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Abstract 19 

High-throughput DNA sequencing enables large-scale metagenomic analyses of 20 

complex biological systems. Such analyses are not restricted to present day 21 

environmental or clinical samples, but can also be fruitfully applied to molecular data 22 

from archaeological remains (ancient DNA), and a focus on ancient bacteria can 23 

provide valuable information on the long-term evolutionary relationship between 24 

hosts and their pathogens. Here we present HOPS (Heuristic Operations for Pathogen 25 

Screening), an automated bacterial screening pipeline for ancient DNA sequence data 26 

that provides straightforward and reproducible information on species identification 27 

and authenticity. HOPS provides a versatile and fast pipeline for high-throughput 28 

screening of bacterial DNA from archaeological material to identify candidates for 29 

subsequent genomic-level analyses.  30 

 31 

32 
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Background 35 

High-throughput DNA sequencing enables large-scale metagenomic analyses of 36 

environments and host tissues, providing an unprecedented understanding of life’s 37 

microbial diversity. Examples of coordinated efforts to quantify this diversity include 38 

the Human Microbiome Project (1), the Tara Ocean Project (2) and the Earth 39 

Microbiome Project (3). Metagenomic data from human archaeological remains (e.g. 40 

bones, teeth or dental calculus), which provide a window into the individuals’ 41 

metagenomic past, is a welcome addition to the wide landscape of microbial diversity 42 

now being revealed. While many ancient DNA (aDNA) studies focus on the analysis 43 

of human endogenous DNA isolated from ancient specimens (4-8), the co-recovered 44 

metagenomic aDNA can be queried to provide information related to endogenous 45 

microbial content at death, with applications ranging from characterizing the natural 46 

constituents of the microbiota to identifying systemic infectious diseases (9, 10). 47 

 48 

Genomic-level investigations of ancient pathogens have provided valuable 49 

information about the evolution of Yersinia pestis (11-18), Mycobacterium leprae (19, 50 

20), Mycobacterium tuberculosis (21, 22), pathogenic Brucella species (23, 24), 51 

Salmonella enterica (25, 26) and Helicobacter pylori (27), with others surely on the 52 

horizon. Notably, most studies to date have leveraged paleopathological evidence or 53 

historical context to pinpoint a priori involvement of a specific bacterial pathogen. 54 

However, the vast majority of infectious diseases do not lead to the formation of 55 

distinct and characteristic bone lesions, and most remains are found in contexts that 56 

lack clear associations with a particular disease. Consequently, studies of ancient 57 

pathogens must consider a long list of candidate microbes. Therefore, an automated 58 

computational screening tool that both detects and evaluates pathogen genetic signals 59 

in ancient metagenomic data is needed. Importantly, this tool should also be able to 60 

distinguish potential pathogens from the large and diverse microbial background 61 

typical of archaeological and other decomposed material, a consideration not typically 62 

required for tools developed for clinical applications. 63 
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 64 

To save computational time and effort, most available metagenomic profiling tools 65 

focus only on individual genes, such as the 16S rRNA gene used by QIIME (28), or 66 

panels of marker genes, such as those used by MetaPhlAn2 (29) and MIDAS (30), 67 

that are information-rich and highly species-specific. However, these genes make up 68 

only a small proportion of a bacterial genome (the 16S rRNA gene, for example, 69 

accounts for only ~0.2% of a bacterial genome), and if a pathogen is present at low 70 

abundance compared to host and environmental DNA, these genes are likely to be 71 

missed in routine metagenomic sequencing screens. As such, although these tools can 72 

be specific, they lack the sensitivity required for ancient pathogen screening from 73 

shallow metagenomic datasets. Screening techniques that accommodate queries of 74 

whole genomes are of clear benefit for archaeological studies (25). However, while 75 

some algorithms, such as Kraken (31), have been developed to query databases that 76 

contain thousands of complete reference genomes using k-mer matching, this 77 

approach does not produce the alignment information necessary to further evaluate 78 

species identification accuracy or authenticity. 79 

 80 

In addition to taxonomic classification (32), it is also critical to distinguish ancient 81 

bacteria from modern contaminants (9, 10). Genuine aDNA, especially pathogen 82 

bacterial DNA, is usually only present in small amounts and can be distinguished 83 

from modern DNA contamination by applying an established set of authenticity 84 

criteria (9, 10), the most important of which is the assessment of DNA damage. In 85 

ancient DNA, cytosine deamination accumulates over time at DNA fragment termini 86 

(33, 34), thus leading to a specific pattern of nucleotide misincorporation. The 87 

evaluation of additional authenticity criteria such as edit distances and the distribution 88 

of mapped reads across the reference are also recommended to mitigate against 89 

database bias artifacts and to further validate taxonomic assignments (9, 10). While 90 

manual evaluation of species identification and aDNA authenticity using standalone 91 

tools might be feasible for a small sample set, it is impractical and too labour 92 

intensive to apply to the large sample sizes typical of recent ancient DNA 93 

investigations. The increased throughput of the ancient DNA field warrants an 94 

automated high-throughput solution for pathogen detection in metagenomic datasets.  95 

Successful ancient pathogen detection is reliant upon three criteria: (i) specificity of 96 

species-level detection against a diverse metagenomic background, (ii) high 97 
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sensitivity that allows detection even with a weak signal when only trace amounts of 98 

species-specific DNA are present, and (iii) authentication of its ancient origin. 99 

However, no software currently exists that fulfills all requirements essential for 100 

reliable screening of metagenomic aDNA. Here we introduce HOPS (Heuristic 101 

Operations for Pathogen Screening), an automated computational pipeline that 102 

screens metagenomic aDNA data for the presence of bacterial pathogens and assesses 103 

their authenticity using established criteria. We test HOPS on experimental and 104 

simulated data and compare it to common metagenomic profiling tools designed for 105 

modern DNA analysis. We show that HOPS outperforms available tools, is highly 106 

specific and sensitive, and can perform reliable and reproducible taxonomic 107 

identification and authentication with as few as 50 reads. 108 
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RESULTS  109 

HOPS Workflow 110 

 111 
Figure 1. Schematic depiction of HOPS workflow. First, MALT aligns the metagenomic 112 
data against its reference database and has an optional mode for processing aDNA reads. MaltExtract 113 
then processes the MALT output with various filters and produces various statistics. Finally, post 114 
processing procedures provide a comprehensive visualization of the output which can be evaluated to 115 
identify putatively positive hits. 116 
 117 
HOPS consists of three parts (Figure 1): i) a modified version of MALT (25, 35), 118 

which includes optional PCR duplicate removal and optional deamination pattern 119 

tolerance at the ends of reads; ii) The newly developed program MaltExtract, which 120 

provides statistics for the evaluation of species identification as well as aDNA 121 

authenticity criteria for a user-specified set of bacterial pathogens, with additional 122 

functionality to filter the aligned reads by various measures such as read length, 123 

sequence complexity or percent identity; and iii) a post-processing script that provides 124 

a summary overview for all samples and potential bacterial pathogens that have been 125 

identified. 126 

MALT 127 

MALT (Megan Alignment Tool) (25, 35) is a fast alignment and taxonomic binning 128 

tool for metagenomic data that aligns DNA sequencing reads to a user-specified 129 

database of reference sequences. Reads are assigned to taxonomic nodes by the naïve 130 

Lowest Common Ancestor (LCA) algorithm (36, 37) and are thus assigned to 131 

different taxonomic ranks based on their specificity. The default version of MALT is 132 

intended for the analysis of metagenomic datasets deriving from modern DNA, and 133 
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thus it was not designed to accommodate the specific requirements of aDNA analyses. 134 

In particular, aDNA damage that manifests as miscoding lesions in sequenced 135 

products can lead to an increased number of mismatches, and extensive damage has 136 

the potential to prevent alignment or alter taxonomic assignment. Loss of target reads 137 

due to DNA damage can hamper species detection as aDNA studies usually begin 138 

with shallow sequence data during initial evaluations of sample quality. In addition, 139 

archaeological remains often show low DNA yields, and library amplification can 140 

result in a high number of PCR duplicates, which can falsely inflate quantitative 141 

estimates of taxa. 142 

 143 

To account for such shortcomings, we introduce a modified version of MALT that is 144 

specifically tailored to the analysis of aDNA data. In this modified version, PCR 145 

duplicates are removed by eliminating reads identical to those already aligned. In 146 

addition, reads are optionally filtered for a minimum Wootton & Federhen complexity 147 

(38) in order to remove low complexity reads. Furthermore, to accommodate aDNA 148 

damage during alignment, C>T substitutions are ignored in the first five positions 149 

from the 5’-end and G>A substitutions are ignored in first five positions from the 3’-150 

end. 151 

 152 

MaltExtract and post-processing   153 

The core of HOPS is formed by the newly developed MaltExtract module. Without 154 

MaltExtract the result files produced by MALT (RMA6 format) can only be evaluated 155 

manually with the metagenomic analysis tool MEGAN (39). Such analysis becomes 156 

infeasible when working with large data sets, in which each sample must be 157 

separately searched for a long list of candidate organisms, a process that is both 158 

laborious and prone to user error. MaltExtract provides an automated approach for the 159 

assessment of the alignment information stored in RMA files generated by MALT. It 160 

automatically retrieves and assesses information on various evaluation criteria for all 161 

taxonomic nodes that match a given list of target species. 162 

 163 

MaltExtract obtains information on edit distance, read length distribution, coverage 164 

distribution and alignment mismatch patterns in order to identify and authenticate the 165 

presence of species-specific ancient DNA. Furthermore, MaltExtract allows data 166 
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filtering for maximum read length, minimum percent identity, minimum complexity, 167 

and aDNA damage patterns. 168 

 169 

 170 
Figure 2. Post-processing steps in HOPS. Three hierarchical post-processing steps are used 171 
in HOPS. (A) First, the edit distance distribution is required to show a decline (black lines). (B) 172 
Second, the alignments are assessed for C>T and G>A mismatches typical for aDNA; by default, any 173 
such damage is considered sufficient. (C) Third, the edit distance distribution of reads showing damage 174 
is evaluated.  175 
 176 
Accuracy in taxonomic read assignment is evaluated in a three-step procedure that 177 

includes ancient authentication criteria (Figure 2). The first step evaluates the read 178 

assignment to a taxonomic node. Incorrect read assignments can occur when 179 

databases are incomplete: many species in a metagenomic sample may have no 180 

representative reference genome in the database, and hence become erroneously 181 

assigned to the closest genetic match, which could belong to a different species, or 182 

even genus. Mapping to an incorrect species generally results in an increased number 183 

of mismatches across the read that is evident in the edit distance distribution (Figure 184 

2A). By contrast, if the sequenced reads are assigned to the correct reference species, 185 

the edit distance distribution should continuously decline, with most of the reads 186 

showing no or only a few mismatches, mostly resulting from aDNA damage or 187 

evolutionary divergence of the modern reference from the ancient genome. We 188 

summarize the shape of the edit distance distribution by a score we term negative 189 

difference proportion (-Δ%), which leverages the difference in sequencing read 190 

counts between neighboring mismatch categories (Figure S1). The -Δ% takes values 191 

between 0 and 1, where 1 indicates a strictly declining edit distance distribution. 192 

While true positives have a -Δ% of 1 when enough endogenous species-specific 193 

sequencing reads are present, we use a threshold of -Δ% > 0.9 to account for possible 194 
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perturbations due to stochasticity in the edit distance distribution when few reads 195 

(~10-20) are present. As such, this permits the detection of even low abundant taxa. 196 

  197 

In a second step, the ancient origin of the DNA is evaluated through analysis of DNA 198 

miscoding lesion patterns (Figure 2B). The most prominent modification observed is 199 

deamination of cytosine into uracil, which is read as a thymine by the polymerase. 200 

This leads to an overrepresentation of C>T substitutions at the 5’ end and 201 

correspondingly G>A substitutions at the 3’ end (34, 40). Evaluation of damage 202 

patterns is mandatory in any ancient DNA study. MaltExtract reports the rates of 203 

substitutions for the leading and trailing 10 positions of the read alignment. The 204 

default post-processing settings require only a single miscoding lesion to be present in 205 

at least one read to qualify as exhibiting damage. This maximizes sensitivity and 206 

allows authentication to function largely independently of read depth.  207 

 208 

As a third and final criterion, we evaluate the accuracy of taxonomic assignment for 209 

all aligned reads exhibiting aDNA damage. For this we assess again the edit distance 210 

distribution using the -Δ% score, but now this is only performed for damaged reads 211 

(Figure 2C). In this step, a greater number of assigned reads (>100) is required for 212 

reliable edit distance evaluation due to the fact that not all ancient reads are expected 213 

to exhibit damage. 214 

 215 

The MaltExtract output is saved in a structured output folder with a summary file of 216 

the processed input and subfolders for each evaluation criterion. The post-processing 217 

tool generates a summary highlighting which of the target species passed one or more 218 

evaluation criteria for each sample, as well as detailed diagnostic plots displaying the 219 

evaluation criteria for each supported target species (Figure S2).  220 

 221 

222 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/534198doi: bioRxiv preprint first posted online Jan. 29, 2019; 

http://dx.doi.org/10.1101/534198
http://creativecommons.org/licenses/by/4.0/


 

 

Assessment of taxonomic assignment on simulated data  223 

 224 
Figure 3. Assignment of simulated reads to taxonomic levels for 33 bacterial 225 

pathogens. The fraction of simulated reads (red gradient) per reference (y axis) assigned to a 226 
specific node across different levels of the taxonomy (x axis). The levels of taxonomy not defined for a 227 
species are shown in grey. 228 
 229 

The naïve LCA algorithm (36), which is part of HOPS, assigns reads to different 230 

taxonomic levels depending on the specificity of sequence matches. Taxonomic 231 

assignment thus depends on the structure of the underlying reference database, and it 232 

is critical to understand the expected taxonomic placement of sequenced reads from 233 

each microbial pathogen in order to successfully identify them. To analyze the 234 

taxonomic placement of a test set of 33 bacterial pathogens and to assess the 235 

performance of HOPS we simulated sequencing reads that included artificial DNA 236 

damage and spiked them into dentine, dental calculus, bone and soil metagenomic 237 

backgrounds (see Table 1).  238 

 239 

Applying the HOPS pipeline, we recovered 98% of the simulated reads for 32 of the 240 

33 bacterial taxa of interest (see Figure 3). The one exception was Mycobacterium 241 

avium subspecies paratuberculosis K10 for which 23% of simulated reads were 242 

assigned to an incorrect Mycobacterium avium subspecies paratuberculosis strain. 243 

Our analysis shows that in most cases the taxonomic levels “species” and “complex” 244 

(e.g. Mycobacterium tuberculosis complex and Yersinia pseudotuberculosis complex) 245 

correctly accumulate the vast majority of the simulated pathogen reads. However, 246 
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noteworthy exceptions were Brucella abortus, Brucella melitenis and Bordetella 247 

pertussis. Upon further investigation, we found that many species within the genera 248 

Brucella and Bordetella show a high degree of sequence similarity, thus causing the 249 

majority of the reads deriving from these pathogens to be assigned at the genus level. 250 

By contrast, read assignment was found to be very specific for five taxa (Treponema 251 

denticola ATCC 35405, Clostridium tetani E89, Clostridium botulinum E3 str. Alaska 252 

E43, Streptococcus gordonii str. Challis substr. CH1 and Clostridium botulinum 253 

BKT015925), resulting in the majority of reads deriving from these taxa to be 254 

correctly assigned at the strain level. For Salmonella enterica subsp. enterica most 255 

reads were assigned at the subspecies level. The results of this test provide a guide for 256 

the levels of taxonomic identification that should be considered when searching for 257 

any of the 33 queried bacterial species in experimental ancient datasets.  258 

Optimization of MALT for aDNA 259 

 260 
Figure 4 Comparison of the number of successfully recovered Y. pestis reads using standard (SD) and 261 
damage tolerant (DT) MALT with minimum percent identities of (A) 85%, (B) 95% and (C) 99%. 262 
Shown are the recovered reads from the “default” (all reads) and “ancient” (reads with damage) modes 263 
in MALT, with the same 500 reads being spiked into the metagenomic backgrounds. Error bars show 264 
the standard error of five independent technical replicates for each analysis.  265 
 266 
Because MALT was designed for taxonomic binning of modern genetic data, 267 

adapting it to be used on aDNA required altering the original MALT implementation 268 

to tolerate terminal substitutions consistent with aDNA damage so that they would not 269 

interfere with the percent identity filter. To evaluate the efficacy of this modification, 270 

we compared the performance of the modified, damage tolerant version of MALT to 271 

the default version using simulated Y. pestis data with high damage (~40%) and three 272 

different percent identity filters: 85%, 95% and 99% (Figure 4).  273 
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As expected, the greatest difference was observed when applying the stringent 99% 274 

identity filter, for which the damage tolerant MALT version recovered ~20% more 275 

reads than the standard MALT version. Additionally, only the modified version was 276 

able to recover reads with simulated damage under these parameters. At 95% identity, 277 

only a small difference could be observed between the two MALT versions, while 278 

results were almost identical at an 85% identity level. Taken together, the damage 279 

tolerant MALT version provides an advantage when searching for a given pathogen 280 

using stringent filtering criteria. 281 

Performance comparison of HOPS, Kraken and MIDAS on simulated 282 

data  283 

We next evaluated the performance of HOPS by comparing it to two commonly used 284 

metagenomics profiling tools: MIDAS (30), a marker gene-based taxonomic 285 

classifier, and Kraken (31), which performs taxonomic classification based on k-mer 286 

matching to a database of complete genomes. The marker gene database of MIDAS 287 

lacked representation for Yersinia pseudotuberculosis, Bordetella pertussis and 288 

Brucella melitensis. Therefore, MIDAS could only be evaluated for 30 of the 33 289 

bacterial pathogens in the simulated data sets. For Kraken, we downloaded the 290 

bacterial database, which lacked a reference genome to Clostridium sporogenses. 291 

 292 

HOPS consistently detected all 33 pathogens in all backgrounds and among replicates 293 

with as few as 50 reads (see Figure 5A). Kraken failed to identify Brucella abortus 294 

and Mycobacterium tuberculosis in some replicates with only 50 simulated pathogen 295 

reads, but otherwise had a sensitivity of 100%; however, it was prone to a high false 296 

positive rate (see below). The sensitivity of MIDAS was far lower than for Kraken 297 

and HOPS. Even with 5000 simulated pathogen reads for each species, MIDAS 298 

detected only 11 of the 30 possible bacterial pathogens. This can be explained by the 299 

limited sensitivity of marker gene based approaches, which require relatively high 300 

sequencing coverage in order to ensure adequate representation of the marker genes 301 

needed for identification. This is further evident as MIDAS’ sensitivity is more 302 

heavily influenced by the number of simulated reads than Kraken and HOPS.  303 

 304 
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 305 
Figure 5. Performance comparison of HOPS, Kraken and MIDAS.  (A) HOPS outperforms other 306 
tools, successfully and consistently identifying all 33 target bacteria, even when represented by as few 307 
as 50 reads. (B) Number of target species identified in the metagenomic background files (negative 308 
controls) for HOPS, Kraken and MIDAS. 309 
 310 
Negative controls 311 

To assess false positive assignments, we queried all five metagenomic datasets for 312 

detectable signatures of the 33 test bacterial pathogens using HOPS, Kraken and 313 

MIDAS in the five metagenomic backgrounds prior to the addition of simulated 314 

pathogen reads. Kraken showed the highest susceptibility to false positives (see 315 

Figure 5B; Table S1). In this analysis, Kraken detected 24 (73%) pathogens in 316 

calculus, 19 (58%) in dentine, 13 (39%) in bone and 18 (55%) in soil. Most 317 

problematically, Mycobacterium tuberculosis and Bordetella pertussis were detected 318 

by Kraken in every metagenomic background. 319 

 320 

Unexpectedly, MIDAS detected oral streptococci, Tannerella forsythia, Treponema 321 

denticola and Porphyromonas gingivalis in the dentine samples but not in calculus, 322 

where they are normally found. Overall, MIDAS produced fewer identifications than 323 
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Kraken, but such a result is expected given its reliance on marker gene-based 324 

detection, which limits identification to only abundant taxa.  325 

 326 

HOPS detected four test pathogens in the metagenomic background datasets: 327 

Clostridium tetani (soil), Streptococcus mutans (calculus, dentine), Treponema 328 

denticola (calculus, dentine), and Porphyromonas gingivalis (calculus only). Because 329 

C. tetani is ubiquitous in soil, and all other detected bacteria are commensals of the 330 

human oral cavity, their identification via both MIDAS and HOPS likely reflects true 331 

positives. Taken together, HOPS and MIDAS have a lower tendency toward false 332 

positive assignments. Kraken’s increased vulnerability for aberrant assignments likely 333 

relates to the absence of an alignment step, which is necessary for reliable species 334 

evaluation in both modern and ancient contexts. 335 

 336 

Positive Controls  337 

In addition to performing tests using simulated data, we also tested HOPS, Kraken 338 

and MIDAS on 25 ancient metagenomic datasets known to be positive for bacterial 339 

pathogens (Table 2). They consisted of both shotgun and capture data and they varied 340 

in sequencing depth in accordance with experimental conditions and method of data 341 

generation. 342 
 343 
HOPS and Kraken share 100% sensitivity for the detection of target bacterial 344 

pathogens in every sample. By contrast, MIDAS only detected the correct bacterial 345 

pathogen in 22 out of 25 samples. Again, MIDAS sensitivity was likely reduced due 346 

to the marker gene-based approach. These results highlight the advantage of whole-347 

genome based approaches like MALT and Kraken that take advantage of every 348 

sequenced read. 349 

Runtimes 350 

To calculate the runtime for each program, we used simulated metagenomic files that 351 

each contained five million sequencing reads (see Methods). For each file, HOPS 352 

required an average of 3307±820 seconds for the MALT step, 16±1 seconds for the 353 

MaltExtract step and 1±0 seconds for post processing, for a total of approximately 55 354 

minutes of analysis time per file. Kraken took on average 72±16 seconds to run 355 

Kraken_alignment and 22±3 for Kraken_translate, a total of 1.5 minutes, and the 356 
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MIDAS pipeline processed each file in an average of 4±1 seconds. HOPS by far 357 

required the highest runtimes of the three tools, but most of this time was required for 358 

sequence alignment, a step that, although time consuming, increases detection 359 

sensitivity, reduces false positives, and enables the authentication of aDNA reads.  360 

361 
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Discussion 362 

The field of archaeogenetics faces several challenges, such as the low amount of 363 

endogenous target DNA, the highly degraded nature of the DNA, and an unknown 364 

and diverse metagenomic background signal that accumulates during decomposition 365 

and centuries spent in a depositional environment. This makes reliable identification 366 

and authentication of genuine ancient DNA challenging, particularly when targeting 367 

bacterial DNA that is usually only present in small amounts. Furthermore, many 368 

bacterial pathogens have close relatives in soil, which necessitates meticulous care 369 

when making pathogen identifications. 370 

 371 

HOPS provides an automated pipeline for high-throughput ancient bacterial species 372 

detection and authentication from metagenomic sequencing data. We compare HOPS 373 

to Kraken and MIDAS, two widely used methods for estimating both the presence 374 

and abundance of bacterial taxa in metagenomic data. These tools, however, have 375 

limited application to the specific challenges of aDNA in terms of degradation and 376 

chemical modifications manifest as miscoding lesions. Our analyses highlight the 377 

need for a pathogen identification pipeline that accommodates qualities of aDNA data 378 

and includes an essential and robust authentication for all ancient read assignments. 379 

HOPS provides a fast, reliable, and user-friendly solution to these established 380 

limitations.  381 

 382 

HOPS was tested on simulated ancient pathogen DNA reads, and it successfully 383 

detected all targeted species spiked into metagenomic backgrounds with as few as 50 384 

pathogen reads, representing less than 0.00001 % of the total dataset. In this context, 385 

our modified version of MALT, which tolerates mismatches resulting from DNA 386 

degradation, prevents a decrease in sensitivity even in cases of heavily damaged 387 

aDNA. We demonstrate that the marker gene-based metagenomic profiling tool 388 

MIDAS had a much lower sensitivity for pathogen detection compared to HOPS, 389 

especially for low coverage data, which is typical of ancient DNA screening datasets. 390 

Although the sensitivity of Kraken was similar to HOPS, and while Kraken’s k-mer 391 

matching is considerably faster than the precise alignments used in HOPS, Kraken is 392 

incapable of validating species assignment and aDNA authenticity, and thus has a 393 
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lower specificity. This is most clearly demonstrated by our analysis of a metagenomic 394 

soil sample in which Kraken detected numerous false positives, including 395 

Mycobacterium tuberculosis and Bordetella pertussis (whooping cough). This is 396 

likely due to many soil dwelling bacteria that harbor genetic similarities to these 397 

pathogens, such as diverse mycobacerial species and B. petrii, a close relative to B. 398 

pertussis that is a common constituent of environmental datasets. These effects are 399 

further compounded by the fact that many environmental microbes have not been 400 

genomically characterised and are not part of any reference database, which only 401 

increases the potential of false assignments to well-sequenced pathogens. The 402 

alignment-based validation procedure implemented in HOPS minimises such false 403 

positive assignments, and thus offers greater accuracy in pathogen identification 404 

during screening when environmental backgrounds comprise the dominant molecular 405 

signal.  406 

 407 

A previously published pipeline for the assessment of metagenomic data in 408 

archaeogenetics is metaBIT (41). It implements a variety of methods for the detailed 409 

assessment of metagenomic composition, which also includes validation of aDNA 410 

damage patterns. As metaBIT is based on MetaPhlAn (42), which employs a marker 411 

gene based approach in the initial detection step similar to MIDAS, pathogens in low 412 

abundance could be missed in its initial steps when applied to shallow sequencing 413 

data. An integrated approach combining HOPS and metaBIT might be a promising 414 

future strategy for a detailed characterization of microbiomes while at the same time 415 

proving a high level of sensitivity for the detection of pathogens. In particular, the 416 

analysis of ancient samples that preserve their original microbiome signature, such as 417 

dental calculus (43) or coprolites (44) would benefit from a combined application of 418 

both methodologies, by using metaBIT to assess the microbial make up and using 419 

HOPS for more in depth species authentication. 420 

 421 

For all taxonomic classifiers, correct assignment of metagenomic reads is strongly 422 

dependent on the quality of the underlying reference sequences. Currently we use a 423 

curated database for MALT that contains completed reference sequences and 424 

assemblies for bacteria from RefSeq (December 2016). Database sizes are constantly 425 

increasing, but much of this growth derives from the addition of redundant sequence 426 

data from model organisms, which also creates biases. In this context, methodologies 427 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/534198doi: bioRxiv preprint first posted online Jan. 29, 2019; 

http://dx.doi.org/10.1101/534198
http://creativecommons.org/licenses/by/4.0/


 

 

such as SPARSE (45) aim to mitigate against database redundancy by hierarchically 428 

structuring reference sequences, which could be employed to further improve HOPS’ 429 

specificity and runtime. 430 

 431 

In addition, analysis of our simulated dataset allowed for insights into the taxonomic 432 

structure of each of the bacterial pathogens in our target list. It became apparent that 433 

for some targets the taxonomic species level is not sufficient for identification. This 434 

applies to historically important pathogens such as Y. pestis or M. tuberculosis. Here, 435 

evaluation of a higher taxonomic level such as complex is more reliable, while in the 436 

case of Salmonella typhi (typhoid fever) a lower level (subspecies) is favorable. 437 

Therefore, our simulations provide a valuable resource for the optimization of 438 

pathogen screening approaches in general. 439 

 440 

Here, HOPS was evaluated for its success in screening for bacterial pathogens. 441 

Because the reference database is user defined and can amended to include, for 442 

example, the NCBI full nucleotide collection (46) or hand-curated sets of reference 443 

genomes, tremendous flexibility exists in molecular detection, which could extend to 444 

viruses, fungi, and eukaryotes.   445 

 446 

Conclusions 447 

We present a fast, reliable, and user-friendly computational pathogen screening 448 

pipeline for ancient DNA that has the flexibility of handling large datasets. HOPS 449 

successfully identifies both simulated and actual ancient pathogen DNA within 450 

complex metagenomic datasets, exhibiting a higher sensitivity than MIDAS and with 451 

fewer false positives than Kraken. HOPS provides a high level of automatization that 452 

allows for the screening of thousands of datasets with very little hands-on time, and it 453 

offers detailed visualizations and statistics at each evaluation step, enabling a high 454 

level of quality control and analytical transparency. HOPS is a powerful tool for high-455 

throughput pathogen screening in large-scale archaeogenetic studies, producing 456 

reliable and reproducible results even from remains with exceptionally low levels of 457 

pathogen DNA. Such qualities make HOPS a valuable tool for pathogen detection in 458 

the rapidly growing field of archaogenetics. 459 
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Methods 460 

Implementation of MaltExtract 461 

MaltExtract is implemented in Java. It integrates parts of MEGAN’s (39) source code 462 

for accessing the RMA file structure and functions from forester 463 

(https://github.com/cmzmasek/forester) for traversing the taxonomic tree. 464 

Simulating data to analyse read assignment using the MALT LCA 465 

algorithm 466 

Depending on the database structure and sequence similarity between reference 467 

sequences, the naïve LCA (36) algorithm will assign reads to different taxonomic 468 

units. To inquire how reads are assigned to the taxonomic tree for 33 bacterial 469 

pathogens (Table S2), we simulated ancient pathogen DNA reads using gargammel 470 

(47) and spiked them into five ancient metagenomic background datasets obtained 471 

from bone, dentine, dental calculus and soil (Table 1). The simulated reads carry a 472 

unique identifier in their header in order to differentiate them from metagenomic 473 

background sequences, which exhibit either full damage patterns or attenuated 474 

damage patterns following UDG-half treatment (48). To simulate aDNA damage in 475 

the pathogen sequences, we applied damage profiles obtained from previously 476 

published ancient Yersinia pestis genomes with (13) and without UDG-half (18) 477 

treatment. Simulated reads were processed with EAGER (49) and spiked into the 478 

metagenomic backgrounds in different amounts (50, 500 or 5000 reads). For each 479 

metagenomic background, a typical screening sequencing depth of five million reads 480 

were used. 481 

 482 

Table 1. Metagenomic backgrounds used for simulated data sets 483 

ID Source Age (Period) Treatment Reference 

KT31calc Calculus Medieval No UDG (50) 

LP39.10 Dentine 2920-2340 BCE No UDG (51) 

MK5.001 Dentine 3348-3035 BCE 

3619-3366 BCE 

UDG half (52) 

TÖSM_1a Bone 6000-5500 BCE UDG half (53) 

Soil Soil - No UDG (25) 
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Evaluation of the damage tolerant version of MALT 484 

To preserve damage patterns when mapping reads with MALT, we modified the 485 

source code and compared the performance of the modified and default versions. 486 

We therefore created with gargammel (47) test samples that show twice the amount of 487 

damage (~40%) usually found in ancient samples (13). Here, we compare both 488 

MALT versions for the bacterial pathogen Yersinia pestis (CO92 reference). Both 489 

versions of MALT were tested with 85%, 95% and 99% minimum percent identity 490 

filtering, to investigate the effects of percent identity filtering on the read alignment of 491 

aDNA reads.  492 

Comparison of HOPS to Kraken and MIDAS 493 

HOPS was compared to two metagenomic taxonomic classification tools: Kraken (31) 494 

and MIDAS (30). We only executed the first step of MIDAS that matches reads to the 495 

marker gene database to determine species abundance. This step was executed on 32 496 

cores with default parameters. The first step is sufficient, as any species undetected in 497 

this step would not be detected in the remaining ones. Kraken was set to use 32 cores 498 

to align the sample data against its reference database with the preload parameter to 499 

load the entire database into memory before starting k-mer alignment. In a second 500 

step kraken-translate was executed to transform taxonomy ids into proper species 501 

names. For Kraken and MIDAS, we judged a pathogen as correctly identified if at 502 

least one read matches to a strain of the correct species to account for the differences 503 

in the database contents, methodologies and output formats. 504 

Databases 505 

In our study, HOPS uses a database containing all complete prokaryotic reference 506 

genomes obtained from NCBI (December 1st 2016) with entries containing ‘multi’ 507 

and ‘uncultured’ removed (13 entries). In total, 6,249 reference genomes are included 508 

in the database. For Kraken we downloaded the bacterial database with Kraken’s 509 

kraken-build script (June 1 2017). The Kraken database contains no strain references 510 

for Clostridium sporogenses. Otherwise it contains at least one reference for all of the 511 

simulated bacterial pathogens (Table S2). For MIDAS we used the default reference 512 

database (May 24 2016), which contained no representation of Yersinia 513 

pseudotuberculosis, Bordetella pertussis and Brucella melitensis.  514 
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Positive controls  515 

We compare the sensitivity and specificity of HOPS, MIDAS and Kraken using 25 516 

metagenomic datasets previously shown to be positive for one of four microbial 517 

pathogens: Yersinia pestis, Mycobacterium tuberculosis, Salmonella enterica and 518 

Heliobacter pylori (Table 2). These positive control samples represent real 519 

metagenomic data and therefore contain an unknown number of modern species in 520 

addition to the actual recovered bacterial pathogen. Read counts across all samples 521 

ranged from 70,897 to 7,000,000 reads. While most datasets were generated by 522 

shotgun library screening, four datasets were enriched for pathogen DNA prior to 523 

sequencing using DNA capture methods. For all captured datasets and a subset of 524 

shotgun datasets, DNA was treated with UDG prior to library construction to remove 525 

DNA damage. Both types of datasets were included to evaluate the performance of 526 

HOPS on samples with different levels of DNA damage and pathogen abundance.  527 

 528 

Table 2 Metagenomic samples used as positive controls 529 
ID Reconstructed 

Bacteria 

Sequencing reads Data type Reference 

10C Salmonella enterica 1,017,400 Shotgun (25) 

35C Salmonella enterica 986,908 Shotgun (25) 

RK1001.C0101 Yersinia pestis 7,023,370 Shotgun (17) 

GEN_72 Yersinia pestis 7,663,408 Shotgun (17) 

549_O Yersinia pestis 1,520,471 Shotgun (16) 

JK3031UDG Yersinia pestis 4,059,016 Shotgun 

(UDG) 

(16) 

JK2370UDG Yersinia pestis 52,858,027 Shotgun 

(UDG) 

(16) 

RT6 Yersinia pestis 6,706,316 Shotgun 

(UDG) 

(18) 

1343UnTal85 Yersinia pestis 3,462,216 Shotgun (17) 

6Post Yersinia pestis 2,546,695 Shotgun (17) 

KunilaII Yersinia pestis 1,007,417 Shotgun (17) 

RISE00 Yersinia pestis 6,000,000 Shotgun (13) 

RISE139 Yersinia pestis 6,000,000 Shotgun (13) 

RISE386 Yersinia pestis 6,000,000 Shotgun (13) 

RISE397 Yersinia pestis 6,000,000 Shotgun (13) 

RISE505 Yersinia pestis 6,000,000 Shotgun (13) 
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RISE509 Yersinia pestis 6,000,000 Shotgun (13) 

RISE511 Yersinia pestis 6,000,000 Shotgun (13) 

54 Mycobacterium 

tuberculosis 

70,897 Shotgun (21) 

58 Mycobacterium 

tuberculosis 

114,555 Shotgun (21) 

64 Mycobacterium 

tuberculosis 

160,310 Shotgun (21) 

54 Mycobacterium 

tuberculosis 

5,000,000 Capture 

(UDG) 

(21) 

58 Mycobacterium 

tuberculosis 

5,000,000 Capture 

(UDG) 

(21) 

64 Mycobacterium 

tuberculosis 

5,000,000 Capture 

(UDG) 

(21) 

P1P2 Helicobacter pylori 5,000,000 Capture 

(UDG) 

(27) 

 530 

 531 

Runtimes 532 

To calculate the runtimes for HOPS, Kraken and MIDAS, we used a subset of the 533 

simulated files. The subset consisted of all metagenomic background datasets spiked 534 

with 5000 reads without technical replicates resulting in a total of 330 metagenomic 535 

files. A total of 64 cores and 700 GB of RAM were allocated to each program.  536 

537 
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Supplementary Information 716 

HOPS: Automated detection and authentication of pathogen DNA in 717 

archaeological remains 718 

 719 

 720 

 721 
Figure S1 The first and third steps in the HOPS postprocessing protocol require a decline in the Edit 722 
Distance distribution. 723 
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 725 
Figure S2 HOPS summary output for a tuberculosis positive sample. Upper left: Edit distance 726 
distribution for all reads assigned to M. tuberculosis. Upper right: Edit distance distribution for 727 
assigned reads that show a possible DNA damage signal. Middle left: DNA damage plot for assigned 728 
reads. Lower left: Top ten references with percentage of aligned reads. Middle right: Summary 729 
statistics for assigned reads. 730 
 731 
Table S1 Results for negative controls. For HOPS the step in the post processing that was reached for 732 
each species is indicated (0: No detection; 1: detected with good edit distance distribution; 2: 733 
additionally indication for damage; 3: additionally good edit distance distribution for damaged reads). 734 
For Kraken the number of k-mers assigned to the species and for MIDAS the number of assigned reads 735 
is listed. 736 

Species 
bone_ 
TOSM1a 

calculus_ 
KT31calc 

dentine_M
K5.001 

dentine_LP39
.10 soil Software 

Bacillus anthracis 0 0 0 0 0 HOPS 
Bordetella 
pertussis 0 0 0 0 0 HOPS 
Borrelia 0 0 0 0 0 HOPS 
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burgdorferi B31 

Brucella abortus 0 0 0 0 0 HOPS 
Brucella melitensis 0 0 0 0 0 HOPS 
Clostridium 
botulinum 0 0 0 0 1 HOPS 
Clostridium 
sporogenes 0 0 0 0 0 HOPS 
Clostridium tetani 0 0 0 0 1 HOPS 
Corynebacterium 
diphtheriae 0 0 0 0 0 HOPS 
Haemophilus 
influenzae 0 0 0 0 0 HOPS 
Helicobacter 
pylori 0 0 0 0 0 HOPS 
Mycobacterium 
avium subsp. 
paratuberculosis 0 0 0 0 0 HOPS 
Mycobacterium 
leprae 0 0 0 0 0 HOPS 
Mycobacterium 
tuberculosis 0 0 0 0 0 HOPS 
Neisseria 
gonorrhoeae 0 0 0 0 0 HOPS 
Neisseria 
meningitidis  0 0 0 0 0 HOPS 
Porphyromonas 
gingivalis 0 3 0 0 0 HOPS 
Salmonella 
enterica subsp. 
enterica 0 0 0 0 0 HOPS 
Staphylococcus 
aureus subsp. 
aureus 0 0 0 0 0 HOPS 
Streptococcus 
gordonii str. 0 0 0 1 0 HOPS 
Streptococcus 
mutans 0 3 0 2 0 HOPS 
Streptococcus 
pneumoniae 0 2 0 0 0 HOPS 
Tannerella 
forsythia 0 0 0 0 0 HOPS 
Treponema 
denticola 0 0 0 1 0 HOPS 
Treponema 
pallidum subsp. 
pallidum 0 0 0 0 0 HOPS 
Vibrio cholerae 0 0 0 0 0 HOPS 
Yersinia pestis 0 0 0 0 0 HOPS 
Yersinia 
pseudotuberculosis 0 0 0 0 0 HOPS 

  
bone_ 
TOSM1a 

calculus_ 
KT31calc 

dentine_M
K5.001 

dentine_LP39
.10 soil Kraken 

Bacillus anthracis 0 5 1 0 0 Kraken 
Bordetella 
pertussis 1 12 20 4 10 Kraken 
Borrelia 
burgdorferi B31 0 0 0 0 0 Kraken 
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Brucella abortus 0 0 0 0 1 Kraken 
Brucella melitensis 0 4 0 0 1 Kraken 
Clostridium 
botulinum 40 182 0 21 40 Kraken 
Clostridium 
sporogenes 0 0 0 0 0 Kraken 
Clostridium tetani 13 50 1 2 240 Kraken 
Corynebacterium 
diphtheriae 4 79 9 13 11 Kraken 
Haemophilus 
influenzae 2 1617 0 2 3 Kraken 
Helicobacter 
pylori 8 12 0 0 4 Kraken 
Mycobacterium 
avium subsp. 
paratuberculosis 13 8 39 6 26 Kraken 
Mycobacterium 
leprae 16 19 22 13 21 Kraken 
Mycobacterium 
tuberculosis 53 46 208 55 117 Kraken 
Neisseria 
gonorrhoeae 4 2407 2 3 8 Kraken 
Neisseria 
meningitidis  4 4448 0 9 12 Kraken 
Porphyromonas 
gingivalis 2 13925 0 6 0 Kraken 
Salmonella 
enterica subsp. 
enterica 8 54 16 24 16 Kraken 
Staphylococcus 
aureus subsp. 
aureus 1 19 2 4 4 Kraken 
Streptococcus 
gordonii 0 71751 0 15 0 Kraken 
Streptococcus 
mutans 0 401 0 17 0 Kraken 
Streptococcus 
pneumoniae 0 3224 0 0 0 Kraken 
Tannerella 
forsythia 8 31294 14 18 14 Kraken 
Treponema 
denticola 0 25264 0 4 0 Kraken 
Treponema 
pallidum subsp. 
pallidum 0 0 0 0 0 Kraken 
Vibrio cholerae 6 60 1 6 5 Kraken 
Yersinia pestis 0 4 0 0 0 Kraken 
Yersinia 
pseudotuberculosis 15 21 7 39 7 Kraken 

  
bone_ 
TOSM1a 

calculus_ 
KT31calc 

dentine_M
K5.001 

dentine_LP39
.10 soil   

Bacillus anthracis 0 0 0 0 0 Midas 
Bordetella 
pertussis 0 0 0 0 0 Midas 
Borrelia 
burgdorferi B31 0 0 0 0 0 Midas 
Brucella abortus 0 0 0 0 0 Midas 
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Brucella melitensis 0 0 0 0 0 Midas 
Clostridium 
botulinum 0 0 0 0 0 Midas 
Clostridium 
sporogenes 0 0 0 0 0 Midas 
Clostridium tetani 0 0 0 0 0 Midas 
Corynebacterium 
diphtheriae 0 0 0 0 0 Midas 
Haemophilus 
influenzae 0 0 0 0 0 Midas 
Helicobacter 
pylori 0 0 0 0 0 Midas 
Mycobacterium 
avium subsp. 
paratuberculosis 0 0 0 0 0 Midas 
Mycobacterium 
leprae 0 0 0 0 0 Midas 
Mycobacterium 
tuberculosis 0 0 0 0 0 Midas 
Neisseria 
gonorrhoeae 0 0 0 0 0 Midas 
Neisseria 
meningitidis  0 0 0 0 0 Midas 
Porphyromonas 
gingivalis 0 0 0 29 0 Midas 
Salmonella 
enterica subsp. 
enterica 0 0 0 0 0 Midas 
Staphylococcus 
aureus subsp. 
aureus 0 0 0 0 0 Midas 
Streptococcus 
gordonii str. 0 0 0 0 0 Midas 
Streptococcus 
mutans 0 0 0 0 0 Midas 
Streptococcus 
pneumoniae 0 0 0 1 0 Midas 
Tannerella 
forsythia 1 0 1 26 0 Midas 
Treponema 
denticola 0 0 0 42 0 Midas 
Treponema 
pallidum subsp. 
pallidum 0 0 0 0 0 Midas 
Vibrio cholerae 0 0 0 0 0 Midas 
Yersinia pestis 0 0 0 0 0 Midas 
Yersinia 
pseudotuberculosis 0 0 0 0 0 Midas 
 737 
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Table S2 Genomes used to generate simulated ancient pathogen DNA data sets 743 
Bacillus anthracis str Ames                                      Neisseria meningitidis MC58                                     

Bordetella pertussis Tohama I                                    Porphyromonas gingivalis W83                                      

Borrelia burgdorferi B31                                          Salmonella enterica subsp enterica serovar Enteritidis str 
P125109 

Brucella abortus 2308                                             Salmonella enterica subsp enterica serovar Typhi str CT18         

Brucella melitensis bv 1 str 16M                                  Salmonella enterica subsp enterica serovar Typhimurium str 
LT2     

Clostridium botulinum A str ATCC 3502                             Staphylococcus aureus subsp aureus NCTC 8325 

Clostridium botulinum BKT015925                               Streptococcus gordonii str Challis substr CH1 

Clostridium botulinum E3 str Alaska E43                            Streptococcus mutans UA159                                        

Clostridium sporogenes NCIMB 10696                             Streptococcus pneumoniae R6                                       

Clostridium tetani E88                                        Tannerella forsythia 92A2                                         

Corynebacterium diphtheriae NCTC 13129                            Treponema denticola ATCC 35405 

Haemophilus influenzae Rd KW20                                   Treponema pallidum subsp pallidum str nichols 

Helicobacter pylori 26695                                          Vibrio cholerae M66-2                                              

Mycobacterium avium subsp paratuberculosis 
K10                      Vibrio cholerae O1 biovar El Tor str N16961 

Mycobacterium leprae TN                                             Yersinia pestis CO92 

Mycobacterium tuberculosis anc                                      Yersinia pseudotuberculosis IP31758 

Neisseria gonorrhoeae FA 1090                                     

  744 
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