronic and 

lattice heat capacities and Debye-Waller factor for Au NCs. The heat capacities of the a-C 

[128] and Si-N [129] substrates are found from literature. 
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3.4.1 Intrinsic and extrinsic interactions in nanoscale heterostructures 

Quantitative analysis of lattice equilibration in 0D/2D heterostructures can be achieved 

with a model of energy flow for nanoscale heterostructures, developed by the author of 

this work [117]. A schematic diagram of the model is shown in figure 3.6. In analogy 

with the TTM, each material contains two heat baths, the electrons and the lattice 

(phonons). The electrons and the lattice, of each material, can exchange energy with 

electron-phonon coupling. This type of interaction can be termed intrinsic. Both the 

nanostructure and the substrate can absorb energy from the incident laser pulse, 

depending on their optical properties. Laser-irradiation brings the two materials in non-

equilibrium conditions. Restoration of thermodynamic equilibrium between the two 

components is carried out by transmission of excited carriers and phonons, across the 

interface and towards the less-excited part. This additional type of interactions can be 

termed extrinsic. 

 

 

Figure 3.6: Model of ultrafast energy flow in 0D/2D heterostructures. Both the NCs 

and the substrate can be excited by the laser pulse. Each material has intrinsic electron-

lattice interactions (𝐺𝑒−𝑝ℎ) and extrinsic interactions across the interface. Interfacial 

energy flow is carried out by electronic (𝑊𝑒−𝑒) and vibrational (𝑊𝑝−𝑝) coupling. 

 

In analogy with the TTM, the diagram of figure 3.6 is translated into a system of four 

coupled differential equations:  

𝑑𝑇𝐸
𝐴𝑢

𝑑𝑡
= −

𝐺𝐸−𝑃𝐻
𝐴𝑢

𝐶𝐸
𝐴𝑢

(𝑇𝐸
𝐴𝑢 − 𝑇𝐿

𝐴𝑢) +
𝑊𝑒−𝑒

𝐿𝐴𝑢𝐶𝐸
𝐴𝑢

(𝑇𝐸
𝑆 − 𝑇𝐸

𝐴𝑢) + 𝑆𝐴𝑢(𝑡), 
R 3.1 
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𝑑𝑇𝐿
𝐴𝑢

𝑑𝑡
=  

𝐺𝐸−𝑃𝐻
𝐴𝑢

𝐶𝐿
𝐴𝑢

(𝑇𝐸
𝐴𝑢 − 𝑇𝐿

𝐴𝑢) +
𝑊𝑝−𝑝

𝐿𝐴𝑢𝐶𝐸
𝐴𝑢

(𝑇𝐿
𝑆 − 𝑇𝐿

𝐴𝑢), 
R 3.2 

 

𝑑𝑇𝐸
𝑆

𝑑𝑡
=  −

𝐺𝐸−𝑃𝐻
𝑆

𝐶𝐸
𝑆

(𝑇𝐸
𝑆 − 𝑇𝐿

𝑆) −
𝑊𝑒−𝑒

𝐿𝑆𝐶𝐸
𝐶

(𝑇𝐸
𝑆 − 𝑇𝐸

𝐴𝑢) + 𝑆𝑆(𝑡), 
R 3.3 

 

𝑑𝑇𝐿
𝑆

𝑑𝑡
=  

𝐺𝐸−𝑃𝐻
𝑆

𝐶𝐿
𝑆

(𝑇𝐸
𝑆 − 𝑇𝐿

𝑆) −
𝑊𝑝−𝑝

𝐿𝑆𝐶𝐸
𝑆

(𝑇𝐿
𝑆 − 𝑇𝐿

𝐴𝑢). 
R 3.4 

 

Each of these equations describe the time-evolving temperature ( 𝑇 ) of one of the 

subsystems. Heat diffusion is not taken into account because of the nanoscale dimensions 

of all the involved materials. The temperatures of the electrons and the lattice are denoted 

by the lower index (𝐸 or 𝐿 respectively). The material is given by the upper index (𝐴𝑢 for 

the Au923 NCs and 𝑆 for the substrate). The same nomenclature applies for the indices of 

the heat capacities (𝐶) and the electron-phonon coupling constants (𝐺). The interfacial 

energy transfer rates with electronic and vibrational coupling are given by 𝑊𝑒−𝑒  and 

𝑊𝑝−𝑝, respectively. Finally, the absorbed laser fluence in each material is given by source 

terms (𝑆) with a Gaussian temporal shape: 

𝑆(𝑡) =
𝐹

𝐿𝐶𝐸  

exp[−4 𝑙𝑛(2) (𝑡 − 𝑡𝑜)2/𝑤2]

𝑤/2√𝜋/ln (2)
  , 

R 3.5 

where 𝐹  is the absorbed fluence, 𝐿  and 𝐶𝐸  the nominal thickness and electronic heat 

capacity of each material. Finally, 𝑤 and 𝑡𝑜 are the FWHM and the arrival time of the 

laser pulse. 

Electron-phonon interactions at the interface (scattering events in which a charge carrier 

in material 1 is exciting a phonon in material 2) are not taken into account. Recent work 

has shown that such phenomena can indeed take place in different low-dimensional 

heterostructures [113]. However, in the present work it was possible to reproduce the 

experimental observations without taking into account interfacial electron-phonon 

interactions and for this reason it is not considered an important channel of energy flow 

for the investigated systems (lower scattering probability). 
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3.4.2 Inputs of the model: heat capacities and Debye-Waller factor of Au923 

nanoclusters 

The previous section (3.4.1) introduced the model of energy flow in 0D/2D 

heterostructures and the concepts of intrinsic and extrinsic interactions. The present 

section examines the inputs of the model and allocates the required information based on 

the existing literature and on various theoretical considerations. The physical properties of 

solids can be modified due to spatial confinement and, hence, it is necessary to take into 

account the size of Au923 NCs.  

Electrons’ confinement. As the nanostructure gets smaller, the surface-to-volume ratio is 

increasing. Atoms on the surface are under-coordinated and have the ability to move. 

Hence, their bonding and dynamics are expected to be different than in the bulk. Spatial 

confinement, can lead to the formation of new electronic and vibrational states. The 

discontinuity of the potential close to the surface can lead to the formation of electronic 

bound states, known as surface states [130]. Modification of electronic states can also 

occur throughout the volume when the nanoscale solid is strongly confined in some or all 

spatial dimensions [131]. This second mechanism starts to be important when one of the 

spatial dimensions approaches the Fermi wavelength of electrons (for Au λF ~ 0.5 nm).  

Electronic heat capacity of Au923 NCs. For all the analysis, the electronic heat capacity 

of the studied Au nanostructures was assumed to be identical with their bulk counterpart. 

This assumption can be justified in two ways. First, the Thomas-Fermi screening length 

for Au is rTF ≅
1

2
(𝑎𝑜

3/𝑛)1/6~1.6 Å  [2]. The Thomas-Fermi screening length is much 

smaller than the characteristic dimensions of the investigated nanostructures. For 

comparison, Au923 NCs have an average diameter of ~3 nm. As a result, the fraction of 

electrons affected by the surface will be small and the surface-induced modifications of 

the electronic heat capacity can be neglected.  

The second justification, for using the electronic heat capacity of bulk Au, is based on 

thermal broadening. As the size of a metallic nanocluster decreases, the electronic bands 

transform into molecular- or atomic-like states [131] and the density of states acquires 

energy gaps. Such phenomena, if present, affect the electronic heat capacity. Major 

confinement effects are expected to arise if thermal broadening is smaller than the energy 

gaps. A simple assumption is that close to the Fermi level, the gaps are equally spaced. 

Then, the critical size for electronic quantum confinement is EF/kBT~200 atoms. Despite 
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the simplicity of these arguments the result is realistic. Recent studies have shown a 

deviation from the metallic behavior, in terms of optical properties, for NCs smaller than 

Au333 [132]. 

Phonons’ confinement. Regarding phonons, in a zero-dimensional metallic solid, long 

wavelength acoustic phonons transform into collective vibrational modes [133], similar to 

the normal modes of an elastic sphere (breathing and toroidal modes). This occurs when 

the wavelength of the phonon becomes comparable with the dimension of the nanocrystal 

itself. Moreover, the vibrational density of states is significantly modified for all 

frequencies compared to the bulk counterpart in very small clusters (see for instance fig. 6 

in the work of Cuenya et al. [134]). 

Lattice heat capacity of Au923 NCs. Regarding the lattice degrees of freedom of Au 

NCs, metallic surfaces and nanostructures are characterized by enhanced mobility of 

atoms for temperatures well below the melting point [135]. The melting temperature of 

bulk Au is 1400 K. Buffat et al.[136] have shown, using electron diffraction, that the 

melting point of Au nanostructures shows a size-dependent decrease. Modern 

experiments using electron microscopy, have visualized the nanocluster surface becoming 

rough or completely melted, while atoms in the interior remain crystalline [35]. Below the 

melting point all the lattice degrees of freedom for bulk Au have vibrational character. 

Yet, on the surface of a nanocrystal, atoms have multiple, possible configurations and, 

stochastically, some of these vibrations can decompose into translational modes and vice 

versa (surface diffusion) [135]. Coexistence of liquid and solid regions is associated with 

peaks in the lattice heat capacity, as shown by calorimetry measurements [137] and 

molecular dynamics simulations [138]. 

All these phenomena are naturally included in atomistic simulations. For size-selected 

Au923 NCs, the heat capacity has been obtained by the works of Sauceda et al. [133], 

[139]. The low temperature values of the heat capacity [139] have been extrapolated 

using the vibrational density of states [133] and the standard relationship for the heat 

capacity of Bosonic systems: 

𝐶𝐿 = ∫
𝜕𝑛𝐵(ℏ𝜔, 𝑇𝐿)

𝜕𝑇𝐿
𝐹(𝜔)ℏ𝜔 𝑑𝜔 

R 3.6 
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where 𝑛𝐵 is the Bose-Einstein distribution, 𝑇𝐿 the lattice temperature and 𝜔 the phonon 

angular frequency. All properties have been averaged over the various structural 

allotropes of NCs with similar size and weighted by the relative abundancies given by 

HR-TEM. The resulting temperature dependent heat capacity for the Au923 NCs is shown 

in figure 3.7. 

 

Figure 3.7: Lattice heat capacity of Au923 NCs, calculated based on the works of 

Sauceda et al.[133], [139]. More details can be found in the main text. 

 

For comparison, the lattice heat capacity of bulk Au is in the order of 2.49∙106 J/m3K at 

room temperature. 

Debye-Waller factor of Au923 NCs. An additional property of materials that is modified 

upon spatial confinement is the Debye-Waller factor or atomic MSD. In general the 

atomic MSD or the Debye-Waller factor B [95], are given as a polynomial function of the 

lattice temperature (𝑇𝐿) [95]. However, for most materials the polynomial function above 

80 K is close to linear and hence one can write: < 𝑢2 >≅ 𝑎 ∙ 𝑇𝐿, where 𝑎 is a material 

specific constant. The slope 𝑎 has been shown to be size-dependent by Buffat et al. [140]. 

The relationship of 𝑎 with the diameter (𝐷) of the nanocluster is given by: 𝑎 = 𝑎𝑏 +

𝑎𝑛/𝐷, where 𝑎𝑏 is the bulk value and the second term due to surface effects. Based on the 

works of Buffat et al. [140] and Solliard [141] and for Au923 NCs (𝐷~3 𝑛𝑚) the 𝑎 =

9.88 ∙ 10−5 Å2/𝐾 . Regarding the B-factor (B=8π2<u2>/3), the same coefficient is2.5 ∙

10−3 Å2/𝐾. Compared to bulk Au, the slope of the atomic MSD (versus temperature) is 
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increased by ~20%. In an intuitive way, this indicates that Au923 NCs have softer lattice 

compared to bulk Au.  

3.5 Measurement of electron-phonon coupling and interfacial 

phonon transmittance in 0D/2D heterostructures 

With all the above considerations it is now possible: (1) to use the Debye-Waller 

temperature-dependence and transform the peak-decay into an effective lattice 

temperature and (2) to use the electronic and lattice heat capacities in order to simulate 

the time evolution of the lattice temperature. The nominal thickness of Au923 NCs is 1.4 

nm. The thickness of Si-N and a-C thin-films are 10 and 20 nm, respectively. Hence, the 

heat capacities of the investigated samples are known. 

Figure 3.8.a shows the lattice temperature evolution of Au923 NCs on Si-N (blue circles) 

as a function of the pump-probe delay time. The system of coupled differential equations 

of the model of ultrafast energy flow are used for a nonlinear fitting of the data that is 

shown with a solid blue line. The predicted lattice temperature evolution of the Si-N 

substrate is shown with a dashed blue line. In the case of  Au923 / Si-N heterostructures, 

the source term of the substrate is set to zero, since Si-N is transparent at this wavelengths 

(the optical band gap of SiNx films is ~5 eV [142]). Moreover, the response of the 

electrons in the substrate have been deactivated, in the final fitting, because the large band 

gap forbids electronic excitations in Si-N. Hence, the electronic coupling (𝑊𝑒−𝑒) was set 

to zero to improve the fitting convergence. 

Figure 3.8.a gives emphasis in two different timescales (horizontal axis). From -10 to 0 

ps all systems are in room temperature. From 0 to 15 ps the lattice temperature of Au923 

NCs is rising to a maximum value of 440 K but the Si-N lattice temperature is almost 

stable. Finally, from 15-500 ps the lattice temperature of Au923 NCs (/Si-N) is clearly 

dropping (/increasing). The predicted temperature of the Si-N substrate (dashed blue line) 

is slowly rising and eventually gets equal with that of Au923 NCs (solid blue line)  at 

approximately 500 ps.   

The underlying physical processes that dominate these time evolutions are schematically 

shown in figure 3.8.b. Lattice heating of Au923 NCs in the 0 to 15 ps time-interval stems 

from generation of hot electrons, directly from the laser beam, and subsequent relaxation 
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by electron-phonon coupling (GE-PH in fig. 3.8.b). Lattice cooling of Au923 NCs in the 15-

500 ps time-interval is due to phonon transmission (WPP in fig. 3.8.b).  

Extracted coupling constants for Au923 / Si-N. The measured electron-phonon coupling 

constant of Au923 NCs is 𝐺𝑒−𝑝ℎ = (2.0 ± 0.2) ∙ 1016 𝑊/𝑚3 . The electron-phonon 

coupling constant of Au923 NCs is ~70% compared to bulk Au. The vibrational coupling 

of Au923 NCs with Si-N is 𝑊𝑝−𝑝 = (16 ± 8)𝑀𝑊/𝑚2𝐾. 

 

 

Figure 3.8: Ultrafast evolution of lattice temperature for Au923 NCs on Si-N and 

mechanism of energy flow. (a) The effective lattice temperature of photoexcited Au923 

NCs on Si-N (blue data points) calculated by means of the Debye-Waller effect. The 

results of non-linear fitting with the 0D/2D energy flow model, for the Au NCs and the 

Si-N substate are shown with blue solid and dashed line respectively. (b) Schematic 

illustration of the ultrafast energy flow pathway. Electron-phonon coupling within the 

NCs is initiated by the laser pulse, while vibrational coupling brings the NCs and the 

substrate in thermodynamic equilibrium. 

 

The same modelling concept is now applied for Au923 NCs on a-C. The experimental 

evolution of the effective lattice temperature is shown in figure 3.9.a (red data points) 

together with the fitted lattice temperature (red solid line) and the fitted substrate 

temperature (dashed solid line). The predicted temperature of Au923 NCs shows first a 

small rise (of ~50 K) due to electron-phonon coupling within 5 ps. Thus, the laser-

induced generation of hot electrons in the Au923 NCs is depleted in the presence of 

absorbing C. Next, from 15 to 100 ps the lattice temperature of Au923 NCs keeps rising at 
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a slower pace to a maximum value of ~470 K. After 100 ps, the lattice temperatures of 

Au923 NCs (solid line) and a-C (dashed line) are equal and the heterostructure is locally 

equilibrated. 

The most dominant, underlying physical processes are schematically shown in figure 

3.9.b. Electron-phonon coupling inside the Au923 NC is greatly suppressed and hence 

excluded from the diagram. The most intense lattice heating, due to hot electrons, occurs 

in the a-C substrate. The excessive phonons that are generated by this process can be 

partially transmitted to the Au923 NC, giving rise to the slow dynamics shown in figure 

3.9.a. 

Extracted coupling constants for Au923 / a-C. The measured electron-phonon coupling 

constant (𝐺𝑒−𝑝ℎ) of Au923 NCs on a-C is again lower than in bulk Au and equal with 

(1.6 ± 0.9) ∙ 1016 𝑊/𝑚3𝐾. The uncertainty in this case is larger because intrinsic and 

extrinsic interactions have the same effect (lattice heating). Regarding extrinsic energy 

flow, the vibrational coupling is 𝑊𝑝−𝑝 = (90 ± 10) 𝑀𝑊/𝑚2𝐾 , while the electronic 

coupling is smaller by a factor of 10 and again it does not appear to be an important 

channel for equilibration. In agreement with the findings presented here, recent studies 

using two-photon photoemission, have shown suppressed generation of hot electrons in 

Ag when it is in contact with graphite [143].  

 

Figure 3.9: Ultrafast evolution of lattice temperature for Au923 NCs on a-C and 

mechanism of energy flow. (a) The effective lattice temperature of photoexcited Au923 

NCs on a-C (red data points) calculated by means of the Debye-Waller effect. The 

results of non-linear fitting with the 0D/2D energy flow model, for the Au923 NCs and 

the a-C substate are shown with red solid and dashed line respectively. (b) Schematic 
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illustration of the ultrafast energy flow pathway. Generation of hot electrons within the 

NCs is inhibited by the laser-absorbing substrate. The absorbed fluence in a-C leads to 

heating of its lattice by electron-phonon coupling. Finally, vibrational coupling 

transfers heat to the NCs and brings the two materials in thermodynamic equilibrium. 

 

An interesting finding is that the vibrational coupling on a-C is larger than on Si-N by a 

factor of 5.6. Vibrational coupling is governed by selection rules for phonon-phonon 

interactions at the interface. In addition, vibrational coupling can be affected by the 

morphology of the surface. Based on the sp2 bonding character of the used C substrates, 

the surface is expected to contain distorted graphene flakes and nanotubes. The existence 

of such structures results in nanometer-scale roughness. This can increase the effective 

contact area and potentially lead to higher energy transfer rate.  

The present chapter demonstrated how FED can be used for quantitative measurements of 

interfacial energy transfer. Up to now, interfacial energy transfer has been widely studied 

with time-resolved thermoreflectance [111], [144]–[148]. The observables of optical 

spectroscopies are based on the refractive index of materials, which by its turn has a 

complicated dependence on the underlying electronic and structural changes. To 

overcome these difficulties, the current work, and recent publications by other teams, 

employ time-resolved diffraction that is directly sensitive to the lattice response [70], 

[79]–[81], [149], [150].  

Evolution of electronic temperature. The experiment with Au923 NCs on Si-N has been 

carried out with an incident fluence of ~2.7 mJ/cm2 resulting in a lattice temperature 

increase of ~150 K. The experiment with Au923 NCs on a-C has been carried out with 

nearly double incident fluence (~5.1 mJ/cm2), yet the resulting lattice temperature 

increase was similar (~180 K). The applied model of energy flow proves that this is 

indeed the expected behavior based on the optical absorption and the heat capacities of 

the various materials that are involved. The presented model has one additional 

advantage: it provides a reliable estimation of the electronic temperature evolution that is 

not accessible experimentally by FED. The predicted electronic temperatures for Au923 

NCs on Si-N and a-C are shown in figure 3.10. Although the maximum lattice 

temperature is similar in both types of substrate, the maximum electronic temperature is 

drastically different. The maximum electronic temperature is ~3300 K and ~1300 K for 

Au923 NCs on Si-N and a-C, respectively. Hence, selection of the substrate and 
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adjustment of the laser fluence can result in a specific lattice temperature increase, in the 

presence, or in the near absence, of hot electrons. The following chapter takes advantage 

of this phenomenon, in order to indicate structural changes that are driven by hot 

electrons.  

 

Figure 3.10: Predicted electronic temperature evolution of Au923 NCs on 

absorbing a-C and transparent Si-N. (a) Electronic temperatures during electron-

lattice non-equilibrium. The maximum electronic temperature of Au923 NCs is ~3300 K 

on Si-N and ~1300 K on a-C although the maximum lattice temperatures are similar.  

(b) Electronic temperatures after electron-lattice equilibration. After electron-lattice 

equilibration, the electronic temperature is closely following the lattice temperature of 

the NCs. 
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Chapter 4. Ultrafast structural changes in 0D/2D 

heterostructures 

 

The previous chapter investigated ultrafast energy flow in 0D/2D heterostructures. The 

present chapter examines the ultrafast structural changes of the 0D nanostructures in 

response to this ultrafast energy flow. The FED measurements extract the intensity 

(Debye-Waller dynamics), scattering angles (unit cell volume) and width (degree of 

crystallinity) of the various diffraction peaks (see figure 2.12). The results presented here 

originate from the same data sets used for the analysis of the ultrafast energy flow (unless 

if it is stated otherwise), but the employed observables are the time-dependent scattering 

angle (section 4.1) and the dynamics of the width of diffraction peaks (section 4.2). The 

observed, ultrafast atomic motions have some implications for surface chemical reactions, 

which are discussed in section 4.3. 

 

4.1 Anharmonic structural properties of Au923 nanoclusters 

The standard description of phonons is strongly based on having a harmonic, interatomic 

potential of the form 𝑉(𝑟) ∝ 𝑟2, where r is the interatomic distance or some other spatial 

coordinate. This harmonic approximation is almost perfectly valid at low temperatures, 

when the solids’ atoms are constrained very close to their mechanical-equilibrium 

positions. The harmonic approximation is an extremely successful concept, with the 

Debye-Waller effect being one of its many outcomes. An interesting (but well-known) 

fact is that the harmonic approximation fails to predict two phenomena that are readily 

accessible even by human senses. The first is lattice expansion and the second is the 

phononic thermal conductivity. More information can be found in chapter 25 of Ashcroft 

& Mermin [2].  

Generally, processes that do not conserve the number of phonons are non-harmonic 

(anharmonic). Phonon-phonon interactions are solely based on anharmonicity but 

anharmonic phenomena play a role even for electron-phonon interactions [151]. On the 

one hand, anharmonic phenomena are extremely important for an in-depth understanding 

of ultrafast energy flow in solids. On the other hand, anharmonic lattice expansion plays a 
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crucial role in devices with nanoscale features, such as nanotips for atomic visualization 

and manipulation [152], especially when laser-illumination is involved. In the 

investigated nanosystems, namely Au923 NCs on Si-N and on a-C, anharmonicity 

manifests as lattice expansion at ultrafast timescales. Based on all the above, it is certainly 

interesting and within the scope of the present work to study these phenomena. 

The previous chapter has shown the laser-induced Debye-Waller dynamics. The effect of 

anharmonicity and thermal expansion in the Debye-Waller factor has been examined by 

Maradudin et al. [153] (see section IV, pages 2539-2540). Generally, the anharmonic 

contributions to the Debye-Waller factor are considered to be small (compare 

relationships 4.1, 4.4 & 4.9 in ref. [153]). Nevertheless, anharmonic phenomena are 

naturally included in the previous Debye-Waller analysis, since the temperature-

dependence of the atomic MSD has been found from experiments [140], [141]. The 

Debye-Waller analysis of Chapter 3 have not offered any striking signature of 

anharmonicity. In contrast, lattice expansion can only occur in the presence of 

anharmonicity and thus it is the most ideal, sensitive probe for such phenomena.  

Section 4.1.1 examines the dynamics of expansion. Section 4.1.2 combines the lattice 

expansion dynamics with the Debye-Waller dynamics to measure the thermal expansion 

coefficient. Since thermal expansion, as a term, is closely connected to thermal states, 

section 4.1.3 presents an alternative root for quantifying expansibility.  Section 4.1.4 

employs static electron diffraction to show that even in equilibrium the Au923 NCs have 

modified volume of the unit cell compared to bulk Au.  Finally, section 4.1.5 discusses 

the implications of the measured anharmonic properties on the previously measured 

values of microscopic coupling constants. 

  

4.1.1 Ultrafast lattice expansion 

Figure 4.1 shows the relative expansion of Au923 NCs on Si-N (blue circles) and Au923 

NCs on a-C (red circles) as a function of the pump-probe delay time. Both time traces can 

be fitted with bi-exponential decay (solid lines). The extracted dynamics are similar with 

that of the peak-decay (figure 3.5). For Au923 NCs on Si-N, the lattice expands during 

electron-lattice nonequilibrium with a time constant of 𝜏1 = (3.8 ± 0.7) 𝑝𝑠 . Thermal 

equilibration with the Si-N substrate is accompanied by lattice shrinking with a time-

constant of 𝜏2~140 𝑝𝑠. For Au923 on a-C, the NCs expansion is again bi-exponential but 
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the slow process has the reverse effect (expansion) and the time constant is 𝜏2 =

(52 ± 6) 𝑝𝑠.  

 

Figure 4.1: Relative expansion of Au923 NCs on absorbing a-C and transparent Si-

N. The relative expansion probed by the scattering angle of diffraction peaks by FED. 

The optical and thermal substrate properties lead to very different dynamics while the 

maximum expansion is similar for both experiments. 

 

Lattice expansion at the picosecond timescale. The short time-constant of lattice 

expansion (𝜏1 = 3.8 𝑝𝑠 for Au923 / Si-N) is clearly faster than the short time-constant of 

the Debye-Waller dynamics (𝜏1 = 5.0 𝑝𝑠, same measurement). Figure 4.2 shows the 

lattice expansion as a function of the pump-probe delay time for an additional 

measurement of Au923 NCs on Si-N.  

This measurement has been carried out at a higher fluence of 3 mJ/cm2. The black line is 

a fit with the sum of an exponential growth (gray line) and a step-function (green line). 

This ultrafast behavior of the Au923 volume has been observed for all substrates and it 

causes an apparent shortening of the time-constant 𝜏1 for bi-exponential fittings. The slow 

process (gray line) can be safely interpreted as the lattice expansion that accompanies 

lattice heating by electron-phonon coupling. The ultrafast process (green line) can be 

attributed to the large internal pressure exerted by hot conduction electrons [154]. After 

photoexcitation, the electrons become transiently hotter than 3000 K. At these 

temperatures and for a similar noble metal (Ag), the pressure of the electron gas is ~800 

times larger than close to room temperature according to the results of Perner et al. [154]. 
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According to the radius of Au923 (1.5 nm) and the speed of sound in bulk Au (3.2·103 

m/s) the laser-induced expansion of NCs can be as fast as 0.5 ps. 

 

 

Figure 4.2: Relative expansion of Au923 NCs on Si-N for a fluence of 3 mJ/cm2. 

Relative expansion probed by three different peaks: (111), (220) and the weighted 

average of (331) & (420) (orange, blue and magenta data-points respectively). The 

black line is a fitting with an exponential growth (grey line) plus a process that is 

limited by the time-resolution (green line). 

 

4.1.2 Thermal expansion coefficient of Au923 nanoclusters 

Apart from the short time-delays (0-10 ps), the lattice can be considered well-thermalized 

for the first 0.5 ns after photoexcitation. Hence, it is reasonable to measure the thermal 

expansion coefficient of the Au923 NCs.  FED provides access to both the energy content 

of the lattice and its volume. The effective lattice temperature and the relative, lattice 

expansion are used to extract the thermal expansion coefficient, or linear expansibility.  

This procedure is shown in figure 4.3. The horizontal axis is the lattice temperature 

extracted from the Debye-Waller effect. The vertical axis is the relative expansion probed 

by the scattering angle of diffraction peaks. The data points represent different samples 

(circles for Au923/a-C and stars for Au923/Si-N) and different diffraction peaks (orange for 

(111), blue for (220), magenta for the weighted average of (331)&(420)). Each data point 
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corresponds to an ultrafast, reciprocal-space snapshot, were the lattice temperature is 

transiently at an elevated temperature.  

The black line is a linear fit to the data that is used to extract the average thermal 

expansion coefficient, while the gray area represents the 95% confidence intervals. The 

thermal expansion coefficient is  𝑎𝐿 = (9.9 ± 0.6) ∙ 10−6 𝐾−1 for Au923/Si-N and 𝑎𝐿 =

(9.1 ± 0.3) ∙ 10−6 𝐾−1 for Au923/a-C. The thermal expansion coefficient for bulk Au is 

14 ∙ 10−6 𝐾−1 [155]. For comparison, figure 4.3 also shows a linear increase (green solid 

line) that represents the thermal expansion of bulk Au close to room temperature. In 

conclusion, the thermal expansion coefficient of Au923 NCs appears to be lower than that 

of bulk Au. 

 

Figure 4.3: Measurement of thermal expansion coefficient for Au923 NCs on a-C 

and on Si-N. The relative expansion is plotted as a function of the effective lattice 

temperature for each pump probe delay. The data points are FED experiments of 

Au923/Si-N (stars) and Au923/a-C (circles). Different colors correspond to different 

diffraction peaks. The black solid line is a linear fit and the gray area its 95% 

confidence intervals. The green solid line is the expected behavior for bulk Au. 
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4.1.3 Anharmonicity of Au923 nanoclusters 

In order to be fully compatible with non-thermal lattice phenomena, it is desirable to find 

ways for quantifying lattice expansibility without the need of estimating a lattice 

temperature. In a recent work (supplemental material [117]), the author has proposed 

using the ratio of the mean-displacement to the atomic MSD for quantifying lattice 

expansion in nonequilibrium measurements. The advantage is that both observables are 

directly probed by FED.  

The experimental relative expansion as a function of the atomic MSD for multiple 

measurements of Au923/Si-N and Au923/a-C is shown in figure 4.4. The data points are 

fitted with a linear function. For thermal conditions and for bulk Au the slope is expected 

to be 𝐴 = 0.175 Å−2 . The experimental slope is decreased compared to bulk Au by 

(8.7 ± 1.6)% for Au923/Si-N and (21.6 ± 1.9)% for Au923/a-C.  

 

 

Figure 4.4: Relative expansion as a function of atomic MSD. (a) The relative 

expansion as a function of atomic MSD for Au923 on a-C. Both quantities are averaged 

over the (111), (220), (331) and (420) peaks. (b) The same plot for Au923 on Si-N. 

Datapoints of different colors represent measurements with different fluences and the 

black solid line is a linear fit that is used to extract the slope (anharmonicity constant).  

 

Physical meaning of the mean-displacement to MSD ratio. Consider, for simplicity, a 

one-dimensional system with atomic position 𝑢(𝑡) and potential 𝑉(𝑢). The system is 

close to mechanical equilibrium where 𝑢 = 𝑢𝑜 and 𝑉′(𝑢𝑜) = 0. The equation of motion 

is: 
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�̈� = −
𝑉′(𝑢)

𝑚
  . 

R 4.1 

Using Taylor expansion the equation of motion can be rewritten as: 

�̈� = −(𝑢 − 𝑢𝑜)
𝑉′′(𝑢𝑜)

𝑚
−

1

2
(𝑢 − 𝑢𝑜)2

𝑉′′′(𝑢𝑜)

𝑚
+ ⋯  . 

R 4.2 

The higher order terms are ignored from now. If on average the particle does not 

experience a net force or acceleration (〈�̈�〉𝑡 = 0) then the last equation becomes: 

〈(𝑢 − 𝑢𝑜)〉𝑡 ≈ −
1

2

𝑉′′′(𝑢𝑜)

𝑉′′(𝑢𝑜)
〈(𝑢 − 𝑢𝑜)2〉𝑡    . 

R 4.3 

The bracket on the left is the mean-displacement and the bracket on the right is the atomic 

MSD. Instead of the mean-displacement it is possible to use the relative-expansion and in 

this case the anharmonicity constant (𝐴) is defined as: 

𝐴 =
𝑟𝑒𝑙. −𝑒𝑥𝑝.

𝑀𝑆𝐷
≈ −

1

2𝑢𝑜

𝑉′′′(𝑢𝑜)

𝑉′′(𝑢𝑜)
   . 

R 4.4 

The anharmonicity constant 𝐴  has some similarities with the thermal expansion 

coefficient 𝑎𝐿, which is given by:  

𝑎𝐿 =  
𝑟𝑒𝑙. −𝑒𝑥𝑝.

Δ𝑇
 ≈ −

𝑘𝐵

4𝑢𝑜

𝑉′′′(𝑢𝑜)

(𝑉′′(𝑢𝑜))
2   , 

R 4.5 

according to equation 4.8 of Maradudin et al. [153].  

In view of all the above it is noted that: 

(a) The analysis of the previous section (4.1.2) have shown that the Au923 NCs have 

smaller thermal expansion coefficient than bulk Au. 

(b) The analysis of the present section (4.1.3) have shown that the Au923 NCs have 

smaller anharmonicity constant than bulk Au. 

The Au923 NCs on a-C experience the slowest dynamics, with a time-constant of 80 ps 

and full equilibration at 100 ps. These timescales are significantly longer than the intrinsic 

electron-lattice interactions (5 ps), meaning that the NC lattice degrees of freedom can be 

considered well-thermalized. For Au923 NCs on a-C and for Au923 NCs on Si-N, the 

expansion coefficient and the anharmonicity constant are smaller than in bulk suggesting 

that the interatomic potential is permanently modified due to the large surface-to-volume 

ratio of the nanostructure. The thermal expansion coefficient and the anharmonicity 
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constant of Au923 NCs on Si-N and on a-C can be slightly different due to the different 

pathways for ultrafast energy flow.  

 

4.1.4 Static compression of Au923 nanoclusters 

From the comparison of Au923 NCs and literature values for bulk Au it becomes clear that 

spatial confinement in all directions of space results in decreased thermal expansion and 

anharmonicity. Thermal expansion depends on the third derivative of the interatomic 

potential and it is expected to be affected by slight modifications of the interatomic 

potential close to the surface.  Beyond dynamic thermal expansion, which requires 

changing the temperature, surface tension leads to permanent compression of Au NCs by 

0.6% relatively to bulk Au at equilibrium.  This effect has been measured by recording 

electron diffraction patterns of Au923 NCs on graphene in thermal equilibrium at room 

temperature (figure 4.5).  

 

Figure 4.5: Electron diffraction of Au923 NCs on graphene showing static lattice 

compression at room temperature. Static electron diffraction of Au923 NCs on 

graphene (blue data points), fitting with pseudo-Voigt profiles (red line) and static 

electron diffraction of bare graphene (black solid line) shown for comparison. Using 

the (110) peak of graphene as a reference, the radius of the (220) peak of Au923 is found 

to be at a larger scattering angle compared to bulk Au by ~0.6% (compression in real-

space). 

 

Graphene is used a reference in order to relate the measured scattering angles with real 

distances between crystal planes. Graphene is not expected to be affected by the 
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deposition of Au NCs, due to their low coverage and the absence of strong Au-C 

chemical bonds. The (110) peak of graphene, corresponding to an interplane spacing of 

𝐷110 = 1.2280 Å, is used as a reference for the scattering angle. Fitting with pseudo-

Voigt peak profiles shows that the neighboring (220) peak of Au923 NCs ( 𝐷220 =

1.4391 Å, for bulk Au) is located at higher scattering angle than what is expected for bulk 

Au. This means that in real space the Au923 nanolattices are permanently compressed. By 

fitting 11 diffraction patterns, with 5 s exposure each (55,000 electron pulses) the average 

contraction is (0.63 ± 0.05)%. For similar sizes of NCs the bond-length contraction 

found with EXAFS was ~0.5 − 2% [156], [157].  

Decreased thermal expansion in metallic NCs has been observed previously with 

extended x-ray absorption fine structure (EXAFS) for Au [158] and Pt [159] NCs and it 

was attributed to surface tension [37], [158], [160], [161]. Surface tension itself was 

found to increase in Au NCs compared to surfaces of bulk Au by 40% [158]. 

 

4.1.5 The role of anharmonicity in lattice equilibration 

In the previous sections, static and time-resolved electron diffraction experiments, and 

various methods for analyzing the data, have shown that lattice expansion is suppressed in 

Au923 NCs. The importance of lattice anharmonicity extends beyond macroscopic 

motions such as thermal expansion. Regarding microscopic phenomena, the interaction 

between phonons is allowed due to the anharmonicity of the interatomic potential [99]. 

Phonon-phonon interactions are an integral part for the restoration of thermodynamic 

equilibrium among the various lattice degrees of freedom [75], [78], [94], [108], [109]. In 

FED experiments, having finite phonon-phonon interaction strengths can lead to an 

apparent retardation of lattice dynamics [75], [78].  

In view of the observed suppression of anharmonicity in Au923, the simplest explanation 

for the apparent decrease of electron-phonon energy transfer rate 𝐺𝑒−𝑝ℎ (Chapter 3) is 

due to weaker anharmonicity and weaker phonon-phonon interactions. This explanation is 

preferred over a genuine reduction of 𝐺𝑒−𝑝ℎ due to spatial confinement, which has not 

been observed by other experimental techniques at this size regime [162]. 

In more detail, electron-phonon coupling in simple metals is stronger for the high 

frequency, longitudinal acoustic phonons (LA) compared to the low frequency, transverse 
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acoustic phonons (TA) [78]. Thus, after electron-lattice equilibration the LA modes will 

get transiently hotter than all other modes. However, the contribution of LA modes to the 

observed Debye-Waller decay is the lowest because the phonon amplitude is inversely 

proportional to the frequency, see section 2.2.4 and equation R 2.11. In this way, FED is 

sensitive to phonon-phonon interactions in addition to electron-lattice equilibration. The 

observed reduction of lattice anharmonicity, compared to bulk Au, can lead to a slower 

equilibration of TA and LA modes and an apparent decrease of 𝐺𝑒−𝑝ℎ  when the 

measurement is carried out by FED and the TTM model. As an example, the sensitivity of 

FED to phonon-phonon interactions can lead to a reduction of the 𝐺𝑒−𝑝ℎ measured by 

TTM, by a factor of ~2 for Aluminum (see fig. 3.c of [78]).  

 

4.2 Surface premelting of Au923 nanoclusters  

An additional observable provided by FED is the time-evolving width of diffraction 

peaks, which is associated with atomic motions that deteriorate crystallinity. For Au923 

NCs on Si-N, upon photoexcitation and electron-lattice equilibration the widths of the 

(111), (220), (331) and (420) diffraction peaks increase (peak broadening) as shown in 

figure 4.6.a.  
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Figure 4.6: Ultrafast evolution of the width of diffraction peaks for Au923 NCs on 

transparent and absorbing substrates. (a) The change of width (%) for various peaks 

of Au923 NCs on Si-N (datapoints), a bi-exponential fit of the average width change 

(black solid line) and the 95% confidence intervals before excitation (dashed grey 

lines). (b) The same plot for Au923 on a-C. This time the width does not follow bi-

exponential dynamics and remains stable within the uncertainty of the measurement 

and the fitting procedure. 

 

Peak broadening is larger for diffraction peaks located at high scattering angles. The 

average width can be fitted with a bi-exponential function (solid black line). Initially, the 

average width increases by (2.8 ± 0.4)%  with a time-constant 𝜏1 = (5.8 ± 1.5) 𝑝𝑠 . 

Subsequently, the width decreases again with a time-constant 𝜏2~200 𝑝𝑠, suggesting a 

restoration of the initial crystalline arrangement. The same analysis has been performed 

for Au923 NCs on a-C and it shown in figure 4.6.b. In this case the widths of all 

diffraction peaks stay constant within the uncertainties of the measurement and the fitting 
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procedure. Multiple measurements at lower fluences have yield the same result (see Sup. 

Inf. of [117]). 

For a better understanding of the physical process causing peak broadening, the 

measurements of Au923 NCs on Si-N have been repeated with various incident pump 

fluences (figure 4.7). Figure 4.7.a shows the average width increase of (111), (220) and 

(331)&(420) as a function of pump-probe delay for various incident fluences. For the 

highest incident fluence (3 mJ/cm2), peak broadening persists up to 0.5 ns. Figure 4.7.b 

shows the average width increase over the 14-30 ps time interval plotted as a function of 

the incident pump fluence (data points with error bars). The observed fluence dependence 

can be fitted with a non-linear function (red line) of the form 𝑎𝐹𝑛 where 𝐹 is the fluence 

and 𝑛 = 2.4.  

The width of diffraction peaks can be limited by the transverse coherence of the probing 

electrons [91]. The transverse coherence length of the used FED apparatus is ≥ 4 𝑛𝑚 

[38], meaning larger than the Au923 NC’s diameter (𝐷~ 3 𝑛𝑚), and hence it is sufficient 

for investigating genuine physical processes related with the crystalline order. In general, 

the width of diffraction peaks depends on two factors: the domain size of the crystallites 

and inhomogeneous strain [98]. For bulk crystals and large particles, ultrafast increase of 

the width of diffraction peaks can be the result of inhomogeneous laser excitation.  

Short pulse durations (in comparison with the timescale for heat diffusion) can lead to 

inhomogeneous strain of the lattice across the penetration depth of radiation [163]. It has 

also been reported that a transient gradient in the electronic temperature can cause strain 

and melting, affecting in this way the width of diffraction peaks [164]–[166].  The 

mechanisms mentioned so far are not applicable for Au923 NCs. The diameter of the Au923 

(~3 nm) is clearly smaller than the penetration depth of 400 nm radiation for Au (16 nm 

based on Johnson et al. [167]). The characteristic time for sound propagation from the 

surface to the center of Au923 is ~1 ps. Hence, inhomogeneous strain and temperature 

gradients persisting significantly beyond this timescale can be excluded.  
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Figure 4.7: Fluence dependence of peak broadening for Au923 NCs on Si-N. (a) 

Average width change of all diffraction peaks as a function of pump-probe delay. For 

the highest fluence the peaks are clearly broadened even after 0.5 ns. (b) Maximum 

width increase (14-30 ps) as a function of the incident fluence. 

 

For small NCs, the most appropriate explanations are: (1) surface premelting that reduces 

the effective size of the crystallites and (2) collective vibrations that cause fluctuations of 

the NC shape. Collective vibrations, such as breathing and toroidal sphere-modes, lead to 

inhomogeneous atomic displacements and hence inhomogeneous strain across the NC 

volume [168]. These vibrations can be coherent for individual NCs without producing a 

coherent signal in the FED observables due to polydispersity [169]. Although the 

existence of collective NC vibrations should not be excluded, collective vibrations cannot 

account for the entire peak-broadening signal that persists for 0.5 ns. The observed peak-



Chapter 4. Ultrafast structural changes in 0D/2D heterostructures 

91 
 

broadening dynamics are interpreted as NC premelting based on the following 

considerations. 

Vibrations of Au923 NCs should have a period of 1 ps or lower [170]. Given the fact that 

the NCs are small and adhered on a larger substrate, collective vibrations are expected to 

have limited lifetimes, certainly smaller than 0.5 ns. However, long timescales for 

recovery are expected in the case of surface premelting because the atoms have to diffuse 

on the NC surface until finding the binding sites that minimize the energy of the system.  

Second, collective vibrations are incompatible with the observed fluence dependence. The 

energy injected into collective vibrations (Δ𝐸) is expected to have a linear dependence on 

the incident fluence. The vibrational amplitude (𝐴) and the inhomogeneous strain are also 

expected to depend linearly on each other. Based on the harmonic oscillator model 

(Δ𝐸~𝐴2) the inhomogeneous strain should have a sublinear dependence on the incident 

fluence. Instead, the nonlinear, exponential-like increase (fig. 4.7.b), suggests that atoms 

have to overcome an energy barrier, as in the case of surface premelting. All these 

qualitative considerations point towards surface premelting as the main cause of the 

observed peak broadening.  

Beyond qualitative arguments, it is possible to disentangle contributions from surface 

premelting and inhomogeneous strain through the so-called size-strain analysis [98], 

[171]. This type of analysis is based on the Williamson-Hall model [98] in which the 

width of diffraction peaks (𝛽) is connected with the diameter of the crystallite (𝐷) and the 

inhomogeneous strain (휀) through the relationship: 

𝛽 =
𝐾𝜆

𝐷 cos Θ
+ 4휀 tan Θ 

R 4.6 

where 𝐾 is a constant close to unity that depends on the shape of the crystallite, 𝜆 is the 

De Broglie wavelength of the probe electrons and Θ  the scattering angle of each 

diffraction peak. In order to use relationship R 4.6, the experimental values of 𝛽 cos Θ are 

plotted as a function of sin Θ. These quantities, averaged over negative delays and the 12-

30 ps interval, are shown, together with a linear fit in figure 4.8.  
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Figure 4.8: Williamson-Hall plot before and after photoexcitation. The values on 

the horizontal axis are acquired experimentally from the position of diffraction peaks. 

The values on the vertical axis are acquired experimentally from the position and the 

width of diffraction peaks. The width and the angle are in radians. The offset (marked 

by a green circle) can only result from a reduction of the size of the crystalline core at 

positive time delays. 

 

The slope (𝐴) is proportional to inhomogeneous strain (𝐴 = 4휀) while the intercept with 

the vertical axis (𝐵) is inversely proportional to the NCs diameter (𝐵 = 𝐾𝜆 𝐷⁄ ). After 

photoexcitation the slope is similar but the y-intercept is larger meaning that the diameter 

of NCs has decreased. The reduction of the NC size accounts for 90% of the observed 

peak broadening. Since the number of atoms per NC is expected to remain constant, the 

apparent decrease on the crystallite size can be explained by the formation of a liquid-like 

layer on the NC surface, which removes atoms from the crystalline core.  

The observed change in size corresponds to 50 ± 20 atoms in a liquid-like state, meaning 

~14% of the surface gets melted. In the present experiments, the maximum temperature 

(440 K) is significantly lower than the melting point of bulk Au (~1400 K). The critical 

temperature for surface premelting at this size regime has been estimated with in-situ 

electron microscopy to be ~ 800 K [35]. Thus the observed laser-induced lattice heating is 

insufficient for thermally activated surface premelting. Another indication for the non-

thermal nature of atomic disordering is that the process starts upon photoexcitation and 

proceeds at ultrafast timescales, comparable with the characteristic timescale for electron-
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lattice interactions. The findings of the present work agree well with several previous 

studies on laser-excited Au NCs. Plech et al. [172] have reported a surface phase 

transition for supported Au nanostructures at atypically low temperatures for surface 

premelting. Clark et al. [171] have visualized the formation of a liquid outer shell of 

atoms on a laser-excited Au nanoparticle using coherent X-ray diffraction imaging. 

Taylor et al. [50] have shown that laser-irradiated Au nanorods transform into spheres 

through the formation of a surface layer of mobile Au atoms at lower temperatures than 

the melting point of Au. 

Dependence of peak-broadening on the electronic temperature. An interesting 

question is why peak broadening is absent for Au923 NCs on a-C (figure 4.6.b). If the 

nature of the process is non-thermal, differences between Au923/Si-N and Au923/a-C are 

expected because the two samples have very different pathways for energy flow. As 

shown in figures 3.8 and 3.9, both samples reach a maximum lattice temperature of 440-

460 K. However, the maximum electronic temperatures are drastically different (figure 

3.10). The Au923/Si-N sample has a maximum electronic temperature of ~3300 K (surface 

premelting occurs) while the Au923/a-C sample has a maximum electronic temperature of 

~1300 K (surface premelting does not occur). All measurements that were carried out are 

plotted in figure 4.9 in terms of maximum increase of average width versus maximum 

electronic temperature.  

The observed trend suggests that surface premelting takes place only under pronounced 

electron-lattice nonequilibrium. As mentioned already, for 𝑇𝐸
𝑚𝑎𝑥 ≥ 3000 𝐾  the hot 

electrons have high enough pressure to set the atoms of  metallic nanostructures in motion 

[154] and, potentially, to destabilize the lattice and induce atomic disordering. 
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Figure 4.9: Maximum width increase as a function of the maximum electronic 

temperature predicted by the 0D/2D model of energy flow. Blue datapoints 

represent fluence dependent measurements of Au923 NCs on Si-N. The singla black 

datapoint is the measurement of Au923 NCs on a-C. Although the maximum lattice 

temperature is similar, the electronic temperature and the width change are drastically 

different for the two types of substrate.  

 

 

4.3 Implications of hot electron induced premelting for surface 

chemical reactions 

A very important feature of metallic NCs is mobile imperfections on their surface, such as 

mobile adatoms and vacancies. Figure 4.10 shows snapshots of a molecular dynamics 

simulation (more information in chapter 5) of Au923 at 600 K. On the one hand, surface 

atoms tend to form closely packed facets (figure 4.10.a) to minimize their energy. On the 

other hand, surface diffusion generates mobile adatoms and vacancies (figure 4.10.b). 
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Figure 4.10: Coexistence of atomic order and disorder in the surface of Au923 NCs. 

The depicted structures are snapshots from classical molecular dynamics simulations 

carried out at 600 K (Chapter 5). Small aggregates of atoms acquire crystalline 

arrangements with closely packed facets of surface atoms as shown in (a). The ability 

of atoms to move gives rise to mobile surface adatoms and vacancies as shown in (b). 

Based on these simulations, the atoms on the surface of the Au923 cluster are in a 

constant, dynamic balance between ordered and disordered arrangements.  

 

The molecular dynamics simulations shown in figure 4.10 suggest that the shape of 

spatially confined, noble metals is a very dynamic property. Atoms close to the surface 

are continuously balancing between ordered and disordered atomic arrangements. The 

microscopic mechanism through which hot electrons induce disordering of surface atoms 

and surface premelting in Au NCs remains an open question.  

Population of antibonding states. Non-thermal destabilization of crystals due to 

electronic excitations is most commonly found in semiconductors [173]–[175]. In 

semiconductors, moving a significant fraction of electrons from the valence (bonding) to 

the conduction (anti-bonding) states (using an intense, femtosecond laser pulse) can alter 

the potential energy surface and set the atoms in motion. Laser-induced modifications of 

the potential energy surface can initiate coherent phonons [75] in the perturbative regime, 

or completely destabilize the crystal and induce melting [173].  

Charging. The mechanism for semiconductors is not applicable for simple metals (like 

Au) where close to the Fermi level the occupied and unoccupied states are of the same 

character. However, the potential energy surface of bulk Au is known to change at high 

electronic temperatures [176], resulting in modified structural dynamics [13]. 

Interestingly, Rapacioli et al. [177] have recently shown that charging (+1 or -1 electron) 

drops the melting temperature of Au20 clusters from 1102 K (neutral) to 826-866 K 
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(charged), indicating that microscopic electric fields have a pronounce effect on the 

lattice stability of spatially confined metals (see also the study of Cuny et al. [178]).  

Population of surface states. The potential energy surface of surface atoms is expected 

to be very different than for bulk atoms. Based on several surface science studies, the 

potential energy surface of adatoms on metals (and thus their mobility) is greatly affected 

by electronic surface states [179]–[183]. Moreover, theoretical calculations have shown 

that adatom-adatom interactions are mediated by surface states [183], [184]. In reverse, 

surface states are strongly interacting with surface imperfections [185]–[187]. On Au923, 

surface states can be confined within NC facets (marked by black lines in figure 4.10.a) 

and acquire spatially inhomogeneous shapes [188]. Localization of surface states also 

takes place on edges [189].  

Changing the distribution of electrons in surface states has been shown to mobilize 

surface atoms. The external stimuli used to modify surface states and subsequently 

mobilize surface atoms were (i) heating [190] (see figure 5 of referenced work) (ii) 

manipulation of atoms on surfaces [191] (iii) electron transfer from metallic tips [192] 

and (iv) laser pulses [193]. In line with all these studies, the proposed scenario is that 

surface premelting is due to atomic disordering triggered by (de)population of surface 

states (below) above the Fermi level at high electronic temperatures [117]. 

Status of theory modelling. Ultrafast electron excitation of metallic surfaces is known to 

induce desorption [194], diffusion and dimer formation [195], as well as dissociation [51] 

of small, molecular adsorbates. The underlying mechanisms involve efficient coupling of 

electronic degrees of freedom, of the metal substrate, to the degrees of freedom of the 

adsorbed molecule (see for instance Misewich et al. [194] and Brandbyge et al. [196] and 

the review article of Frischorn et al. [52]). Generally, the metal’s surface atoms are 

considered ‘frozen’ and the phonons play a minor role. However, the present findings 

(see also Vasileiadis et al. [117]) suggest that the surface atoms of laser-excited metals 

are highly mobile.  

In this case, theoretical calculations of laser-induced reactions on metal surfaces might 

need to take into account the mobility of surface atoms of the metal itself. The recent 

theoretical work of Scholz et al. [197] have studied the dynamics of CO molecules on Ru. 

In this work it is stated (page 165447-13): ‘diffusion is somewhat affected by phonons, in 

addition to hot-electron mediated dynamics… phonons affect the hot-electron mediated 
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desorption dynamics considerably, leading to desorption yields easily an order of 

magnitude larger… phonons act on similar time scales as the electron-hole pairs, at least 

in the sense that they enhance the energy transfer to the molecule from the surface on a 

few-ps time scale… substrate phonon motion should be consulted in the future to make a 

more definitive statement’. 

Picturing all atomic motions on a metallic nanostructure, or surface, as phonons might not 

be sufficient. Diffusive motions might also play a role in ultrafast, chemical reactions. 

Small, metallic clusters, with surface imperfections are known to have drastically 

enhanced catalytic activity compared with clusters of well-defined morphology [62]. 

Thus, it is possible that ultrafast, diffusive motions of surface atoms, imperfections etc 

(similar with surface melting) offer chemically- or catalytically-active sites at ultrafast 

timescales.  

Comparison with in situ surface science studies. Interestingly, surface science studies 

using in situ scanning tunneling microscopy (STM) have reached a similar conclusion. 

Hot electrons can be generated not only by femtosecond laser pulses but also during 

catalytic and surface chemical reactions [59]. The investigated Au923 NC is in the size 

regime where the efficiency of catalytic CO oxidation becomes maximum [55]. Catalytic 

oxidation of CO is halted by sintering of Au NCs (diffusion is causing small NCs to 

merge and form larger, catalytically inactive particles). In the work of Yang et al. [56] it 

is stated: ‘‘It is certainly plausible that hot electrons generated by CO oxidation could 

induce the detachment of Au monomers from supported Au particles, initiating the 

sintering process’’. The present FED study is supportive of this hypothesis. Energetic 

electrons, originating from breakage of chemical bonds, can migrate on localized surface 

states of NCs and change the mobility of surface atoms. 

This last comparison, between a time-resolved FED study and an in situ STM study, 

highlights the potential significance of surface atom - hot electron interactions for lattice-

dynamics, catalysis and chemical reactions in confined metallic systems. Further 

measurements with time-resolved diffraction or the recently developed time-resolved 

microscopies [198] can be used to shed extra light on these very interesting phenomena.  
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Chapter 5. Ultrafast rotational motions of 0D 

nanostructures on 2D crystals 

 

The previous chapters were focused on atomic vibrations, lattice expansion and atomic 

disordering in 0D nanostructures supported on amorphous thin-films. Most of the FED 

observables stem from phonons and structural changes driven by phonons, like 

anharmonic lattice expansion and crystal melting. In principle, it is also possible that 

motions of the phonons’ frame of reference, meaning motions of the entire nanocrystal, 

can produce some additional observables in reciprocal space. When the nanocrystal is 

composed of only few hundred atoms, the nanocrystal rotational and translational motions 

occur in the picosecond timescale. 

The results presented in this chapter show that in addition to atomic vibrations, 0D 

nanostructures supported on surfaces exhibit restricted rotations at ultrafast timescales. 

These rotational motions are termed librations in analogy with molecular systems. The 

model system under consideration is size-selected Au923 NCs on ultrathin graphite. The 

real-time observation of librations is possible due to the sensitivity of diffraction to the 

crystal orientation and the femtosecond time duration of the electron pulses. Unlike the 

previous chapter, where the substrates were amorphous, the substrate examined here is 

crystalline (few-layer graphene). Surface crystallinity is imposing an initial, preferred 

orientation for the deposited NCs that is perturbed after laser excitation. The experimental 

results are complemented by molecular dynamics and electron diffraction simulations. 

Theoretical simulations and experimental results are in quantitative agreement. The 

chapter concludes with a detailed analysis of energy flow that involves both atomic 

vibrations and librations of nanoclusters. 

 

5.1 Au923 / few-layer graphite heterostructures 

The investigated heterostructure contains size-selected Au923 NCs and few-layer graphite. 

This section explains the synthesis and characterization procedures. 
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5.1.1 Electron microscopy 

The ultrathin graphitic substrate (denoted by Gr) contains areas with single-layer 

thickness (graphene), bilayer and few-layer (up to 8) based on HR-TEM images. The 

lateral diameter of crystalline domains is ~100 μm based on the diffraction pattern. To 

improve the mechanical stability and avoid folding, the Gr substrate is supported on a 

lacey-carbon network on its one side. For this reason the average thickness of C is raised 

to approximately 10 nm. The unsupported side of Gr is decorated with size-selected 

Au923±23 NCs. These clusters are prepared in the gaseous phase, as described in previous 

chapters, and deposited on Gr in the soft-landing regime (kinetic energy less than 2 eV 

per Au atom). Prior to this step the surface of Gr is bombarded with high energy ions in 

order to create surface defects. Surface defects act as binding sites for the Au923 NCs and 

suppress translational diffusion, which can result in aggregation and coalescence. The 

distribution of Au923 NCs on Gr has been examined by HAADF imaging (Dawn Foster, 

University of Birmingham and Richard E. Palmer, University of Swansea). A typical 

HAADF image is shown in figure 5.1. 

 

 

Figure 5.1: HAADF imaging of Au923 NC / Gr heterostructures. The surface density 

corresponds to 2.6 NCs per 100 nm2 or a nominal thickness of 0.45 nm. The contrast of 

each NC is proportional to the number of atoms and in this way it is possible to 

quantify the amount of monomers, dimers, trimers and tetramers that unavoidably form 

after deposition on Gr. Furthermore, it is  possible to quantify the relative abundancies 

of the various structural allotropes, like FCC, Dh, Ih or amorphous NCs. 

 

In HAADF imaging the contrast of each cluster is proportional to the total amount of 

atoms. In this way it is possible to record the size-distribution of the NCs. Unavoidably, 
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some clusters aggregate after deposition and form larger structures. The NCs are 59.5% 

monomers, 22.8% dimers, 12.0% trimers and 5.7% tetramers. The preparation conditions 

can be used to control the various structural allotropes of monomers. In this work the 

preparation conditions result in 37% Dh (polycrystalline Decahedral), 35% FCC (single 

crystalline FCC) and 3% Ih (nearly amorphous Icosahedral) with the rest having irregular 

shapes. 

 

5.1.2 Static electron diffraction  

The equilibrium structure of Au923 NCs / Gr heterostructures is now examined by static 

electron diffraction. The probe electrons are accelerated by a voltage of 90 kV 

corresponding to a De Broglie wavelength λ=3.9 pm. The electrons arrive on the sample 

perpendicular to the substrate surface and illuminate an area of ~100 μm. The resulting 

diffraction patterns are integrated for 50 s. Each electron pulse has ~103 electrons and the 

repetition rate is 1 kHz meaning that there are ~5∙107 electrons per diffractogram. The 

diffraction pattern of the Au923/Gr heterostructure is shown in figure 5.2.a (left). For 

comparison, the same image shows the diffraction pattern of Au923/a-C heterostructures 

(fig. 5.2.a right). Because of the limited domain size of Gr and the quasi-random 

orientation of Au923 NCs, the electron diffraction patterns consist of Debye-Scherrer 

rings. The most discernible difference between Au923/Gr and Au923/a-C is the intense 

diffraction rings of Gr located at ~0.5 Å-1 and ~0.8 Å-1.  

To achieve a more accurate comparison the diffraction intensity has been radially 

averaged and plotted (after background subtraction) in figure 5.2.b (blue data points). 

The radial averages are then fitted with pseudo-Voigt peak profiles (red solid lines). The 

most intense peaks of Au923/Gr belong to the Gr substrate, the experimental diffraction 

pattern of which is shown for comparison in the same plot with a black solid line. Fitting 

with pseudo-Voigt peak profiles reveals one additional difference between the two 

substrates. The intensity ratio of (220)/(111) is 0.58 for Au923/Gr and 0.23 for Au923/a-C. 

These ratios indicate that Au923 NCs on a-C have fully random orientation of 

nanocrystalline domains, while Au923 NCs on Gr have a partial orientation of their (111) 

crystallographic direction vertical to the substrate and parallel to the incident electron 

beam. The information given here, regarding the preferred orientation of Au923 NCs on 

graphene, applies also for the time-resolved FED experiment shown in the next section. 
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Figure 5.2: Diffraction patterns and radially averaged intensity of the Au923 NCs / 

graphene heterostructure and comparison with Au923 NCs / a-C. (a) Electron 

diffraction patterns of Au923 NCs on Gr (left) and Au923 NCs on a-C (right). (b) 

Radially averaged intensity of the experimental diffraction patterns after background 

subtraction for Au923 NCs on Gr and Au923 NCs on a-C (blue data points) and bare Gr 

substrates (black solid line). The most obvious difference between the two samples is 

the intense diffraction peaks of Gr. Fitting with pseudo-Voigt peak-profiles (red solid 

lines) shows that the (220) peak of Au923 NCs on Gr is enhanced compared to the 

(111). This indicates that the Au nanocrystalline domains on Gr have a preferred (111) 

orientation. For Au923 NCs on a-C the (220)/(111) ratio suggests that the crystallites are 

randomly oriented.  

 

The Au923 NCs on graphene, examined by FED, have also been studied with molecular 

dynamics (MD) simulations, in order to get a better understanding of (i) their tendency to 

acquire a (111) crystal orientation and (ii) their ultrafast atomic and NC motions. A 

representative MD simulation of a Au923 NC on graphene is shown in figure 5.3. This NC 
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has a FCC structure, meaning that it is single-crystalline. Many interesting phenomena 

can become evident from this image, for instance ripples in graphene and Au adatoms on 

the NC’s facets. Most importantly, the (111) crystal orientation is clearly evident, in 

agreement with the analysis of the experimental electron diffraction patterns of figure 

5.2. The MD simulations have been performed over several NCs of different crystal 

structures and for several temperatures. More information are given in later sections. 

 

 

Figure 5.3: Side and top view of a FCC Au923 NC on a single layer of graphene 

simulated with MD. Upper image: a FCC NC on a single layer graphene after 

relaxation. Lower image: The FCC NC tends to adhere on graphene with its (111) 

surface facet. The zoom-in (right) shows the crystalline interface of graphene and Au. 

 

 

5.2 Femtosecond electron diffraction on Au923 on graphene 

The electron diffraction patterns presented in the previous section correspond to the 

equilibrium morphology of Au923 NCs on Gr. For the results presented in the current 

section, the electron diffraction patterns of Au923 NCs / Gr heterostructures are recorded 

in a time-resolved, pump-probe manner. The main experiment shown here used 400 nm 

radiation and an incident fluence of (3.8 ± 0.6) mJ/cm2. 
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5.2.1 Ultrafast peak-decay and expansion 

After the arrival of the laser pulse (t=0) the lattice exhibits various nonequilibrium 

motions that deteriorate crystallinity and lead to a decay of diffraction intensity within 

picoseconds (figure 5.4.a). Simultaneously, due to the anharmonicity of the interatomic 

potential and the enhanced atomic motion, the lattice expands. The observed lattice 

expansion (figure 5.4.b) is detected as a shift of diffraction peaks to lower scattering 

angles. An important observation is that both the (111) and (220) peaks show similar 

relative expansion in accordance with isotropic atomic vibrations and lattice expansion 

(fig. 5.4.b). The next step is to check if the observed peak-decay (fig. 5.4.a) can also be 

fully explained in terms of isotropic, atomic vibrations and the Debye-Waller effect. 

 

 

Figure 5.4: Ultrafast peak-decay and expansion of Au923 NCs on Gr recorded with 

FED. (a) Ultrafast relative decay of the (111) and (220) peaks for Au923 NCs on Gr. (b) 

Ultrafast relative expansion of Au923 NCs on Gr probed from the (111) and (220) 

peaks. Lattice expansion manifests as a shift of diffraction peaks to lower scattering 

angles. Expansion is isotropic, meaning that different crystallographic directions 

experience a similar amount of relative change, while the agreement of the observed 

peak-decay with the Debye-Waller behavior needs additional examinations.  

 

The experiments on Au923 / Gr heterostructures are now compared with Au923 / a-C 

heterostructures, which are known to obey the Debye-Waller dynamics from the analysis 

of Chapter 3. The comparison of lattice dynamics in Au923 / Gr and Au923 / a-C is shown 
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in figure 5.5. Figure 5.5.a shows the measured peak-decay of Au923 / a-C for the (111) 

and (220) peaks (red and blue squares respectively). The same plot shows the (111) and 

(220) peak-decays of Au923 / Gr for comparison (same color dashed lines). For this 

measurement the (111) peak-decay happens to coincide on both substrates. Yet, the (220) 

peak-decay for a-C substrate is significantly suppressed compared with the (220) peak-

decay for Gr substrate. Figure 5.5.b shows the relative expansion of Au923 NCs on a-C 

for the (111) and (220) peaks (red and blue squares respectively). Both peaks show 

similar relative expansion (isotropic thermal expansion) as in the case of Gr substrates 

(fig. 5.4.b).  

 

 

Figure 5.5: Ultrafast peak-decay and peak-shift of Au923 NCs on a-C and 

comparison with Au923 NCs on Gr. (a) Ultrafast relative decay of the (111) and (220) 

peaks for Au923 NCs on a-C (red and blue squares respectively). The data shown in 

figure 5.4 are plotted again here for comparison (dashed lines). (b) Relative expansion 

of Au923 NCs on a-C probed from the (111) and (220) peaks. The lattice expansion of 

Au923 on a-C is isotropic (same for all diffraction peaks) as in the case of Au923 on Gr. 

The comparison of the two heterostructures reveals the existence of some process that 

affects the intensity but not the scattering angle of diffraction peaks, acts on top of the 

Debye-Waller effect and appears for Gr but not for a-C substrates. 

 

The comparison reveals that for Au923 NCs on Gr, some lattice motion affects the 

diffraction dynamics in a way that cannot be described by the Debye-Waller behavior.  
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5.2.2 Deviation from Debye-Waller behavior 

The previous section presented the dynamics of peak-decay and expansion for Au923 NCs 

on Gr.  The comparison of Au923 / Gr and Au923 / a-C heterostructures revealed that in the 

first case the peak-decay dynamics deviate from the Debye-Waller behavior. The most 

profound deviation is the unusually strong peak-decay of the (220) peak. This sections 

presents a method for quantifying the deviation of the observed peak-decays from those 

predicted by the Debye-Waller relationship.  

The Debye-Waller method works well for Au923 NCs on a-C and on Si-N. For these 

samples the temperature, extracted from the MSD, and the observed lattice expansion 

have been used to measure the thermal expansion coefficient. For Au923 NCs the thermal 

expansion coefficient is 𝑎𝐿 = (9.5 ± 0.7) ∙ 10−6 K−1  (averaged over all experiments). 

For Au923 / Gr the peak-decay dynamics are more complicated and the lattice temperature 

can be alternatively found from the observed thermal expansion and the known thermal 

expansion coefficient. Using this simple procedure the final temperature corresponding to 

the data shown in figure 5.4 is ~600 K (∆𝑇~300 𝐾). Although the extracted MSD of 

each peak does not reflect the lattice energy content, the average MSD is close to the 

expected value for lattice heating. The average MSD is used to calculate back the 

expected decay of each peak based on the Debye-Waller effect. Figure 5.6.a compares 

the expected peak-decay (dashed lines) and the experimental peak-decay (data points) of 

the (111) and (220) diffraction peaks (red and blue respectively) of Au923 NCs on Gr. 

The deviations between the experimental and the actual peak-decays are plotted in figure 

5.6.b for the (111) and (220) peaks with red and blue circles, respectively. This new 

quantity rises only in the presence of lattice dynamics that do not obey the Debye-Waller 

relationship. The deviation from the Debye-Waller behavior emerges with biexponential 

dynamics (solid lines). The fast process has time-constant τ1=(4±2) ps and accounts for 

40% of the overall effect. The slow process has time-constant τ2=(110±40) ps. The (111) 

peak shows a positive deviation from the Debye-Waller decay by ~1% (decreases less 

than expected) and the (220) peak a negative deviation by ~4% (decreases more than 

expected). 



Chapter 5. Ultrafast rotational motions of 0D nanostructures on 2D crystals 

106 
 

 

Figure 5.6: Deviation of peak-decay from Debye-Waller dynamics for Au923 NCs 

on Gr. (a) Observed (circles) and predicted by Debye-Waller (dashed lines) peak 

decays of (111) and (220) (red and blue respectively). (b) The deviation between 

observed and expected peak decays (circles) and biexponential fittings (solid lines). 

 

 

5.2.3 Fluence dependence of deviation 

The time-evolving deviation of diffraction peaks (fig. 5.6.b) can be alternatively plotted 

as a function of the lattice temperature instead of the pump-probe time-delay. Multiple 

measurements with different fluences can reveal the fluence dependence of the 

underlying NC dynamics.  Figure 5.7.a shows the deviation of the (220) peak as a 

function of the temperature extracted from lattice expansion for 4 measurements with 

different fluences. 
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Figure 5.7: Fluence dependence measurements with FED. (a) Deviation of the (220) 

peak versus lattice temperature from expansion. Different colors correspond to 

different measurements with varying incident fluence (see figure legend). (b) 

Maximum deviation versus incident fluence (data-points with error-bars) and an 

unconstrained linear fit (red solid line). Each data-point in (b) is the average deviation 

of the (220) peak in the 220-500 ps time-interval.  

 

Figure 5.7.b shows the maximum deviation of the (220) peak as a function of the 

incident fluence. The projection of each data point on the vertical axis corresponds to the 

average deviation over the 220-500 ps time-interval (last four data-points in each data-set 

of figure 5.7.a). The vertical error bars are the standard deviation of the same data points. 

For all measurements the deviation seems to follow a linear trend with the lattice 

temperature. The red line is an unconstrained linear fit. The linear fitting tends to zero for 

zero laser fluence. The same linear trend is visible in figure 5.7.a when the deviation is 

given as a function of temperature. The linear dependence on the incident laser fluence 

and on the lattice temperature suggests that the underlying physical process is thermally 

excited. 

 

5.3 Molecular dynamics simulations of Au923 on graphene 

The present section presents molecular dynamics simulations (MD) of Au923 on graphene 

that aim in understanding NC motions beyond atomic vibrations. The simulations have 

been carried out by Emmanuel Skountzos (University of Patras), Vlasis Mavrantzas (ETH 

Zurich & University of Patras) and the author of this thesis. The goal of the MD 
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simulations is (i) to gain a microscopic understanding on the various lattice motions of 

Au923 NCs on Gr, (i) to perform electron diffraction simulations on the MD trajectories 

and (iii) to compare the theoretical diffraction dynamics with the FED experiments. 

 

5.3.1 Preparation and deposition of Au923 on graphene 

The MD simulations are classical, they are based on Newtonian mechanics and semi-

empirical interatomic potentials. A simplified but efficient method to simulate the 

homogeneous distribution of NCs is to use periodic boundary conditions. The simulation 

box has a volume of (7 x 7.1 x 15) nm3. Periodic boundary conditions are applied in the 

dimensions parallel to graphene (X-Y plane).  The surface density of Au on graphene for 

the MD simulations is 2 NCs per 100 nm2 of graphene. In this way, the MD simulation 

mimics the surface distribution shown in figure 5.1 and includes substrate phonons with 

considerably longer wavelength than the NC. 

The MD simulations have been carried out with the LAMMPS software [199]. In this 

type of simulations, the trajectories of all atoms are solved using the Velocity-Verlet 

algorithm [199]. The selected time step is 1 fs. The range of all interactions is 15 Å and 

above this range tail corrections were employed. The temperature was kept constant with 

the Nosé-Hoover thermostat [115], [116]. The chosen interatomic potentials for the MD 

simulation were of 12-6 Lennard-Jones type. The interactions between Au atoms were 

modelled according to the interatomic potential given by Heinz et al. [200]. Interatomic 

interactions in graphene were modelled according to the all-atom DREIDING force-field 

[201]. The Au-C interactions were modelled according to the interatomic potential of 

Lewis et al. [64]. 

The simulations start by preparing separately the Au923 NCs and the graphene layer. The 

graphene layer was designed and let to equilibrate for 1 ns with an NPT simulation 

(constant number of particles N, constant pressure P and constant temperature T). The 

NCs were constructed in two ways. The first way was to cut a sphere of Au with 923 

atoms from a bulk Au crystal, heat it to 800 K (the experimental, surface premelting 

temperature of Au923 NCs) and gradually cooled down to room temperature with 70 K/ns. 

The final product was a realistic nanocluster with FCC morphology. The second way to 

construct the NCs was to make the initial design purely with geometrical considerations. 

The NC in this case was designed to be Dh. The Dh NC was also heated to an elevated 
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temperature and gradually cooled down to allow the surface to reconstruct and acquire its 

most favored atomic configuration.  

The two materials were brought together in a NVT simulation (constant number of 

particles N, constant volume V and constant temperature T) with a starting temperature of 

600 K. Au NCs with either FCC or Dh morphology were left with a completely random 

orientation at a distance of 1 nm above graphene. Long range, van der Waals interactions 

adsorbed the NCs on graphene in sub-ns timescales. Within the first ns the structure 

became fully relaxed based on the time-evolution of the total energy of the system and the 

Au/graphene interaction energy. After this initial step the simulation time was extended 

by 1 ns. All quantities under consideration are measured in this last phase, when the 

system is relaxed. The computational experiment carried out at 600 K is repeated 10 

times for Dh and 10 times for FCC NCs. Then the temperature is gradually lowered to 

300 K with steps of 50 K and at each step all measurements are repeated (the measured 

quantities are various angular motions of the NCs and their diffraction patterns). All 

measured quantities are averaged over 20 trajectories and given as a function of 

temperature.  

An equilibrated Au923 NC / graphene system has been shown in figure 5.3. For FCC NCs 

the most favored binding facet with graphene is the (111). The FCC NCs are single-

crystalline and hence the orientation of the entire crystallite is (111). For Dh NCs the 

most favored binding site is the (100). This is mainly due to the large area of (100) 

surface facets for Dh NCs. However, the crystallographic texture is again (111). The 

reason is that the Dh NC has a complicated internal crystal structure (it contains 5 

tetrahedral crystallites). Hence, although the binding facet of Dh NCs is (100) their 

internal structure has a partial (111) crystallographic texture. 

 

5.3.2 Atomic trajectories from molecular dynamics simulations 

The next step is to examine the various NC motions. Changing the temperature between 

600 K and 300 K does not result in any major structural change. The only visible atomic 

reconfiguration is a limited amount of surface atoms that begin to diffuse on the surface 

close to 600 K. Figure 5.8 shows four snapshots of the MD simulation taken between 300 

K and 600 K. The Au923 NC in figure 5.8 has a Dh morphology. The NC is constantly 

translating in the X-Y plane (parallel to graphene), vibrating in the Z axis (perpendicular 
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to graphene) and rotating. Rotations occur in three different directions of space. In two of 

the three dimensions of space the NC rotations are constrained to only few degrees 

because of the underlying graphene structure. 

 

 

Figure 5.8: Snapshots from the MD simulations showing a Dh Au923 NC moving 

on graphene. Each simulation box corresponds to a certain temperature (given on the 

top). The NC translates and rotates in various ways. The interesting rotations are the 

ones corresponding to the angles φ and θ. The angle φ is formed between the normal 

vector of the NC binding facet and the z-axis. The angle θ is formed between the 

normal vector of the NC binding facet and the normal vector of the underlying 

graphene layer. In every snapshot the Au atoms are colored according to the angle φ. In 

a diffraction experiment where the electrons arrive perpendicular to the z-axis, the 

angle φ the temperature-dependent angle φ will modify the intensities of the various 

diffraction peaks. The angle θ is important because it modulates the Au/C interface.  

 

The angular momentum vector can be vertical to graphene. In this case it is possible to 

observe even full rotations after a certain amount of time. The interesting motions, in 

view of the FED experiments, are the two remaining rotations that have an angular 

momentum vector parallel to graphene. These rotations cause the NCs to tilt with respect 
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to the Z axis or the normal vector on the graphene surface. This angle is denoted as φ and 

it is shown schematically in figure 5.8 (down right corner). To assist the reader, the Au 

atoms in its snapshot are colored according to the value of this angle (see color bar in fig. 

5.8, upper left corner).  

The measurement of the φ angle is described here. The binding facet of the Au NC 

contains several atoms. The position vectors of these atoms can be used to calculate an 

average normal vector �̂� . The tilting angle is then calculated according to 𝜑 =

cos−1(�̂� ∙ �̂�)  where �̂� = (0,0,1) . The angle φ is temperature dependent. Its statistical 

distribution is shown in figure 5.9.a. As the temperature rises from 300 K to 600 K the 

NCs the tilting angles φ are increasing. The average angle is φ=2.2o and φ=3.2o at 300 K 

and 600 K, respectively.  

 

Figure 5.9: Statistical distributions of the θ and φ angles of Au923 NCs on 

graphene (10 Dh and 10 FCC NCs weighted by their relative proportions). (a) 

Probability distribution over the various angles at 300 K (blue) and 600 K (orange). (b) 

Same for the angle θ. As the temperature rises the average value of the φ and θ angles 

is rising. 

 

The question examined now is if the NCs are simply tilting due to surface phonons and 

ripples in graphene, while remaining strongly attached on it, or if they are transiently 

unsticking and rotate in a distinct way. This can be examined by the angle θ between the 

Au binding facet and the underlying graphene plane. The angle θ is shown schematically 

in figure 5.8 (last snapshot). The measurement of the angle θ starts by finding the C 

atoms that are in the closest distance from the Au binding facet. The positions vectors of 
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these C atoms are used to calculate an average vector �̂�  normal to the underlying 

graphene atoms. Then the angle between graphene and the Au binding facet is 𝜃 =

cos−1(�̂� ∙ �̂�). The θ angle is also temperature dependent. Its statistical distribution for 300 

K and 600 K is given in figure 5.9.b. On average θ is 1.6o at 300 K and 2.0o at 600 K. 

Although the observable (modified diffraction intensity) is produced by the angle φ, the 

angle θ is important from a physics perspective. In the ground state the angle θ=0. As the 

temperature rises, or in nonequilibrium conditions, the angle θ>0. This is expected to 

modify the adhesion of the Au NC on graphene. As a result, the NC can become 

transiently mobile in other directions of space. This means that the angular motions along 

θ can modify the potential energy surface of other, independent degrees of freedom. The 

work of Guerra et al. [65] has shown this for the unconstrained rotations (angular 

momentum vertical to graphene), using MD simulations and investigations of the 

correlation between translational and rotational motions. In addition to NC transfer, 

angular motions along θ might be important for understanding the exact mechanism of 

energy flow between the two materials, since they modify the Au/C interface. 

Summarizing all the above, constrained rotations of NCs along the θ angle might play an 

important role for energy- and mass-transport phenomena. 

The rotational motions that cause the φ and θ angles are restricted, meaning that the 

maximum angles are always few degrees, insufficient for complete rolling of the NCs. In 

addition, their frequency is in the GHz range (see next section). These motions can be 

described as librations. The term libration stems from the latin verb librare, which means 

‘‘trying to balance’’, and describes an oscillatory, angular motion. The term libration is 

most often used in vibrational spectroscopy of molecules.   

 

5.3.3 Timescale and frequency of rotational motions 

The next interesting question is what are the timescales of the NC rotations, which cause 

the φ and θ angles. As described before, each NC is let from a 1 nm distance to get 

adsorbed on graphene. Some of the NCs fall with a large angle, causing them to bounce 

and tilt. The time-dependence of φ after landing is shown in figure 5.10. The large 

rotational motions caused by landing are damped within ~300 ps. After 1 ns the NC is 

tilting due to thermal motions and the flexibility of the NC/graphene heterostructure. 
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Figure 5.10: NC librations launched by landing on graphene. A Au923 NCs adsorbs 

on graphene and starts to librate. The libration angle φ as a function of the simulation 

time is shown in the upper diagram (blue). The red line is an exponential decay fitting. 

The characteristic time for damping is 290±40 ps. The lower diagram shows the 

residuals. The back dashed lines correspond to the same exponential decay with 290 ps 

time-constant.  

 

The Fourier transform of the φ angle in the time interval 1-2 ns after landing is shown in 

figure 5.11 for a Dh NC (fig. 5.11.a) and for a FCC NC (fig. 5.11.b). The dominant 

frequency of the oscillations of the φ angle is 57 GHz on average. Since these rotational 

motions are in the picosecond timescale they can be directly observed by FED. In fact, 

the fastest possible response predicted by the MD simulations T/4~4 ps, is matching the 

fast time-constant found by FED τ1=(4±2) ps (see also figure 5.6.b and relevant 

discussion).  
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Figure 5.11: Dominant frequency of NC librations on graphene. (a) For a Dh NC 

the libration frequency is 53 GHz. (b) For a Dh NC the libration frequency is 62 GHz. 

The spectra are calculated by a Fourier-Transform of the data shown in figure 5.10. 

More details can be found in the main text. 

 

 

5.4 Electron diffraction simulations 

Librations are a potential cause of the deviation from the Debye-Waller behavior. For a 

quantitative confirmation of this scenario the MD-derived atomic trajectories are used to 

simulate the temperature-dependent, electron diffraction patterns. Then, the theoretical 

diffraction patterns are compared with the FED experiments.  
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5.4.1 Diffraction patterns of FCC and Dh nanoclusters 

MD trajectories have been transformed into diffraction patterns using the method of 

Coleman et al. [96] that is implemented in LAMMPS. A central quantity in diffraction is 

the so-called Ewald sphere and its thickness. The radius of the Ewald sphere in the 

simulation was 1/λ where λ is the De Broglie wavelength of the electrons used in the FED 

experiment. The thickness of the Ewald sphere is connected with the energy dispersion of 

the electrons and it was selected to be equal with 0.06 Å-1 in order to fit various 

diffractograms measured by the FED apparatus in use. The computational grid of the 

reciprocal space had a spacing of 0.007 Å-1. The electron diffraction patterns were 

radially averaged and the results are shown in figure 5.12. 

The average diffraction patterns of FCC and Dh NCs are shown in figure 5.12.a and 

5.12.b, respectively. The electrons arrive perpendicular to the graphene layer as in the 

FED experiment. Because the FCC NCs bind on graphene with their (111) facets, the 

(220) diffraction peak is the strongest while the intensity of (111) is almost zero. Dh NCs 

bind with the (100) facet but they still have an intense (220) peak, of comparable intensity 

with the (111) peak, because they contain tetrahedral crystalline domains. At this point it 

becomes clear why the FED diffraction pattern of Au923 NCs / Gr heterostructures, shown 

in figure 5.2, has intense (220) peak. The Au923 NCs tend to form FCC and Dh structures 

which then have a preferred orientation on graphene as shown with MD. 
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Figure 5.12: Theoretical electron diffraction patterns of MD-simulated Au923 NCs 

on graphene. (a) The average electron diffraction pattern of 10 FCC Au923 NCs on 

graphene. (b) The average electron diffraction pattern of 10 Dh Au923 NCs on 

graphene. The electrons arrive perpendicular to graphene as in the FED experiment. It 

becomes immediately apparent that the existence of FCC and Dh NCs leads to a 

significant enhancement of the intensity of the (220) peak compared to the (111). 

 

 

5.4.2 Theoretical modelling of the experimental diffraction patterns 

The comparison of the MD-derived diffraction patterns (fig. 5.12) with the experimental 

diffraction patterns acquired with FED (fig. 5.2) is not straightforward. The examined 

samples have a variety of structures apart from FCC and Dh. This paragraph examines the 

mechanism of NC binding on graphene in more detail. The aim is to understand which 

structures can become oriented.  
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Figure 5.13 shows the diffraction pattern of one Au923 NC that was adsorbed on graphene 

at 300 K and annealed up to 600 K. The initial diffraction pattern of the as-adsorbed NC 

is shown in red and after annealing with blue. The change in the diffraction pattern is 

dramatic but this is not due to rotations as described above. In this case the system is 

insufficiently annealed. When the NC is adsorbed on graphene, few surface adatoms are 

trapped at the Au/C interface. As a result the NC is tilting and the (111) and (200) peaks 

at ~0.4 Å-1 become intense. As the system is heated up to 600 K, surface diffusion is 

activated and the few adatoms at the interface are irreversibly removed from that region. 

In this way surface diffusion lets the NC to acquire its most preferred orientation. In the 

FED experiment the required annealing is carried out during the preparation of the 

experiment. Indeed, during this phase the (220) peak was observed to become 

permanently more intense in less than one second. In the MD simulation the annealing is 

carried out at 600 K for 1 ns, as mentioned earlier, and every measurement is carried out 

only after this step. 

 

 

Figure 5.13: A detailed view on NCs orientation on graphene. Au923 NCs contain 

surface imperfections and adatoms that can modify the diffraction pattern. The red 

curve shows the diffraction pattern of an as-adsorbed Au923 FCC NC on graphene at 

room temperature (MD simulations). Few adatoms prevent the NC from acquiring its 

(111) orientation and thus the (111) peak is enhanced and the (220) peak is suppressed 

(the electrons arrive perpendicular to graphene). Thermal annealing up to 600 K causes 

the diffraction pattern to change (blue curve) by removing trapped Au adatoms from 

the Au/C interface. More details can be found in the main text. 



Chapter 5. Ultrafast rotational motions of 0D nanostructures on 2D crystals 

118 
 

Surface diffusion is sufficient to restructure well-defined FCC and Dh structures and 

make them oriented. However, the sample contains in addition very irregular NCs. In this 

case the required restructuring would be so intense that the maximum temperature should 

be close to the surface premelting (800 K) or melting (1400 K) point. In the experiment, 

these irregular structures remain with a nearly random orientation. In order to compare 

the electron diffraction simulations and the FED experiment we make the assumption that 

only the well-defined FCC and Dh structures can become oriented and the orientation of 

all other structures is completely random. The model diffraction pattern is then given by: 

𝐼𝑀𝑜𝑑𝑒𝑙 = 𝑎 ∙ 𝐼𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑 + 𝑏 ∙ 𝐼𝑅𝑎𝑛𝑑𝑜𝑚 + 𝑐 ∙ 𝐼𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒   , R 5.1 

where 𝐼𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑  is the normalized diffraction pattern of FCC and Dh NCs as given be MD 

and electron diffraction simulations,  𝐼𝑅𝑎𝑛𝑑𝑜𝑚  is the measured diffraction pattern of 

randomly oriented Au923 NCs on a-C and 𝐼𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒  is the measured diffraction pattern of 

the Gr substrate. The mixing coefficients are (𝑎, 𝑏, 𝑐) = (0.16, 0.45, 0.39). The result is 

shown in figure 5.14 (red solid line), together with the experimental diffraction pattern 

(blue circles). Both diffraction pattern correspond to the equilibrium structure at ~300 K. 

 

 

Figure 5.14: Experimental and theoretical electron diffraction pattern of Au923 

NCs on Gr. The experimental radial average shown with blue circles (see also figure 

5.2 and relevant discussion). The model curve (solid line) corresponds to the MD-

simulated FCC and Dh NCs while the rest of the structural allotropes are hypothesized 

to have completely random orientation as in a-C.  
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5.4.3 Temperature dependent diffraction patterns 

The next step is to examine the temperature-induced changes in the diffraction peaks of 

the MD structures. Figure 5.15 shows the relative intensity change Δ𝐼 defined as: 

Δ𝐼(𝑆) =
𝐼600 𝐾(𝑆) − 𝐼300 𝐾(𝑆)

∫ 𝐼300 𝐾(𝑆)𝑑𝑆
  . 

R 5.2 

In figure 5.15 the electrons arrive either perpendicular to graphene (orange) as in the 

FED experiment and all preceding simulations, or in powder diffraction mode (blue). The 

simulated peak dynamics are reproducing all the observables of FED. Lattice heating is 

causing the peaks to decay and the inelastic background to increase (Debye-Waller 

effect). In addition, thermal expansion is causing the peaks to shift to lower scattering 

angles. The most important observation is that the (220) peak shows the strongest decay 

when the electrons arrive perpendicular to graphene. Thus, the NC librations have 

definitely an effect on the diffraction pattern when the electron beam is parallel to the 

initial NC orientation. 

 

 

Figure 5.15: Relative changes of electron diffraction patterns caused by heating 

from 300 K to 600 K. Blue is for powder diffraction and orange for electrons arriving 

perpendicular to graphene. The decay of the (220) peak becomes more intense in the 

latter case.  
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5.4.4 Comparison of experiments and simulations 

This section compares the predictions of the MD and electron diffraction simulations with 

the FED experiment. The relative peak-decay in the theoretical diffraction patterns has 

been measured for electrons arriving perpendicular to graphene and for powder 

diffraction. The first type of diffraction is sensitive to the Debye-Waller effect (atomic 

vibrations) and the NC librations. The second type of diffraction is only sensitive to the 

Debye-Waller effect (atomic vibrations). The difference between the two peak-decays is 

plotted as a function of temperature in figure 5.16.a for the (220) peak and figure 5.16.b 

for the (111) peak (black squares & lines). For comparison, the two figures also show the 

deviation from Debye-Waller as measured by FED versus the lattice temperature 

measured from expansion [circles, blue for (220) and red for (111)]. The simulations 

predict an additional decay of the (220) peak by ~4% and a smaller decay of the (111) 

peak by ~1% at 600 K. These theoretical values are in quantitative agreement with the 

FED experiments (fig. 5.16), see also the dynamics in fig. 5.6. 

 

 

Figure 5.16: Deviation of peak-decay from Debye-Waller dynamics for Au923 NCs 

on Gr. Deviation of the peak decay from the expected Debye-Waller behavior for the 

(220) and (111) peaks, (a)&(b) respectively. The MD simulations are shown with 

squares connected by lines and the FED data are shown with circles. 

 

In all the above it was shown that librations of NCs and atomic vibrations coevolve and 

both of them affect the time-dependent diffraction patterns. When the NCs start from an 

oriented state, as in the case of Au FCC and Dh NCs on graphene, the energy content of 
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atomic vibrations needs to be found from the observed expansion and not from the 

Debye-Waller effect. The following two sections examine and compare the energy flow 

into librations and vibrations. For the energy of atomic vibrations the author retrieves the 

methods developed in chapter 3. The energy content of librations can be found with the 

aid of MD simulations and basic principles of classical mechanics and statistical physics. 

 

5.5 The role of librations in the ultrafast energy flow  

Each NC contains a large number of vibrational degrees of freedom (3×923), 3 

translations, 1 rotational degree of freedom with angular momentum vertical to graphene 

and 2 librations. The NC libration is a type of motion that has been directly observed with 

FED for the first time in the current work (to the best of the author’s knowledge). Atomic 

vibrations in nanostructures have been examined before with FED (see Chapter 3 and 

references therein). The study of ultrafast energy flow in this chapter has some new 

aspects compared with Chapter 3. These new aspects are: 

 The equations have been extended to include the strongly coupled optical phonons 

of graphene (SCOPs). 

 The excitation mechanism of the NC librations is now identified. 

Due to the equipartition theorem most of the energy is stored in atomic vibrations. For 

this reason, it is possible to examine first the energy flow to atomic vibrations and ignore 

temporarily the participation of librations and other NC motions. Section 5.5.1 deals with 

atomic vibrations and 5.5.2 with librations.  

 

5.5.1 Ultrafast energy flow to atomic vibrations 

The energy content of atomic vibrations (effective lattice temperature) is extracted from 

the observed lattice expansion and the previously measured thermal expansion coefficient 

of Au923 NCs (Chapter 4). The lattice temperature evolution is fitted with a model of 

energy flow similar to that presented in Chapter 3. This procedure allows measuring the 

energy transfer rate from phonons of the Gr substrate to atomic vibrations in the Au923 

NC. The energy transfer rate from phonons of Gr to NC librations is examined in the 
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following section. In this way it becomes possible to compare the energetic contributions 

and dynamics of atomic vibrations and librations of NCs.  

The used model of energy flow is shown in figure 5.17. Each material (Au923 NCs and Gr 

substrate) is represented by electronic and phononic subsystems. Au is splitted into 

subsystems as in the simple TTM. Au is a metal with one atom per unit cell so the 

vibrational lattice excitations correspond solely to acoustic phonons. Because Au is 

spatially confined it possess, in addition, translational and rotational motions like 

librations. These motions are noted in the schematic but not included in the equations due 

to their small overall energetic contribution, as discussed before.  

Because graphene is crystalline it is now possible to have a more detailed description for 

its vibrational degrees of freedom compared to a-C (chapter 3) that is lacking long-range 

order. Graphene has two atoms per unit cell and hence it has optical and acoustic 

phonons. Optical phonons in graphene are known to be strongly coupled to the electronic 

degrees of freedom. Electronic excitations can relax by optical phonon emission in sub-

picosecond timescales [74], [109], [202]. The excited phonons thermalize with the 

acoustic phonons in 1-100 ps [109].  

Hence, the Gr substrate contains three subsystems: the electrons, the strongly-coupled 

optical phonons (SCOPs) and the acoustic phonons. The latter constitute the majority of 

lattice excitations. Acoustic phonons have the highest contribution to the overall heat 

capacity and for that reason they are denoted as the Gr total lattice. In the schematic of 

figure 5.17 every arrow represents an energy transfer rate that needs to be specified if it is 

known, otherwise it is extracted by fitting the experimental lattice temperature evolution. 
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Figure 5.17: Microscopic subsystems and interactions in the Au923 NC / Gr 

heterostructure. Au is splitted into electrons and lattice excitations. In addition Au 

NCs can librate but the overall energetic contribution is small (see next section). 

Graphene is represented by electrons, strongly coupled optical phonons and all other 

lattice degrees of freedom (mostly acoustic phonons in terms of heat capacity). Each 

material has distinct light-mater interactions and hence the optical absorption can differ 

in the two layers. The contribution of the NC librations to the overall energy flow is 

small and hence librations are not included in the corresponding set of differential 

equations. The NC librations couple to a small fraction of the graphene phonons, the 

flexural ZA phonons of certain wavelengths (discussed in the next section). 

 

The simple schematic of figure 5.17 is translated into a system of coupled differential 

equations of the form: 

𝐶𝐸
𝐴𝑢  

𝑑𝑇𝐸
𝐴𝑢

𝑑𝑡
= −𝐺𝐸−𝑃𝐻(𝑇𝐸

𝐴𝑢 − 𝑇𝐿
𝐴𝑢) + 𝑊𝐸𝐸(𝑇𝐸

𝐺𝑟 − 𝑇𝐸
𝐴𝑢) + 𝑆𝐴𝑢(𝑡), 

R 5.3 

𝐶𝐿
𝐴𝑢  

𝑑𝑇𝐿
𝐴𝑢

𝑑𝑡
= 𝐺𝐸−𝑃𝐻(𝑇𝐸

𝐴𝑢 − 𝑇𝐿
𝐴𝑢) + 𝑊𝑃𝑃(𝑇𝐿

𝐺𝑟 − 𝑇𝐿
𝐴𝑢), 

R 5.4 

𝐶𝐸
𝐺𝑟  

𝑑𝑇𝐸
𝐺𝑟

𝑑𝑡
= −𝐺𝐸−𝑂𝑝(𝑇𝐸

𝐺𝑟 − 𝑇𝑂𝑝
𝐺𝑟) − 𝑊𝐸𝐸 (𝑇𝐸

𝐺𝑟 − 𝑇𝐸
𝐴𝑢) + 𝑆𝐺𝑟(𝑡), 

R 5.5 

𝐶𝑂𝑝
𝐺𝑟  

𝑑𝑇𝑂𝑝
𝐺𝑟

𝑑𝑡
= 𝐺𝐸−𝑂𝑝(𝑇𝐸

𝐺𝑟 − 𝑇𝑂𝑝
𝐺𝑟) − 𝐺𝑂𝐴(𝑇𝑂𝑝

𝐺𝑟 − 𝑇𝐿
𝐺𝑟), 

R 5.6 

𝐶𝐿
𝐺𝑟  

𝑑𝑇𝐿
𝐺𝑟

𝑑𝑡
= 𝐺𝑂𝐴(𝑇𝑂𝑝

𝐺𝑟 − 𝑇𝐿
𝐺𝑟) − 𝑊𝑃𝑃(𝑇𝐿

𝐺𝑟 − 𝑇𝐿
𝐴𝑢), 

R 5.7 

where T is for temperature, G for intrinsic couplings (within the same material), W for 

extrinsic couplings (between different materials), C for heat capacities and S for temporal 

profiles of absorbed laser fluences. The upper indices denote the material and the lower 

indices denote the subsystems. These equations are used to fit the lattice temperature 
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evolution. This set of equations depends on many parameters that cannot be fitted 

simultaneously. However, the intrinsic couplings are known from the investigation of 

Chapter 3 and the works of others. The remaining, fitting parameters for this 

heterostructure are the electronic and vibrational couplings between the two materials 

WEE and WPP, respectively, and the absorbed fluence in each of the two materials.  

For studying energy flow it is essential to know the heat capacity of every subsystem. For 

the Au923 NCs the electronic and vibrational heat capacities are known from the analysis 

presented in Chapter 3. For the simulation of Gr, the author used information from the 

article of Liu et al. [203]. The heat capacity of SCOPs is given by a 3rd order polynomial 

function of temperature that is based on time-resolved Raman spectroscopy of graphite 

[204]. The used polynomial dependence applies for temperatures between 500 K and 

2500 K. The theoretical temperature range of SCOPs in the current work lies mostly 

within these limits. Regarding the various coupling constants, the electron-phonon and 

phonon-phonon coupling of Gr used here can reproduce the temperature evolutions 

shown in the supplementary information of Liu et al. [203]. 

Figure 5.18 shows the time-dependent temperatures of the electrons, SCOPs and acoustic 

phonons in graphene (fig. 5.18.a), the electrons and the phonons of Au (fig. 5.18.b) and 

the final equilibration between Au NC and Gr substrate after ~200 ps (fig. 5.18.c). The 

orange curve in figure 5.18.c needs to match the experimental evolution of the NCs 

lattice temperature and this is achieved during the nonlinear fitting by tuning the values 

for the absorbed fluences of each material and the electronic and vibrational coupling 

constants across the interface.  

 

 

Figure 5.18: Ultrafast evolutions of temperature in the subsystems of the Au923/Gr 

heterostructure. (a) Electrons, SCOPs and total lattice excitations in the Gr substrate. 

(b) Electron-phonon coupling in Au NCs at short time-delays. (c) Equilibration 
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(vibrational coupling) of the Au NC and Gr substrate lattices at longer time-delays. The 

orange curve corresponds to the lattice temperature Au NCs and reproduces accurately 

the experimental evolution of the lattice temperature. 

 

From the evolutions of lattice temperatures for the Au NCs and the graphitic substrate 

(figure 5.18.c) it is clear that the temperature change due to interfacial phonon 

transmission is much larger for the Au NCs than for the graphitic substrate. This means 

that the lattice heat capacity of the NCs’ layer is smaller than the heat capacity of the 

substrate by a factor of ~28. The reason for this is that the model takes into account the 

extra mass of sp2 C in the substrate, due to the lacey Carbon support of graphene. The 

lacey Carbon structure is shown in the SEM image of figure 5.19.a. The morphology of 

the entire heterostructure is schematically shown in figure 5.19.b. The relative amounts 

of Au and C in the model are schematically shown in figure 5.19.c. 

 

 

Figure 5.19: Morphology and mass distribution in the Au923/Gr heterostructure. 

(a) The lacey Carbon structure that is used to stabilize graphene. (b) Schematic 

illustration of the morphology of the entire Au923/Gr heterostructure. (c) Schematic 

depiction of the relative amounts of Au and C in the model of ultrafast energy flow. 

 

Figure 5.20 shows the final result of the procedure, the experimental lattice temperature 

evolution (blue circles), the fitted curve (red solid line) and the residuals of the fitting 

which are in the order of ±20 K. The fitting suggests that electronic coupling is an order a 

magnitude smaller than the vibrational coupling and hence it does not seem to play an 

important role in the equilibration of the two lattices and the dynamics in the 10-500 ps 

time interval. The vibrational coupling from three measurements and several fittings with 

different assumptions gives an average value WPP=(14 ± 4) MW/m2K. Moreover, figure 
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5.20 shows the fitting of the effective lattice temperature with a biexponential decay 

function. The fast time-constant (1-5 ps) is attributed to intrinsic electron-lattice 

interactions and the slow time-constant is attributed to slow, vibrational coupling. The 

characteristic time-constant for vibrational coupling 62 ± 4 ps.  

 

 

Figure 5.20: Lattice temperature evolution of Au923 NCs on Gr and fitting with the 

model of ultrafast energy flow. The experimental lattice temperature evolution (blue 

circles) is found from the observed thermal expansion. The lattice temperature of Au 

NCs predicted by the model of energy flow is shown here with a red curve. The 

residuals of the fitting are within ± 20 K. The data can also be fitted with a 

biexponential decay (dashed black line). Based on the biexponential fitting, the 

characteristic time-constants are τ1=(4.5 ± 3.4) ps for electron-lattice equilibration, and 

τ2=(62±4) ps for vibrational coupling.  

 

The measured energy transfer rate (14 ± 4 MW/m2K) is in good agreement with the 

theoretical work of Duda et al. [205], who found the vibrational coupling at the interface 

of Au and graphite (// to the c-axis) to be equal with 15 MW/m2K. The work of Schmidt 

et al. [146] measured a vibrational coupling of 25 MW/m2K at the interface of bulk Au 

and c-oriented graphite using time-resolved thermoreflectance.  The interfacial coupling 

of Au NCs is expected to be reduced compared with closed, Au thin-films because the 
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contact area is smaller. In addition, the vibrational coupling of Au923 NCs and graphene is 

comparable with the Au923 NCs / Si-N heterostructures (16 MW/m2K) and significantly 

smaller than the Au923 NCs / a-C heterostructures (90 MW/m2K). It is possible that a-C 

substrates have enhanced surface roughness, since they contain flexible strands of C 

atoms, like wires, nanotubes and graphene segments, and therefore the contact area is 

higher. Moreover, the amorphous structure might provide a larger phase-space for 

interfacial phonon transmission compared with the Au (111) / c-axis interface. 

A final remark is that the energy transfer rate per NC (ΔE) can be written as ΔE= WPP 

∙S∙ΔT, where S is the graphene area per NC (~38 nm2) and ΔT is the initial temperature 

difference before lattice-lattice equilibration (~300 K). The energy transfer rate from 

phonons of graphene to atomic vibrations of one NC can be re-expressed as ΔE~1 eV/ps. 

This number is used in the next section to compare the energy flow to atomic vibrations 

with the energy flow to NC librations. 

 

5.5.2 Ultrafast energy flow to nanocluster librations  

This section compares the energetics of atomic vibrations in NCs and NC librations.  This 

is accomplished with the use of: (i) the parabolic approximation, (ii) the angular 

amplitude from MD, (iii) the angular frequency from MD and (iv) the time-constants 

from FED. The activation of NC librations requires energy and angular momentum. The 

energy and the angular momentum come from the acoustic phonons of graphene. The 

three bands of acoustic phonons of graphene are the flexural ZA phonons, where the 

atomic vibrations are out-of-plane, and the in-plane longitudinal (LA) and transverse 

(TA) acoustic phonons. Based on the work of Panizon et al. [206], who explored ballistic 

thermophoresis of NCs on graphene, the graphene phonons that can transfer momentum, 

and hence angular momentum, to adsorbed NCs are flexural ZA phonons or TA and LA 

phonons anharmonically coupled to ZA. The energy transfer rate from graphene waves to 

NC librations is estimated using simple classical mechanics. The analysis begins with a 

brief description of all NC motions with respect to graphene. 

Each NC has a number of translational and rotational degrees of freedom that are depicted 

in figure 5.21. The motion of NCs on graphite or graphene follows a stick-slip pattern 

that is also known as Lévy flights [63], [207]. The translations in the X-Y plane (parallel 

to graphene, fig. 5.21.a) can have oscillatory character or they can result in a net motion 
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of the entire NC. The stick-slip motion originates on the dynamic equilibrium between 

translations and oscillations. Rotations with angular momentum vector normal to 

graphene (fig. 5.21.b) exhibit similar stick-slip behavior (see figure 2.a of Guerra et al. 

[65]).  

 

 

Figure 5.21: The degrees of freedom of supported, rigid NCs. (a) Three translations, 

here parallel to the Y-axis. (b) Rotation about the Z-axis. (c) Librations, here about the 

X-axis. (d) Schematic illustration of the parabolic approximation for the unknown, 

angular potential of librations.  

 

The other NC motions are always oscillatory if the temperature is not sufficient for 

desorption. These are translations in the Z-axis (normal to graphene) and librations (fig. 

5.21.c). Librations involve small angular displacements and hence their unknown energy 

landscape can be approximated with a parabolic function (fig. 5.21.d).  

Using the parabolic approximation the angular potential of librations is given by: 

𝑉(𝜃) =
1

2
𝑉𝑜𝜃2. 

R 5.8 

The Lagrangian for librations is: 

𝐿 =
1

2
𝐼�̇�2 −

1

2
𝑉𝑜𝜃2, 

R 5.9 

where 𝐼 is the moment of inertia of the NC. The solution to the corresponding Euler-

Lagrange equation is simply: 

𝜃(𝑡) = 𝜃𝑜 cos 𝜔𝑡. R 5.10 
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The moment of inertia of the NC (𝐼) and the frequency of librations (𝜔) are connected 

with the relationship: 

𝜔 = √
𝑉𝑜

𝐼
  . 

R 5.11 

 

For Au923 we have on average 𝐼 = 2.7 ∙ 10−40𝑘𝑔 ∙ 𝑚2. The dominant frequency given by 

the MD simulations (𝑓 = 57 𝐺𝐻𝑧) gives 𝜔 = 2𝜋𝑓 = 3.6 ∙ 1011 𝑠−1. With this frequency 

the torque per rad (≡ energy) acting on each NC is:  

𝑉𝑜 = 𝐼𝜔2 ≅ 35 
𝑛𝑁 ∙ 𝑛𝑚

𝑟𝑎𝑑
  . 

R 5.12 

The average tilt angle with respect to graphene is 〈𝜃〉 = 1.6𝑜 at 300 K and 〈𝜃〉 = 2.0𝑜 at 

600 K. With these numbers we can calculate the average, rotational kinetic energy from:  

〈𝐸𝐾〉 =
1

2
 𝐼 〈�̇�2(𝑡)〉 =  

1

4
 𝐼 〈𝜃〉2𝜔2 , 

R 5.13 

where an additional factor 1 2⁄  comes from the time-average of sin2 𝜔𝑡 . The average 

(kinetic or potential) energy is 40 meV at 300 K and 70 meV at 600 K per NC.  

The excess energy of librations (30 meV/NC) is transferred to the NCs by a biexponential 

process as measured by FED. The time-constants measured from the (220) peak are 

approximately τ1~4 ps (40% amplitude) and τ2~110 ps (60% amplitude). The 

corresponding energy transfer rates are in the order of 3 meV/ps and 0.2 meV/ps. 

Dynamics that involve more than one energy transfer rate might arise from the timescales 

of generation and thermalization of acoustic phonons in graphene that occurs in the 100 

ps timescale [109]. The energy transfer rate to atomic vibrations is ~1 eV/ps, meaning 

three orders of magnitude higher than for librations. This is to be expected since only a 

small fraction of graphene phonons can exert torque and transfer angular momentum to 

the NCs. 

For the ultrafast energy flow it is also important to examine the absorption cross section 

of the NCs. The lattice heat capacity for Au is 𝐶𝐿 = 2.5 ∙ 106 𝐽𝑚−3𝐾−1  (only atomic 

vibrations). A temperature difference Δ𝑇 = 300 𝐾 corresponds to an energy input: 

Δ𝐸 = Δ𝑇 ∙ 𝐶𝐿 ∙
4

3
𝜋𝑅3 = 66 𝑒𝑉 . 

R 5.14 

This energy, stored in atomic vibrations, is much larger than the energy of librations. The 

excess energy of atomic vibrations corresponds to absorption of ~20 photons (400 nm) 
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per NC. The incident laser fluence is 3.8 mJ/cm2, meaning 3 ∙ 103 photons per NC. The 

absorbed energy that ends in the NCs’ lattices is in the order of 0.7% (with respect to the 

incident laser pulse) and the absorption of the entire heterostructure (including the lacey 

Carbon support, see fig. 5.19) is ~20%. 

Excitation mechanism of NC librations. The scattering cross section is more efficient 

when the phonon wavelength is similar with the characteristic length of the NC binding 

facet. The average binding facet of Au923 (for FCC and Dh NCs) is 2.6 nm. Another 

important criterion can be frequency matching. For flexural ZA phonons the dispersion 

relationship has the form 𝜔(𝑘)~𝑎𝑘2  where 𝑎 = 6.2 ∙ 10−7 𝑚2/𝑠  [208], [209]. The 

frequency of librations from the simulations is 57 GHz which for graphene translates into 

a wavelength of 8.3 nm. In summary, the graphene phonons that couple with NC 

librations have wavelengths in the range of 2-8 nm and flexural ZA character.  

Future prospects. Librations and other rotational and translational motions are important 

for energy and mass transport involving nanoscale building blocks on surfaces. For 

instance, Guerra et al. [65] has shown the translations and rotations of NCs are coupled. 

Rotations can transiently decrease the adherence to the substrate and at this moment the 

NC can translate giving rise to the stick-slip pattern of motion.  

In principle all rotational degrees of freedom of supported nanocrystals should be visible 

by FED providing that the system starts from an oriented state. For instance, rotational 

motions with angular momentum normal to the substrate could be observed if the 

equilibrium state of the system would be characterized by epitaxial order. In addition, 

FED can probe nonequilibrium phonon populations in the substrate. Some examples are 

the works of [109] and [94]. From all the above, an interesting, future prospect is the 

combined study of nanoscale adsorbate motions and phonon dynamics in the substrate. 

Having access simultaneously to atomic vibrations and rotational motions of 

nanostructures at ultrafast timescales is important for a detail understanding of 

morphological changes in functional, nanoscale heterostructures. On the one hand, atomic 

vibrations of nanostructures with large surface-to-volume ratio, are precursor states to 

diffusing surface adatoms. On the other hand, collective lattice motions, like librations, 

are precursor states to diffusion, aggregation or desorption of entire nanoclusters. The 

well-known phenomenon of sintering is a deleterious effect of nano-catalysts and 
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proceeds with diffusion of adatoms (relevant with Chapter 4) but also with migration of 

small clusters [60] (relevant with Chapter 5).  
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Chapter 6. Energy flow in 2D metal / 2D semiconductor 

heterostructures 

 

The previous chapters have examined the ultrafast dynamics of 0D metals (Au923 NCs) on 

2D materials of zero band gap (graphene) as well as 0D metals on insulators (ultrathin 

films of Si-N). The present chapter is devoted to the study of quasi two-dimensional Au 

islands (2D metal) on single-crystalline, layered WSe2 (2D semiconductor). The 

heterostructure is synthesized by exfoliation of multilayer flakes of WSe2 and subsequent 

deposition of Au in an electron beam evaporator. Static electron diffraction shows that Au 

is growing epitaxially on WSe2, opening up the way for many interesting experiments that 

probe the nonequilibrium structure of the lattice and the electrons in reciprocal space. The 

nanoscale morphology, optical properties and electronic structure of Au on WSe2 are 

characterized by transmission electron microscopy, optical spectroscopy and static angle-

resolved photoelectron spectroscopy (ARPES), respectively.  Next, the samples are used 

for time-resolved FED experiments with various photon energies for excitation. When the 

photon energy is lower than the optical gap, the electronic excitation of WSe2 is mediated 

by the Au nanostructures. The FED investigations of the ultrafast lattice dynamics of Au / 

WSe2 heterostructures are complemented by time- and angle-resolved photoelectron 

spectroscopy (tr-ARPES), which probes the ultrafast electronic dynamics. The 

experimental findings of both techniques demonstrate an acceleration of electron-lattice 

equilibration in WSe2 when its surface is decorated by Au nanostructures. 

 

6.1 Static properties and ultrafast dynamics of pure WSe2 

6.1.1 Transition metal dichalcogenides 

The semiconducting compound WSe2 belongs to the family of the so-called transition 

metal dichalcogenides (TMDCs). TMDCs are indirect band-gap semiconductors with 

covalently-bonded, two-dimensional atomic layers stacked together by weaker van der 

Waals interactions. Some examples of TMDCs are WSe2 (present work), MoS2, MoSe2 

and WS2. The atoms in each layer of TMDCs have a hexagonal arrangement and for this 
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reason they are termed graphene-like semiconductors. Contrary to graphene, which is a 

zero band-gap material, the TMDCs are semiconducting and, thus, more appropriate for 

the construction of nanoscale, electronic devices [210]. Due to their weak, interlayer 

bonding, thin flakes of TMDCs can be exfoliated down to single unit cell thickness. As 

the thickness of TMDCs is decreasing, their electronic properties change and their 

indirect band-gap can turn to direct in single layers [210]. Layers of different TMDCs and 

other two-dimensional materials like metallic graphene and insulating hBN (hexagonal 

Boron-Nitride), can be stacked vertically with Van der Waals interactions [211], [212] in 

order to construct ultrathin transistors and other nanoelectronic devices. This work is 

devoted to multilayer WSe2 that preserves the well-known electronic structure of the bulk 

material. The next section discusses the electronic and lattice dynamics of pure WSe2 

based on recent works. 

 

6.1.2 Nonequilibrium properties of pure WSe2   

The electronic and lattice dynamics of pure WSe2 have been the subject of many recent 

experimental and theoretical works. The various scattering processes in the electronic 

subsystem of WSe2 have been studied with time- and angle-resolved photoemission (tr-

ARPES) by Bertoni et al. [213] and Puppin et al. [27], [214]. These measurements were 

mostly sensitive to the first, surface trilayer due to the limited escape depth of 

photoelectrons. Owning to this surface sensitivity, the researchers managed to 

demonstrate spin-, valley- and layer-polarization of laser-induced electronic excitations. 

The photon energies of the pump pulses were in resonance with the lowest excitonic 

transition, called the A-exciton [215], located at an energy of 1.63 eV. 
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Figure 6.1: Electron-lattice nonequilibrium states for bare WSe2 pumped at the A-

exciton resonance. (a) Irradiation with photons of 1.63 eV energy (760 nm 

wavelength) result in the formation of the so-called A excitons that involve a hole at 

the top of the valence band and an excited electron at the local minimum of the 

conduction band at the K point of the Brillouin zone. (b) The bright A exciton scatters 

from the K towards the Σ valley within 10s of fs. (c) The relaxation of excited electrons 

at the global minimum of the valence band occurs with electron-phonon coupling in 1.5 

ps or more. This picture is based on the works of Bertoni et al. [213], Puppin et al. 

[27], [214] and Waldecker et al. [94]. 

 

The resulting electronic transitions occur at the K-point of the Brillouin zone, and elevate 

electrons from the top of the valence band to the local minimum of the conduction band 

(fig. 6.1.a). The global minimum of the conduction band is in the Σ-point of the Brillouin 

zone. The excited electrons scatter away from K and towards Σ within 10s of fs (fig. 

6.1.b). Finally, the electrons relax in the conduction band minimum at Σ through electron-

phonon coupling (fig. 6.1.c). More details on the electronic band structure of WSe2 and 

Au/ WSe2 are given in the section that follows.  

The final electron-lattice relaxation due to hot electrons at the Σ-valley has been 

investigated with FED by Waldecker et al. [94]. In this experiment the excitation was 

carried out with photons of 1.55 eV energy (800 nm wavelength). The pump spectrum 

had a significant overlap with the A-exciton resonance. The incident laser fluence was 7 

mJ/cm2. Under these conditions, the effective atomic MSD is first increasing, with a time-

constant of 1.83±0.13 ps, reaching a maximum value of ~4∙10-3 Å2 at about 5-10 ps, and 

then relaxes at ~3.5∙10-3 Å2 with a time-constant of 19±5 ps. The initial increase is due to 

electron-lattice equilibration and the subsequent, smaller decrease is due to thermalization 

of the lattice degrees of freedom by phonon-phonon interactions. The ultrafast evolution 
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of nonequilibrium phonons have been probed by a momentum-resolved analysis of the 

inelastic background of the diffraction patterns.  

The author of the present work has conducted additional FED experiments on pure WSe2. 

The experimental results are shown in figure 6.2 and they are in agreement with the work 

of Waldecker et al. [94]. The sample is irradiated with photons of 1.62 eV energy (765 

nm wavelength) in order to pump the A-exciton resonance. The incident fluence is 8 

mJ/cm2. 

 

 

 

Figure 6.2: FED measurements of pure WSe2 pumped at the A-exciton resonance. 

(a) The hexagonal electron diffraction pattern of pure WSe2. The inset shows the first 

Brillouin zone, which is used for a momentum-resolved analysis of the phonon dynamics. 

(b) The Debye-Waller dynamics of the Bragg peaks after photoexcitation (red circles). 

The black line is a fit with an exponential decay. The extracted time-constant is 1.5 ps. (c) 

The population of the K-point phonons overshoots at about 5-10 ps, while the difference 

with the M-point phonons is gradually restored at later pump-probe delays. The rise times 

of the phonon populations are (1.2 ± 0.2) ps and (1.0 ± 0.1) ps for the K and M phonons, 

respectively. 

 

The hexagonal electron diffraction of pure WSe2 is shown in figure 6.2.a. The inset 

shows the various points of the Brillouin zone relatively to the Bragg peaks. Figure 6.2.b 
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shows the pump-probe dynamics of the intensity of the Bragg peaks. The excited charge 

carriers generate phonons that cause a decay of the intensity of Bragg peaks according to 

the Debye-Waller effect. Simultaneously, the inelastic scattering background is 

increasing, as shown in figure 6.2.c. The diffracted electrons can scatter from phonons in 

the sample and exchange momentum, thus, a momentum-resolved analysis of the inelastic 

scattering background can resolve the momentum-resolved, nonthermal phonon 

dynamics. As shown in figure 6.2.c (and in the work of Waldecker et al. [94]) the phonon 

population in the K-point is clearly higher than in the M-point at ~10 ps. Fitting with 

single exponentials the initial rise gives characteristic time-constants for the enhancement 

of the phonon populations of (1.2 ± 0.2) ps and (1.0 ± 0.1) ps for the K and M points of 

the Brillouin zone, respectively. At later pump-probe delays the differences between the 

two phonon populations are gradually removed. 

 

6.1.3 Interaction of WSe2 with Au 

The interaction of chalcogens and chalcogenides with Au nanostructures is a very 

interesting and open subject regarding the ground-state [216] as well as the 

nonequilibrium [217] properties of such systems. Heterostructures of nanostructured Au 

and TMDCs are very promising materials regarding their light-matter interactions. Wang 

et al. [44] have shown a 20,000-fold enhancement of photoluminescence from WSe2 

flakes suspended on 20-nm gaps of a Au substrate. Kleemann et al. have demonstrated 

highly-nonlinear excitonic transitions in WSe2 flakes embedded in Au plasmonic 

nanocavities [218]. Wang et al. have investigated similar phenomena in heterostructures 

of monolayer WS2 and Au nanotriangles [219]. Heterostructures of WSe2 and Au 

nanoparticles can also be used for surface-enhanced Raman scattering [220], [221] with 

potential applications in chemical sensors. Moreover, the use of ultrathin semiconductors 

in nanoscale transistors and optoelectronic devices will most probably involve the 

attachment of some metallic electrodes, for instance ultrathin films of Au, on the TMDC 

surface [222]. For that purpose, the interface between Au and TMDCs has been 

extensively studied by various techniques in close-to-equilibrium conditions [223], [224].  

In the present work, the addressed question is how electrons and phonons interact within 

each component and across the interface in nano-metal / TMDC heterostructures. 

Previous works have shown that Au and Ag can grow epitaxially on WSe2 without the 
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need of strict requirements regarding temperature or deposition rates [225]. Epitaxy of 

metals at room temperature have also been shown for MoS2 [226]. In reverse, Au can also 

serve as a substrate for the epitaxial growth of MoS2 nanoislands [227].   The adhesion of 

Au on MoS2 might be enhanced by the formation of strong Au-S bonds [228].  In line 

with this possibility, a surface layer of Au can facilitate the exfoliation of single layers of 

MoS2 [229]. The chalcogen elements (S, Se and Te) are some of the few materials that 

can form chemical bonds with Au and the nature of the chalcogen / Au interfacial 

bonding is a very interesting and open subject [216]. 

 

6.2 Synthesis and characterization of Au / WSe2 heterostructures   

6.2.1 Static electron diffraction 

For the present experiments, single crystals of WSe2 have been mechanically exfoliated 

into flakes with thicknesses of 10-30 nm based on their optical absorption. Exfoliation is 

carried out with the viscoelastic stamping technique [230]. The followed procedures are 

described in detail in the Master thesis of D. Zahn [231]. The exfoliated flakes have been 

transferred on TEM grids (Cu) and covered with Au on their one side using an electron 

beam evaporator. The nominal thickness of Au was 2 nm and the deposition rate was 2.2 

Å/min. Finally, these samples have been examined by FED. Typical static diffraction 

patterns are shown in figure 6.3.  

Single-crystalline WSe2 flakes has hexagonal diffraction pattern. A second family of 

hexagonal spots, of weaker intensity and identical orientation, belongs to epitaxially 

grown Au. The most intense peak of Au is shown in the zoom-in insets and it corresponds 

to the (220) peak. The neighboring peak of WSe2 is the (110). The (220) peak of Au is 

more intense than the (111) of Au in accordance with the (111)-orientation of Au 

crystallites on WSe2. A weak hexagonal pattern appears close to the Bragg peaks of Au 

and WSe2 due to secondary scattering. These superlattice-peaks are also termed the Moiré 

pattern. The time-resolved experiments have been carried out in the thinnest areas of the 

flakes and where the epitaxial order appeared to be complete. 
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Figure 6.3: Static diffraction patterns of Au / WSe2 heterostructures measured by 

the FED setup and plotted in logarithmic scale. The brightest hexagonal pattern is 

the diffraction pattern of single-crystalline WSe2. The weaker hexagonal pattern is the 

diffraction pattern of epitaxial Au. The zoon-in inset shows the (220) peak of Au, 

which is the most intense, and the neighboring peak of WSe2. A third family of 

hexagonal spots appears close to the Bragg peaks the so-called Moiré pattern, which is 

associated with secondary scattering involving both crystal structures. The diffraction 

pattern proves that the growth of Au on WSe2 is epitaxial and with (111) orientation. 

 

6.2.2 Characterization with transmission electron microscopy 

For a more detailed knowledge of the morphology of Au / WSe2 heterostructures, the 

same samples have been examined by TEM. Some of the recorded images are shown in 

figure 6.4. The Au overlayer is always observed to form islands, which can be seen as 

regions of higher contrast in figure 6.4.a. At this coverage Au grows islands instead of 

extended, closed films due to surface tension. The characteristic, lateral dimension of the 

Au islands is 10±3 nm based on the image in figure 6.4.b. The estimated average 

thickness of these islands (different than the nominal thickness, which is 2 nm) is in the 

order of 4-4.5 nm, meaning that 40-50% of the surface is covered by Au. The islands 

have dark, strip-like patterns with a periodicity of 1.09 ± 0.05 nm (fig. 6.4.c).  
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Based on their long, spatial periodicity, the dark stripes are interpreted as the so-called 

Moiré fringes [232]. In general, the Moiré pattern of two hexagonal crystals has 

hexagonal symmetry [233] but linear structures can also arise if the sample is slightly 

tilted [232]. Interestingly, the Moiré fringes are also visible in the vicinity of the islands, 

although their contrast is weaker (fig. 6.4.d).  A potential explanation is that the crystal 

order of the last few layers of WSe2 is altered in the presence of Au.  

 

 

Figure 6.4: Transmission electron microscopy of Au nano-islands on WSe2. (a) 

Low magnification TEM image showing Au islands on the surface of WSe2. (b) High 

magnification image that was used to estimate the coverage of Au and the average 

dimension of the islands. (c) TEM image showing the dark stripes (Moiré fringes) and 

the lines that were used to measure their spatial periodicity. (d) An image showing the 

Moiré fringes on the islands and on the neighboring, uncovered areas of WSe2. TEM 

measurements carried out by Dr. Emerson Coy (NBMC Poznan). 

 

To ensure that the sample remains unaffected by the laser fluences used in the FED 

experiment (≤ 3 mJ/cm2), the irradiated and non-irradiated areas of the sample have been 

examined by TEM and electron diffraction. The results are shown in figure 6.5. The 

irradiated areas have been indicated with optical microscopy images and real-space, 

electron images acquired during the FED experiments. A close inspection of the TEM 
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images (fig. 6.5.a and 6.5.c) and the electron diffraction patterns (fig. 6.5.b and 6.5.d) did 

not reveal any discernible changes. 

 

Figure 6.5: Transmission electron microscopy and diffraction of irradiated and 

non-irradiated areas. (a) & (b) Electron microscopy and diffraction of non-irradiated 

areas. (c) & (d) Electron microscopy and diffraction of irradiated areas with fluences 

up to ~3 mJ/cm2 using 840 nm radiation.  

 

6.2.3 Momentum-resolved mapping of the electronic structure 

In order to design and carry out a meaningful, laser-based experiment, like FED, it is 

useful to know the electronic structure and optical absorption of the investigated sample 

at near-equilibrium conditions. The electronic structure has been examined using ARPES. 

The measurements were carried out by Maciej Dendzik, Sang Eun Lee and Laurenz 

Rettig (Dynamics of Correlated Materials, PC department, Fritz Haber Institute).   

Briefly, in the ARPES experiment the smooth surface of a single crystal of WSe2 is 

decorated with Au. A hemispherical analyzer is measuring the kinetic energy (𝐸𝐾) and the 

angle (𝜃) of the photoemitted electrons. The crystal momentum of the electrons parallel to 

the surface (𝑘//) is then given by: 
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𝑘// = √2𝑚𝐸𝐾 sin 𝜃 , R 6.1 

and their binding energy (𝐸𝐵) by: 

𝐸𝐵 = ℏ𝜔 − 𝐸𝐾 − 𝑊 R 6.2 

where 𝑊  is the work function that depends on the material and some experimental 

conditions.  

The measured quantities 𝐸𝐵  and 𝑘// give the band structure of the material. The results 

for Au / WSe2 are shown in figure 6.6. The inset shows the area of the band structure that 

determines the electrical properties of the sample. On the one hand, the intense band, 

which is nearly 1 eV below the Fermi level, is the highest point of the conduction band of 

WSe2. Most of the excitation of WSe2 begins at this point when the sample is illuminated 

with near-band gap photons. On the other hand, the weak band that is crossing the Fermi 

level is the 6sp band of Au. DFT calculations performed by Dr. Maciej Dendzik were 

used to identify more spectral features of the sample’s valence band. For instance, the 

signal between -2.5 and -3 eV and at high momenta (𝑘// > 1 Å−1) is due to the 5d states 

of Au. A weak feature at the Γ point (𝑘// ≈ 0) and down to -0.5 eV is a surface state of 

Au. Finally, the upper band of WSe2 has a replica of lower energy by 0.5 eV due to spin-

obit coupling [234].  

 

Figure 6.6: Electronic band structure of Au / WSe2 heterostructures (second 

derivative plot) measured with static ARPES. The inset shows the valence band 

maximum of WSe2 and the sp states of Au that cross the Fermi level. In collaboration 

with Dr. Maciej Dendzik, Sang Eun Lee and Dr. Laurenz Rettig (PC dep. FHI, Berlin). 
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6.2.4 Optical properties of pure and Au-decorated WSe2 

Due to the pronounced existence of Au states in the band structure, it is expected that the 

optical absorption of the Au / WSe2 sample is modified compared to bare WSe2. For this 

reason the author of this study has collaborated with the group of Prof. Dr. Stephanie 

Reich (Freie Universität, Berlin) to measure optical absorption in an appropriate optical 

setup. The measurements have been carried out together with Niclas Müller and Yu 

Okamura.  

The setup uses the radiation emerging from a white-light laser source and two 100x 

objectives for focusing light on the sample and collecting the reflected and the transmitted 

part of the radiation. Reference spectra are taken either on a silver mirror for the 

reflection geometry, or on neighboring empty windows of the TEM grid for the 

transmission geometry. Knowing the spectrum of the white-light source allows for an 

accurate determination of the percentages of transmission (T in %), reflection (R in %) 

and absorption (A=100-T-R) at each wavelength. 

The investigated Au / WSe2 samples are prepared in the same way as in the FED 

experiments. An ultrathin flake of WSe2 is supported on a TEM grid and a certain spot on 

its surface (selected with an optical camera) is used to measure the absorption spectrum 

(or absorbance) of pure WSe2. Subsequently, the surface of WSe2 is covered with 2 nm of 

Au and the measurements are repeated on the same spot of the sample. The absorption 

spectra of pure WSe2 and Au / WSe2 are shown in the upper diagram of figure 6.7 with 

blue and orange solid lines, respectively. The lower diagram of figure 6.7 shows the 

modification of the absorption spectrum induced by Au. The absorption of WSe2 is 

enhanced by 2-5% apart from the A-exciton resonance peak that is decreased by 4%. 
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Figure 6.7: Linear absorbance of bare WSe2 and Au / WSe2 heterostructures. 

Upper diagram: Absorbance of bare WSe2 (red solid line) and Au / WSe2 (blue solid 

line) heterostructures. Both measurements correspond to the same flake and 

approximately the same spot. Lower diagram: The difference in the absorption 

spectrum induced by the deposition of Au.  The absorption of WSe2 is enhanced by 2-

5% apart from the A-exciton resonance peak that is decreased by 4%. In collaboration 

with the group of Prof. Stephanie Reich, Niclas Müller and Yu Okamura (FU Berlin). 

 

6.3 Lattice response of Au-decorated WSe2 to various photon 

energies 

The following sections present FED experiments with Au / WSe2 heterostructures. The 

photon energy of the pump pulse has been tuned to match the A-exciton resonance and 

the enhanced absorption region within the optical gap (see figure 6.7). The spectra for 

pumping are shown in figure 6.8 together with the absorption spectrum of Au / WSe2 

heterostructures for comparison. The central wavelengths are 760 nm (red line) and 840 

nm (dark magenta line). The conversion of the 800 nm radiation of the amplifier laser 

system to these photon energies is carried out with nonlinear optics that are discussed in 

section 2.1.1. The 760 nm radiation pumps the A-exciton, while the 840 nm excites the 

electrons into the optical gap of pure WSe2. 
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Figure 6.8: Absorption spectrum Au / WSe2 and pump spectra for FED 

experiments. Absorbance Au / WSe2 heterostructures (orange solid line), pump 

spectrum with 760 nm central wavelength (red solid line) and pump spectrum with 840 

nm central wavelength (dark magenta solid line).  

 

6.3.1 Structural dynamics in response to the A exciton 

The surface of WSe2 has been decorated with Au nano-islands of 2 nm nominal thickness. 

The pump photon energies have been tuned with a TOPAS in order to much the A-

exciton resonance as determined by optical measurements on pure WSe2. The spectrum is 

shown in figure 6.8 (red curve). The central wavelength corresponds to a photon energy 

of 1.62 eV. The incident laser fluence – for this measurement and for all measurements 

presented at later sections – have been accurately determined by opening the UHV 

chamber and measuring the spot profile and the incident laser power at the exact, sample 

position. For the A-exciton pumping, the incident laser fluence was 2.4 mJ/cm2. In all 

experiments the photons used for pumping arrive from the side of Au. 

The ultrafast lattice heating of the heterostructure is studied by means of the Debye-

Waller effect. The atomic MSD of Au has been derived from the peak decay as described 

in Chapter 3. However, for WSe2 the situation is more complicated. Oppositely to 

elemental materials, which have a single Debye-Waller factor, compounds have one 

Debye-Waller factor per type of atom [95]. In addition, the Debye-Waller factor is 

considered an isotropic quantity for Au, but for WSe2 it is expected to depend on the 

crystallographic direction due to the highly anisotropic bonding network (strong in-plane 

bonding and weak out-of-plane bonding).  For simplicity, the peak decays of WSe2 are 



Chapter 6. Energy flow in 2D metal / 2D semiconductor heterostructures 

145 
 

translated into an effective MSD based on the Debye-Waller relationship as in the work 

of Waldecker et al. [94]. This effective MSD represents the uncertainty in the position of 

the crystal’s basis but not the MSDs of the individual W and Se atoms.  

The effective MSD is shown in figure 6.9.a for Au and figure 6.9.b for WSe2. The MSD 

of Au  is initially rising, reaching a maximum value of about 2-3×10-2 Å at approximately 

20 ps, and finally dropping with a time constant of ~50 ps to ~1×10-2 Å. The signal-to-

noise ratio of Au is low because all its diffraction peaks are significantly weaker in 

intensity than the peaks of WSe2. The blue solid curve in figure 6.9.a is a biexponential 

fit that gives a time-constant for the initial rise of (9.8 ± 1.5) ps. Fitting only the (220) 

peak of Au (its most intense peak) gives a time-constant for the initial rise of (7 ± 1) ps 

for the Debye-Waller decay and for the lattice expansion of Au nanoislands. An important 

observation is that the initial rise of the MSD of Au nanoislands on WSe2 is slower than 

other Au nanostructures as well as bulk Au films, where the electron-phonon 

equilibration has a characteristic time-constant of 4-6 ps (Chapter 3). 

The effective MSD of WSe2 (orange circles in figure 6.9.b) is fitted with a biexponential 

decay function (red solid line). The MSD is initially rising by (4.5 ± 0.2) ∙ 10−3 Å2 with 

a time-constant 𝜏1 = (1.0 ± 0.2) 𝑝𝑠. This time-constant for electron-lattice equilibration 

is shorter than for pure WSe2 pumped at the A exciton resonance (≥ 1.5 𝑝𝑠). At longer 

timescales the effective MSD exhibits an additional rise by (2.8 ± 0.2) ∙ 10−3 Å2 with a 

time-constant 𝜏2 = (50 ± 12) 𝑝𝑠 . This additional rise at longer pump-probe delays 

suggests that in Au / WSe2 heterostructures there is additional energy transfer from Au 

towards WSe2, in order to achieve complete thermodynamic equilibrium. The time-

constant 𝜏2 is in the typical range for interfacial energy transfer by phonon transmission, 

as shown now.  
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Figure 6.9: Ultrafast evolution of the MSD of Au and WSe2. (a) The experimental 

MSD for Au (blue circles) and a biexponential fitting (blue solid line). (b) The 

effective MSD for WSe2 (orange circles) and a biexponential fitting (red solid line). 

The signal-to-noise ratio for Au is lower because the diffraction peaks are weaker in 

intensity. 

 

In order to examine if interfacial phonon transmission is a plausible mechanism for the 

long dynamics of the Au/WSe2 heterostructure, the MSD of Au has been transformed into 

an effective lattice temperature, as described in Chapter 3, and the result is shown in 

figure 6.10 with blue circles. As discussed already for the MSD, the signal-to-noise ratio 

for the lattice temperature of Au is poor due to the limited amount of diffraction peaks, 

their small intensity and their proximity to intense peaks of WSe2. Initially, the 

temperature of Au is rising to about 550 K and then it decays to 400 K in 40 ps.  
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Figure 6.10: Ultrafast evolution of the effective lattice temperatures of Au and 

WSe2. The experimental lattice temperature of Au and its biexponential fitting are 

shown with blue circles and a blue solid line, respectively. The estimated lattice 

temperature of WSe2 (see text for details) and its biexponential fitting are shown with 

orange circles and an orange solid line. The black dashed lines are the results of a 

simple model of interfacial energy flow with transmission of phonons. 

 

Given the fact that Au and WSe2 reach thermodynamic equilibrium at t=200 ps (equal 

lattice temperatures), the temperature dependence of the Debye-Waller factor of WSe2 

can be approximated by a linear function Δ𝐵 = 𝑎 ∙ Δ𝑇, where 𝑎 = 5.3 ∙ 10−5  Å2 𝐾⁄   (or 

1.4 ∙ 10−3  Å2 𝐾⁄  for the Δ〈𝑢2〉). The time-constants and amplitudes of the Au and WSe2 

temperature evolutions are probed by bi-exponential fittings shown in figure 6.10 with 

blue and orange solid lines, respectively.  

The procedure of Chapter 3 for measuring interfacial phonon transmission from the 

evolution of the effective lattice temperatures is now repeated for the Au / WSe2 

heterostructure. The model is a simple TTM where the interacting heat baths are the 

lattices of the Au nanoislands and the WSe2 flake. This model is used to measure the 

interfacial phonon transmission from the relaxation dynamics between 20 and 200 ps.  

While Au is cooling down by 150 K, the temperature of WSe2 appears to increase by 40 

K. This can be explained by the heat capacities and masses of the two materials. The 

inputs of the model are the thicknesses of the two materials (𝐿𝐴𝑢 = 2 𝑛𝑚 and 𝐿𝑊𝑆𝑒2 =

10 𝑛𝑚 ) and the lattice heat capacities. The lattice heat capacities are 𝐶𝑙𝐴𝑢 = 2.49 ∙

106 J/m3K and 𝐶𝑙𝑊𝑆𝑒2 = 1.98 ∙ 106 J/m3K. The lattice heat capacity of WSe2 has been 

found from the work of Bolgar et al. [235]. The interfacial phonon transmission for the 
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Au / WSe2 interface is 100 MW/m2K. The theoretical evolution of the Au and WSe2 

temperatures are given by the dashed, black lines of figure 6.12. The equations of the 

TTM are: 

𝑑𝑇𝐿
𝐴𝑢

𝑑𝑡
= −

𝑊𝑃𝑃

𝐿𝐴𝑢𝐶𝑙𝐴𝑢
∙ (𝑇𝐿

𝐴𝑢 − 𝑇𝐿
𝑊𝑆𝑒2)   , 

R 6.3 

 

𝑑𝑇𝐿
𝑊𝑆𝑒2

𝑑𝑡
=

𝑊𝑃𝑃

𝐿𝑊𝑆𝑒2𝐶𝑙𝑊𝑆𝑒2
∙ (𝑇𝐿

𝐴𝑢 − 𝑇𝐿
𝑊𝑆𝑒2)   , 

R 6.4 

where 𝑊𝑃𝑃  is the interfacial phonon transmission or vibrational coupling and 𝑇𝐿
𝐴𝑢  and 

𝑇𝐿
𝑊𝑆𝑒2  the temperatures of the two lattices. The interfacial phonon transmission of Au 

nanoislands on WSe2 (100 MW/m2K) is slightly higher than that of Au923 NCs on a-C 

(90 MW/m2K) and significantly higher than for Au923 NCs on Si-N (16 MW/m2K) and 

Au923 NCs on graphene (14 W/m2K). This can be explained by the large contact area of 

the nanoislands with the substrate and the epitaxial stacking of Au atoms on WSe2.  

The extracted lattice temperature have also been used to extract the thermal expansion 

coefficient. The Au nanoislands exhibit lattice expansion (shift of the Bragg peaks to 

lower scattering angles) with the same dynamics like the Debye-Waller decay. The 

thermal expansion coefficient of Au nano-islands is 𝑎𝐿 = (8.0 ± 0.7) ∙ 10−6 𝐾−1, which 

is similar with the value that was found for Au NCs in Chapter 4. The peaks of WSe2 do 

not show lattice expansion. Based on the work of El-Mahalawy et al. [236] the thermal 

expansion coefficient of WSe2 is (2.7 ± 0.2) ∙ 10−5 𝐾−1and, thus, it can be detected by 

the FED apparatus. However, the motion of two-dimensional materials is constrained 

normal to the electron beam and, hence, their lattice expansion is suppresed at ultrafast 

timescales. 

 

6.3.2 Electronic dynamics in response to the A exciton 

Since Au grows epitaxially on the surface of WSe2 single crystals, it is feasible to perform 

time- and angle-resolved photoelectron spectroscopy (tr-ARPES) in order to probe the 

ultrafast electronic dynamics and complement the results of FED, which probes solely the 

lattice response. These considerations have initiated a collaboration with the group of Dr. 

Laurenz Rettig (Physical Chemistry department, Fritz Haber Institute) and Dr. Tommaso 
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Pincelli, Dr. Shuo Dong and Dr. Samuel Beaulieu who have performed tr-ARPES 

experiments.   

Figure 6.11 shows experimental results from tr-ARPES experiments. Photoexcitation is 

carried out by photons of 800 nm wavelengths, leading to the formation of A-excitons. 

The image in figure 6.11.a is the experimental band structure of Au / WSe2 in 

equilibrium. The Fermi level is located at E=0. The states that cross the Fermi level 

belong to the sp band of Au. The states at k// = -1.3 Å-1 and E ~ -1 eV is the top of the 

valence band of WSe2. The signal in the region E > 0 is almost absent apart from some 

signal close to the Fermi edge (rescaled to be visible). After excitation with 800 nm 

pulses, photons get absorbed from the electrons and populate states above the Fermi level 

(E > 0). The band structure plotted in figure 6.11.b corresponds to a pump-probe delay of 

50 fs. Three square shapes mark the positions of the most prominent, excited electronic 

states. The A-excitons form by transferring electrons to the K-point of the Brillouin zone, 

marked by a cyan square. In order to establish electron-lattice equilibrium, the electrons 

need to reside and relax at the bottom of the valence band, in the Σ valley, marked by 

dark red square. In addition, the Au islands are also electronically excited. The excited 

electronic states of the sp band are marked by a dark yellow square.  

The intensities (electron counts per s) of these three regions are integrated and plotted as a 

function of the pump-probe delay time in figure 6.11.c. The time-trace with the shortest 

lifetime (cyan curve) belongs to the K states. The situation is similar with pure WSe2, 

where the signal at the K-point decays within 70 fs. The hot electrons of the Au sp band 

are shown with the yellow curve, and their population decreases as the electron-lattice 

relaxation proceeds. Finally, the dark red curve shows the relaxation of the electrons at 

the Σ valley.  
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Figure 6.11: Time-resolved ARPES of Au / WSe2 heterostructure. (a) Experimental 

band structure of Au / WSe2 at equilibrium conditions (no pump). (b) Experimental band 

structure of Au / WSe2 heterostructure at a pump probe delay of 50 fs. The K and Σ 

valleys of WSe2 are marked with cyan and dark red squares, respectively. The excited sp 

states of Au are marked with the yellow square. (c) Population dynamics of the excited 

states at the K and Σ valleys of WSe2 and at the sp band of Au. For additional 

information on the technique of tr-ARPES the reader is referred to the work of Puppin et 

al. [27] and Bertoni et al. [213]. The plots of this figure have been provided by Dr. 

Tommaso Pincelli (PC department, FHI, Berlin). 

 

The most interesting finding of tr-ARPES is that the electrons at the Σ valley, in the 

presence of Au nanostructures, relax much faster than in pure WSe2. This Au-induced 

change in the ultrafast dynamics of the Σ is illustrated in figure 6.12. In this figure, both 

time-traces correspond to an incident laser fluence of 1 mJ/cm2. The measurement of pure 

WSe2 has been performed at the same crystal with that of figure 6.11 but before 

deposition of Au. Obviously, the dynamics of the hot electron relaxation in the Σ valley 

are significantly accelerated. The characteristic time-constant of the population at the Σ 

valley drops from 3-4 ps to ~400 fs.  
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Figure 6.12: Electronic relaxation at the Σ valley of WSe2 with and without Au 

nanoislands on its surface. The characteristic lifetime of hot electrons at the Σ valley 

drops from 3-4 ps to ~400 fs when the surface of WSe2 is decorated by Au nanoislands. 

Both measurements have used 800 nm radiation and 1 mJ/cm2 fluence. 

 

In view of the results of tr-ARPES, an important observation of the FED experiments is 

that the lattice response to the A exciton is shorter for Au-decorated WSe2 (1 ps, see 

figure 6.9) compared to pure WSe2 (≥ 1.5 ps, see figure 6.2). In parallel, the electron-

phonon equilibration in the Au nanoislands is 7-9 ps (see figure 6.9.a), distinctively 

slower than other Au structures. The same time-constant is: (i) 4.5 ps for Au NCs on 

graphene, (ii) 6 ps for Au NCs on a-C, (iii) 5 ps for Au NCs on Si-N and (iv) 4-6 ps for 

bulk Au. 

The proposed explanation is that electron-hole pairs of WSe2 transmit into Au and relax 

there by electron-phonon coupling leading to an effectively shorter time-constant for 

WSe2 and an effectively longer time-constant for Au. This process is illustrated in figure 

6.13. In accordance with this scenario, the optical spectroscopy of figure 6.7 provides 

evidence that the formation of excitons is suppressed in the presence of Au. Moreover, 

the work of A. G. Čabo et al. [237] have shown that electrons and holes can be 

transmitted from a thin TMDC to Au and relax there by electron-phonon and hole-phonon 

coupling.  
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Figure 6.13: Transmission of electron-hole pairs from WSe2 to Au. (a) A-excitons 

form at the direct band-gap of WSe2 and transform into dark excitons within 10s of fs 

(Puppin et al. [27], Bertoni et al. [213]). (b) Electrons from the Σ valley and holes from 

the K valley are transferred to the sp states of Au. (c) Inside Au, electrons and holes 

relax towards the Fermi level by electron-phonon and hole-phonon coupling, 

respectively. Adapted with modifications from A. G. Čabo et al. [237]. 

 

6.3.2 Off-resonant pumping of Au/WSe2 heterostructures 

As seen from the results of the previous section, pumping the Au/WSe2 heterostructure at 

the A-exciton resonance initiates a rich variety of electron-electron, electron-lattice and 

lattice-lattice interactions. This section presents FED experiments where the photon 

energy is smaller than the A-exciton resonance. The central wavelength is 840 nm, 

corresponding to a photon energy of 1.48 eV. The pump spectrum, shown in figure 6.8 

(dark magenta solid curve), has a central wavelength of 840 nm. The incident laser 

fluence is 2.8 mJ/cm2. The used laser pulses are within the optical gap of pure WSe2 and 

have minimum overlap with the A-exciton resonance. However, the Au nano-islands can 

still be excited and the scope of the present experiment is to determine the rapidity of 

transferring energy to the WSe2 substrate.  

The results of the FED experiment with 840 nm excitation are shown in figure 6.14. This 

experiment recorded the material’s response at short timescales (-4 to 10 ps). The relative 

decay of the (220) peak of Au (fig. 6.14.a) can be reproduced by an exponential decay 

with a time-constant of 7 ps, in agreement with previous measurements. Despite the fact 

that the photon energies are within the optical gap of the semiconductor, the response of 

WSe2 is initiated upon the arrival of the laser pulse and the triggered dynamics are in the 

sub-picosecond timescale. The relative decay of the (110) peak of WSe2 (fig. 6.14.b) is 

fitted with an exponential decay and the time-constant is τ=(860 ± 30) fs. The effective 
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MSD and the effective lattice temperature of WSe2 are shown in figure 6.14.c. The 

energy content of WSe2 maximizes at about 3 ps. The increase in the effective MSD is 

(2.70 ± 0.02)∙10-3 Å2 and the increase of the effective lattice temperature is (52 ± 1) K. 

 

 

Figure 6.14: Ultrafast lattice dynamics of the Au / WSe2 heterostructure pumped 

with 840 nm radiation. (a) Relative decay of the (220) peak of Au (blue circles) and 

exponential decay with 7 ps time-constant (blue solid line). (b) Relative decay of the 

(110) peak of WSe2 (orange circles) and fitting with an exponential decay (red solid 

line).(c) The effective MSD (left axis) and the effective lattice temperature (right axis) 

of WSe2. The experimental data-points are given by the orange circles and the red solid 

line is an exponential decay.  
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The observed, sub-picosecond lattice dynamics suggest the quasi-instantaneous (in 

comparison with the instrumental time-resolution) generation of excited electrons in 

WSe2, despite the fact that the incident photons have lower energy than the first excitonic 

resonance by 144 meV.  

To reassure that sub-band-gap photons are exciting charge carriers in WSe2 (when it is 

decorated by Au) the experiment has been repeated with pump photons of 1300 nm 

wavelength. In this case the photon energy is 58% smaller than the first excitonic 

resonance. The fluence for this measurement is 1.16 mJ/cm2, which is considered small 

for the investigated system and the wavelength used. The relative decay of the (110) peak 

of WSe2 is shown in figure 6.15. Again, WSe2 has an ultrafast response at timescales that 

are typical for intrinsic electron-lattice equilibration. From 1 ps to 20 ps the (110) peak of 

WSe2 is decreased on average by (0.17±0.05)% and then it keeps decreasing in the 100-

200 ps timescale. The kink at 20-60 ps has been repeatedly observed and it might be 

related with phonon-phonon interactions and lattice relaxation based on the work of 

Waldecker et  al. [94] (see figure 2 of cited work). The next section is devoted to the 

dynamics of the ultrafast lattice response of WSe2 during the first 10 picoseconds.  

 

 

Figure 6.15: Ultrafast lattice dynamics of the Au / WSe2 heterostructure pumped 

with 1300 nm radiation. The incident laser fluence is only 1.16 mJ/cm2. From 1 ps 

and up to 20 ps the (110) peak of WSe2 is decreased by (0.17±0.05)%. 

 

The FED experiments with 840 nm and 1300 nm radiation show that in the presence of 

Au, sub-band-gap light can excited charge carriers in WSe2, which then relax by electron-

phonon coupling. Excitation of semiconductors’ charge carriers, assisted by plasmonic 
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nanostructures, is a very interesting phenomenon for viable applications like 

photocatalysis and solar cells (see introduction). This section is focused on the relaxation 

of excited charge carriers with the lattice. For the experiment with 840 nm photons, the 

observed lattice dynamics are distinctively faster (870 fs) than pure WSe2 pumped at the 

A-exciton (1.8 ps). The experiments with 840 nm photons are repeated with various 

fluences to investigate if the process that generates excited electrons in the semiconductor 

is linear (/nonlinear) and what is the effect on the time-constant.  

Figure 6.16.a shows the effective MSD of WSe2 for various fluences. Relatively to the 

total available laser power, the experiments have been carried out with 4 to 12% power in 

steps of 2%. The corresponding fluences range from 2.8 to 0.9 mJ/cm2.  The first 

measurement employs 12% of the available laser power. This measurement is used to 

determine the temporal overlap of the pump and probe pulses and for this reason it has 

different delay points than the others and it is shifted in time to match the time-zero of the 

other datasets. All measurements were carried out with the same heterostructure and on 

the same spot. Already from the experimental data of figure 6.16.a, it appears that the 

effective MSD has a nonlinear dependence. In addition, the dynamics are slower at high 

fluences. The MSD is maximized at approximately 3 ps for 12%, 2 ps for 10%, 1-2 ps for 

6-8% and <1 ps for 4% (see inset for the lowest fluence).  

A total of nine measurements with different fluences were carried out back-to-back on the 

same sample. Figure 6.16.b shows the average MSD at 2-5 ps (red circles) and the 

standard deviation for the same data set (error bars) plotted as a function of the incident 

laser fluence. The error bars of the incident laser fluence were measured using a 

continuous tracking of the laser spot intensity on a reference camera. The fluence 

dependence is certainly following a nonlinear relationship with the energy input.  

The blue solid line in figure 6.16.b shows a fitting with a function of the form aF2, where 

F is the fluence. Such a quadratic fluence dependence is expected if the plasmonic near-

fields of Au nanoislands enhance two-photon absorption in WSe2. Another possibility is 

that hot electrons, generated in Au, are transmitted to WSe2 and deposit energy to its 

lattice by electron-phonon coupling. The red curve in figure 6.16.b is the result of a 

model of hot electron transfer. Hot electrons of Au have a Fermi-Dirac distribution and 

their temperature evolves according to the TTM. Au electrons can pass to WSe2 and 

deposit their energy to its lattice. The energy dependent probability for hot electron 
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transmission is proportional to the product of the electronic densities of states of the two 

materials. 

 

Figure 6.16: Fluence dependence measurements of Au / WSe2 heterostructures 

pumped with sub-band-gap radiation of 840 nm wavelength. (a) The effective 

MSD of WSe2 as a function of pump-probe delay for 4-12% pumping (relatively to the 

total available power) in steps of 2%. The inset shows the measurements with the 

lowest fluence. (b) The fluence dependence of the average MSD at 2-5 ps after 

excitation. The solid black and red lines line are models of energy flow based on 

plasmons (blue) and hot electrons (red), which are explained in more detail in the main 

text. (c) The fluence dependence of the time-constant of electron-lattice relaxation. The 

measurements follow a clear trend. The maximum time-constant is ~850 fs (for the 

highest fluence) and the minimum time-constant is 300-400 ps (for the lowest fluence). 

 

The time-constant of the MSD is also fluence-dependent as shown in figure 6.16.c. The 

time-constants are extracted from fittings of exponential functions and the error bars 

represent the fitting uncertainties (standard deviation). At the highest fluence (2.8 
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mJ/cm2) the time-constant is in the order of 850 fs. As the fluence decreases, the time-

constant decreases even further, following a clear trend. The lowest fluence (1 mJ/cm2) 

approaches the instrumental time-resolution (300 fs for the used experimental conditions). 

These relaxation dynamics are significantly faster than the relaxation of pure WSe2 in 

response to the A-exciton. 

The next paragraphs discuss how Au can induce optical absorption and lattice heating of 

WSe2 for photon energies below its direct optical gap. Figure 6.17 shows the static 

ARPES measurement of Au / WSe2 and on top the theoretical band structure from DFT 

measurements (performed by M. Dendzik, Dynamics of Correlated Materials, with the 

GLLB-SC exchange-correlation potential). In figure 6.17, the blue lines are the bands of 

WSe2 and the red lines are the bands of Au. All the vertical arrows represent optical 

transitions (without taking into account their scattering cross section). All these 

transitions have a photon energy that is equal with the optical gap of WSe2. The magenta-

colored arrow is the only optical transition that has both the initial and the final states 

within WSe2. All other transitions (black arrows) have an initial state in Au and a final 

state in WSe2. Such optical transitions can take place at the metal / semiconductor 

interface.  

 

Figure 6.17: Direct optical transitions at the Au / WSe2 interface. All arrows 

correspond to optical excitations with energy that matches the direct optical gap. For 

pure WSe2 the only allowed optical transition is the one shown with a magenta arrow. 

Decoration of WSe2 enables multiple optical transitions shown with black arrows (the 

transfer matrix elements for the optical transitions are not taken into account). 
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Based on figure 6.17, photons with energies close and below the optical gap, can transfer 

electrons to highly excited states of WSe2 above the Fermi level due to the additional sp 

states of Au. For λ=840 nm the maximum energy of final states in WSe2 is 1.48 eV above 

the Fermi level. These highly excited electronic states have large phase-space for electron 

scattering and stronger electron-phonon coupling, compared to the ones that are located 

close to the conduction band minimum. Thus, direct optical transitions can explain the 

short time-constants (~400 fs) at the low fluence regime in figure 6.16.c. However, direct 

optical transitions are expected to have a linear dependence on the incident laser fluence 

and thus the pronounced nonlinearity at high fluences in figure 6.16.b is due to some 

different mechanism. Another mechanism for enhanced absorption is due to the formation 

of new, interfacial electronic states, see for instance Krane et al. [227]. The corresponding 

optical transitions are also expected to have a linear dependence on the incident laser 

fluence.  

Lattice heating of WSe2 in response to sub-band-gap photons can also be activated by hot 

electron transfer from Au. This mechanism is illustrated in figure 6.18. After absorption 

of the photons with 840 nm wavelength at 𝑡 = 0, electrons of Au are excited 1.48 eV 

above the conduction band minimum of WSe2. In the 100 fs timescale highly-energetic, 

nonthermal electrons can be transferred to highly energetic states of WSe2 and excite 

phonons. Even after electrons thermalize, a significant portion of the Fermi-Dirac 

distribution has sufficient energy for hot electron injection into WSe2. The energy barrier 

for hot electron injection from Au to WSe2 is in the order of 110 meV, which is the 

energy difference between the conduction band minimum and the Fermi level (see figure 

6.17 and relevant discussion). The electron-phonon coupling in Au is relatively weak and 

hence hot electron injection can occur even after 5 ps or more (based on the TTM). The 

expected fluence dependence of hot electron transfer is shown in figure 6.16.b (red 

curve). The time constants are expected to be in the order of 5 ps and hence hot electron 

transfer cannot account for the time-constants of electron-lattice relaxation, shown in 

figure 6.16.c. 
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Figure 6.18: Hot electron transfer from Au to WSe2. After absorption of the laser 

pulse (𝑡 = 0) electrons of Au are excited above the conduction band minimum of 

WSe2. In sub-picosecond timescales, highly-energetic, nonthermal electrons can be 

transferred to highly energetic states of WSe2 and excite phonons. Even after 

thermalization and for time-delays as high as 5 ps, hot electrons can be transferred to 

WSe2, since the energy barrier is only 110 meV (conduction band minimum minus the 

Fermi level). Energy transfer by hot electrons is suppressed for time-delays larger than 

5 ps or more.  

 

Another important phenomenon that must be taken into account is the plasmonic 

properties of metallic nanostructures on semiconducting surfaces. The Au nanoislands 

can get polarized by the external electric field of the laser and introduce local distortions 

to the total electric field. The strength of the electric field in the vicinity of the metallic 

islands is enhanced. Charge oscillations in the metal are also inducing image charges in 

the semiconductor. All these phenomena are shown schematically in figure 6.19.a 

(adapted with modifications from Tan et al. [71] see fig. 1.a in the reference). Generally, 

the frequency of the plasmon resonance and the field enhancement depend on the size and 

shape of the metallic nanostructure and on the dielectric environment. Sun et al. [238] 

have studied Au nanoislands of very similar morphology on SiO2 (compare figures 2.a-c 

in the reference and figure 6.4 of the present work). The maximum of the plasmonic peak 

is located at 750 nm. The plasmonic peaks of irregular Au nanoislands are broad. The 

intensity of the plasmon resonance drops by 50% at 600 nm and by 30% at 1000 nm. This 

is due to the large variety of sizes and shapes of the nanoislands. Based on this, it is 

expected that the 840 nm laser pulses excite plasmonic oscillations of the Au nanoislands 

on WSe2. 
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Figure 6.19: Plasmons and multiphoton absorption in Au / WSe2 heterostructures. 

(a) The Au nanoislands get polarized by the external electric field of the laser and 

cause local distortions of the total electric field. (b) The field enhancement in the 

vicinity of the Au nanoislands can lead to two-photon absorption in WSe2. (c) Two-

photon absorption populates highly energetic levels of WSe2 with large phase-space for 

electron-phonon scattering and shorter timescales for relaxation. 

 

The plasmonic field enhancement can facilitate the interfacial optical transitions of figure 

6.17 and direct optical transitions within each component. Moreover, it can enhance 

nonlinear, two-photon absorption in WSe2. The probability of two-photon absorption has 

a quadratic dependence on the intensity of the incident laser field. The fluence 

dependence measurements of figure 6.16.b show that the MSD (or the lattice 

temperature) has an approximate F2 dependence on the incident laser fluence, which can 

partially originate from two-photon absorption. Similarly with interfacial optical 

transitions, two-photon absorption will result in highly excited electrons. For 840 nm 

radiation and two-photon absorption the excited electronic state can be 1.33 eV above the 

conduction band minimum at the K point (figure 6.19.b). As a result of this process, the 

excited charge carriers have a large phase-space for scattering and shorter lifetimes 
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(figure 6.19.b). Multiphoton absorption in WSe2 due to the plasmonic near fields of Au 

nanoislands can account for the strong nonlinear lattice heating of figure 6.16.b and the 

short time-constants of figure 6.16.c. Based on this, plasmonic coupling of WSe2 and Au 

is considered an important mechanism, especially for higher fluences. 

Summary. The author of this work suggests that the nonlinear and accelerated lattice 

dynamics of Au-decorated WSe2, in response to sub-band-gap photons (λ=840 nm), stem 

from multiple, coexisting processes. Hot electron transfer is expected to occur but it 

cannot be the dominant mechanism, since it contradicts the sub-picosecond lattice 

dynamics of WSe2. Linear processes, such as interfacial optical transitions, are expected 

to prevail at low laser fluences and to give accelerated electron-lattice relaxation because 

the maximum energy of excited charge carriers in WSe2 is 1.48 eV above the Fermi level. 

At high laser fluences, nonlinear, multiphoton absorption prevails. This process is driven 

by the plasmonic near-fields of Au nanoislands. In this case, the maximum energy of 

excited charge carriers is 1.33 eV above the conduction band minimum at the K point and 

the electron-lattice relaxation is again accelerated.  
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Chapter 7. Summary and conclusions  

 

Ultrasmall nanostructures have large surface-to-volume ratio and hence their 

nonequilibrium states are strongly affected by ultrafast energy flow to and from their 

chemical environment. In photoexcited, supported, 0D nanoclusters, thermal equilibration 

proceeds through intrinsic heat flow between their electrons and their lattice and extrinsic 

heat flow between the nanoclusters and their substrate. In Chapter 3, FED experiments 

and a newly developed model of ultrafast energy flow in 0D / 2D heterostructures have 

been used to measure the various microscopic coupling constants. The model has been 

extended to crystalline substrates in Chapter 5. It is expected that the modelling 

described in this thesis can be adapted for a wide range of heterostructures with low-

dimensional materials.  

 

 

Figure 7.1: Lattice heating and structural changes of nanoclusters,  

induced by hot electrons or by hot substrate phonons. 

 

The study of ultrafast energy flow gave the following results: 

 The measured electron-phonon coupling constant of Au923 NCs is Ge-ph = (1.9 ± 

0.5) ∙1016 W/m3K, which is ∼70% of the value of bulk Au 
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 The interfacial phonon transmission is the dominant source of lattice dynamics in 

the 10-100 ps timescale. 

 The measured interfacial phonon transmission is: 16 MW/m2K for Au923 NCs on 

Si-N, 14 MW/m2K for Au923 NCs on graphene, 90 MW/m2K for Au923 NCs on a-

C and 100 MW/m2K for Au nanoislands on WSe2. 

 The interfacial phonon transmission is higher for 0D nanostructures on surfaces 

with nanoscale roughness like a-C and for 2D / 2D heterostructures with large 

contact area, like Au nanoislands on WSe2 single crystals.  

Quantitative knowledge of the energy transfer rates between the microscopic subsystems 

of nanostructures is expected to be very important for the accurate design and control of 

the corresponding nanodevices.  

Furthermore, ultrafast energy flow triggers atomic motions, such as anharmonic 

expansion, and lattice disordering, which manifest as distinct and quantifiable reciprocal-

space observables. These motions have been examined in detail in Chapter 4. The 

anharmonicity of the interatomic potential results always in lattice expansion on ultrafast 

timescales. Moreover, the Au923 NCs exhibit ultrafast, surface premelting in conditions of 

pronounced electron-lattice nonequilibrium. The study of ultrafast structural changes of 

Au923 NCs gave the following results: 

 The Au923 NCs exhibit ultrafast lattice expansion, in parallel with the Debye-

Waller effect. 

 The thermal expansion coefficient of Au923 NCs is 𝑎𝐿 = (9.5 ± 0.7) ∙ 10−6 K−1 and 

it is reduced by ~30% compared to bulk Au. 

 Hot electrons can distort the lattice of Au923 NCs, even if the lattice temperature is 

below the equilibrium threshold for surface pre-melting.  

 When the electronic temperature is ~3300 K, an approximate 14% of the surface 

is melting in 10 ps.  

The motion of surface atoms and surface premelting in nonequilibrium conditions is a 

key-feature in catalysis. During operation, nanoscale catalysts interact with chemically 

generated hot electrons, their surface atoms are highly mobile and this atomic mobility is 

eventually leading to sintering. In view of the present results, an in-depth understanding 

of deleterious effects in catalysis might require ultrafast investigations of structural 

changes.  
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Structural stability of nanoscale building blocks is prone to atomic vibrations and atomic 

diffusion but also to translations and rotations of entire nanostructures. In Chapter 5, 

FED has been used to probe rotational motions of 0D nanostructures on crystalline 

surfaces. In equilibrium, the Au923 NCs have a preferred, crystallographic orientation on 

graphene due to their well-defined facets and internal crystal structure, as well as the 

crystallinity and flatness of the substrate. Ultrashort laser pulses are used to induce 

vibrational and rotational excitation of the nanoclusters and the resulting, time-dependent 

diffraction patterns are probed with FED. The diffraction dynamics are affected by the 

Debye-Waller effect, lattice expansion and NC rotations. In order to analyze these data, 

the experiments were supported by molecular dynamics simulations, electron diffraction 

simulations and simulations of ultrafast energy flow. At the end of this process it was 

found that the NCs exhibit constrained, angular oscillations, termed librations. 

 

 

Figure 7.2: Femtosecond electron diffraction used  

as an ultrafast goniometer for nanocrystals. 

 

The findings regarding ultrafast motions of entire Au923 NCs are summarized as follows: 

 The Au923 NCs librate on graphene with a period of ~20 picoseconds. The torque 

per rad acting on each NC is estimated to be 35 𝑛𝑁 ∙ 𝑛𝑚/𝑟𝑎𝑑 . The angular 

distribution of NCs with respect the graphene is 1.6o at 300 K and 2.0o at 600 K. 
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 The activation of NC librations follows biexponential dynamics. The time-

constants measured from the (220) peak are approximately τ1~4 ps (40% 

amplitude) and τ2~110 ps (60% amplitude).  

 The short time-constant suggests quasi-impulsive excitation and the long time-

constant corresponds to the complete thermalization time of acoustic phonons in 

graphene. 

 The corresponding energy transfer rates are in the order of 3 meV/ps and 0.2 

meV/ps. The angular momentum transfer to the NCs is assigned to scattering of 

flexural ZA phonons of graphene. 

The present results open up the way for ultrafast measurements of nano-objects’ motions 

using diffractive probes. Studying the coupling between the various NC motions and the 

phonons of the substrate can provide a detailed view of mass-transport at the nanoscale.  

In addition, it is shown how molecular dynamics and electron scattering simulations can 

be used to design and analyze demanding experiments with mobile nanostructures.  

The heterosis of nanoscale metals and semiconductors culminates in light harvesting 

technologies. Plasmonic photovoltaics and plasmonic photocatalysts contain spatially 

confined metals to concentrate electromagnetic radiation and semiconductors to enable 

efficient charge-separation. The performance of optoelectronic devices depends on the 

lifetime of the excited charge carriers. On the one hand, plasmonic metals can enhance 

light absorption and boost performance. On the other hand, plasmonic coupling, 

interfacial optical transitions and hot electron transfer can modify the dynamic properties 

of, otherwise, well-known semiconducting materials. Such phenomena have been studied 

in detail in Chapter 6. 
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Figure 7.3: Near-infrared photons induce nonlinear lattice heating  

and accelerated electron-lattice relaxation in Au-decorated WSe2. 

 

The experiments of Chapter 6 have shown that surface-decoration of WSe2 with Au 

nanostructures can alter its electronic and lattice dynamics. The results of these studies 

are summarized as follows: 

 Au grows epitaxially on WSe2 without strict requirements on the growth 

conditions. This allows studying the structural and electronic dynamics of the 

heterostructure with FED and tr-ARPES, respectively, and acquire an in-depth 

knowledge of nonequilibrium states. 

 Surface decoration with 2 nm of Au has a significant effect on the electronic and 

optical properties of multilayer flakes of WSe2. 

 The structural dynamics of WSe2 in response to the formation of A-excitons are 

accelerated.  

 In the presence of Au, WSe2 can be excited by sub-band-gap photons. The 

resulting structural dynamics have a nonlinear fluence dependence. The time-

constant for electron-lattice relaxation drops from ≥ 1.5 ps, for bare WSe2, to 400-

850 fs for Au-decorated WSe2. 

The enhancement of light-matter interactions in semiconductors using plasmonic 

nanostructures is a known phenomenon. However, the ultrafast interactions between the 

microscopic building blocks of the metal / semiconductor heterostructure is an open 

Pure WSe2 Au / WSe2 

Near-Ir Near-Ir 

Charge Lattice Charge Lattice 

τ ≥ 1.5 ps 

& linear 

 

τ = 400-800 fs 

& nonlinear 
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subject. The combined use of FED and tr-ARPES can provide a direct and detailed view 

on the interaction of photoexcited, charge carriers and phonons.  

Based on all the above, nanoscale heterostructures have a great variety of nonequilibrium 

phenomena and many possible pathways for ultrafast energy flow, depending on the 

morphology of the nanostructures, the properties of the substrate etc. Energy flow can 

drive ultrafast motions of atoms and clusters. The properties of the nanostructures’ 

substrate can also be affected during nonequilibrium. Ultrafast diffractive probes 

combined with modelling and simulations can provide an in-depth understanding of such 

phenomena. 
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