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OBTAINED BY ARITHMETIC FUNCTIONS
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Abstract. Families of polynomials associated to arithmetic functions
g(n) are studied. The case g(n) = σ(n), the divisor sum, dictates the
non-vanishing of the Fourier coefficients of powers of the Dedekind eta
function. The polynomials P g

n(X) are defined by n-term recurrence
relations. For the case that g(x) is a polynomial of degree d, we prove
that at most a d+ 2 term recurrence relation is needed. For the special
case g(x) = x we obtain explicit formulas and results.

1. Introduction

Let q = e2πiτ and τ be in the upper complex half-plane. We consider

exp

X∑
n≥1

g(n)
qn

n

 =
∑
n≥0

P gn(X)qn,

where g : N → N is an arithmetic function normalized such that g (1) = 1.
This implies a recursive definition of the polynomials P gn(X):

(1) P gn(X) =
X

n

n∑
k=1

g(k)P gn−k(X) for all n ≥ 1,

where P g0 (X) := 1.
Let for the moment g (n) = σ (n) =

∑
t|n t be the sum of all divisors of n.

Then we obtain the powers of the Euler product

∏
n≥1

(1− qn)−X = exp

X∑
n≥1

σ (n)
qn

n

 .

This is essentially an identity involving powers of the Dedekind eta function
η (τ) = q1/24

∏
n≥1 (1− qn) (see [On03] for more details). Hence, the roots

of P σn (X) dictate the vanishing properties of the n-th Fourier coefficients
of powers of the Dedekind eta function (see [HNR17, HLN18, HNR18] for
more details and the connection to the Lehmer conjecture [Le47]).
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Explicit formulas for P gn (X) in the case g(n) = 1 for all n ∈ N are given
by

exp

X∑
n≥1

qn

n

 = (1− q)−X =
∑
n≥0

(
−X
n

)
(−q)n.

Hence,

(2) P gn(X) =
1

n!
X(X + 1) · · · (X + n− 1) =

1

n!

n∑
k=1

Sn,kX
k

for n ≥ 1 and P g0 (X) = 1. Here, the coefficients Sn,k are the Stirling
numbers of the first kind.

The aim of this paper is to study the polynomials P gn (X) for some inter-
esting functions g(n) particularly for g (n) = n. In this case the coefficients

of Xk of the polynomials n!P gn (X) are the so-called Lah numbers n!
k!

(
n−1
k−1
)

([Ai07]) and the polynomials are related to the generalized Laguerre poly-
nomials [Do16]

(3) L(α)
n (X) =

n∑
k=0

(
n+ α

n− k

)
(−X)k

k!
(α > −1).

In the above case, we show that the sequence of the polynomials P gn (X)
satisfies a three term recurrence relation. More generally, we show that if
g(x) is a polynomial of degree d, then (P gn(X))n≥0 satisfies a recurrence re-
lation of order at most d+2. From the properties of orthogonal polynomials
[Do16], we can also derive that in the case g (x) = x the roots are all simple

and real. Putting P̃ gn(X) = X−1P gn(X), we show that P̃ gn(X) is irreducible
in this case.

2. Recurrence relation for the case when g(x) is a polynomial

In this section, we prove the following.

Theorem 1. Let g (x) be a polynomial of degree d. For 0 ≤ m, j ≤ d define

bm =
m∑
µ=0

(−1)µ
(
m

µ

)
g (−µ) ,

cj = (−1)j
(
b0

(
d

j

)
+

d−j∑
ι=1

ι bι

(
d− ι
j

))
.

Then the polynomials P gn (X) satisfy the following d + 2 term recurrence
relations with P g0 (X) = 1 and

P gn+1 (X) =
1

n+ 1

min{n,d}∑
j=0

(
cjX + (−1)j

(
d+ 1

j + 1

)
(n− j)

)
P gn−j (X) .
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For the proof, we want to express our polynomial g(x) in terms of the
basis

{1, x, x(x+ 1), x(x+ 1)(x+ 2)/2!, . . . , x(x+ 1)(x+ 2) · · · (x+ d)/d!, . . .}.

Hence, we first show how to determine the coefficients in terms of this basis.
These are exactly the bm as stated in the theorem.

Lemma 1. Let Q (x) =
∑d

m=0 bm
x(x+1)···(x+m−1)

m! . Then the coefficients bm
for 0 ≤ m ≤ d can be recovered as bm =

∑m
µ=0 (−1)µ

(
m
µ

)
Q (−µ).

We give a proof of this lemma at the end of this section.

Proof of Theorem 1. We have,

g(n)

n
=
b0
n

+

d∑
m=1

bm
(n+ 1) · · · (n+m− 1)

(m− 1)!
.

Then

X
∑
n≥1

g(n)
qn

n
= X

∑
n≥1

b0
n

+

d∑
m=1

bm
(n+ 1) · · · (n+m− 1)

(m− 1)!

 qn

= Xb0
∑
n≥1

qn

n
+X

d∑
m=1

bm
∑
n≥1

(n+ 1) · · · (n+m− 1)

(m− 1)!
qn

for |q| < 1. The first inner sum is − log(1 − q). The generic inner sum for
m ≥ 1 is

∑
n≥1

(n+ 1) · · · (n+m− 1)

(m− 1)!
qn =

1

(m− 1)!

(
∂m−1

∂qm−1

(
1

1− q

))
− 1

=
1

(1− q)m
− 1.

Our exponential generating function is therefore

F (q,X) := exp

X∑
n≥1

g(n)
qn

n


= exp

(
−b0X log(1− q) +X

d∑
m=1

bm

(
1

(1− q)m
− 1

))
.
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Thus,

∂

∂q
F (q,X)

= F (q,X)
∂

∂q

(
−b0X log(1− q) +X

d∑
m=1

bm

(
1

(1− q)m
− 1

))

= XF (q,X)

(
b0

1− q
+

d∑
m=1

mbm
(1− q)m+1

)
.

Thus,

(1− q)d+1 ∂

∂q
F (q,X) = XF (q,X)

(
b0(1− q)d +

d∑
m=1

mbm(1− q)d−m
)
,

or d+1∑
j=0

(−1)j
(
d+ 1

j

)
qj

×
∑
n≥1

nP gn(X)qn−1


= X

∑
n≥0

P gn(X)qn

(b0(1− q)d +
d∑

m=1

mbm(1− q)d−m
)
.

Now

b0(1− q)d +
d∑

m=1

mbm(1− q)d−m =
d∑
j=0

cjq
j ,

where

cj = (−1)jb0

(
d

j

)
+

d−j∑
m=1

mbm(−1)j
(
d−m
j

)
.

Thus, d+1∑
j=0

(−1)j
(
d+ 1

j

)
qj

×
∑
n≥1

nP gn(X)qn−1


= X

∑
n≥0

P gn(X)qn

 d∑
j=0

cjq
j

 .

Expanding and identifying the coefficients of qn on left and right-hand sides
above we get

min{d,n}+1∑
j=0

(−1)j
(
d+ 1

j

)
(n+ 1− j)P gn+1−j(X) = X

min{d,n}∑
j=0

cjP
g
n−j(X).
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Hence, we obtain

P gn+1 (X) =
1

n+ 1

min{n,d}∑
j=0

(
cjX + (−1)j

(
d+ 1

j + 1

)
(n− j)

)
P gn−j (X) .

�

Example 1. We give an explicit two term recurrence relation for (P gn (X))n≥0
when g (n) = 1.

For g (n) = 1 we have in the preceding notation d = 0, b0 = 1, and c0 = 1.
This leads to P g0 (X) = 1 and

P gn+1 (X) =
1

n+ 1
(X + n)P gn (X)

for all n ≥ 0, which yields exactly the polynomials (2) from the Introduction.

Example 2. We give an explicit three term recurrence relation for (P gn(X))n≥0
when g(n) = n.

For g (n) = n we have in the preceding notation d = 1, b0 = 0, b1 = 1,
c0 = 1, and c1 = 0. This leads to P g0 (X) = 1, P g1 (X) = XP g0 (X), and

P gn+1(X) =
1

n+ 1

(
(2n+X)P gn(X)− (n− 1)P gn−1(X)

)
for all n ≥ 1.

Proof of Lemma 1. We obtain for x = −N and 0 ≤ N ≤ d:

d∑
m=0

m∑
µ=0

(−1)µ
(
m

µ

)
Q (−µ)

−N (−N + 1) · · · (−N +m− 1)

m!

=
N∑
m=0

m∑
µ=0

(−1)µ
(
m

µ

)
Q (−µ) (−1)m

(
N

m

)

=
N∑
µ=0

N∑
m=µ

(−1)m+µ N !

µ! (m− µ)! (N −m)!
Q (−µ)

=
N∑
µ=0

N−µ∑
m=0

(−1)m
N !

µ!m! (N −m− µ)
Q (−µ)

=

N∑
µ=0

N−µ∑
m=0

(−1)m
(
N − µ
m

)(
N

µ

)
Q (−µ) =

N∑
µ=0

δN,µ

(
N

µ

)
Q (−µ)

= Q (−N) .

�
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3. Irreducibility of P̃ gn(X) when g(n) = n

In this case Pn(X) := P gn (X) has the following closed form (compare with
[HN18]):

(4) Pn(X) =
1

n!

n∑
k=1

n!

k!

(
n− 1

k − 1

)
Xk = X

n−1∑
k=0

(
n− 1

k

)
Xk

(k + 1)!
= XP̃n(X).

The coefficients of the polynomial n!Pn (X) are the so-called Lah numbers
n!
k!

(
n−1
k−1
)

(compare with e. g. [Ai07]).

Theorem 2. P̃n(X) is irreducible for all n ≥ 1.

Theorem 3. For g (n) = n all the roots of the polynomials Pn (X) = P gn (X)
are simple and non-positive real numbers. Additionally the negative roots are
interlacing from n to n+ 1.

By interlacing we mean that if sn,1 < . . . < sn,n−1 < sn,n = 0 are the
roots of Pn (X) then sn+1,1 < sn,1 < sn+1,2 < sn,2 < . . . < sn+1,n−1 <
sn,n−1 < sn+1,n < 0.

For the proofs of the preceding two theorems the important thing to notice
is the following lemma.

Lemma 2. For n ≥ 1

Pn (X) =
X

n
L
(1)
n−1 (−X)

where L
(1)
n−1 (X) =

∑n−1
k=0

((n−1)+1
(n−1)−k

) (−X)k

k! is the n− 1st generalized Laguerre

polynomial with α = 1 (compare with (3) form the Introduction).

Proof. From the explicit formula (4) we obtain

Pn (X) = X

n−1∑
k=0

(
n− 1

k

)
Xk

(k + 1)!
= X

n−1∑
k=0

(n− 1)!

k! (n− 1− k)!

Xk

(k + 1)!

=
X

n

n−1∑
k=0

n!

(k + 1)! (n− 1− k)!

Xk

k!
=
X

n

n−1∑
k=0

(
n

n− 1− k

)
Xk

k!

=
X

n
L
(1)
n−1 (−X) .

�

Theorem 2 now follows from the irreducibility of L
(1)
n−1 (X) shown by Schur

in [Sc31].
Theorem 3 follows from the respective properties of the family of orthog-

onal polynomials L
(1)
n−1 (X) (see e. g. [Do16]).

Remark 1. Other proofs of Theorem 3 are also possible: We could show di-

rectly that the polynomials P̃n (X) form a system of orthogonal polynomials
with respect to the measure on (−∞, 0] with Lebesgue density x 7→ (−x) ex.
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Or we could use the recurrence relation from Example 2 from Section 2 and
apply [WY05, Theorem 1].

4. Partial results when g (n) = n2

In this case Pn (X) := P gn (X) has the following closed form (compare
[HN18]):

(5) Pn(X) = X
n−1∑
k=0

1

(k + 1)!

(
n+ k

2k + 1

)
Xk = XP̃n(X).

Note that

(6) P̃n(X) =
n−1∑
k=0

An,k
Xk

(k + 1)!
, An,k ∈ Z.

In our case An,k =
(
n+k
2k+1

)
.

Remark 2. There is a theorem of Schur [Sc29, Satz IV] and a generaliza-
tion of Allen and Filaseta [AF03, Theorem 2] concerning the irreducibility
of polynomials of the form (6). But both require |An,0| = 1 whereas in
our case (5) we have An,0 = n. Schur used [Sc29, Satz IV] to prove the

irreducibility of the generalized Laguerre polynomials L
(1)
n−1 (X) in [Sc31].

Proposition 1. If n − 1 is prime then P̃n (X) with An,k =
(
n+k
2k+1

)
, k =

0, . . . , n− 1, as in (5) is irreducible.

Proof. If we multiply with n! the polynomial n!P̃n (X) has the integer co-
efficients n!

(k+1)!An,k. Hence, n − 1 | n!
(k+1)!An,k for k = 0, . . . , n − 3 and

n − 1 | n!
(n−1)!An,n−2 = (2n− 2)n. If n − 1 is prime then (n− 1)2 does not

divide n!n = n!
1!An,0. So, the criterion of Eisenstein yields in this case that

P̃n (X) is irreducible. �

Remark 3. Note that n−1 prime is the only case where Eisenstein’s criterion
applies to the polynomials (5) since we need a prime p that divides in par-
ticular n!

(n−1)!An,n−2 = 2 (n− 1)n. In case p | n, obviously p2 | n!n = n!An,0.

In case p | n− 1 but p 6= n− 1, then also p2 | n2 (n− 1) (n−2)!
p! p! = n!An,0.

We used a computer to check that the above polynomials are irreducible
for all n ≤ 100.

Proposition 2. The polynomials Pn (X) satisfy a four term recurrence re-
lation with

P0 (X) = 1, P1 (X) = XP0 (X) , P2 (X) =
1

2
((X + 3)P1 (X) +XP0 (X)) ,

and

Pn+1 (X) =
1

n+ 1
(3 (X + n)Pn (X) + (X − 3n+ 3)Pn−1 (X) + (n− 2)Pn−2 (X)) ,
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for n ≥ 2.

Proof. In the notation of Theorem 1 for g (n) = n2 we have d = 2, b0 = 0,
b1 = −1, b2 = 2, c0 = 3, c1 = 1, and c2 = 0. Using Theorem 1 this leads to
the stated four term recurrence relation. �

5. A necessary condition for a three term recurrence
relation formula in the case of arbitrary g (n)

We are going to prove a necessary condition that the P gn (X) are a family
of orthogonal polynomials and hence fulfill a three term recurrence relation
of the form

(7) XP gn (X) = αnP
g
n+1 (X) + βnP

g
n (X) + γnP

g
n−1 (X)

for some αn, βn, and γn. From the proof of the criterion the quite remarkable
fact can be observed that it does not depend on n in the sense that if the
criterion is not fulfilled also (7) cannot be fulfilled for any n ≥ 2.

Proposition 3. Let g (n) be an arbitrary arithmetic function with g (1) = 1.
A necessary condition that the P gn (X) are a family of orthogonal polynomials

is g (2)3 − 2g (2) g (3) + g (4) = 0.

Corollary 1. For g (n) = n`, ` 6= 0, 1, the polynomials P gn (X) do not
satisfy a three term recurrence relation of the form (7) and hence they are
not a system of orthogonal polynomials.

Remark 4. This allows us to complement the result of Proposition 2 for
g (n) = n2 since 2 = ` 6= 0, 1.

Of course we also could just have checked directly that g (2)3−2g (2) g (3)+
g (4) = 64− 72 + 16 = 8 6= 0.

Proof of Corollary 1. For g (x) = x`, x > 0, we obtain g′′ (x) = (`− 1) `x`−2

for the second derivative which is positive for ` > 1 or ` < 0 and negative
for 0 < ` < 1. This implies g (x) is strictly concave up for ` > 1 or ` < 0 and
strictly concave down for 0 < ` < 1. Hence 3` <

(
2` + 4`

)
/2 in case ` > 1

or ` < 0 and 3` >
(
2` + 4`

)
/2 in case 0 < ` < 1. However we only need that

we do not have equality in these cases. Hence g (2)3 − 2g (2) g (3) + g (4) =
23` − 2`+13` + 4` = 2`

(
4` − 2 · 3` + 2`

)
6= 0 for ` 6= 0, 1. �

In the proof of Proposition 3 we need explicitly the four highest coefficients
of P gn (X). This will be done separately in the following.
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Lemma 3. Let g (n) be an arbitrary arithmetic function with g (1) = 1. Let
P gn (X) =

∑n
k=0An,kX

k. Then

An,n =
1

n!
, n ≥ 0,

An,n−1 =
1

n!
g (2)

(
n

2

)
, n ≥ 1,

An,n−2 =
1

n!

(
3g (2)2

(
n

4

)
+ 2g (3)

(
n

3

))
, n ≥ 2,

An,n−3 =
1

n!

(
15g (2)3

(
n

6

)
+ 20g (2) g (3)

(
n

5

)
+ 6g (4)

(
n

4

))
, n ≥ 3.

where a binomial coefficient
(
n
k

)
is assumed to be 0 in case n < k.

We give a proof at the end of this section and first turn to the proof of
Proposition 3.

Proof of Proposition 3. We have

(n+ 1)!P gn+1 (X)− n!XP gn (X) =
n+1∑
k=1

((n+ 1)!An+1,k − n!An,k−1)X
k.

With the previous lemma for k = n+ 1 in particular, we get that

(n+ 1)!An+1,n+1 − n!An,n = 0.

For k = n, n− 1, n− 2 we obtain

(8) (n+ 1)!An+1,n − n!An,n−1 = g (2)

(
n+ 1

2

)
− g (2)

(
n

2

)
= g (2)n,

(n+ 1)!An+1,n−1 − n!An,n−2

= 3g (2)2
(
n+ 1

4

)
+ 2g (3)

(
n+ 1

3

)
− 3g (2)2

(
n

4

)
− 2g (3)

(
n

3

)
= 3g (2)2

(
n

3

)
+ 2g (3)

(
n

2

)
,

(n+ 1)!An+1,n−2 − n!An,n−3

= 15g (2)3
(
n+ 1

6

)
+ 20g (2) g (3)

(
n+ 1

5

)
+ 6g (4)

(
n+ 1

4

)
− 15g (2)3

(
n

6

)
− 20g (2) g (3)

(
n

5

)
− 6g (4)

(
n

4

)
= 15g (2)3

(
n

5

)
+ 20g (2) g (3)

(
n

4

)
+ 6g (4)

(
n

3

)
.

From (8) we observe that the coefficient of Xn of

(n+ 1)!P gn+1 (X)− n!XP gn (X)− n!g (2)nP gn (X)

equals 0. Since the degree of P gn (X) is n the coefficient of Xn+1 remains 0.
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For the coefficients of Xn−1 and Xn−2 we obtain

(n+ 1)!An+1,n−1 − n!An,n−2 − n!g (2)nAn,n−1

= 3g (2)2
(
n

3

)
+ 2g (3)

(
n

2

)
− g (2)2 n

(
n

2

)
= 2

(
g (3)− g (2)2

)(n
2

)
,

(n+ 1)!An+1,n−2 − n!An,n−3 − n!g (2)nAn,n−2

= 15g (2)3
(
n

5

)
+ 20g (2) g (3)

(
n

4

)
+ 6g (4)

(
n

3

)
− g (2)n

(
3g (2)2

(
n

4

)
+ 2g (3)

(
n

3

))
= g (2)3

(
15

(
n

5

)
− 3n

(
n

4

))
+ g (2) g (3)

(
20

(
n

4

)
− 2n

(
n

3

))
+ 6g (4)

(
n

3

)
= −12g (2)3

(
n

4

)
+ g (2) g (3) (3n− 15)

(
n

3

)
+ 6g (4)

(
n

3

)
.

Going back we observe that the coefficient of Xn−1 of

(n+ 1)!P gn+1 (X)− n!XP gn (X)− n!g (2)nP gn (X)

− (n− 1)!2
(
g (3)− g (2)2

)(n
2

)
P gn−1 (X)

equals 0.
For the coefficient of Xn−2 we obtain now

(n+ 1)!An+1,n−2 − n!An,n−3 − n!g (2)nAn,n−2

− (n− 1)!2
(
g (3)− g (2)2

)(n
2

)
An−1,n−2

= −12g (2)3
(
n

4

)
+ g (2) g (3) (3n− 15)

(
n

3

)
+ 6g (4)

(
n

3

)
− 2

(
g (3)− g (2)2

)(n
2

)
g (2)

(
n− 1

2

)
= g (2)3

(
−12

(
n

4

)
+ 2

(
n

2

)(
n− 1

2

))
+ g (2) g (3)

(
(3n− 15)

(
n

3

)
− 2

(
n

2

)(
n− 1

2

))
+ 6g (4)

(
n

3

)
= 6

(
g (2)3 − 2g (2) g (3) + g (4)

)(n
3

)
.
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This means the polynomial

(n+ 1)!P gn+1 (X)− n!XP gn (X)− n!g (2)nP gn (X)

− (n− 1)!2
(
g (3)− g (2)2

)(n
2

)
P gn−1 (X)

can only be 0 if g (2)3 − 2g (2) g (3) + g (4) = 0. �

Example 3. For g (n) = σ (n), we obtain 27− 24 + 7 = 10 6= 0.

Proof of Lemma 3. From the recursive definition (1) we obtain

n∑
m=0

An,mX
m = P gn (X) =

X

n

n∑
k=1

g (k)P gn−k (X)

=
1

n

n∑
k=1

g (k)
n−k∑
m=0

An−k,mX
m+1

=
1

n

n∑
m=1

n−m+1∑
k=1

g (k)An−k,m−1X
m.

In particular An,n = 1
nAn−1,n−1 = 1

n! . (This follows by induction. In the
cases of the other coefficients below also induction is applied.) Further,

An,n−1 =
1

n
(An−1,n−2 + g (2)An−2,n−2) =

1

n

(
An−1,n−2 +

g (2)

(n− 2)!

)
=

1

n!
((n− 1)!An−1,n−2 + g (2) (n− 1)) =

g (2)

n!

(
n

2

)
,

An,n−2 =
1

n
(An−1,n−3 + g (2)An−2,n−3 + g (3)An−3,n−3)

=
1

n

(
An−1,n−3 +

g (2)2

(n− 2)!

(
n− 2

2

)
+

g (3)

(n− 3)!

)

=
1

n!

(
(n− 1)!An−1,n−3 + 3g (2)2

(
n− 1

3

)
+ 2g (3)

(
n− 1

2

))
=

1

n!

(
3g (2)2

(
n

4

)
+ 2g (3)

(
n

3

))
,
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An,n−3 =
1

n
(An−1,n−4 + g (2)An−2,n−4 + g (3)An−3,n−4 + g (4)An−4,n−4)

=
1

n

(
An−1,n−4 +

g (2)

(n− 2)!

(
3g (2)2

(
n− 2

4

)
+ 2g (3)

(
n− 2

3

))
+ g (3)

g (2)

(n− 3)!

(
n− 3

2

)
+

g (4)

(n− 4)!

)
=

1

n!

(
(n− 1)!An−1,n−4 + 15g (2)3

(
n− 1

5

)
+ 8g (2) g (3)

(
n− 1

4

)
+ 12g (2) g (3)

(
n− 1

4

)
+ 6g (4)

(
n− 1

3

))
=

1

n!

(
15g (2)3

(
n

6

)
+ 20g (2) g (3)

(
n

5

)
+ 6g (4)

(
n

4

))
.

�

6. Open Question

We proved that the polynomials P gn(X) attached to g(n) = n are irre-
ducible and have real roots. Moreover, the roots interlace. Actually we
were able to identify these polynomials with certain Laguerre polynomials
which satisfy a three term recurrence relation. As indicated in the introduc-
tion, our main interest are the roots of P σn (X), since these roots dictate the
vanishing properties of powers the Dedekind eta function [HNR17, HLN18],
including the Lehmer conjecture [Le47]. Since n ≤ σ(n) ≤ n2 properties
of P σn (X) are expected to be deduced from the polynomials attached to
g(n) = n and g(n) = n2 (as for example the size of the coefficients of
P σn (X)). We have for g(n) = n2:

(9) P̃n(X) =
n−1∑
k=0

An,k
Xk

(k + 1)!
, where An,k =

(
n+ k

2k + 1

)
∈ Z.

We have shown in this paper that these polynomials satisfy a four term
recursion and that they are not orthogonal. Numerical calculations for n ≤
100 indicate that the polynomials are also irreducible. For n ≤ 100 we have
checked that they have real roots and that the roots interlace. We end with
this observation and ask the question of whether these facts hold for general
n.
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