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Heisenberg’s uncertainty principle implies that the quantum vacuum is not empty but fluctuates.
These fluctuations can be converted into radiation through nonadiabatic changes in the Hamiltonian.
Here, we discuss how to control this vacuum radiation, engineering a single-photon emitter out
of a two-level system (2LS) ultrastrongly coupled to a finite-band waveguide in a vacuum state.
More precisely, we show the 2LS nonlinearity shapes the vacuum radiation into a nonGaussian
superposition of even and odd cat states. When the 2LS bare frequency lays within the band
gaps, this emission can be well approximated by individual photons. This picture is confirmed by a
characterization of the ground and bound states, and a study of the dynamics with matrix product

states and polaron Hamiltonian methods.

Introduction.- Quantum fluctuations underly many
physical phenomena, e.g. the Lamb Shift [I] or a mod-
ification of the atomic decay. They also try to explain
[2] the cosmological-constant problem [3]. Vacuum fluc-
tuations can be converted into radiation by nonadiabatic
changes of the electromagnetic environment [4], as in the
dynamical Casimir [5H9], and Unruh effects [10], and the
Hawking radiations [IT}, 12]. All these processes are ex-
plained with free-field theories—quadratic Hamiltonians
of harmonic oscillators—that result in Gaussian states
[13]. To create vacuum radiation with nontrivial statis-
tics we need nonlinearities, such as quantum emitters.

In this work we study the conversion of vacuum
fluctuations into single-photon radiation. We focus
on waveguide QED [14], studying a two-level system
(2LS) coupled to a finite-bandwidth environment of one-
dimensional bosonic modes. This low-dimensional real-
ization of the spin-boson model [I5] leads to enhanced
light-matter interactions. We assume these interactions
to be in the ultrastrong coupling regime, where the cou-
pling is comparable to the excitation energy of the quan-
tum emitter [I6H22]. Under these conditions, we show
how to convert vacuum fluctuations into individual pho-
tons. Our protocol consists in either abruptly switching
on and off the light-matter coupling constant, or moving
the qubit gap in and out the photonic band (we will show
the equivalence of both protocols in Supplemental Mate-
rial). We demonstrate that this process is mediated by
photon bound states, which we characterize numerically
and analytically. These states, once the emitter excita-
tion energy approaches the band-gap, allow the emission
of individual photons without violating the parity con-
straints of the model. Finally, we prove that the two-level
system serves also as a detector of quantum fluctuations.

The main novelty of our work is that it presents the
first example of single-photon Fock states emitted from
vacuum. This is different from the emission that occurs
when a 2LS is ultrastrongly coupled to a cavity [23] [24].
There, the emission is formed by photon pairs due to par-

ity conservation [25H29]. In the geometry considered in
this letter, the existence of qubit-field bound states allows
triggering single photons from vacuum. Our theoretical
proposal can be realized with superconducting circuits
[30]. Flux or transmon qubits ultrastrongly coupled to a
superconducting waveguide [20} 21] should allow testing
our results, enlarging the family of quantum field theory
ideas [7H9] that superconducting circuits can emulate. In
particular the manifestation of virtual photons, which is
of current interest [31].

Model.- We study the spin-boson model, a continuum
of bosonic modes coupled to a 2LS [32]

H=Acto + Zwkalak + o0, ng(az +ai), (1)
k k

The o* are ladder operators of the 2LS and A is the
excitation energy of the 2LS. The Pauli matrix o, couples
with strengths gj to the bosonic field operators {aL, ax}
in momentum space. We consider a dispersion relation

wy, = Q—2J cosk (Fig. [Ib)) with N momenta k € [, )

Figure 1. (a) Sketch of the system. The 2LS-resonator inter-
action is g(t). (b) Dispersion relation wi = Q — 2J cosk of
the model given by Eq. (2).



and a band edge that allows us to control the vacuum
emission. This wy results from an one-dimensional array
of cavities with nearest-neighbours coupling (Fig. [Th))

N/2

Harray = Z (Qalam - J(a’jcaﬁ-‘-l + HC)) ) (2)
z=—N/2

with bosonic operators in positions {a,, a}}, resonator
frequency €2 and hopping J. This choice of photonic band
is not essential, but favours the numerical simulation.
The quantum emitter is coupled to a cavity at x = 0, as
in Heoupling = 0z (a0+a$), leading to g = g/\/ﬁ in Eq.
()

If the coupling is sufficiently small, ¢ <« A, the
rotating-wave approximation (RWA) [33] allows us to re-
place the interaction term with Heoupling = g(otag +
H.c.), which conserves the number of excitations. In this
limit, the ground state has no excitations |GS)rwa =
|0; 0) and is the product of the 2LS ground state |0) (|1) is
the excited state) and the zero-photon state of the waveg-
uide ay|0) = 0. Therefore, under the RWA, the emitter is
immune to the vacuum fluctuations of the bosonic field.
However, the RWA fails in computing the actual vacuum
properties [34] 35]. Beyond the RWA, the ground state of
contains excitations: (GS|ala,|GS) # 0, suggesting
that the 2LS can convert fluctuations into radiated light.
We investigate here the beyond-RWA vacuum emission
of the spin-boson model .

Theoretical tools.- The spin-boson model is not solv-
able, except for particular set of parameters and some
limits, but matrix-product state (MPS) techniques can
be used to obtain numerical results [16] [18, [36], as ex-
plained in SM. We contrast the numerical simulations
with analytical approximations based on the polaron
transformation [37H40]. This transformation is a disen-
tangling operation U, that decouples the 2LS from the
field

Up=exp [-0u Y (fual — fran)] . @)
The parameters f; are obtained by minimizing the
ground-state energy Fgg within the polaron ansatz for

the g.s. |GS) = U,|0;0), giving the equations

fi= g amd A, = AR ()

The simplified Hamiltonian H, = U HU, reads
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Here, h.o.t. stands for higher-order terms O(f3). The
transformed Hamiltonian conserves the number of exci-
tations and can be treated analytically [40].

The renormalization of the 2LS energy A, is a conse-
quence of the coupling of a discrete quantum system to a
continuum [32] (see SM). According to the polaron pic-
ture, most correlations are captured by the unitary trans-
formation of a product state |GS), = [0;0) = U}|GS).
Then, U, plays a similar role to the Bogoliubov transfor-
mations [41] used for finding the normal modes which ac-
count for the radiation in the Hawking, Unruh or Casimir
effects [4].

Spectrum of the spin-boson model.- The spectrum of
the Hamiltonian is essential to understand the dy-
namics of vacuum-induced photon emission. The pho-
tonic band edge causes the appearance of photon bound
states: localized excitations around the 2LS [16] 42-
46]. We classify those states according to their parity
II = exp%r(a*a + > aLak)), which is a conserved
quantity (1), [II, H] = [II, H,] = 0. More precisely, the
ground state |GS) and the second bound state |Es) are
the first and second eigenstates with even parity II = +1.
The first bound state |¥;) is the lowest eigenstate with
odd parity II = —1. |Ey) and |E2) have a well-defined
number of particles in the RWA limit (1 and 2 respec-
tively).

We compute these states using both MPS and the po-
laron Hamiltonian. Parity can be imposed during the
MPS minimization of H; in the second case, we project
the polaron Hamiltonian (Eq. ) onto spaces with fixed
number of excitations, where it is numerically diagonal-
ized. Fig. ) shows the energy of the ground state
FEas and of the first two bound states, F; and FEs, as
a function of the coupling g. Note the excellent agree-
ment between MPS (solid line) and the polaron Hamil-
tonian calculations (dots). Note also how the first bound
state lays just below the one-photon band (gray band)
E, < e(GS) = Egs + wg, just as in the RWA model
[44-48]. The second excited bound state Ey enters the
band of propagating single photons. There may be other
bound states, but the overlap with propagating photon
bands of similar parity turn these bound states (which
within the RWA would be perfectly localized) into reso-
nances with a finite lifetime [16]. Further comparisons
between results obtained using MPS and the polaron
transformation are given in SM.

We have also analyzed the bound state MPS wavefunc-
tions, |E1) and |Es). These states are localized around
the 2LS, as seen in Fig. ), which renders the number
of photons in real space (n,) = (ala,). Interestingly,
since the MPS produces wavefunctions in the original
frame of reference—i.e. after applying U, onto the po-
laron states—, we find that these states are actual super-
positions of different numbers of photons, as seen in Fig.
-d—e). The overall superposition preserves the parity of
the state but, say, a bound state with two excitations can
have a nonzero overlap with a single-photon component.

Emission by quenching the vacuum .- To convert vac-
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Figure 2. Bound states. (a) Eigenenergies as a function of g for A = 0.3. Continuous lines stand for the MPS simulations and
the points for the polaron ansatz. (b) Bbound states in position space for ¢ = 0.5 and A = 0.3. (c), (d), and (e) Histograms
with the weights in the npn-photon sector for |GS), |E1), and |E2). Same parameters as in panel (b). The parameters defining
the photonic waveguide are (2 = 1.0 and J = 0.4. The lattice length is N = 400.
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Figure 3. Number of photons as a function of time and posi-
tion for the quenching protocol: the initial state is the trivial
vacuum |¥(¢ = 0)) = |0;0) and the coupling is switched on at
t = 0. We switch g off at tos/7 = 350. The system emits a
wavepacket at ¢ = 0. At t = tog it radiates again. g = 0.5
after the initial quench and A = 0.3. The rest of parameters
are as in Fig.

uum excitations into emitted light, we consider a nonadi-
abatic protocol where the light-matter coupling strength
is rapidly switched on and off. An alternative proto-

col, probably more amenable to experimental study, is
to abruptly modify the qubit excitation energy A from
a value that is strongly detuned from the photonic band
g/(A(t < 0) —wy) < 1 to avalue A(t > 0) ~ wy, while
keeping a constant coupling g. Both methods are theoret-
ically equivalent, since both ground states are the same
up to an error exp[—g?/A] that can be made arbitrar-
ily small SM. In what follows, we analyze the coupling
quench, which is simpler to describe both analitically
and numerically, since the decoupled limit corresponds
to g = 0, while in the other case full decoupling occurs
for infinite A. We begin with an unexcited 2LS with
g(t < 0) = 0 and switch on the coupling strength to a
value g(t = 0) > 0 beyond the RWA regime. The 2LS im-
mediately begins to emit light to accommodate its new
ground state. The emitted photons form a wavepacket
that travels with speed maxy(Orwy). After some time
the 2LS is no longer emitting and the wavepacket leaves
a cloud around the 2LS. We then suddenly switch off the
coupling at t = tog¢ and a second vacuum emission takes
place.

We simulate the dynamics described in the previous
paragraph with MPS. The initial state is the trivial vac-
uum |¥(t =0)) = |0;0), which corresponds to the un-



coupled case g = 0, and |¥(t)) evolves under with
g within the ultrastrong. In Fig. [3] we plot the pho-
ton number n, = (ala,) along waveguide, as a function
of time t and position x. Note how all perturbations
emerge from the 2LS position. We switch off the cou-
pling once the travelling photons are far from the emit-
ter. We choose t,g = 3507, being 7 the spontaneous
decay rate of the 2LS given by the Fermi’s golden rule:
T = Jsin(ko)/g?, with ko such that wy, = A. At this
point g(tog) = 0 and we witness the second photon emis-
sion event. Notice that photons propagate with different
velocities because of the nonlinearity of the dispersion
relation wy, (see below Eq. )

The whole process admits a simple description in the
polaron picture. The state before the quench is

1
V2

This is a superposition of even and odd cat states |at) =
eX(fraf—fian) |0) £ e~ L(fral—fiar) |0). In the limit of
weak amplitudes, |ay) tend to one- and two-photon
states respectively, [I9] and the wavefunction can be writ-
ten using bound and propagating states. Asymptotically
in time, the state has the form

[W(t = 0)), = U} 0;0) = —= ([0:04) + [L0-)) . (6)

[U(t)), = co,0(t)[0;0) + co2(t) [ E2) (7)
+ 61,1(71‘)1417 |Er) + C2,o(t)A$7 |0;0) + ...

This wavefunction allows four possible outcomes: the sys-
tem goes to (i) the ground state or (ii) to |Es) with no
emission; (iii) it relaxes to the first odd bound state |Ey)
emitting a wavepacket AJ{7 with one photon, or (iv) it re-
laxes to the ground state emitting two photons A;W. Note
that when we write this wavefunction in the laboratory
basis [¥(t)) = Uy |¥(t)),, the structure of the state is
preserved, because the polaron transformation is local in
space [AJLQV, Up) =0 SM.

We have tested numerically that Eq. captures the
vacuum-triggered emission.

The simulations confirm that the system emits photons
mainly in two channels: (i) one photon on the first excited
odd bound state and (ii) two photons on the ground state,
as predicted by Eq. (7). This is shown in Fig. ), where
we plot the number of photons n, at time ¢/7 = 250 and
the single-photon n') = |(¥(t)|al| E1)|? and two-photon
contributions n$® = 2> |<\I/(t)|aLaL,\GS>|2. As seen,
ng is well approximated by the sum of both wavepackets
nggl) + ngf).

|¥(t)), also explains the second photon emission event.
In this case, once we switch off the couplings, the bound
states become unstable and decay, releasing their pho-
tonic components in the form of propagating photons.
These come from the three first terms in Eq. . Two
main features stand out. First, more power is radiated
than in the first quench. This is because, in this second
quench, excited bound states also radiate. Second, the

radiated flying photons are slower. This is because the
bound states are spectrally close to the photonic-band
minimum, so radiation occurs mainly into slow photons.
The distribution of this emitted light for each bound state
matches the statistics in Figs. [2c-e).

The simulations prove that |¥(t)), also explains the
2LS dynamics SM.

We can control the vacuum induced emission, for in-
stance selecting the one-photon channel, by playing with
the relative values of the band gap wi—¢ and the bound
state energy F7 — Fgs. The energies of the radiating
states with one and two flying photons are €, (F;) =
F1(9) + wy and €k, k, (GS) = Egs + wk, + Wk,, with re-
spective minima F1(g) + wk=o and Egs + 2wg—o. If we
place the emitter in the band gap wir—¢ > A, the energies
ex(F1) become closer to the 2LS resonance with respect
to €k, .k, (GS), so the two-photon component is strongly
suppressed (Jc2 0| >~ 0 in Eq. (7). The selectivity of this
process is confirmed in Fig. 4p), where the considered
band gap is five times larger than in Fig. ) and all
other parameters are equal. The final state has a negligi-
ble overlap with |Es) and the distribution of photons Pg,_
contains less than 1% of components with npn > 2. The
state before the second quench is faithfully reconstructed
by just its single-photon component AL/ |E1), and as a
result, the second emission is also well approximated by
one photon.

Conclusions.- In this work we have studied the dynam-
ics of vacuum fuctuations in ultrastrong waveguide-QED
setups. More precisely, we have shown that the nonlin-
earity of a 2LS, combined with a nonperturbative cou-
pling to a bosonic field, can be used to create a vacuum-
triggered single-photon emitter. In other words, we dis-
cuss the ultimate limit of quantum nonlinear optics as
driven by vaccum fluctuations [49]. Our proposal is anal-
ogous in spirit to other quantum-field theory inspired
proposals, such as the dynamical Casimir effect, which
work with nonperturbative and nonadiabatic changes of
the theory. In contrast to those experiments, we have
shown a minimum setup which extracts single photons
from vacuum, using bound states as mediators of these
processes. It is important to remark that this whole
study can be repeated using a resonator instead of a
2LS. In this case, all of the features above disappear, as
the emission has a Gaussian statistics that are not Fock
states [50].

Our proposal and the conditions in this work can be re-
alized in current circuit-QED devices with superconduct-
ing qubits that are ultrastrongly coupled to open trans-
mission lines [20, 2I]. In this exciting platform, state-
of-the-art measurement techniques would allow for a de-
tailed reconstruction of the photon wavepackets [51], [52].
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Figure 4. (a) Number of photons at time ¢t/7 = 250 after the
quantum quench described in Fig. [B] We can approximate
the field with one- and two-photon components. All the pa-
rameters are those of the previous figures (see Figs. |2l and .
(b) Same as before, increasing the energy of the resonators
Q such that the band gap is now five times larger: 2 = 1.8
(remind that the band gap is 2 — 2J). The system emits a
single-photon packet.
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Supplemental Material: Chiral quantum optics in photonic sawtooth lattices

This supplemental material is structured in sections:
(i) we first prove that both quenching protocols (coupling
and detuning) are equivalent, (ii) we briefly summarize
the basics of matrix-product states, (iii) we test the po-
laron transformation, and (iv) we prove that the polaron
ansatz explains the qubit dynamics.

SM1. EQUIVALENCE OF THE TWO

PROTOCOLS

We show here that both protocols, namely the quench-
ing in the coupling and the detuning-tuning of the 2LS
frequency, yield an equivalent dynamics. The first part of
our demonstration compares the initial ground states in
both protocols. In the quenching one, since g(t < 0) = 0,
this is the trivial product of the 2LS ground state and
the zero-photon state |0;0). On the other hand, in

the detuning protocol, the ground state can be approx-
imated with the help of the Polaron transformation as
|GS) = U,|0;0). In the large -detuned limit, ¢.e. when-
ever A > wy, Vk, the varational parameters tend to
fr = gr/A. Therefore, the fidelity between both ground
states is:

F = [{|0;0|U,|0;0)|> = e~ Cilfel® _y g=(9/8)? , (SM1)

which can be arbitrarily close to one. Within the range
studied in this paper, g = 0.3 — 0.5 with a detuned qubit
of A = 101, which can be of order of 10 GHz in a su-
perconducting architecture yields F = 0.997. Further
characterization is given by the photon number in the
g.s. as a function of the detuning. In figure , We see
how the photon population downs to zero as the detuning
increases.

This shows the equivalence in the first quench of the
protocol. To finish our demonstration we show the full



dynamics, also after the second quench for the he emitted
field and the dynamics of the 2LS population computed
with MPS in in Fig. [SM2] The emitted field behaves
qualitatively as in the coupling-decoupling protocol con-
sidered in the main text (see Fig. 3a) of the main text).
The 2LS population here, however, still evolves, after the
quench, depicting some oscillations. The amplitude of
these oscillations decreases as Ay increases (not shown)
which does not modify our conclusions.
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Figure SM1. Photon population in the ground state:

(GS|alaz|GS). We use g = 0.3, Q = 1, J = 0.4. The lat-
tice length is N = 400. Different values for A are shown in
the legend.

SM2. MATRIX-PRODUCT STATES

As we indicated in the main text, we use the MPS
technique to compute the eigenstates and dynamics of
the system. Let us justify why we can do it.

Our initial condition is the state with no excitations.
After the nonadiabatic driving, the state is a combina-
tion of some of the lowest-energy states with a few flying
photons (see Eq. (7) of the main text). As we are in the
low-energy sector, we expect our state to fulfill the area
law [53], that is, it will be slightly entangled. Therefore,
we may use matrix-product states [54H58], since it is valid
for 1D systems when the entanglement is small enough.
This ansatz has the form

Z tr [H Af‘} |s1,82,...,8L).

s;€{l,d;}

) = (SM2)

This state is constructed from L sets of complex ma-
trices A7 € M[CP], where each set is labeled by the
quantum state s; of the corresponding site. The local
Hilbert space dimension d; is infinity, since we are deal-
ing with bosonic sites. However, during the dynamics,
processes that create multiple photons are still highly
off-resonance. Then, we can truncate the bosonic space
and consider states with 0 to n,,4, photons per cavity.
So, the composite Hilbert space is H = ), C%, where

— MPS __ ~cos((Ex—Egs)t+¢)

(b)

0 200 400
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Figure SM2. Dynamics analogous to Fig. 3 of the main text
for the detuning protocol (see discussion in Sect. of this
SM). (a) Number of photons as a function of both time and
position. At tog/7 = 350, we set Ay = 10, well outside the
photonic band and the bound states radiate photons. (b)
Population of the excited state of the 2LS. After the quench,
the population still evolves (compare to Fig. 3 of the main
text). Apart from the detuning after the final quench Ay, the
parameters are those of Fig. 3 of the manuscript.

the dimension is d; = ny,q; + 1 for the empty resonators
and d;, = 2(Nmasx + 1) for the cavity with the 2LS. We
thus expect the state of the photon-2LS system to consist
of a superposition with a small number of photons. In
our simulations, we checked that ny.x = 5 is enough for
good convergence.

The number of variational parameters is (L —
1)D?(Nmae + 1) + 2D?(Nppae + 1). In general, the ma-
trix size D increases exponentially with L for typical
states, whereas its dependence is polynomial if the en-
tanglement is small enough, which usually occurs for low-
energy states. Thus, the number of parameters increases
polynomially with L for slightly entangled states. In our
simulations, D =~ 10 — 20 proved to be enough.

Our work with MPS relies on three different algo-
rithms. (i) The most basic one is to create the trivial
initial state |¥ (¢ = 0)) = |0; 0), which is actually a prod-
uct state. This kind of state can be reproduced using
matrices of bond dimension D = 1, so each matrix is
just a coefficient A" = d,,1. (ii) The second algorithm is
to compute expectation values from MPS. This amounts
to a contraction of tensors that can be performed effi-
ciently [57], and allows us to compute single-site opera-

tors (ala;), (0.), for instance. (iii) Finally, we can also



approximate time evolution, both in real and imaginary
times, repeatedly contracting the state with an approx-
imation of the unitary operator exp(—iHAt) for short
times, and truncating it to an ansatz with a fixed D.
Since our problem does just contain nearest-neighbour in-
teractions, it is sufficient to rely on a third-order Suzuki-
Trotter formula [59]. Taking imaginary times, we can
obtain the ground state and excited states by solving the
equation i4 P |V) = PHP|V¥). Here, P is either the
identity (for the ground state) or a projector that either
selects a well defined quantum number (e.g. the parity)
or projects out already computed states (for instance the
ground and first-excited states). In either case, given
a suitable initial state, the algorithm converges to the
lowest-energy state of the Hamiltonian in the subspace
selected by P.

SM3. FURTHER POLARON TESTS

We complement the main text with more calculations
within the polaron picture.

First, we show the g-dependence of A,., Eq. (4). No-
tice that it is a self consistent equation, so it is solved
numerically. The results are given in Fig. @h) We
also show the probability for the 2LS to be excited, which
can be directly computed from the frequency renormal-
ization, namely:

(gs|ozlgs) + 1 1 A /A
2 N 2 '

P, = (SM3)
The results are plotted in Fig. [SM3p). We see the re-
duction of A,, which resembles that in the spin-boson
model. The reason, as seen in Eq. , is that the 2LS
and the field are hybridized in the ultrastrong regime, so
Py, > 0. On top of that, we check that for g < 0.5 both
the polaron transformation and MPS results agree.

We now compare the ground state wave-function given
by the polaron against the numerical MPS calculations.
Using the polaron picture, the ground state can be writ-
ten as:

GS) = U,|0: 0) (SM4)
with (Eq. (3) of the main text)
U, =e7 S (feal—fiax) , (SM5)
Expanding the exponential we get,
|Wgs) = e Zwlful® (1 70+kaa}; (SM6)
k

+;(;fka2)2+...)|0;0>.

Therefore, the ground state one-photon coefficients (sec-
ond term in (SM6])) are given by (up to a normalization)
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Figure SM3. (a) The renormalized frequency A, as given by
Eq. (4) in main text. (b) Populaton of the excited state of the
2LS in the ground state. In both plots, the continuous lines
render results from the MPS simulations, whereas the dots
represent the results obtained with the polaron ansatz. The
parameters €2, J, and A are those of Fig. 3 of the manuscript.

3.0

2.5 — MPS
200 WV - Polaron
S15

1.0
0.5
00— . | ===

Figure SM4. We compare the single-photon component of the
ground state computed with MPS and the polaron ansatz.
The parameters are those of Fig. 3 of the manuscript.

fr. These coefficients are compared in Fig. [SMA] for
g = 0.2. The agreement is rather good.

In the main text, we have assumed that the polaron
trasnformation is virtually local. This means that far
away from the 2LS the transformation is close to the
identity. This makes sense, since the ground state is non-
trivial only around the 2LS (Cf. Fig. [Ip)). In order to
verify this guess, we transform the polaron coefficients fx



to real space:

fx — \/% ZeiQﬂkw/ka ) (SM?)
k

In Fig. we show that f, is different from zero only
around the 2LS, demonstrating the local character for
the polaron transformation in our case.

20

15

Figure SM5. Real (blue points) and imaginary (red points)
parts of fz, Eq. (SM7). The coupling constantis g = 0.4 and
the rest are the same as in Fig. 3 of the manuscript.

SM4. QUBIT DYNAMICS IN THE
QUENCHING PROTOCOL

We prove here that [¥()), (Eq. (7) of the main text)
explains the dynamics of the qubit. We plot the excited-
state popuation Py (t) = (¥(t)|oT o~ |¥(t)) in Fig. [SM6
As seen, Py,(t) oscillates with frequency Es — Egg, so
it shows the interference of the amplitudes of |GS) and
|Es) (first two terms of Eq. (7) of the manuscript). It
estabilizes after a transient time of the order of the qubit
relaxation time, ¢ > 7, and persist until the coupling is
switched off at ¢, when Py, gets frozen.

0.45
— MPS __ ~cos((Ex—Egs)t+¢)

0.4 )
%0.35
A

0.3}

0.25

O'20 200 400
t/t

Figure SM6. Qubit dynamics for the quenching protocol.
Same parameters as in Fig. 3 of the main text.
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