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Abstract

We present a fully automated workflow
for phylogenetic reconstruction on large
datasets, consisting of two novel methods,
one for fast detection of cognates and one
for fast Bayesian phylogenetic inference.
Our results show that the methods take
less than a few minutes to process lan-
guage families that have so far required
large amounts of time and computational
power. Moreover, the cognates and the
trees inferred from the method are quite
close, both to gold standard cognate judg-
ments and to expert language family trees.
Given its speed and ease of application, our
framework is specifically useful for the ex-
ploration of very large datasets in historical
linguistics.

1 Introduction
Computational historical linguistics is a rela-
tively young discipline which aims to provide
automated solutions for those problems which
have been traditionally dealt with in an ex-
clusively manual fashion in historical linguis-
tics. Computational historical linguists thus
try to develop automated approaches to de-
tect historically related words (called “cog-
nates”; Jäger et al. 2017; List et al. 2017;
Rama et al. 2017; Rama 2018a), to infer lan-
guage phylogenies (“language trees”; Rama
et al. 2018; Greenhill and Gray 2009), to es-
timate the time depths of language families
(Rama, 2018b; Chang et al., 2015; Gray and
Atkinson, 2003), to determine the homelands
of their speakers (Bouckaert et al., 2012; Wich-
mann et al., 2010), to determine diachronic
word stability (Pagel and Meade, 2006; Rama
and Wichmann, 2018), or to estimate evolu-
tionary rates for linguistic features (Greenhill
et al., 2010).

Despite the general goal of automating tra-
ditional workflows, the majority of studies con-
cerned with phylogenetic reconstruction (in-
cluding studies on dating and homeland in-
ference) still make use of expert judgments to
determine cognate words in linguistic datasets,
because detecting cognates is usually regarded
as hard to automate. The problem of manual
annotation is that the process is very time con-
suming and may show a lack of objectivity,
as inter-annotator agreement is rarely tested
when creating new datasets. The last twenty
years have seen a surge of work in the develop-
ment of methods for automatic cognate iden-
tification. Current methods reach high accu-
racy scores compared to human experts (List
et al., 2017) and even fully automated work-
flows in which phylogenies are built from au-
tomatically inferred cognates do not differ a
lot from phylogenies derived from expert’s cog-
nate judgments (Rama et al., 2018).

Despite the growing amount of research de-
voted to automated word comparison and fully
automated phylogenetic reconstruction work-
flows, scholars have so far ignored the compu-
tational effort required to apply the methods
to large amounts of data. While the speed of
the current workflows can be ignored for small
datasets, it becomes a challenge with increas-
ing amounts of data, and some of the currently
available methods for automatic cognate de-
tection can only be applied to datasets with
maximally 100 languages. Although methods
for phylogenetic inference can handle far more
languages, they require enormous computa-
tional efforts, even for small language fami-
lies of less than 20 varieties (Kolipakam et al.,
2018), which make it impossible for schol-
ars perform exploratory studies in Bayesian
frameworks.



In this paper, we propose an automated
framework for fast cognate detection and fast
Bayesian phylogenetic inference. Our cog-
nate detection algorithm uses an alignment-
free technique based on character skip-grams
(Järvelin et al., 2007), which has the advan-
tage of neither requiring hand-crafted nor sta-
tistically trained matrices of probable sound
correspondences to be supplied.1 Our fast
approach to Bayesian inference uses a simu-
lated annealing variant (Andrieu et al., 2003)
of the original MCMC algorithm to compute
a maximum-a-posteriori (MAP) tree in a very
short amount of time.

Testing both our fast cognate detection and
our fast phylogenetic reconstruction approach
on publicly available datasets, we find that
the results presented in the paper are com-
parable to the alternative, much more time-
consuming algorithms currently in use. Our
automatic cognate detection algorithm shows
results comparable to those achieved by the
SCA approach (List, 2014), which is one of
the best currently available algorithms that
work without inferring regular sound corre-
spondences prior to computation (List et al.,
2017). Our automatically inferred MAP trees
come close to the expert phylogenies reported
in Glottolog (Hammarström et al., 2017), and
are at least as good as the phylogenies in-
ferred with MrBayes (Ronquist et al., 2012),
one of the most popular programs for phylo-
genetic inference. In combination, our new
approaches offer a fully automated workflow
for phylogenetic reconstruction in computa-
tional historical linguistics, which is so fast
that it can be easily run on single core ma-
chines, yielding results of considerable quality
in less than 15 minutes for datasets of more
than 50 languages.

In the following, we describe the fast cog-
nate detection program in Section 2. We de-
scribe both the regular variant of the phylo-
genetic inference program and our simulated
annealing variant in Section 3. We present
the results of our automated cognate detec-
tion and phylogenetic inference experiments
and discuss the results in Section 4. We con-

1Although Rama (2015) uses skip-grams, the ap-
proach in the paper requires hand-annotated data
which we intend to overcome in this paper.

clude the paper and present pointers to future
work in Section 5.

2 Fast Cognate Detection

Numerous methods for automatic cognate de-
tection in historical linguistics have been pro-
posed in the past (Jäger et al., 2017; List, 2014;
Rama et al., 2017; Turchin et al., 2010; Arnaud
et al., 2017). Most of them are based on the
same general workflow, by which – in a first
stage – all possible pairs of words within the
same meaning slot of a wordlist are compared
with each other in order to compute a matrix
of pairwise distances or similarities. In a sec-
ond stage, a flat cluster algorithm or a network
partitioning algorithm is used to partition all
words into cognate sets, taking the informa-
tion in the matrix of word pairs as basis (List
et al., 2018b). Differences between the algo-
rithms can be found in the way in which the
pairwise word comparisons are carried out, to
which degree some kind of pre-processing of
the data is involved, or which algorithm for
flat clustering is being used.

Since any automated word comparison that
starts from the comparison of word pairs
needs to calculate similarities or distances for
all n²−n

2 possible word pairs in a given con-
cept slot, the computation cost for all algo-
rithms which employ this strategy exponen-
tially increases with the number of words be-
ing compared. If methods additionally re-
quire to pre-process the data, for example to
search across all language-pairs for language-
specific similarities, such as regularly corre-
sponding sounds (List et al., 2017; Jäger et al.,
2017), the computation becomes impractical
for datasets of more than 100 languages.

A linear time solution was first proposed by
Dolgopolsky (1964). Its core idea is to rep-
resent all sound sequences in a given dataset
by their consonant classes. A consonant class
is hereby understood as a rough partitioning
of speech sounds into groups that are con-
veniently used by historical linguistics when
comparing languages (such as velars, [k, g,
x], dentals [t, d, θ], or liquids [r, l, ʁ], etc.).
The major idea of this approach is to judge
all words as cognate whose initial two conso-
nant classes match. Given that the method re-
quires only that all words be converted to their



TKTVR TVKTR TVKTV TVKVR TVTVR VKTVR

daughterTochter

Figure 1: Bipartite graph of English daughter, Ger-
man Tochter, and their corresponding sound-class-
based skip-grams of size 5.

first consonant classes, this approach, which
is now usually called consonant-class match-
ing approach (CCM, Turchin et al. 2010), is
very fast, since its computation costs are lin-
ear with respect to the number of words being
compared. The task of assigning a given word
to a given cognate set is already fulfilled by
assigning a word a given string of consonant
classes.

The drawback of the CCM approach is a
certain lack of accuracy. While being quite
conservative when applied to words showing
the same meaning, the method likewise misses
many valid matches and thus generally shows
a low recall. This is most likely due to the
fact that the method does not not contain any
alignment component. Words are converted to
sound-class strings and only complete matches
are allowed, while good partial matches can
often be observed in linguistic data, as can be
seen from the comparison of English daugh-
ter, represented as TVTVR in sound classes com-
pared to German Tochter TVKTVR.

In order to develop an algorithm for auto-
matic cognate detection which is both fast and
shows a rather high degree of accuracy, we
need to (1) learn from the strategy employed
by the CCM method in avoiding any pairwise
word comparison, while – at the same time –
(2) avoiding the problems of the CCM method
by allowing for a detailed sequence compari-
son based on some kind alignment techniques.
Since the CCM method only compares the
first two consonants per word, it cannot iden-
tify words like English daughter and German
Tochter as cognate, although the overall sim-
ilarity is obvious when comparing the whole
strings.

A straightforward way to account for our
two requirements is using skip-grams of sound-
class representations and to represent words
and sound-class skip-grams in a given dataset
in form of a bipartite network, in which words
are assigned to one type of node, and skip-

grams to another one. In such a network,
we could compute multiple representations of
TVTVR and TVKTVR directly and later see, in
which of them the two sequences match. If, for
example, we computed all n-grams of length 5
allowing to skip one, we would receive TVTVR
for English (only possible solution) and VKTVR,
TKTVR, TVTVR, TVKVR, TVKTR, and TVKTV for
German, with TVTVR matching the English
word, and thus being connected to both words
by an edge in our bipartite network (see Figure
1).

Similarly, when computing a modified vari-
ant of skip-grams based on n-grams of size 3,
where only consonants are taken into account,
and in which we allow to replace up to one
segment systematically by a gap-symbol (“-”),
we can see from Table 1 that the structure of
matching n-grams directly reflects the cognate
relations, with Greek çɛri “hand” opposed to
German Hand and English hand (both cog-
nate), as well as Russian [ruka], Polish rɛŋ̃ka
(both cognate).

Note that the use of skip-grams here mim-
ics the alignment component of those auto-
matic cognate detection methods in which
alignments are used. The difference is that
we do not compute the alignments between a
sequence pair only, but project each word to a
potential (and likewise also restricted) align-
ment representation. Note also that – even if
skip-grams may take some time to compute –
our approach presented here is essentially lin-
ear in computation time requirements, since
the skip-gram calculation represents a con-
stant factor. When searching for potential
cognates in our bipartite network, we can say
that (A) all connected components correspond
to cognate sets, or (B) use some additional al-
gorithm to partition the bipartite network into
our putative cognate sets. While computation
time will be higher in the latter case, both
cases will be drastically faster than existing
popular methods for automatic cognate detec-
tion, since our bipartite-graph-based approach
essentially avoids pairwise word comparisons.

Following these basic ideas, we have devel-
oped a new method for fast cognate detec-
tion using bipartite networks of sound-class-
based skip-grams (BipSkip), implemented as a
Python library (see SI 1). The basic work-
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ing procedure is extremely straightforward and
consists of three stages. In a first stage,
a bipartite network of words and their cor-
responding skip-grams is constructed, with
edges drawn between all words and their cor-
responding skip-grams. In a second, optional
stage, the bipartite graph is refined by deleting
all skip-gram nodes which are linked to fewer
word nodes than a user-defined threshold. In a
third stage, the bipartite graph is projected to
a monopartite graph and partitioned into cog-
nate sets, either by its connected components,
or with help of graph partitioning algorithms
such as, e.g., Infomap (Rosvall and Bergstrom,
2008).

Since it is difficult to assess which kinds of
skip-grams and which kinds of sound-class sys-
tems would yield the most promising results,
we conducted an exhaustive parameter train-
ing using the data of List (2014, see details
reported in SI 2). This resulted in the fol-
lowing parameters used as default for our ap-
proach: (1) compute skip grams exclusively
from consonant classes, (2) compute skip-
grams of length 4, (3) include a gapped version
of each word form (allowing for matches with
a replacement), (4) use the SCA sound class
model (List, 2014), and (5) prune the graph
by deleting all skip-gram nodes which link to
less than 20% of the median degree of all skip-
gram nodes in the data. This setting yielded
F-scores of 0.854 (connected components par-
titioning) and 0.852 (Infomap partitioning) on
the training data (using B-Cubes as measure,
cf. Amigó et al. 2009 and section 4.2), sug-
gesting that our BipSkip method performs in
a manner comparable to the SCA method
for automatic cognate detection (List, 2014),
which is based on pairwise sequence compari-
son methods using improved sound class mod-
els and alignment techniques. This also means
that it clearly outperforms the CCM approach
on the training data (scoring 0.8) as well as the
computationally rather demanding edit dis-
tance approach (scoring 0.814, see List et al.
2017).

3 Fast Phylogenetic Inference

Methods for Bayesian phylogenetic inference
in evolutionary biology and historical linguis-

IPA çeri hant hænd ruka rɛŋ̃ka
Cognacy 1 2 2 3 3
Sound Classes CERI HANT HENT RYKA RENKA

H-T - + + - -
HN- - + + - -
HNT - + + - -
R-K - - - + +

Table 1: Shared skip-grams in words meaning
“hand” in Greek, German, English, Russian, and
Polish reflect the known cognate relations of the
word.

tics (Yang and Rannala, 1997) are all based on
the following Bayes rule:

f(Ψ|X) =
f(X|Ψ)f(Ψ)

f(X)
, (1)

where each state Ψ is composed of τ the tree
topology, T the branch length vector of the
tree, and θ the substitution model parameters
where X is a binary cognate data matrix where
each column codes a cognate set as a binary
vector. The posterior distribution f(Ψ|X) is
difficult to calculate analytically since one has
to sum over all the possible rooted topolo-
gies ( (2L−3)!

2L−2(L−2)!
) increases factorially with the

number of languages in the sample. Therefore,
Markov Chain Monte Carlo (MCMC) methods
are used to estimate the posterior probability
of Ψ.

The Metropolis-Hastings algorithm (a
MCMC algorithm) is used to sample the
parameters from the posterior distribution.
This algorithm constructs a Markov chain by
proposing a new state Ψ∗ and then accepting
the proposed state Ψ∗ with the probability
given in equation 2 where, q(.) is the proposal
distribution.

r =
f(X|Ψ∗)f(Ψ∗)

f(X|Ψ)f(Ψ)

q(Ψ|Ψ∗)

q(Ψ∗|Ψ)
(2)

The likelihood of the data to the new pa-
rameters is computed using the pruning algo-
rithm (Felsenstein, 2004, 251-255), which is a
special case of the variable elimination algo-
rithm (Jordan et al., 2004). We assume that
the parameters τ,T, θ are independent of each
other. In the above procedure, a Markov chain
is run for millions of steps and sampled at reg-
ular intervals (called thinning) to reduce au-
tocorrelation between the sampled states. A
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problem with the above procedure is that the
chain can get stuck in a local maxima when the
posterior has multiple peaks. A different ap-
proach known as Metropolis-coupled Markov
Chain Monte-Carlo methods (MC3) has been
applied to phylogenetics to explore the tree
space efficiently (Altekar et al., 2004).

3.1 MC3
In the MC3 approach, n chains are run in par-
allel where n − 1 chains are heated by rais-
ing the posterior probability to a power 1/Ti

where Ti is the temperature of ith chain de-
fined as 1 + δ(i − 1) where δ > 0. A heated
chain (i > 1) can explore peaks more effi-
ciently than the cold chain since the poste-
rior density is flattened. The MC3 approach
swaps the states between a cold chain and a
hot chain at regular intervals using a modi-
fied Metropolis-Hastings ratio. This swapping
procedure allows the cold chain to explore mul-
tiple peaks in the tree space successfully. The
MC3 procedure is computationally expensive
since it requires multiple CPU cores to run the
Markov chains in parallel. As a matter of fact,
Rama et al. (2018) employ the MC3 procedure
(as implemented in MrBayes; Ronquist et al.,
2012) to infer family phylogenetic trees from
automatically inferred cognate judgments.

3.2 Simulated Annealing
In this paper, we employ a computation-
ally less intensive and a fast procedure in-
spired from simulated annealing (Andrieu
et al., 2003) to infer the maximum-a-posteriori
(MAP) tree. We refer the simulated annealing
MCMC as MAPLE (MAP estimation for Lan-
guage Evolution) in the rest of the paper. In
this procedure, the Metropolis-Hastings ratio
is computed according to the equation 3. In
this equation, the initial temperature T0 is set
to a high value and then decreased according
to a cooling schedule until Ti → 0 . The final
state of the chain is treated as the maximum-
a-posteriori (MAP) estimate of the inference
procedure. We implement our own tree infer-
ence software in Cython which is made avail-
able along with the paper.

r =

(
f(X|Ψ∗)f(Ψ∗)

f(X|Ψ)f(Ψ)

)1/Ti q(Ψ|Ψ∗)

q(Ψ∗|Ψ)
(3)

All our Bayesian analyses use binary
datasets with states 0 and 1. We employ
the Generalized Time Reversible Model (Yang,
2014, Ch.1) for computing the transition prob-
abilities between individual states (0, 1). The
rate variation across cognate sets is modeled
using a four category discrete Γ distribution
(Yang, 1994) which is sampled from a Γ dis-
tribution with shape parameter α.

MCMC moves We employ multiple moves
to sample the parameters. For continuous pa-
rameters such as branch lengths and shape pa-
rameter we use a multiplier move with expo-
nential distribution (µ = 1) as the proposal
distribution. In the case of the stationary fre-
quencies, we employ a uniform slider move
that randomly selects two states and proposes
a new frequency such that the sum of the fre-
quencies of the states does not change. We use
two tree moves: Nearest neighbor interchange
(NNI) and a specialized Subpruning and Re-
grafting move that operates on leaf nodes to
propose new trees (Lakner et al., 2008).

Cooling Schedule The cooling schedule is
very important for the best performance of a
simulated annealing algorithm (Andrieu et al.,
2003). We experimented with a linear cooling
schedule that starts with a high initial tem-
perature T0 and reduces the temperature at
iteration i through Ti = λTi−1 where 0.85 <=
λ <= 0.96 (Du and Swamy, 2016). We de-
crease the value of Ti until Ti = 10−5. In
this paper, we experiment with reducing the
temperature over step size s starting from an
initial temperature T0.

4 Evaluation
4.1 Materials
All the data for training and testing was taken
from publicly available sources and has further
been submitted along with the supplementary
material accompanying this paper. For train-
ing of the parameters of our BipSkip approach
for fast cognate detection, the data by List
(2014) was used in the form provided by List
et al. (2017). This dataset consists of six sub-
sets each covering a subgroup of a language
family of moderate size and time depth (see
SI 2). To test the BipSkip method, we used
both the test set of List et al. (2017), consist-
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Dataset Concepts Languages Cognates
Austronesian 210 20 2864
Bai 110 9 285
Chinese 140 15 1189
Indo-European 207 20 1777
Japanese 200 10 460
Ob-Ugrian 110 21 242
(a) BipSkip training data.

Dataset Concepts Languages Cognates
Bahnaric 200 24 1055
Chinese 180 18 1231
Huon 139 14 855
Romance 110 43 465
Tujia 109 5 179
Uralic 173 7 870
(b) BipSkip test data.

Dataset Concepts Languages Cognates
Austronesian 210 45 3804
Austro-Asiatic 200 58 1872
Indo-European 208 42 2157
Pama-Nyungan 183 67 6634
Sino-Tibetan 110 64 1402
(c) BipSkip and MAPLE test data.

Table 2: Datasets (name, concepts, and lan-
guages), used for training (a) and testing of Bip-
Skip (b, c) and MAPLE (c). Data in (a) is from
List (2014), data in (b) is from List et al. (2017),
and data in (c) comes from Rama et al. (2018).

ing of six distinct datasets of moderate size,
as well as five large datasets from five differ-
ent language families (Austronesian, Austro-
Asiatic, Indo-European, Pama-Nyungan, and
Sino-Tibetan) used for the study by Rama
et al. (2018) on the potential of automatic cog-
nate detection methods for the purpose of phy-
logenetic reconstruction. The latter dataset
was also used to test the MAPLE approach for
phylogenetic inference. The other two datasets
could not be used for the phylogenetic infer-
ence task, since these datasets contain a large
number of largely unresolved dialect varieties
for which no expert classifications are avail-
able at the moment. More information on all
datasets is given in Table 2.

4.2 Evaluation Methods
We evaluate the results of the automatic cog-
nate detection task through B-Cubed scores
(Amigó et al., 2009), a measure now widely
used for the task of assessing how well a given
cognate detection method performs on a given

test dataset (Hauer and Kondrak, 2011; List
et al., 2016; Jäger et al., 2017; List et al., 2017).
B-Cubed scores are reported in form of preci-
sion, recall, and F-scores, with high precision
indicating a high amount of true positives, and
high recall indicating a high amount of true
negatives. Details along with an example on
how B-Cubed scores can be inferred are given
in List et al. (2017). An implementation of the
B-Cubed measure is available from the LingPy
Python library for quantitative tasks in histor-
ical linguistics (List et al., 2018a).

We evaluate the performance of the phylo-
genetic reconstruction methods by comparing
them to expert phylogenies through the Gen-
eralized Quartet Distance (GQD), which is a
variant of the quartet distance originally de-
veloped in bioinformatics (Christiansen et al.,
2006) and adapted for linguistic trees by Pom-
pei et al. (2011). A quartet consists of four
languages and can either be a star or a but-
terfly. The quartet distance is defined as the
total number of different quartets divided by
the total number of possible quartets (

(n
4

)
) in

the tree. This definition of quartet distance
penalizes the tree when the gold standard tree
has non-binary nodes which is quite common
in linguistic phylogenies. The GQD version
disregards star quartets and computes the dis-
tance between the inferred tree and the gold
standard tree as the ratio between the number
of different butterflies and the total number of
butterflies in the gold standard tree.

4.3 Implementation
Both methods are implemented in form of
Python packages available – along with de-
tailed installation instructions – from the sup-
plemental material accompanying the paper
(SI 1 and SI 4). While the BipSkip method for
fast cognate detection is implemented in form
of a plug-in for the LingPy library and thus
accepts the standard wordlist formats used in
LingPy as input format, MAPLE reads the
data from files encoded in the Nexus format
(Maddison et al., 1997).

4.4 Results
Fast Cognate Detection We tested the
two variants, of the new BipSkip approach for
automatic cognate detection, connected com-
ponents and Infomap (Rosvall and Bergstrom,
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Dataset CCM BipSkip-CC BipSkip-IM SCA
P R FS P R FS P R FS P R FS

Bahnaric 0.92 0.63 0.75 0.82 0.87 0.84 0.85 0.85 0.85 0.88 0.84 0.86
Chinese 0.81 0.74 0.78 0.66 0.95 0.77 0.68 0.93 0.78 0.80 0.79 0.79
Huon 0.89 0.84 0.87 0.73 0.95 0.80 0.73 0.93 0.81 0.79 0.93 0.86
Romance 0.94 0.61 0.74 0.91 0.89 0.90 0.92 0.86 0.89 0.93 0.81 0.87
Tujia 0.97 0.74 0.84 0.89 0.95 0.90 0.89 0.90 0.90 0.97 0.83 0.89
Uralic 0.96 0.86 0.91 0.84 0.93 0.88 0.84 0.93 0.88 0.91 0.91 0.91
TOTAL 0.92 0.74 0.81 0.81 0.91 0.85 0.82 0.90 0.85 0.88 0.85 0.86
TIME 0m1.400s 0m2.960s 0m5.909s 0m25.768s
(a) Test Data from List et al. 2017

Dataset CCM BipSkip-CC BipSkip-IM SCA
P R FS P R FS P R FS P R FS

Austro-Asiatic 0.79 0.64 0.71 0.61 0.81 0.70 0.67 0.77 0.72 0.73 0.80 0.76
Austronesian 0.88 0.58 0.70 0.72 0.72 0.72 0.77 0.68 0.72 0.82 0.74 0.77
Indo-European 0.89 0.64 0.75 0.82 0.73 0.77 0.86 0.69 0.77 0.89 0.74 0.81
Pama-Nyungan 0.64 0.82 0.72 0.71 0.79 0.75 0.75 0.77 0.76 0.59 0.85 0.69
Sino-Tibetan 0.78 0.35 0.48 0.59 0.62 0.60 0.61 0.59 0.60 0.73 0.46 0.56
TOTAL 0.80 0.61 0.67 0.69 0.73 0.71 0.73 0.70 0.71 0.75 0.72 0.72
TIME 0m2.938s 0m9.642s 0m17.642s 2m40.472s
(b) Test Data from Rama et al. 2018

Table 3: Results of the cognate detection experiments. Table (a) presents the results for the performance
of the four methods tested on the dataset by List et al. (2017): the CCM method, our new BipSkip
methods in two variants (with connected components clusters, labelled CC, and the Infomap clusters,
labelled IM), and the SCA method. Table (b) presents the results on the large testset by Rama et al.
(2018). The column TIME indicates the time the code needed to run on a Linux machine (Thinkpad
X280, i5, 8GB, ArchLinux OS), using the Unix “time” command (reporting the real time value).

2008), on the two test sets (see Table 2) and
calculated the B-Cubed precision, recall, and
F-scores. To allow for a closer comparison
with cognate detection algorithms of similar
strength, we also calculated the results for the
SCA method for cognate detection described
in List et al. (2017), and the CCM approach
described in Section 2. The SCA method uses
the Sound-Class-Based Alignment algorithm
(List, 2014) to derive distance scores for all
word pairs in a given meaning slot and uses a
flat version of the UPGMA method (Sokal and
Michener, 1958) to cluster words into cognate
sets. Table 3 lists the detailed results for all
four approaches and all 11 subsets of the two
datasets, including the computation time.

As can be seen from the results in Table
3, the BipSkip algorithm clearly outperforms
the CCM method in terms of overall accuracy
on both datasets. It also comes very close in
performance to the SCA method, while at the
same time only requiring a small amount of the

time required to run the SCA analysis. An ob-
vious weakness of our current BipSkip imple-
mentation is the performance on South-East
Asian language data. Here, we can see that the
exclusion of tones and vowels, dictated by our
training procedure, leads to a higher amount
of false positives. Unfortunately, this can-
not be overcome by simply including tones in
the skip-grams, since not all languages in the
South-East Asian datasets (Sino-Tibetan and
Austro-Asiatic) are tonal, and tone matchings
would thus lead to an unwanted clustering of
tonal and non-tonal languages in the data,
which would contradict certain subgroups in
which tone developed only in a few language
varieties, such as Tibetan.

The most promising approach to deal con-
sistently with language families such as Sino-
Tibetan would therefore be to extend the cur-
rent approach to identify partial instead of
complete cognates (List et al., 2016), given the
prominence of processes such as compounding



or derivation in the history of Sino-Tibetan
and its descendants.

Partial cognates, however, do not offer a
direct solution to the problem, since we cur-
rently lack phylogenetic algorithms that could
handle partial cognates (List, 2016), while ap-
proaches to convert partial into full cognates
usually require to take semantic information
into account (Sagart et al., 2019, 10321). In
addition to any attempt to improve on Bip-
Skip by enhancing the training of features used
for South-East Asian languages, consistent ap-
proaches for the transformation of partial into
complete cognate sets will have to be devel-
oped in the future.

Neither of the two BipSkip approaches can
compete with the LexStat-Infomap approach,
which yields F-scores of 0.89 on the first test
set (see List et al. 2017) and 0.77 on the sec-
ond test set (see Rama et al. 2018), but this is
not surprising, given that neither of the four
approaches compared here computes regular
sound correspondence information. The ob-
vious drawback of LexStat is its computation
time, with more than 30 minutes for the first,
and more than two hours for the second test
set. While the superior results surely justify
its use, the advantage of methods like BipSkip
is that they can be used for the purpose of
exploratory data analysis or web-based appli-
cations.

Fast Phylogenetic Inference We present
the results of the phylogenetic experiments
in Table 4. Each sub-table shows the set-
ting for s, T0 that yielded the lowest GQD
for each cognate detection method. We ex-
perimented over a wide range of settings
for s ∈ {1, 5, 10, 20, 40, 80, 100} and T0 ∈
{10, 20, . . . , 90, 100}. We provide the time and
the number of generations taken to infer the
MAP tree for each cognate inference program
and language family. We note that the longest
run takes less than fifteen minutes across all
the families. In comparison, the results re-
ported by Rama et al. (2018) using MrBayes
takes at least four hours on six cores for each
of the language family using the SCA method.

We examined which settings of s/T0 give the
lowest results and found that low step sizes
such as 1 give the lowest results for a wide
range of T0. We examined the results across

the settings and found that the best results
can be achieved with a step size above 20 with
initial temperature set to 50. The lowest GQD
distances were obtained with the SCA cog-
nates. The BipSkip-IM method emerged as
the winner in the case of the Pama-Nyungan
language family. The best result for Pama-
Nyungan is better than the average GQD ob-
tained through expert cognate judgments re-
ported in Rama et al. (2018). The weakness
of the BipSkip methods with respect to the
Sino-Tibetan language family is also visible in
terms of the GQD distance.

Comparing the results obtained for the SCA
cognates obtained with MAPLE against the
ones inferred with MrBayes as reported in
Rama et al. (2018), it becomes also clear that
our method is at least as good as MrBayes,
showing better results in Austro-Asiatic, Aus-
tronesian, and Pama-Nyungan.

MAPLE with gold standard cognates
We further tested if gold standard cognates
make a difference in the inferred tree qual-
ity. We find that the tree quality improves if
we employ gold standard cognates to infer the
trees. This result supports the research track
of developing high quality automated cognate
detection systems which can be employed to
analyze hitherto less studied language families
of the world.

Convergence We investigated if the
MAPLE algorithm infers trees whose quality
improves across the generations by plotting
the GQD of the sampled trees against the
temperature for all the five best settings
of s/T0 (in bold in Table 4) in Figure 2.
The figure clearly shows that at high tem-
perature settings, the quality of the trees
is low whereas as temperature approaches
zero, the tree quality also gets better for
all the language families. Moreover, the
curves are monotonically decreasing once the
temperature is below 12.

5 Conclusion

In this paper we proposed an automated
framework for very fast and still highly reliable
phylogenetic reconstruction in historical lin-
guistics. Our framework introduces two new
methods. The BipSkip approach uses bipartite



Family s/T0 GQD NGens Time (s)
Austro-Asiatic 80/10 0.0155 18080 282.548
Austronesian 20/80 0.0446 5320 46.698
Indo-European 20/40 0.0138 5060 46.014
Pama-Nyungan 40/60 0.1476 10440 224.036
Sino-Tibetan 80/60 0.0958 20880 295.157
(a) Results for CCM cognates.

Family s/T0 GQD NGens Time (s)
Austro-Asiatic 100/90 0.0135 26900 439.005
Austronesian 100/80 0.0148 26600 285.659
Indo-European 20/80 0.0211 5320 41.544
Pama-Nyungan 80/100 0.1318 21680 435.8
Sino-Tibetan 100/10 0.0722 22600 235.774
(b) Results for SCA cognates.

Family s/T0 GQD NGens Time (s)
Austro-Asiatic 40/60 0.0415 10440 151.561
Austronesian 20/20 0.1022 4780 42.097
Indo-European 80/10 0.0322 18080 190.48
Pama-Nyungan 100/40 0.1647 25300 759.023
Sino-Tibetan 80/20 0.5218 19120 233.173
(c) Results for BipSkip-CC cognates.

Family s/T0 GQD NGens Time (s)
Austro-Asiatic 80/80 0.0245 21280 310.403
Austronesian 40/10 0.0927 9040 82.443
Indo-European 10/100 0.046 2710 28.691
Pama-Nyungan 80/70 0.0777 21120 662.447
Sino-Tibetan 40/80 0.3049 10640 129.903
(d) Results for BipSkip-IM cognates.

Table 4: Results for the MAPLE approach to fast
phylogenetic inference for each method. The best
step size and initial temperature setting is shown
as s/T0. NGens is the number of generations, Time
is the time taken to run the inference in number of
seconds on a single core Linux machine.

Family s/T0 GQD NGens Time (s)
Austro-Asiatic 100/90 0.0058 26900 476.113
Austronesian 80/80 0.0389 21280 123.167
Indo-European 10/10 0.0135 2260 16.713
Pama-Nyungan 100/10 0.061 22600 605.319
Sino-Tibetan 100/50 0.0475 25700 206.952

Table 5: Results for gold standard cognates.

networks of sound-class-based skip-grams for
the task of automatic cognate detection. The
MAPLE approach makes use of simulated an-
nealing technique to infer a MAP tree for lin-
guistic evolution. Both methods are not only
very fast, but – as our tests show – also quite
accurate in their performance, when compared
to similar, much slower, algorithms proposed
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Figure 2: Lineplot of GQD against temperature for
all the five different language families. The trend-
lines are drawn using LOESS smoothing.

in the past. In combination, the methods can
be used to assess preliminary phylogenies from
linguistic datasets of more than 100 languages
in less than half an hour on an ordinary single
core machine.

We are well aware that our framework is by
no means perfect, and that it should be used
with a certain amount of care. Our methods
are best used for the purpose of exploratory
analysis on larger datasets which have so far
not yet been thoroughly studied. Here, we be-
lieve that the new framework can provide con-
siderable help to future research, specifically
also, because it does not not require the tech-
nical support of high-end clusters.

Both methods can be further improved
in multiple ways. Our cognate detection
method’s weak performance on South-East
Asian languages could be addressed by en-
abling it to detect partial cognates instead of
complete cognates. At the same time, new
models, allowing for a consistent handling of
multi-state characters and a direct handling
of partial cognates, could be added to our fast
Bayesian phylogenetic inference approach.
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