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Abstract 
The genetic diversity of humans, like many species, has been shaped by a complex pattern               
of population separations followed by isolation and subsequent admixture. This pattern,           
reaching at least as far back as the appearance of our species in the paleontological record,                
has left its traces in our genomes. Reconstructing a population’s history from these traces is               
a challenging problem. Here we present a novel approach based on the Multiple             
Sequentially Markovian Coalescent (MSMC) to analyse the population separation history.          
Our approach, called MSMC-IM, uses an improved implementation of the MSMC (MSMC2)            
to estimate coalescence rates within and across pairs of populations, and then fits a              
continuous Isolation-Migration model to these rates to obtain a time-dependent estimate of            
gene flow. We show, using simulations, that our method can identify complex demographic             
scenarios involving post-split admixture or archaic introgression. We apply MSMC-IM to           
whole genome sequences from 15 worldwide populations, tracking the process of human            
genetic diversification. We detect traces of extremely deep ancestry between some African            
populations, with around 1% of ancestry dating to divergences older than a million years              
ago. 

Author Summary 
Human demographic history is reflected in specific patterns of shared mutations between the             
genomes from different populations. Here we aim to unravel this pattern to infer population              
structure through time with a new approach, called MSMC-IM. Based on estimates of             
coalescence rates within and across populations, MSMC-IM fits a time-dependent migration           
model to the pairwise rate of coalescences. We implemented this approach as an extension              
to existing software (MSMC2), and tested it with simulations exhibiting different histories of             
admixture and gene flow. We then applied it to the genomes from 15 worldwide populations               
to reveal their pairwise separation history ranging from a few thousand up to several million               
years ago. Among other results, we find evidence for remarkably deep population structure             
in some African population pairs, suggesting that deep ancestry dating to one million years              
ago and older is still present in human populations in small amounts today. 
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Introduction  
Genomes harbour rich information about population history, encoded in patterns of           
mutations and recombinations. Extracting that information is challenging, since in principle it            
requires reconstructing thousands of gene genealogies separated by ancestral         
recombination events, using only the observable pattern of shared and private mutations            
along multiple sequences. One important innovation was the Sequentially Markovian          
Coalescent (SMC) model ​[1,2]​, which is an approximate form of the ancestral recombination            
graph that can be fitted as a Hidden Markov model along the sequence. This approach has                
been used to infer demographic history in methods like PSMC​[3]​, MSMC​[4]​, diCal ​[5,6] and             
SMC++​[7]​. 
 
These methods estimate one or both of two important aspects of population history: i) The               
history of the effective population size, and ii) the history of population structure. The second               
aspect, which entails reconstructing the timing and dynamics of population separation           
requires a non-trivial choice of parameterization: While methods like diCal2 ​[5]​, as well as             
many methods based on the joint site frequency spectrum​[8–11] use an explicit population             
model with split times, migration rates or admixture events, MSMC ​[4] introduced the             
concept of the relative cross coalescence rate to capture population separations in a             
continuously parameterised fashion. The main advantage of that approach is that it does not              
require the specification of an explicit model, but can be applied hypothesis-free to estimate              
key aspects of population separation, for example the time at which lineages are half as               
likely to coalesce between rather than within populations, which is often used as a heuristic               
estimate for the divergence time between the populations. A disadvantage is that other             
important aspects of population separation, like post-split or archaic admixture, are           
non-trivially encoded in features of the cross-coalescence rate other than this mid-point. As a              
consequence, it is difficult to interpret the cross-coalescence rate in terms of actual historical              
events.  
 
Here, we propose an approach to overcome the disadvantages of the relative cross             
coalescence rate, while maintaining the continuous character of population separation from           
MSMC without explicitly specifying a complex population phylogeny. We present a new            
method MSMC-IM, which fits a continuous Isolation-Migration (IM) model to the distribution            
of coalescence times, estimated from MSMC’s piecewise constant model. In MSMC-IM,           
separation and migration between a pair of populations is quantified by a piecewise constant              
migration rate across populations, and piecewise constant population size changes within           
each population. We apply our method on world-wide human genomic data from the Simons              
Genome Diversity Project (SGDP)​[12] to investigate the history of global human population            
structure.  
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Results 

Estimating pairwise coalescence rates with MSMC2 and fitting an IM model 
To model the ancestral relationship between a pair of populations, we developed an             
isolation-migration model with a time-dependent migration rate between a pair of           
populations, which we call MSMC-IM. The approach requires time-dependent estimates of           
pairwise coalescence rates within and across two populations. Here we use MSMC2 for             
these estimates, which was first introduced in Malaspinas et al. 2016 ​[13] (see Methods).             
MSMC2 offers two key advantages over MSMC​[4]​. First, the pairwise coalescence model in             
MSMC2 is exact within the SMC’ framework​[2]​, whereas MSMC’s model uses           
approximations that cause biases in rate estimates for larger number of haplotypes (S1 Fig).              
Second, since MSMC2 uses the pairwise tMRCA distribution instead of the first tMRCA             
distribution, it estimates coalescence rates within the entire range of coalescence events            
between multiple haplotypes, which ultimately increases resolution not just in recent times            
but also in the deep past. These two improvements are crucial for our new method               
MSMC-IM, which relies on unbiased coalescence rate estimates within and across           
populations, in particular in the deep past. Specifically, MSMC2 recovers simulated           
population size histories (with human-like parameters) well up to 3 million years ago, while              
keeping the same high resolution in recent times as MSMC (S1 Fig).  
 
Given MSMC2’s estimates of time-dependent coalescence rates within populations, λ​11​(t)          
and λ​22​(t), and across populations, λ​12​(t), we use MSMC-IM to fit an Isolation-Migration (IM)              
model to those three coalescence rates (see Methods). MSMC-IM’s model assumes two            
populations, each with its own population size ​N​1​(​t​) and N​2​(t), and a piecewise-constant             
symmetric migration rate ​m(t) between the two populations (Fig 1B, see Methods and S1              
Text for details). Expressing the separation history between two populations in terms of a              
variable migration rate instead of the more heuristic relative cross coalescence rate            
facilitates interpretation, while maintaining the freedom to analyse data without having to            
specify an explicit model of splits and subsequent gene flow. 

 Page 3 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/585265doi: bioRxiv preprint first posted online Mar. 21, 2019; 

https://paperpile.com/c/zzm0Im/2ucY
https://paperpile.com/c/zzm0Im/hbLR
https://paperpile.com/c/zzm0Im/HPPC
http://dx.doi.org/10.1101/585265
http://creativecommons.org/licenses/by-nc/4.0/


 

 
Fig 1. Schematic of MSMC2 and MSMC-IM. (A) MSMC2 analyses patterns of mutations between              
pairs of haplotypes to estimate coalescence local times along the genome. (B) MSMC-IM fits an               
isolation-migration model to the pairwise coalescence rate estimates, with time-dependent population           
sizes and migration rate. (C) As a result, we obtain migration rate densities and cumulative migration                
probabilities for pairs of populations. 

Evaluating MSMC-IM with simulated data 
We illustrate MSMC-IM by applying to several series of simulated scenarios of population             
separation (see Methods). First, the ​clean-split​-scenario consists of an ancestral population           
that splits into two subpopulations at time T (Fig 2A). Second, the            
split-with-migration​-scenario adds an additional phase of bidirectional gene flow between the           
populations after they have split (Fig 2B). Third, the ​split-with-archaic-admixture-​scenario          
involves no post-split gene flow, but contains additional admixture into one of the two extant               
populations from an unsampled “ghost” population, which splits from the ancestral           
population (Fig 2C) at time ​T​a​>T​. For each scenario, we simulated 8 haplotypes (four from               
each population), used human-like evolutionary parameters and varied one key parameter to            
create a series of related scenarios (see Methods). We then ran MSMC2 to estimate              
coalescence rates for haplotype pairs within each population and across populations, and            
applied MSMC-IM to fit our IM model with variable migration to these coalescence rates. 
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In the clean-split scenario, we find that the inferred migration rate ​m(t) displays a single               
pulse of migration around the simulated split time ​T (Fig 2A). This is expected, since in our                 
parametrization, a population split corresponds to an instantaneous migration of lineages           
into one population at time ​T​, thereby resulting in a single pulse of migration. In the                
split-with-migration series, we expect two instead of one pulse of migration: one at time ​T​, as                
above, and a second more recent one around the time of post-split migration. In cases               
where the split time and migration phase are separated by more than around 20,000 years,               
this is indeed what we see (Fig 2B), although with some noise around this basic pattern. For                 
less time of separation of the two migration pulses, MSMC-IM is not able to separate them in                 
this scenario. Similarly, we find two phases of migration for the           
split-with-archaic-admixture-​scenario, with one phase around time ​T​, and another one          
around the time of the archaic split (Fig 2C). 
 
Viewing these results in a different way, we can use the estimated migration rate ​m(t) to                
compute the probability that a lineage sampled at present has migrated into the other              
subpopulation, looking backwards in time. Specifically, we define the probability 
 

(t) xp  M = 1 − e − (t )dt( ∫
t

0
m ′ ′)  

 
which continuously increases from 0 to 1 in all scenarios, with gradient zero at times of no                 
migration, and strictly positive gradient in periods of migration (S2 Fig). Numerically, it turns              
out that ​M(t) is similar to the relative cross coalescence rate (CCR), thereby heuristically              
justifying the CCR as a measure of population separation. When ​M(t) is very close to 1,                
enough migration has occurred that lineages sampled at present in one of the two              
subpopulations have lost their subpopulation identity at that point in the past, and in fact the                
two populations in the IM model can be seen as one from this time towards the past. In                  
theory, when ​M(t) becomes very close to 1, our three-parameter model is overspecified, and              
there should be only a single parameter left, the ancestral population size. We solve this               
problem by regularization (Methods)–penalising differences between the two population         
sizes, and by ignoring migration rate estimates at times when ​M(t)​>0.999. 
 
MSMC-IM also fits population sizes, which can be compared to the raw estimates from              
MSMC, i.e. to the inverse coalescence rates within population 1 and 2, respectively (see S1               
Text for some non-trivial details on this comparison). We find that estimates for ​N​1​(t) and               
N​2​(t) are in fact close to the inverse coalescence rates, without much effect from the               
estimated migration rates (S3 Fig). 
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Fig 2. Simulation results. ​(A) ​Clean-split-scenario​. ​We simulated 8 haplotypes intotal from two             
populations with constant size 20,000 diverged at split time ​T varying from 10 thousand years ago                
(kya) to 300kya. ​(B) ​Split-with-migration ​-scenario. ​Similar to A), with ​T varying between 15-150kya,             
and , with a time period of symmetric migration between 10kya to 15kya. The cumulative migration                
rate is tuned such that 50% of lineages migrate in total. ​(C) ​Split-with-archaic-admixture- ​scenario.             
Similar to A), with ​T​=75kya. Here, population 1 receives an admixture pulse at 30kya from an archaic                 
ghost population, which separates from the ancestral population at 1mya. The admixture rate varies              
from 5% to 100% ​. ​In all plots, the blue light blue shading indicates the interval between 1-99% of the                   
cumulative migration probability, the dark blue shade from 25-75%, and the vertical line indicates the               
median. 

Deep ancestry in Africa 
We applied our model to 30 high coverage genomes from 15 world-wide populations from              
the SGDP dataset​[12] (S1 Table) to analyse global divergence processes in the human past.              
When analysing the resulting pairwise migration rate profiles, we find that several population             
pairs from Africa exhibit by far the oldest population structure observed in all pairwise              
analyses. We find that in all population pairs involving either San or Mbuti, the main               
separation process from other populations dates to between 100-400 thousand years ago,            
depending on the exact pair of populations (see below), but with small amounts reaching              
back to beyond a million years ago, as seen by the non-zero migration rates around that                
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time (Fig 3A, S4 Fig), and the cumulative migration probability, ​M(t) ​, (Fig 3B) which has not                
fully reached 1 until beyond a million years ago. The genetic separation profile in pairs               
involving Mbuti and San is, beyond the extraordinary time depth, not compatible with clean              
population splits (as seen in simulations, Fig 2A) or simple scenarios of archaic admixture,              
but instead shows evidence for multiple periods of gene flow between (unsampled)            
populations. Between Mbuti and other African populations except San, we find three distinct             
phases of gene flow. The first peaks around 15,000 years ago, compatible with relatively              
recent admixture between Mbuti and other African populations. The second phase spans            
from 60 to 300 thousand years ago, reflecting the main genetic separation process, which              
itself looks complex and exhibits two peaks around 80 and 200 thousand years ago. The               
third and final phase,including a few percent of lineages from around 600,000 to 2 million               
years ago, likely reflects admixture between populations that diverged from each other at             
least 600,000 years ago. In pairs that include San, the onset of gene flow with other                
populations is more ancient than with Mbuti, beginning at around 40,000 years ago and              
spanning until around 400,000 years ago in the main phase, and then exhibiting a similarly               
deep phase as seen in Mbuti between 600,000 and 2 million years ago . We confirm that this                  
deep divergence is robust to phasing strategy (see below) and filtering (see Methods). We              
also replicated this signal using an independent dataset​[14]​ (S5 Fig). 
 
Apart from the deep structure seen with Mbuti and San, we find similarly deep signals               
between the West African Yoruba, Mandenka and Mende on the one hand, and the East               
African Dinka on the other (Fig 3A, S4 Fig A-F), suggesting archaic ancestry with differential               
relationship between West and East Africans. This might be consistent with recent findings             
of archaic ancestry in West-Africans​[15,16]​, or with West-Eurasian ancestry in East           
Africans​[17]​, which may carry Neanderthal ancestry. Finally, pairwise analyses among          
Mende, Mandenka and Yoruba (Fig 3A, S4 Fig C,E,F) exhibit a very recent migration profile,               
which appears to span up to about 20,000 years ago but not older, which is at odds with a                   
recent finding of basal African ancestry present to different degrees in Mende and Yoruba              
[18]​. However, that signal may be too weak to be detected in our method, which is based on                  
only two individuals per population. Also, the basal African ancestry detected in ​[18] was              
inferred to be younger than the split of Neanderthal and Denisovan from the main human               
lineage, and therefore might be too close to the main phase of population differentiation in               
Africa to be detected by MSMC-IM (see simulation results above). 
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Fig 3. Migration structure within 5 African populations. ​(A) Migration rates. (B) Cumulative             
migration rates M(t). Color shading as in Fig. 2. 

Complex Out-of-Africa 
In contrast to the variety of separation profiles between African populations, most profiles             
between African and Non-African populations look remarkably similar, with a main           
separation phase between 40 and 150 thousand years ago, and a separate peak between              
200 and 400 thousand years ago (Fig 4). The first, more recent, phase plausibly reflects the                
main separation of Non-African lineages from African lineages predating the “out-of-Africa”           
migration event, with signals more recent than about 60,000 years likely reflecting the typical              
spread of MSMC-estimated coalescence rate changes observed previously ​[4]​. The second           
peak of migration between 200 and 400 thousand years ago likely reflects Neandertal and/or              
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Denisovan introgression into non-Africans. The age of that peak appears too recent given             
previous split time estimates of those two Archaic groups from the main human lineage at               
550-765 thousand years ago (kya)​[14]​. However, our simulation with archaic admixture (Fig            
2C), shows that our model tends to underestimate the archaic split time when the migration               
proportion is low, like the estimated proportions of Neanderthal and Denisovan ancestry in             
modern humans, which are both below 10%​[19–21]​.  
 

 
Fig 4. Selected migration profiles between Yoruba and 7 non-African populations. ​(A) Migration             
rates. (B) Cumulative migration rates M(t). 
 
The majority of African/Non-African population pairs follows this simple pattern, but there are             
some exceptions that exhibit a deeper migration profile, more similar to that seen within              
Africa (S4 Fig). In particular, French exhibit deep migration structure with San, Mbuti and              
Mandenka, and similar signals are seen with Karitiana (with Mandenka), Sardinian (with            
San) and Han (with Mandenka). In principle, since Non-African populations descend from an             
African population, all African/Non-African migration profiles should in turn exhibit a similarly            
deep migration profile with San, Mbuti and perhaps some West African populations as we              
have seen in African pairs. That we do not see such deep structure in most               
Non-African/African pairs is likely due to the strong genetic drift that the Non-African             
ancestors experienced during the Out-of-Africa bottleneck, as documented in the marked           
population size decline around 60kya, seen in MSMC2 population size plots (S6 Fig). 
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We investigated previous observations of potential ancestry from an earlier dispersal out of             
Africa, present in Papuan and Australian genomes​[12,13,22]​. While we were able to            
replicate the slight shift of rCCR or M(t) midpoint-based split times from African/Eurasian             
pairs to African/Australasian pairs reported in Ref.​[22] using MSMC and Ref.​[13] using            
MSMC2, we find that the estimated migration profiles of these pairs are very similar (S7 Fig),                
with a main separation mid-point around 70kya and a second older signal beyond 200kya,              
consistent with both Australasians and other Non-Africans being derived from a single            
genetic ancestral population without a more basal contribution to Australasians​[12,13]​. We           
note, however, that different separation events are not distinguishable in MSMC-IM when            
they are temporarily close to each other, as we have seen in the             
split-with-migration-scenario ​(Fig. 2B).  
 
Separations outside of Africa 
All separations outside of Africa are younger than separations between Africans and            
Non-Africans, as expected (Fig 5, S4 Fig G-M). The deepest splits outside of Africa are seen                
in pairs of Papuans or Australians with other Eurasians, in which the first peak of migration is                 
seen at 40-60 kya, corresponding to the early separation of these populations’ ancestors             
from other non-African populations after the out of Africa dispersal. In these pairs we see a                
second peak around 250-300 kya, likely corresponding to the known Denisovan admixture in             
Papuans and Australians​[13,23]​. As discussed above, this is too recent for divergence time             
estimates between Denisovans and modern humans​[14]​, which again is likely due to the             
relatively low levels of admixture, which we showed in simulations can lead to             
underestimates of the divergence time. Surprisingly, we see a similar second peak between             
French and Han, which is consistent with previous observations​[4,12] but of unclear cause.             
Consistent with the hypothesis that the second peak seen in Australasian/Eurasian pairs            
corresponds to Denisovan admixture, we do not see a second peak in the migration profile               
between Papuans and Australians, confirming that the gene flow likely occurred into the             
common ancestor of Australians and Papuans​[13]​. The migration profile between Papuans           
and Australians shows a main separation between 15-35 kya. 
 
The second deepest splits in Non-African populations are seen between East Asian and             
European populations, which occur mostly between 20 and 60kya (cumulative migration           
density midpoint at 34kya), followed by separations between Asian and American           
populations, between 20 and 40kya (midpoint at 26kya). The latter likely also reflects             
Ancestral North Eurasian ancestry in Americans​[24]​, which is more closely related to            
Europeans than to East Asians, thereby pushing back the separation seen between East             
Asians and Native Americans. Finally, the most recent splits are seen between populations             
from the same continent: Dai/Han split around 10-40kya (midpoint 11kya), French/Sardinian           
around 8-25kya (midpoint 9kya) and within Native Americans around 7-11kya (midpoint           
9.5kya) (Fig 5, S4 Fig). 
 
To visualise the depth of ancestry in each population pair, we summarised all pairwise              
analyses by percentiles of the cumulative migration density ​M(t) (Fig 6). Largely, Non-African             
pairs (orange) have their main separation phase, with the cumulative migration density            
between 25% and 75%, between 20 and 60kya, with some more recently diverged pairs              
within continents. In contrast, African pairs (red) have their main phase largely between 60              
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and 200kya, with some notable exceptions of more recently diverged populations, and with             
the notable tail (99% percentile) up to 1 million years and older. Between Africans and               
Non-Africans, divergence main phases are largely within a similar window of 60-200kya as in              
African pairs, with three notable groups: divergence of Non-Africans from San falls between             
80-250kya, from Mbuti between 70-200kya, and from other Africans between 50-150kya. 

 
Fig 5. Migration structure within non-African populations. ​(A) Migration rates. (B)           
Cumulative migration densities M(t). 
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Fig 6. Overview of ​M(t) in quantiles for 81 pairs from 15 world-wide population. Boxes               
show the 25% to 75% quantiles of ​M(t) ​, with bi-directional elongated error bars representing              
1% and 99% percentiles. Colorcode: Red for African/African, blue for African/Non-African           
and orange for Non-African/Non-African pairs.  

Robustness to phasing and processing artifacts 
MSMC2 (like MSMC) requires phased genomes for coalescence rate estimation, and we            
therefore rely on statistical phasing within the SGDP dataset, for which different strategies             
are possible. To compare the effect of selecting such phasing strategy, we generated             
phased datasets using eight different phasing strategies with three phasing algorithms           
(SHAPEIT​[25]​, BEAGLE​[26]​, EAGLE​[27]​). We included genotype calls from 12 individuals          
with previously published physically phased genomes​[12] and then used those genomes to            
estimate the haplotype switch error rate. Among eight phasing strategies, SHAPEIT2 ​[25]​,           
without the use of a reference panel, but including information from phase-informative            
reads​[28]​, resulted in the lowest switch error rate per kb (and per heterozygous site; S8 Fig).                
Overall, switch error rates are higher in African populations, likely due to lower linkage              
disequilibrium, higher heterozygosity and relatively limited representation in the SGDP. To           
test how sensitive MSMC-IM is to different phasing strategies, we we tested four phasing              
strategies on the pair San/French. We find that the migration profile from MSMC-IM is very               
similar for different phasing strategies. In particular, we find that the very deep signal seen in                
population pairs involving San is consistent with different phasing strategies without a            
reference panel (S9 Fig). In a similar way, we tested the robustness of that signal with                
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respect to choosing different filter levels (S9 Fig B) and with respect to removing CpG sites,                
which are known to have elevated mutation rates (S9 Fig C). 
 
Given the superiority of the read-aware phasing strategy with SHAPEIT without a reference             
panel ​[28,29]​(S8 Fig), we used this method in all of our main analyses. However, even with               
this phasing strategy, the switch error rate is high in populations that are not well               
represented in the dataset. In case of indigenous Australians, the phasing quality is among              
the worst in the dataset (S8 Fig), arguably because the SGDP dataset contains only two               
Australian individuals (compared for example to 15 Papuans). To improve phasing in            
Australians specifically, we generated new high coverage genomic data for one of the two              
Australians in the SGDP dataset using a new library with longer read-pair insert sizes (see               
Methods). Using these additional reads reduced the switch error rate from 0.038/kb to             
0.032/kb. (S8 Fig, blue isolated dot for Australian3). We ran MSMC2 on the long-insert              
Australian data, as well as the standard phased data, combined with one diploid genome              
from each of the other world-wide populations analysed in this study. The inferred migration              
profiles from MSMC-IM (S10 Fig) for Non-African population pairs involving the long-insert            
phased Australian genome do not seem to be affected by the phasing method (S10 Fig).               
The migration profile from pairs of Africans versus the long-insert phased Australian tend to              
be slightly younger, but also show deeper structure in Dinka/Australian, compared to the             
same pair using the ​shapeit_pir phasing method. Note that these migration rate densities             
exhibit more noise than the ones used in our main analysis (S4 Fig L), since they are based                  
on only 1 individual per population, while the main analyses are based on two individuals               
per population. The main separation between Papuan and Australian remains at 15-35 kya,             
as shown in the migration profile from both phasing strategies, very close to the estimates               
from 8 haplotypes in the main analysis (S4 Fig L), and earlier than the previous estimates of                 
25-40kya ​[13]​. 
 
Finally, to test internal consistency, we tested how well MSMC-IM was able to infer back its                
own model. We used the estimated migration rates and population sizes from five population              
pairs (Papuan/Australian, French/Han, Yoruba/French, French/Mbuti and French/San, 8        
haplotypes per SGDP pair), and simulated genomic data under the inferred models for these              
population pairs. As shown in S11 Fig, the estimated migration patterns from the simulated              
and the real data are indeed very similar, including the deep signals seen in paris with San                 
and Mbuti. 

Discussion 
We have presented both a novel method MSMC-IM for investigating complex separation            
histories between populations, and an application of that method to human genomes,            
revealing new insights into the complex separations and deep ancestry in African            
populations. MSMC-IM extends MSMC2 by fitting an IM model to the estimated coalescence             
rates, which allows us to characterise the process of population separation via a continuous              
migration rate through time. In contrast to the established approach of using the relative              
cross coalescence rate directly from MSMC2, our new approach interprets coalescence           
rates more quantitatively. In a recent study a similar approach has been used to fit an IM                 
model to PSMC estimates to estimate population split times and post-split migration rates in              
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a more strictly parameterised model ​[30]​. We found here that a continuous IM model without              
an explicit split time better fits the estimated coalescence rates from MSMC2, which are              
continuous themselves and thus lead to a more gradual concept of population separation.             
T​his absence of an explicit population split time distinguishes our approach from many             
previous models​[5,8,9] and allows us to detect new signals of temporal population structure             
without specifying population phylogenies or admixture graphs from prior knowledge or via            
inference. 
 
A showcase example for such new insights are the traces of extremely deep population              
structure seen in our analysis of African population pairs. The fact that San and Mbuti exhibit                
the deepest branches in the human population tree is itself not surprising given previous              
analyses​[17,31–34]​, but the extraordinary time depth displayed in this analysis has to our             
knowledge not been reported before. This deep structure - albeit only making up 1% of               
ancestry - is far older than the oldest attested fossil records of anatomically modern humans,               
considering the East-African fossils of Omo Kibish and Herto 160-180 thousand years            
BP​[34–36] and the skull from Jebel Irhoud recently re-dated to around 300 thousand years              
BP​[37]​. Any admixture from an archaic population that diverged from the main human             
lineage more than 600 thousand years go would produce such a signal. This is the case, for                 
example, for the so-called “super-archaic” population that was inferred to have admixed into             
Denisovans​[14] and was estimated to have diverged from the lineage leading to modern             
Humans, Neanderthals and Denisovans between 1.1 and 4 million years ago. Given this             
finding outside of Africa, it is perhaps not surprising that such deep archaic population              
structure existed also in Africa. 
 
However, our signal of archaic population structure in Africa reveals more complexity than             
expected under the standard model of archaic introgression, in which two divergent            
populations admix with each other, creating a distinct pattern of deep ancestry in the              
genomes of the target population. Detecting such patterns in the genome would require a              
sufficient sequence divergence between non-introgressed and introgressed genomic        
segments (as measured by the S* statistic or extensions of it​[15,16]​). This is the case if the                 
majority of ancestry between the two intermixing species has been isolated for hundreds of              
thousands of years, with a single split time. Such a scenario would be seen as a bimodal                 
pattern in the migration profile reported by MSMC-IM, as shown in our simulations (Fig 2C).               
What we see, however, in the migration profiles between San and Mbuti with other African               
populations, is not a bimodal pattern, but a more continuous distribution. This would emerge              
under a model of repeated isolation and partial admixture of two or more archaic species or                
populations that exist in parallel for a long time. Under such a scenario, genomes are not a                 
two-way mixture between introgressed and non-introgressed regions, but a mosaic of           
ancestry lines coalescing at a range of different split times. With no sharp boundary between               
introgressed and non-introgressed regions, methods such as S* fail to detect archaic            
ancestry, which may be the reason why the deep signals reported here have not been               
reported before for San and Mbuti, in contrast to Non-Africans and West-Africans​[15,16]​. 
 
While the continuous model in MSMC-IM adds significantly to previous approaches to            
estimating population separations, one drawback is that it is currently limited to only two              
populations at a time. While this limit is partially technical - MSMC2 cannot be scaled to                
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arbitrary numbers of genomes - the more severe problem is a conceptual one. It is not                
obvious how to use the concept of continuous-time migration rates and non-sharp population             
separations to more than two populations. An important direction for future work is to              
achieve a generalisation of the continuous concept of population separation to multiple            
populations, which might help to better understand and quantify the processes that shaped             
human population diversity in the deep history of our species. 

Materials and Methods 

MSMC2 
MSMC-IM is based on MSMC2 (first described and used in Ref. ​[13]​) as a method to                
estimate pairwise coalescence rates from multiple genome sequences. The MSMC2 method           
is summarised in a self-contained way in S1 Text. MSMC2 is similar to MSMC ​[4]​, but                
instead of analysing multiple genomes simultaneously modelling the first coalescence event,           
it uses the pairwise model in sequence on all pairs of haplotypes to obtain a composite                
likelihood of the data given a demographic model. The demographic model itself (consisting             
of a piecewise constant coalescence rate) is then optimized via an Expectation-Maximization            
algorithm similarly to MSMC and PSMC ​[3]​. For cross-population analyses, we use MSMC2             
to obtain three independent coalescence rate estimates: two coalescence rates through time            
within each population, named λ​11​(​t​) ​and λ​22​(​t​), respectively, and one coalescence rate            
function for lineage pairs across the population boundary, named λ​12​(​t​) (S1 Text). 

MSMC-IM model 
MSMC-IM then fits a two-island model with time-dependent population sizes ​N​1​(​t​) ​and N​2​(​t​)​,             
and a time-dependent continuous symmetric migration rate ​m(t) to the estimated           
coalescence rates, which essentially is a re-parameterization from the triple of functions            
{λ​11​(​t​), λ​12​(​t​), λ​22​(​t​)} to a new triple of functions {​N​1​(t), N ​2​(t), m(t) ​} (S1 Text). To fit the                 
island-model to the coalescence rates, we first use the coalescence rates to compute a              
probability density for times to the most recent common ancestor (tMRCA), as illustrated             
here for rate λ​11​(​t​):   

(t|s ) (t)ePMSMC 0 = S11 = λ11
− (t )dt∫
t

0
λ11 ′ ′

 
 

Here, denotes the starting state where both lineages are present in population 1. We S11               
then use an approach by Hobolth et al 2011 ​[38] to compute this density for the three                 
starting states under an IM model, denoted , using  S , , }s0 = { 11 S12 S22       (t|s )P IM 0   
exponentiation of the rate matrix of the underlying IM-Markov process that governs the state              
of uncoalesced and coalesced lineages in two populations connected by a time-dependent            
migration rate (see S1 Text). The fitting process of the IM model to the density computed                
from MSMC2 is done by minimizing the Chi-square statistics: 

 χ2 = ∑
nT

i=1[ ∑
 

s ∈{S ,S ,S }0 11 12 22
P (t|s )MSMC

0

(P (t|s )−P (t|s ))IM
0

MSMC
0

2

+ β(N (t)+N (t)1 2

N (t)−N (t)1 2 )2]  
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Where the second term is a regularization term to avoid overfitting, pushing the two              
population sizes ​N​1​(t) ​and N​2​(t) close to each other. The strength of this regularization can               
be controlled via a user-defined parameter in our program. For the three simulation             
scenarios and all pairs of real data expect pairs including Han, we used a regularisation               
value of . Regularization is necessary because the reparameterization introduced by  10−6          
MSMC-IM overspecifies the model at times when the two populations are fully merged. For              
that same reason, we plot estimated migration rates in all figures only up to a value of M(t) =                   
0.999, since migration rate estimates beyond that point are essentially arbitrary, as lineages             
have already been fully randomized between the two populations. We also restrict the             
estimated population sizes to 10,000,000 in practice. 
 
We implemented the MSMC-IM model as a python command line utility that takes the MSMC               
output files as input. The program is available at: ​https://github.com/wangke16/MSMC-IM 

Simulations 
We used msprime ​[39] for all simulations in this paper. In the three series of simulation               
scenarios mentioned above, we simulated four diploid genomes composed of 22           
chromosomes each of length 100Mbp from two populations, assuming a constant population            
size 20,000 for every population. The recombination rate we used here is per            10−8   
generation per bp, and the mutation rate is ..251 × 10−8   
  
In the zig-zag simulation (S1 Fig), we simulated a series of exponential population growths              
and declines for two, four and eight haplotypes, each changing between 3,000 and 30,000 in               
exponentially increasing time intervals, with the same simulation parameters as specified in            
Ref. ​[4] and Ref.​[3] to ensure comparability with these previous publications. In particular,             
this simulation involved a lower recombination rate ( ) than the main simulations,       .30 × 10−8      
justified in ​[4] as the inferred recombination rate from real data using PSMC’. The reason for                
it being lower than the true recombination rate (close to , as used in the main          10−8       
simulations above), is that MSMC (and MSMC2) infers an “effective recombination rate”,            
which is a non-trivial average over the variable recombination landscape across the human             
genome. 
 
We also conducted a number of simulations based on MSMC-IM inference from real data              
(S11 Fig). We took the estimates on migration rates and population sizes from MSMC-IM              
(S2 Table) for five pairs of worldwide populations (San/French, Mbuti/French,          
Yoruba/French, French/Han, Papuan/Australian), as the input parameters in our simulation,          
and simulated 2.2Gb genomes on 8 haplotypes for each case.The recombination rate we             
used here is  per generation per bp, and the mutation rate is .10−8 .251 × 10−8  

World-wide genomic Data 
For the results shown in Figs 3-6, we used 30 high coverage genomes from 15               
cross-continental modern populations in the SGDP dataset​[12]​, with two diploid genomes           
from each population for running MSMC2 and MSMC-IM (S1 Table). We ran pairwise             
analyses for 13 populations (excluding Quechua and Mixe) and pairwise comparisons within            
three native American populations (81 population pairs in total). We downloaded the            
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cteam-lite dataset of from the website: ​http://reichdata.hms.harvard.edu/pub/datasets/sgdp/​,       
in the hetfa-format where all sites are represented by an IUPAC encoding representing             
diploid genotypes, along with individual masks recording the quality of the genotype calls.             
We converted the hetfa mask files (.ccompmask.fa.rz) to zipped bed format though two             
steps: first we uncompressed the hetfa mask files using “​htsbox razip -d -c​”             
(​https://github.com/lh3/htsbox​), and then converted the uncompressed mask files        
(.ccompmask.fa) to zipped bed format by an in-house python script adapted from the             
makeMappabilityMask.py ​script in ​msmc-tools ​(www.github.com/stschiff/msmc-tools). The      
cteam-lite masks encode quality using an integer-range from 0 to 9 (reflecting increasing             
stringency) and “N” to represent missing data. For our analysis, we included all sites that               
were non-missing, i.e. have a minimum quality level of 0.  
 
Following the processing introduced in PSMC ​[3] and MSMC/MSMC2 ​[4]​, beyond the            
individual masks we also use a universal mask to reflect overall mappability and SNP calling               
properties along the human genome. We used the universal masks defined in            
Supplementary Info 4 from Ref. ​[12] (and available for download at           
https://github.com/wangke16/MSMC-IM/masks​) as additional negative masks denoting      
genomic regions to be filtered out.  
 
Beside the genome-wide mask files for each individual, we obtained variant data as made              
available on the SGDP project website      
(https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/phased_data/). Due to the    
specifics of how that dataset was generated, only segregating sites at positions where the              
Chimpanzee reference genome has non-missing data are included. To balance this           
missigness based on the Chimpanzee reference genome for MSMC, we included an            
additional mask in our preprocessing, which reflected non-missing regions in the           
Chimpanzee reference sequence. For others to reproduce our analysis, we provide this            
chimp mask on the MSMC-IM github repository (​https://github.com/wangke16/MSMC-IM​).        
We conducted several runs with removed CpG sites. For this, we generated a mask              
including all positions of Cytosines and Guanines in CpG dinucleotides, Thymines in TpG             
dinucleotides, and Adenosines in CpA dinucleotides in the human reference genome hg19,            
and used those positions as negative mask when preparing the MSMC input files. This mask               
can be found in the same github repository as above. 
 
We phased the data using SHAPEIT2 (v837) ​[25]​, Beagle4.0 (r1399) ​[26] and EAGLE2             
(version 2.3) ​[27]​. We first phased the data using each algorithm both with and without a                
reference panel. When using a reference panel, all three methods are only able to phase               
sites that are represented in the reference panel. Therefore, we removed sites not in the               
reference panel, phased, adding the removed sites back as unphased, and then ran a              
second round of phasing using Beagle4.0 and the “usephase=true” option, which allows us             
to phase the unphased sites in data that is already partially phased. Finally, we also phased                
using SHAPEIT2 without a reference panel, but using the read-aware phasing stratergy​[28]​.            
This uses the fact that two SNPs found on the same (paired) read must be in phase. The                  
switch error of each of these phasing strategies, evaluated by comparison with the             
experimentally phased data generated for the same samples​[12]​ is shown in S8 Fig.  
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Finally, we generated a long-insert library from one of the two Australian DNA samples              
analysed in SGDP ​[12]​, with a median insert size of 3.3kbp. This data is available at the                 
European Nucleotide Archive under accession number ERX1790596       
(​https://www.ebi.ac.uk/ena/data/view/ERX1790596 ​). We used this data to improve the        
phasing quality for this Australian individual. As shown in S6 Fig, this strategy indeed              
reduced the switch error rate for this Australian individual from 0.036/kb to 0.032/kb. 

Running MSMC-IM 
Unlike MSMC, which reports these three rates in a single analysis step, in MSMC2 we run                
the three estimations for λ​11​(​t​), λ​12​(​t​) and λ​22​(​t​) independently from each other, using a              
different selection of haplotype pairs in each case. We base most of our analyses on 4                
diploid individuals (unless indicated otherwise), for which we prepared joint input files for             
each chromosome, consisting of 8 haplotypes each. We then chose the pairs to be analysed               
using the “-I” option in MSMC2. For coalescence rate λ​11​(​t​), we used “-I 0,1,2,3”, which               
instructs MSMC2 to iterate through all six possible haplotype pairs among the four             
haplotypes from the first population. Likewise, to estimate λ​22​(​t​), we used “-I 4,5,6,7”. Finally,              
to obtain estimates of the coalescence rates across populations, λ​12​(​t​), we used “-I             
0-4,0-5,0-6,0-7,1-4,1-5,1-6,1-7,2-4,2-5,2-6,2-7,3-4,3-5,3-6,3-7”, iterating through all sixteen     
possible haplotype pairings between the four haplotypes in each population.MSMC-IM          
requires a single input file containing all three coalescence rate estimates, similar to the              
output generated by the original MSMC program. A script ​combineCrossCoal.py​is provided            
on the msmc-tools github repository (​http://www.github.com/stschiff/msmc-tools​), ​to generate        
the combined output file from the three output files of the three MSMC2 runs for a pair of                  
populations 
 
With the combined MSMC2 output as input, we run MSMC-IM model by  
“​MSMC_IM.py pair.combined.msmc2.txt​”. Also the time pattern needs to be specified,          
which is by default 1*2+25*1+1*2+1*3 ​as the default in MSMC2. In the output, MSMC-IM will               
rescale the scaled time in MSMC2 output by mutation rate 1.25e-8 into real time in               
generations, and report symmetric migration rates and M(t) in each time segment.  

Robustness of Phasing strategies 
We tested the robustness of our results by applying different phasing strategies and mask              
filtering levels to a single pair of San/French in the SGDP dataset. The phasing strategy was                
varied between ​beagle​, ​shapeit​, ​shapeit_ref_all to ​shapeit_pir​. Here, ​beagle and ​shapeit           
denote phasing with no reference panel, ​shapeit_ref_all denotes phasing with a reference            
panel (with sites not in the reference panel phased with Beagle) and shapeit_pir denotes no               
reference panel but including phase-informative reads. ​. ​The stringency of the filtering mask             
was varied between filter levels 0, 1, 3, 5. Beyond that, we tested our approach on 12                 
populations (24 genomes) from another dataset ​[14]​, which consists of different genomes.            
This dataset was processed independently using the pipeline in ​the msmc-tools github            
repository (​http://www.github.com/stschiff/msmc-tools​) i.e. SNPs and masks generated using        
samtools and ​bamCaller.py​, with statistical phasing by ​SHAPEIT2 ​with the 1000 Genomes            
reference panel, leaving sites not present in the reference panel as unphased. 

 Page 18 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/585265doi: bioRxiv preprint first posted online Mar. 21, 2019; 

https://paperpile.com/c/zzm0Im/5g3U
https://www.ebi.ac.uk/ena/data/view/ERX1790596
http://www.github.com/stschiff/msmc-tools
https://paperpile.com/c/zzm0Im/sXwC
http://www.github.com/stschiff/msmc-tools
http://dx.doi.org/10.1101/585265
http://creativecommons.org/licenses/by-nc/4.0/


 

Acknowledgements 
We thank Erich Jaeger and Aparna Natarajan at Illumina for generating the Australian             
Nextera Mate Pair library and providing sequencing data. ​SS and KW acknowledge support             
by the Max Planck Society. IM was supported by a Sloan Research Fellowship and a New                
Investigator Research Grant from the Charles E. Kaufman fund of The Pittsburgh            
Foundation.   

Author Contributions 
KW and SS developed the model. KW implemented and tested the model. KW and IM               
processed data. KW and SS analysed the data. JOC and IM supervised data-generation and              
bioinformatic processing of the long-insert Australian genomic data. SS supervised the           
study. KW and SS wrote the paper, with input from all authors. 

References 
1. McVean GAT, Cardin NJ. Approximating the coalescent with recombination. Philos 

Trans R Soc Lond B Biol Sci. 2005;360: 1387–1393. 

2. Marjoram P, Wall JD. Fast “coalescent” simulation. BMC Genet. 2006;7: 16. 

3. Li H, Durbin R. Inference of human population history from individual whole-genome 
sequences. Nature. 2011;475: 493–496. 

4. Schiffels S, Durbin R. Inferring human population size and separation history from 
multiple genome sequences. Nat Genet. Nature Publishing Group; 2014;46: 919–925. 

5. Steinrücken M, Kamm JA, Song YS. Inference of complex population histories using 
whole-genome sequences from multiple populations [Internet]. Cold Spring Harbor Labs 
Journals; 2015 Sep. Available: ​http://biorxiv.org/lookup/doi/10.1101/026591 

6. Sheehan S, Harris K, Song YS. Estimating variable effective population sizes from 
multiple genomes: a sequentially markov conditional sampling distribution approach. 
2013;194: 647–662. 

7. Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history 
from hundreds of unphased whole genomes. Nat Genet. Nature Publishing Group; 
2017;49: 303–309. 

8. Kamm JA, Terhorst J, Song YS. Efficient computation of the joint sample frequency 
spectra for multiple populations. J Comput Graph Stat. 2017;26: 182–194. 

9. Kamm JA, Terhorst J, Durbin R, Song YS. Efficiently inferring the demographic history 
of many populations with allele count data. doi:​10.1101/287268 

10. Excoffier L, Foll M. fastsimcoal: a continuous-time coalescent simulator of genomic 
diversity under arbitrarily complex evolutionary scenarios. Bioinformatics. 2011;27: 
1332–1334. 

 Page 19 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/585265doi: bioRxiv preprint first posted online Mar. 21, 2019; 

http://paperpile.com/b/zzm0Im/zbo3
http://paperpile.com/b/zzm0Im/zbo3
http://paperpile.com/b/zzm0Im/HPPC
http://paperpile.com/b/zzm0Im/Dcve
http://paperpile.com/b/zzm0Im/Dcve
http://paperpile.com/b/zzm0Im/hbLR
http://paperpile.com/b/zzm0Im/hbLR
http://paperpile.com/b/zzm0Im/TEpf
http://paperpile.com/b/zzm0Im/TEpf
http://paperpile.com/b/zzm0Im/TEpf
http://biorxiv.org/lookup/doi/10.1101/026591
http://paperpile.com/b/zzm0Im/ZoVu
http://paperpile.com/b/zzm0Im/ZoVu
http://paperpile.com/b/zzm0Im/ZoVu
http://paperpile.com/b/zzm0Im/iBks
http://paperpile.com/b/zzm0Im/iBks
http://paperpile.com/b/zzm0Im/iBks
http://paperpile.com/b/zzm0Im/Shvp
http://paperpile.com/b/zzm0Im/Shvp
http://paperpile.com/b/zzm0Im/b91Y
http://paperpile.com/b/zzm0Im/b91Y
http://dx.doi.org/10.1101/287268
http://paperpile.com/b/zzm0Im/PnsU
http://paperpile.com/b/zzm0Im/PnsU
http://paperpile.com/b/zzm0Im/PnsU
http://dx.doi.org/10.1101/585265
http://creativecommons.org/licenses/by-nc/4.0/


 

11. Schiffels S, Haak W, Paajanen P, Llamas B, Popescu E, Loe L, et al. Iron Age and 
Anglo-Saxon genomes from East England reveal British migration history. Nat Commun. 
2016;7: 10408. 

12. Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, et al. The Simons 
Genome Diversity Project: 300 genomes from 142 diverse populations. Nature. 
2016;538: 201–206. 

13. Malaspinas A-S, Westaway MC, Muller C, Sousa VC, Lao O, Alves I, et al. A genomic 
history of Aboriginal Australia. Nature. 2016;538: 207–214. 

14. Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. The 
complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 
2014;505: 43–49. 

15. Plagnol V, Wall JD. Possible ancestral structure in human populations. PLoS Genet. 
2006;2: e105. 

16. Durvasula A, Sankararaman S. Recovering signals of ghost archaic admixture in the 
genomes of present-day Africans [Internet]. bioRxiv. 2018. p. 285734. 
doi:​10.1101/285734 

17. Pickrell JK, Patterson N, Barbieri C, Berthold F, Gerlach L, Güldemann T, et al. The 
genetic prehistory of southern Africa. Nat Commun. 2012;3: 1143. 

18. Skoglund P, Thompson JC, Prendergast ME, Mittnik A, Sirak K, Hajdinjak M, et al. 
Reconstructing Prehistoric African Population Structure. Cell. 2017;171: 59–71.e21. 

19. Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J, Pääbo S, et al. The 
genomic landscape of Neanderthal ancestry in present-day humans. Nature. 2014;507: 
354–357. 

20. Sankararaman S, Mallick S, Patterson N, Reich D. The Combined Landscape of 
Denisovan and Neanderthal Ancestry in Present-Day Humans. Curr Biol. 2016;26: 
1241–1247. 

21. Browning SR, Browning BL, Zhou Y, Tucci S, Akey JM. Analysis of Human Sequence 
Data Reveals Two Pulses of Archaic Denisovan Admixture. Cell. 2018;173: 53–61.e9. 

22. Pagani L, Lawson DJ, Jagoda E, Mörseburg A, Eriksson A, Mitt M, et al. Genomic 
analyses inform on migration events during the peopling of Eurasia. Nature. 2016;538: 
238–242. 

23. Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F, Mallick S, et al. A high-coverage 
genome sequence from an archaic Denisovan individual. Science. 2012;338: 222–226. 

24. Raghavan M, Skoglund P, Graf KE, Metspalu M, Albrechtsen A, Moltke I, et al. Upper 
Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature. 
2014;505: 87–91. 

25. Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for disease 
and population genetic studies. Nat Methods. 2013;10: 5–6. 

26. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data 
inference for whole-genome association studies by use of localized haplotype clustering. 

 Page 20 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/585265doi: bioRxiv preprint first posted online Mar. 21, 2019; 

http://paperpile.com/b/zzm0Im/07Y7
http://paperpile.com/b/zzm0Im/07Y7
http://paperpile.com/b/zzm0Im/07Y7
http://paperpile.com/b/zzm0Im/5g3U
http://paperpile.com/b/zzm0Im/5g3U
http://paperpile.com/b/zzm0Im/5g3U
http://paperpile.com/b/zzm0Im/2ucY
http://paperpile.com/b/zzm0Im/2ucY
http://paperpile.com/b/zzm0Im/sXwC
http://paperpile.com/b/zzm0Im/sXwC
http://paperpile.com/b/zzm0Im/sXwC
http://paperpile.com/b/zzm0Im/Nycw
http://paperpile.com/b/zzm0Im/Nycw
http://paperpile.com/b/zzm0Im/MUK3
http://paperpile.com/b/zzm0Im/MUK3
http://paperpile.com/b/zzm0Im/MUK3
http://dx.doi.org/10.1101/285734
http://paperpile.com/b/zzm0Im/wApX
http://paperpile.com/b/zzm0Im/wApX
http://paperpile.com/b/zzm0Im/3McZ
http://paperpile.com/b/zzm0Im/3McZ
http://paperpile.com/b/zzm0Im/a0gy
http://paperpile.com/b/zzm0Im/a0gy
http://paperpile.com/b/zzm0Im/a0gy
http://paperpile.com/b/zzm0Im/tOwE
http://paperpile.com/b/zzm0Im/tOwE
http://paperpile.com/b/zzm0Im/tOwE
http://paperpile.com/b/zzm0Im/rxvb
http://paperpile.com/b/zzm0Im/rxvb
http://paperpile.com/b/zzm0Im/8kIF
http://paperpile.com/b/zzm0Im/8kIF
http://paperpile.com/b/zzm0Im/8kIF
http://paperpile.com/b/zzm0Im/rsGp
http://paperpile.com/b/zzm0Im/rsGp
http://paperpile.com/b/zzm0Im/6TzV
http://paperpile.com/b/zzm0Im/6TzV
http://paperpile.com/b/zzm0Im/6TzV
http://paperpile.com/b/zzm0Im/ZmSm
http://paperpile.com/b/zzm0Im/ZmSm
http://paperpile.com/b/zzm0Im/Dh3W
http://paperpile.com/b/zzm0Im/Dh3W
http://dx.doi.org/10.1101/585265
http://creativecommons.org/licenses/by-nc/4.0/


 

Am J Hum Genet. 2007;81: 1084–1097. 

27. Loh P-R, Danecek P, Palamara PF, Fuchsberger C, A Reshef Y, K Finucane H, et al. 
Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 
2016;48: 1443–1448. 

28. Delaneau O, Howie B, Cox AJ, Zagury J-F, Marchini J. Haplotype estimation using 
sequencing reads. Am J Hum Genet. 2013;93: 687–696. 

29. Choi Y, Chan AP, Kirkness E, Telenti A, Schork NJ. Comparison of phasing strategies 
for whole human genomes. PLoS Genet. 2018;14: e1007308. 

30. Song S, Sliwerska E, Emery S, Kidd JM. Modeling Human Population Separation 
History Using Physically Phased Genomes. Genetics. 2017;205: 385–395. 

31. Tishkoff SA, Gonder MK, Henn BM, Mortensen H, Knight A, Gignoux C, et al. History of 
click-speaking populations of Africa inferred from mtDNA and Y chromosome genetic 
variation. Mol Biol Evol. 2007;24: 2180–2195. 

32. Knight A, Underhill PA, Mortensen HM, Zhivotovsky LA, Lin AA, Henn BM, et al. African 
Y chromosome and mtDNA divergence provides insight into the history of click 
languages. Curr Biol. 2003;13: 464–473. 

33. Schlebusch CM, Skoglund P, Sjödin P, Gattepaille LM, Hernandez D, Jay F, et al. 
Genomic variation in seven Khoe-San groups reveals adaptation and complex African 
history. Science. 2012;338: 374–379. 

34. Schlebusch CM, Jakobsson M. Tales of Human Migration, Admixture, and Selection in 
Africa. Annu Rev Genomics Hum Genet. 2018; 
doi:​10.1146/annurev-genom-083117-021759 

35. McDougall I, Brown FH, Fleagle JG. Stratigraphic placement and age of modern 
humans from Kibish, Ethiopia. Nature. 2005;433: 733–736. 

36. White TD, Asfaw B, DeGusta D, Gilbert H, Richards GD, Suwa G, et al. Pleistocene 
Homo sapiens from Middle Awash, Ethiopia. Nature. 2003;423: 742–747. 

37. Richter D, Grün R, Joannes-Boyau R, Steele TE, Amani F, Rué M, et al. The age of the 
hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. 
Nature. 2017;546: 293–296. 

38. Hobolth A, Andersen LN, Mailund T. On computing the coalescence time density in an 
isolation-with-migration model with few samples. Genetics. 2011;187: 1241–1243. 

39. Kelleher J, Etheridge AM, McVean G. Efficient Coalescent Simulation and Genealogical 
Analysis for Large Sample Sizes. PLoS Comput Biol. 2016;12: e1004842. 

 

 Page 21 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/585265doi: bioRxiv preprint first posted online Mar. 21, 2019; 

http://paperpile.com/b/zzm0Im/Dh3W
http://paperpile.com/b/zzm0Im/3kcv
http://paperpile.com/b/zzm0Im/3kcv
http://paperpile.com/b/zzm0Im/3kcv
http://paperpile.com/b/zzm0Im/3IU5
http://paperpile.com/b/zzm0Im/3IU5
http://paperpile.com/b/zzm0Im/MJuC
http://paperpile.com/b/zzm0Im/MJuC
http://paperpile.com/b/zzm0Im/kf2G
http://paperpile.com/b/zzm0Im/kf2G
http://paperpile.com/b/zzm0Im/kpmr
http://paperpile.com/b/zzm0Im/kpmr
http://paperpile.com/b/zzm0Im/kpmr
http://paperpile.com/b/zzm0Im/Vqz2
http://paperpile.com/b/zzm0Im/Vqz2
http://paperpile.com/b/zzm0Im/Vqz2
http://paperpile.com/b/zzm0Im/jYFp
http://paperpile.com/b/zzm0Im/jYFp
http://paperpile.com/b/zzm0Im/jYFp
http://paperpile.com/b/zzm0Im/tk8c
http://paperpile.com/b/zzm0Im/tk8c
http://paperpile.com/b/zzm0Im/tk8c
http://dx.doi.org/10.1146/annurev-genom-083117-021759
http://paperpile.com/b/zzm0Im/Cmlg
http://paperpile.com/b/zzm0Im/Cmlg
http://paperpile.com/b/zzm0Im/XVA2
http://paperpile.com/b/zzm0Im/XVA2
http://paperpile.com/b/zzm0Im/Xb1d
http://paperpile.com/b/zzm0Im/Xb1d
http://paperpile.com/b/zzm0Im/Xb1d
http://paperpile.com/b/zzm0Im/h7VN
http://paperpile.com/b/zzm0Im/h7VN
http://paperpile.com/b/zzm0Im/cJXk
http://paperpile.com/b/zzm0Im/cJXk
http://dx.doi.org/10.1101/585265
http://creativecommons.org/licenses/by-nc/4.0/

