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Abstract

Ion Cyclotron Resonance Heating (ICRH) is a technique used for heating magnetically
confined plasmas [1]. The goal of these plasma experiments is to achieve controlled ther-
monuclear fusion. Under the influence of ICRH the ion distribution function is no longer
Maxwellian, it develops a high energy tail [2]. Most ions still have energies comparable
to the thermal energy of the ion distribution. The energetic particles are however impor-
tant for understanding the heating process [3], for the loss of particles [4, 5] and for the
excitation of instabilities [6].

The distribution function evolves according to diffusion-advection equations [2, 7],
which can generally be solved with Monte Carlo methods. For this purpose, one uses
a discrete set of markers that evolve according to the Langevin equation. However only
inaccurate information can be obtained about regions where the distribution function is
small, because they are populated only sparsely by markers. An example for such a region
is the high energy tail of the ion distribution function in a plasma.

This thesis proposes and investigates reweighting algorithms that permit us to have
differently weighted markers for different regions of phase space. This allows better res-
olution of regions with small densities. When markers travel between regions we split
them or remove some of them to avoid mixing of markers of different weight. This leads
to correlated markers. These correlations can reduce the accuracy of the results.

Simple diffusion-advection equations serve as test cases for characterizing our new
methods. Without reweighting, the square of the relative error of density calculations
is inversely proportional to the density. We establish that with reweighting the squared
relative error can be kept in the same order of magnitude even when the density varies
over several orders of magnitude. After suggesting a general procedure for determining
the reweighting parameters, we implement our algorithms in the code ASCOT-RFOF [8,
9], which calculates the ion distribution function under the influence of ICRH. As one
result of our thesis, the computational time required for resolving the high energy tail at
E > 1.3 MeV can be reduced by a factor of 100. Simultaneously the number of markers
required by the simulation for developing the high energy tail is reduced by a factor of
approximately 50. Our methods can be included in any Monte Carlo code for solving
diffusion-advection equations, provided it can handle a fluctuating number of markers
with nonuniform weight.
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Kurzfassung

Die Ionen-Zyklotronresonanz-Heizung (ICRH) ist eine Technik zum Heizen von magne-
tisch eingeschlossenen Plasmen [1]. Das Ziel dieser Plasmaexperimente ist die kontrollierte
thermonukleare Fusion. Mit ICRH ist der Hochenergiebereich der Ionenverteilungsfunkti-
on des Plasmas stärker ausgeprägt als bei einer Maxwellverteilung. Die meisten Ionen be-
sitzen immer noch Energien, welche mit der Ionentemperatur vergleichbar sind. Allerdings
sind die hochenergetischen Ionen wichtig für die Heizung selbst [3], für Teilchenverluste
[4, 5] und für die Anregung von Instabilitäten [6].

Die zeitliche Entwicklung der Verteilungsfunktion wird durch Diffusions-Advektions-
Gleichungen vorgegeben [2, 7]. Diese können im Allgemeinen mit Monte Carlo Metho-
den gelöst werden. Hierfür werden diskrete Marker verwendet, deren Bewegung durch
die Langevin-Gleichung vorgegeben wird. Wir erhalten aber nur ungenaue Informatio-
nen über Bereiche in denen die Verteilungsfunktion klein ist, da sich nur wenige Marker
in ihnen befinden. Ein Beispiel für einen solchen Bereich ist der Hochenergieanteil der
Ionenverteilung im Plasma.

In dieser Arbeit stellen wir Algorithmen zur Neugewichtung der Marker vor und unter-
suchen deren Eigenschaften. Sie erlauben uns, unterschiedlich gewichtete Marker für un-
terschiedliche Bereiche des Phasenraums zu verwenden. Dadurch lässt sich die Auflösung
von Bereichen mit geringer Dichte verbessern. Wenn Marker den Bereich wechseln, werden
sie entweder aufgeteilt oder einige von ihnen entfernt, um ein Mischen von Markern mit
unterschiedlichem Gewicht zu vermeiden. Das wiederum führt zu korrelierten Markern.
Diese Korrelationen können die Genauigkeit der Ergebnisse verringer.

Wir verwenden einfache Diffusions-Advektionsgleichungen um unsere Methoden zu cha-
rakterisieren. Ohne Neugewichtung ist das Quadrat des relativen Fehlers umgekehrt pro-
portional zur Dichte. Wir zeigen, dass mit Neugewichtungen der quadratische relative
Fehler der Dichte konstant gehalten werden kann, auch wenn sich die Dichte um mehrere
Größenordnungen ändert. Zum Festlegen der Parameter der Neugewichtungen stellen wir
eine allgemeine Vorgehensweise vor. Schlussendlich implementieren wir unsere Algorith-
men in den Simulationscode ASCOT-RFOF [8, 9], welcher die Ionenverteilungsfunktion
unter Einfluss von ICRH berechnet. Ein Ergebnis der Masterarbeit ist, dass die benötigte
Rechenzeit für die Ionenverteilungsfunktion bei E > 1.3 MeV um einen Faktor von 100
verringert werden kann. Gleichzeitig wird die Anzahl von Markern, welche benötigt wer-
den um einen ausgeprägten Hochenergiebereich zu entwickeln, um einen Faktor von etwa
50 verringert. Unsere Methoden können in jedem Monte Carlo Code, welcher Diffusions-
Advektions-Gleichungen löst, verwendet werden. Voraussetzung ist jedoch, dass der Code
eine fluktuierende Anzahl von Markern mit unterschiedlichen Gewichten erlaubt.
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Sammanfattning

Joncyklotronresonansuppvärmning (ICRH) är en metod som används för att värma upp
magnetiskt inneslutna plasman [1]. Med dessa plasmaexperiment vill man uppn̊a kon-
trollerad termonukleär fusion. När man använder ICRH upphör jonerna att vara Max-
wellfördelade, eftersom fördelningsfunktionen f̊ar en högenergetisk svans. De flesta joner
har dock en energi som är jämförbar med plasmats temperatur [2]. De högenergetiska
partiklarna är viktiga för uppvärmningen [3], förluster av partiklar [4, 5] och excitation
av instabiliteter [6].

Fördelningsfunktionen lyder under diffusion-advektions-ekvationer [2, 7] som i allmänhet
kan lösas med Monte Carlo-metoder. För detta används en diskret uppsättning av markörer
som följer Langevinekvationen. I regioner där fördelningsfunktionens värde är litet kan
dock enbart inexakt information erh̊allas, eftersom det finns f̊a markörer där. Ett exempel
är högenergidelen av jonernas fördelningsfunktion i ett plasma.

I den här avhandlingen föresl̊ar och undersöker vi algoritmer för omviktning av markörer
som medger markörer med olika vikter i olika regioner av fasrummet. Det till̊ater bättre
upplösning av regioner med l̊aga tätheter. När markörer rör sig mellan regioner klyver
vi respektive tar vi bort markörer för att förhindra att markörer med olika vikt blan-
das. Detta leder till att markörerna blir korrelerade vilket kan minska noggrannheten av
metoden.

Vi användar enklare diffusion-advektions-ekvationer som testfall för att karakterisera
v̊ara nya metoder. Utan omviktning är kvadraten av den relativa osäkerheten av tätheten
omvänt proportionell mot tätheten. Vi fastställer att vi med omviktningen kan beh̊alla
kvadraten av den relativa osäkerheten konstant, även om tätheten varierar med flera
storleksordningar. Vi föresl̊ar en allmän metod för att välja parameter för omviktning. Vi
implementerar ocks̊a v̊ara algoritmer i koden ASCOT-RFOF [8, 9], som beräknar jonernas
fördelningsfunktion i ett ICRH-scenario. Som ett resultat av detta arbete kan vi minska
beräkningstiden för högenergidelen E > 1.3 MeV med faktor 100. Samtidigt minskas
antalet markörer som krävs för att lösa upp den högenergetiska delen av fördelnings-
funktionen med ca en faktor 50. V̊ara metoder kan användas med vilken Monte Carlo-kod
som helst för att lösa diffusion-advektions-ekvationer, förutsatt att koden kan hantera ett
fluktuerande antal markörer med olika vikt.
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1. Introduction

1.1. Controlled Thermonuclear Fusion

Controlled nuclear fusion might be a practically inexhaustible source of clean energy [1].
The technical requirements are high: For two nuclei to fuse, the Coulomb potential has
to be overcome, requiring kinetic energies much larger than thermal energies in nature
on Earth. By heating the fuel some portion of the nuclei can be fast enough to undergo
fusion. The required temperatures are in the order of 2× 108 K, or 20 keV which is a
more common unit in plasma physics 1[11]. At this temperature the fuel is ionized and
forms a plasma. Because of the high temperatures, confining and heating the fuel is
a critical topic. Most research on fusion energy concentrates on magnetic confinement
devices, where magnetic fields guides the plasma and confine the energy in the plasma
[12, Chapter 10].

Because of a, compared to other possible isotope combinations, high reaction cross
section at comparably low temperatures the most promising fuel is a mixture of deuterium
and tritium. Their fusion reaction is

D+ + T+ −−→ He2+ + n + 17.58 MeV. (1.1)

The charged helium nucleus (α-particle) is confined by the magnetic fields, while the
neuron leaves the plasma unhindered and is stopped in the reactor wall. Here its kinetic
energy is converted to heat. [12, Chapter 10]

1.2. Heating of Fusion Plasmas

In a fusion reactor energy losses from the plasma, that would reduce the temperature of
the plasma, are planned to be balanced mostly by the α-particles originating in fusion
reactions following equation (1.1) [1]. To reach these temperatures one however has to
rely on other heating mechanisms. Also, a small portion of external heating in a reactor
scenario is beneficial for controlling purposes [13]. For research purposes it is also necessary
to heat plasmas externally.

One method of auxiliary heating is by injecting radio frequency (RF) waves into the
reactor vessel. The waves may be absorbed by different mechanisms at different positions
in the plasma [14]. One absorption mechanism exploits the periodic motion (gyromotion)

1Temperatures in Kelvin can be related to energies with Boltzmann’s constant: E = kBT , 1 K ≈
8.6× 10−5 eV[10]
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1. Introduction

(a) The magnetic configuration of a tokamak.
The figure is taken from Kikuchi et. al. [15].

(b) A poloidal cross section through the
plasma with the RF resonance. A
poloidal cross section is a cross sec-
tion in the same direction as the two
cuts through the vacuum vessel in fig-
ure 1.1a. The figure is taken from Stix
[2].

Figure 1.1.: A schematic overview of a tokamak and a radio frequency (RF) resonance.

of charged particles around the field lines of the confining magnetic field. The frequency
of this gyration is proportional to the magnetic field strength [12]:

fc =
Bq

2πm
. (1.2)

q and m are the electric charge and mass of the gyrating particle. If this gyration of an
ion is in resonance with the RF wave, i.e. if the wave frequency is an integer multiple of
fc, it may be accelerated to high energies [1]. Heating based on this resonance with the
ion cyclotron frequency is called Ion Cyclotron Resonance Heating (ICRH).

The most promising designs for fusion reactors use a toroidal geometry to confine the
plasma [1]. An example of the tokamak configuration, the most studied magnetic fusion
device, is shown in figure 1.1a. We will now explain the function of the parts shown in
figure 1.1a based on the book from Wesson [14]. The plasma is separated from the outside
by the vacuum vessel. The toroidal field coils generate most of the magnetic field confining
the plasma, while the poloidal field coils counteract forces that would propel the plasma
towards the walls of the vacuum vessel. A current is induced in the plasma, as shown
with the yellow arrow in figure 1.1a, because the plasma would be unstable otherwise.
This current is induced by the central solenoid.

Inside the vacuum vessel the magnetic field B is inversely proportional to R, where R is
the distance to the symmetry axis of the torus. The symmetry axis is the line the central
solenoid wraps around in figure 1.1a. By choosing the frequency of the injected RF wave
one can select where the power is absorbed [2, Chapter 17].

2



1.3. Reweighting Methods in Other Fields

Unless otherwise indicated we base our explanation of the wave particle interaction
on chapter 17 in the book of Stix [2]. In the plasma the magnetic field lines organize
themself in nested surfaces [1], shown in figure 1.1a in yellow. In 0th order the particle
motion follows the field lines [12], resulting in particles confined to the magnetic surfaces.
Figure 1.1b shows the radial position of the resonance and where the trajectory of an ion
intersects this position. The magnetic field amplitude decreases from left to right. Ions
in the plasma move on the magnetic surface shown as dashed circle. Whenever they are
at the indicated distance to the symmetry axis they are in resonance with the RF field.

Depending on the phase of the gyration of the ion with respect to the wave field the ion
is accelerated or decelerated by the wave. Neglecting a phenomena known as superadia-
baticity the phase of an ion at one passing depends chaotically on the phase of the passing
before. We can approximate the chaotic dependency by a stochastic one. The phases can
be treated as uncorrelated, and the resonant heating as a stochastic process. Another
source for stochastic behavior are collisions between particles. In total the equation of
motion consists of a deterministic part due to the Lorentz force and the mean influence
of collisions and heating, and two stochastic terms related to heating and collisions.

The effects described above lead to a ion distribution function that consists of two parts:
a thermal Maxwellian at comparably low energies and a non-Maxwellian tail that declines
much slower than a thermal tail would. Those ions in the tail are of great importance
for heating and the plasma dynamics on one hand because they can drive instabilities in
the plasma [5, 6] and are important for heating the plasma with ICRH [5]. On the other
hand they can be used to study the effects of highly energetic fusion-born α-particles in a
reactor [5]. As they are few in numbers it is difficult to resolve them with good statistics
using Monte Carlo methods. Ideally we would like to use more markers of less weight in
the tail region and fewer markers of higher weight in the bulk region. In this work we
investigate how dynamic reweighting can be used to achieve this.

1.3. Reweighting Methods in Other Fields

The problem of resolving low probabilities with Monte Carlo methods arises also in fields
other than plasma physics, and splitting methods for efficient solutions of this problem
already exist [16] under the name ’Rare Event Sampling’. To my knowledge these meth-
ods require that the distribution function is already partially known to be able to set
parameters, or that the markers can be advanced independent of each other [16]. This is
problematic for applying these methods to ICRH because one does not know in advance
how the high energy tail will develop. And due to nonlinear coupling, e.g. for determining
the heating power and the amplitude of the wave field, all particles have to be advanced
on short time scales compared to the time span of the simulation.

3





2. Theory

In this chapter we first introduce Coulomb collisions and wave-particle interaction. The
wave-particle interaction leads to particle distributions that are not in local thermal equi-
librium, we therefore need to describe the plasma with kinetic theory. After introducing
kinetic theory we discuss how collisions and wave interactions lead to the distribution of
ions in the plasma. The kinetic equations we obtain are of the diffusion-advection type
for the solution of which we introduce Monte Carlo methods.

2.1. Coulomb Collisions

A fusion plasma mainly consists of electrons and fully ionized hydrogen isotopes. This
means that when two particles collide they undergo Coulomb collisions, apart from a few
nuclear interactions. The differential cross section for scattering by the Coulomb potential
is the Rutherford cross section:

dσ

dΩ
=

(
Z1Z2e

2

8πε0mv2 sin2 Θ/2

)2

. (2.1)

The total cross section diverges because of the slow decrease of the Coulomb potential
for large radii, but not in a plasma [12]. Charges of opposite polarity as the one creating
the scattering potential accumulate around it, shielding the charge on long distance. This
is known as Debye shielding with a characteristic length scale of λD [14]. In fusion
plasmas much more particles undergo scattering at small angles than large angles. This
is expressed in the Coulom logarithm lnΛ ≈ 18 which is defined as natural logarithm
of the ratio of collisions that occur at an impact parameter of λD compared to collisions
that lead to a deflection of 90◦ [12].

The cross section (2.1) decreases strongly for higher particle speeds. This is very dif-
ferent from neutral gases. Hard sphere potentials for example do not show a velocity
dependency at all. We will discuss the effect Coulomb collisions have on ions based on
Helander [7, Chapter 3]. For ion-ion collisions the strongly decreasing cross section to-
gether with a distribution function close to a Maxwellian results in a strongly decreasing
collision operator for high velocities. For ion-electron collisions the collision operator
depends only little on the ion velocity because the width of the electron distribution is
typically larger than the speed of the ion.
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2. Theory

2.2. Particle-Wave Interactions

As described in the introduction we can heat a fusion plasma by injecting electromagnetic
waves into it. There are several possible mechanisms for absorption of these waves [14],
we will focus on the absorption at the ion cyclotron resonance frequency.

Due to the Lorentz force charged particles, in our fusion plasma ions and electrons,
move along a spiraling trajectory when a magnetic field is present. This motion can be
separated into a component parallel to the magnetic field, which is mostly unaffected
by the magnetic field, and a perpendicular, circular motion which is called gyration. As
already stated in the introduction the frequency of gyration 1.2 is proportional to the
magnetic field B ∝ 1/R. As stated in the introduction the particle motion is 0th order
confined to magnetic surfaces. A particle moving on a magnetic surface encounters in
general various B fields because its distance to the symmetry axis (R) changes. This
means their gyration frequency varies over time. By tuning the frequency of the incident
wave one can select the position where they are in resonance with the gyromotion of the
ions [12].

The electric field of the so-called X mode waves one uses for ICRH [1] rotates in the
same plane as the gyrating particles [12]. At the resonance the electric field rotates with
a frequency that is an integer multiple of the gyrofrequency. Discussing the absorption
mechanism is easiest when the wave frequency is identical to the gyrofrequency and the
direction of rotation is identical for the electric wave field and the particle. If the particle
and the wave are then in phase the electric force acting on the particle is at all times
parallel to the velocity component of the particle perpendicular to the magnetic field.
If the particle and the wave are out of phase the electric force acting on the particle is
at all times antiparallel to the velocity component of the particle perpendicular to the
magnetic field. If particle and wave are in phase energy is transferred from the wave to
the particle, the wave is damped and the particle accelerated. If they are out of phase
energy is transferred from the particle to the wave, the wave is amplified and the particle
decelerated. This means that if we send particles with same energy but different phase
through the resonance they will exit with different energies.

Classical mechanics and electrodynamics are deterministic. The phase of the particle
when passing through the resonance the second time is therefore already determined
by its properties of the first passing. This dependency is however chaotic in nature,
and we can employ an argument similar to molecular chaos: Like with collisions, also
a deterministic process, it is a good approximation to assume the individual events as
uncorrelated because of the mixing dynamics of the process.

Independent from the initial situation crossing the resonance leads to a broadening
of the particle distribution. It is therefore a diffusive process in velocity space. When
the distribution in velocity space broadens, the mean energy increases. By diffusing the
particle distribution energy was transferred from the wave field to the particles.
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2.3. Evolution of the Particle Distribution Function

2.3. Evolution of the Particle Distribution Function

In plasma physics, as in other fields of physics concerned with ensembles of many particles,
exist at least two different ways of looking at the same situation: On one hand one
considers the individual particles following their respective laws of motion, on the other
one describes the particles as continuum.

In the particle description we have Newton’s second law:

d2

dt2
xi =

1

mi

Fext (xi, ẋi, t) + Finteract

({
xj
})

,

where t is the time parameter, xi is the position of the i-th particle, ẋi is the velocity of

it, mi the particle mass, Fext the external force acting on the particle, and Finteract

({
xj
})

the force all particles exert on the i-th particle.

In the continuum description this becomes the Boltzmann equation for the distribution
function:

∂

∂t
f + v · ∇vf + Fmacro (x,v, t) · ∇xf =

(
∂f
∂t

)
col
. (2.2)

f d3x d3v is the expectation value for the number of particles in the phase space region
d3x d3v. In magnetized plasmas Fmacro is primarily given by the Lorentz force Fmacro =
q (E + v ×B), where E and B are the macroscopic fields consisting of external fields and
collective contributions from the particles. The short scale interactions are covered by the

nonlinear Boltzmann collision operator
(
∂f
∂t

)
col

. Evaluating the full Boltzmann collision

operator is computationally expensive, and often not necessary. When most collisions
result in small angle deflections, i.e. when the ln Λ � 1, and f is close to a Maxwellian,
we can derive a collision operator of the Foker-Plack type [7]:

(
∂f

∂t

)
col

= ∇v ·

[
Af +∇v

(
↔

Df

)]
. (2.3)

A is a vector-valued and
↔

D is a tensor-valued coefficient. We recognize the first term as
an advection, or friction, term and the second as a diffusion in velocity space.

In general particles at the spatial position x can, and will, collide with all particles whose
spatial distance is less than λD. But because the cross section decreases strongly with the
relative velocity of the colliding particles (equation (2.1)) it is a good approximation to
only consider particles that are also close to the test particle in velocity space, as long as
the distribution is close to a Maxwellian [7]. As stated before we require the distribution
function f to be close to a Maxwellian. At high energies the distribution function is
therefore small, and there are only few particles between which collisions are probable.

Therefore both A and
↔

D become smaller for higher energies.
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2. Theory

Figure 2.1.: Examples for deuterium distribution functions with different amounts of heat-
ing, parameterized by ξ. We see that heating leads to a strongly populated
tail of the distribution, while leaving the thermal bulk mainly unaffected. The
figure is taken and modified from Stix [17].
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2.3. Evolution of the Particle Distribution Function

2.3.1. Ion Distribution Function with ICRH

The diffusive contribution of the wave-particle interactions is included with an additional
term in the Boltzmann equation (2.2):

∂
∂t
f + v · ∇vf + q (E + v ×B) · ∇xf =

(
∂f
∂t

)
col

+
(
∂f
∂t

)
rf
.

Here E and B are the macroscopic fields consisting of external fields and collective con-
tributions from the particles. We saw that the collision operator (2.3) has a diffusive
and an advective contribution. To deduct the shape of the ion distribution function with

ICRH we first consider a thermal equilibrium without heating
(
∂f
∂t

)
rf

= 0. Then, the

time derivative vanishes, and all other terms have to balance each other such that we
have a Maxwellian distribution. For thermal ions collisions with other ions are the domi-
nant contribution [1]. In section 2.1 we discussed that the contribution from the ion-ion
collisions should be much weaker for energies much larger than thermal energies. The
heating term on the other hand does not in general become weaker for more energetic
particles, the RF resonance is localized in real-space but not in energy. We again consider
the equilibrium, now with heating. For low energies the heating term is small compared
to the advection due to the collisions, and the distribution does not differ considerably
from the thermal Maxwellian. But for high energies the advection from collisions is small,
and the diffusive nature of the heating term flattens the distribution. The only advection
that works against this is the advection due to the ion-electron collisions. The effects
from the RF interaction and the collisions leads to a high energy tail and a higher total
energy in the plasma. Example distributions are shown in figure 2.1.

2.3.1.1. Anisotropy

ICRH not only changes the shape of the ion distribution function as function of energy,
but also causes an anisotropy of the distribution function. As already stated in the
introduction the particles in a tokamak plasma move, to 0th order, on magnetic surfaces.
A magnetic surface is shown as dashed circle in figure 1.1b. We can separate the particles
in the plasma into two categories [12]: Particles that move all around the magnetic surface,
called passing particles. And particles that are confined to the side of the magnetic surface
at large R, they cannot pass below a certain value of R and are called trapped particles.
A trapped particle is characterized by a, compared to a passing particle, large ratio of
the perpendicular to the parallel velocity component v⊥/v‖ (with respect to the magnetic
field). When such a trapped particle moves towards lower R it is eventually reflected.
The wave field influences mainly the perpendicular velocity v⊥. ICRH therefore increases
the number of trapped particles. When the radial position where reflection occurs, called
turning point, is at the RF resonance the trapped particle is affected more by the wave
field than other particles are [2, 3, 18]. ICRH leads to an accumulation of ions in regions
of phase space where the turning point is close to the RF resonance [3]. These ions have
larger energies than ions in the thermal bulk [18].

9



2. Theory

2.4. Monte Carlo Simulations

Monte Carlo simulations are a very intuitive and for high dimensions efficient method to
calculate properties of particle ensembles. The most direct calculation of the properties
of a plasma would be to solve the coupled equations of motion of all particles in the
plasma. In practice this is not possible because of the vast number of particles. But what
if we use fewer particles, make them heavier and give them higher charges such that all
the densities remain the same? Because the advection terms in equation (2.2) are linear
all the flows in the plasma and the wave interactions should be treated correctly. But
collisions between two heavy particles are very different from collisions between four ones
with half the mass. In this section we will discuss how to go from the Boltzmann equation
(2.2) to an equation of motion for the particles, circumventing the issue that we have to
treat collisions differently for few large particles than for many small particles. This will
however only work with Boltzmann equations of the diffusion-advection type.

Monte Carlo methods are able to solve general diffusion-advection equations, we will
therefore summarize the x and v dependency of f as x. Also we are not restricted to even-
numbered dimensions of x. To express the difference between the distribution function of
particles in phase space and the more general solution of a diffusion-advection we denote
the latter as ρ. With Monte Carlo simulations we do not solve for f in the Boltzmann
equation directly. Instead we can evaluate derived quantities s defined as an integral over
the distribution function f :

〈s〉 =

∫
D

s(x)ρ(x) dx. (2.4)

Here D is the domain in which the diffusion-advection equation for f is defined. Examples
for s are the total number of particles

s = 1,

the total energy

s =
mv2

2

and the average distribution function in a region of phase space V ⊂ D

s =
1

vol(V )
1V (x) =

1

vol(V )

{
1 if x ∈ V
0 if x /∈ V

. (2.5)

vol(V ) =
∫
V

dx is the (hyper)volume of the region.
By dividing the domain into small regions, named bins, we can recover the distribution

function using equation (2.5).
We will see later in this chapter that solving diffusion-advection equations with Monte

Carlo methods is an extension of solving integrals. We will therefore discuss solving
integrals with Monte Carlo methods first.
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2.4. Monte Carlo Simulations

2.4.1. Monte Carlo Simulations for Integrals

Monte Carlo integration is a technique that uses random numbers to evaluate integrals.
The simplest approach is to randomly draw positions from a uniform distribution inside
the domain D, with volume V , of the integral. Then evaluate the integrand at those
points and take the average of the integrand values. We multiply this by the volume of
the domain and get an estimate of the integral. This is easy to show, we will consider a
single sampling point. s is the function we want to integrate, Is is our estimate for the
integral:

Is(x) = s(x)V

p(x) =
1

V
.

p is the uniform probability distribution for the sampling point. Because the sampling
point is a stochastic variable also our estimate is stochastic. It is straightforward to show
that the expectation value, also called mean, of our estimate is as desired the integral of
the function

〈Is〉 = V
〈
s(x)

〉
= V

∫
D
s(x)p(x) dx∫
D
p(x) dx

= V
1/V

V/V

∫
D

s(x) dx =

∫
D

s(x) dx

where D is the domain over which we are integrating, with the volume V . The standard
deviation on the other hand can be interpreted as typical inaccuracy of the estimate.

When we use more sampling points the integral is defined with the average, where
it is irrelevant whether we average the estimates or the function values at the different
sampling points:

Is({xi}) =

∑
i f(si)

N
V =

∑
i Is(xi)

N
.

The mean and the variance of two uncorrelated stochastic variables add linearly. For the
mean this follows directly from the linearity property of the integral, and for the variance
this is known as Bienaymé’s formula [19]. Also, from the definition of the variance it is
clear that

Var (aIs) = a2 Var (Is) , (2.6)

where a is a constant. We then have

〈Is〉 =

〈∑
i Is(xi)

N

〉
=

∑
i

〈
Is(xi)

〉
N

= N
〈Is〉
N

= 〈Is〉

Var(Is) = Var

(∑
i Is(xi)

N

)
=

∑
i Var

(
Is(xi)

)
N2

=
N Var(Is)

N2
=

Var(Is)

N
. (2.7)

The mean is unaffected by using more sampling points, and the variance is inversely
proportional to the number of sampling points. This means that the standard deviation
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2. Theory

σ =
√

Var (Is), or error, of the calculation scales as O
(
N−1/2

)
. This scaling is com-

pletely independent of the number of dimensions the integral is defined, or how often we
can differentiate the integrand. The usual integration methods like Simpson or Gauss
quadrature do not have these properties, they are suited for low dimensional problems
and smooth integrands. Monte Carlo integration is therefore better for high dimensional
problems and ’rough’ integrands.

In the next section we will improve the accuracy of the method presented in this section.
This is well known as Importance Sampling and closely related to reweighting. In both
cases one wants to increase the accuracy of the estimate by choosing different probability
distributions for the sampling positions.

2.4.2. Importance Sampling

The integration method discussed in the previous section has one aspect that we can im-
prove on: If we draw positions where the integrand is small in absolute value, it contributes
only little to the result. This means we waste a function evaluation for an uninteresting
position. If we would draw random numbers not from a uniform distribution but one that
samples important regions more often the result could be more accurate. But of course
we have to take some additional measures to not change the mean of the result. This
method is called importance sampling [20].

We start with the integral we want to compute and insert unity:

〈s〉 :=

∫
D

s(x) dx

=

∫
D

s(x)

p(x)
p(x) dx.

We can interpret the last line as the mean of the function f ′ = f(x)
p(x)

that is sampled
according to the probability density p. We can choose p freely as long as it is a valid
probability density: It has to be normalized and non-negative. And p may only be 0
where s is zero as well. This is only for a single sampling position, but we already know
that the error scales as N−1/2.

The variance is then

Var(s) =
Varsingle(s)

N

=
1

N

[∫
D

f ′2(x)p(x) dx−
(∫

D

f ′(x)p(x) dx

)2
]
.

Where we simply use the definition of the variance. If we choose f ′(x) = const the variance
becomes 0. The probability distribution for the sampling positions should therefore be
proportional to the function one wants to integrate.
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2.4.3. Monte Carlo Simulations for PDEs

So far we have talked about how we can evaluate integrals using Monte Carlo methods.
We can also use them to solve partial differential equations of the diffusion-advection type.

Equation (2.4) tells us that we want to evaluate integrals over the particle distribu-
tion function. In this equation we know s(x), but not the particle distribution function
ρ(x). As we will discuss now it is possible to get sampling positions that are distributed
according to ρ even though we do not know ρ yet.

We want to find a random experiment whose probability distribution for the outcome
is the solution of the diffusion-advection equation we want to solve. As we will see shortly
stochastic differential equations (SDE), which we can consider as limit of a random
walk, fulfill this requirement. We illustrate the connection between diffusion-advection
equations and SDEs with an example, the Wiener process. We will also use the Wiener
process as model system.

2.4.3.1. Wiener Process

We start with a random walk in one continuous x dimension and discrete time:

xn+1 = xn + bξn
√

∆t, (2.8)

where ξ is a Gaussian random number with zero mean and a variance of 1. For every step
ξ is independent of all previous and following ξ. We have

xn = x0 + b
√

∆t
n−1∑
i=0

ξi.

For large n the central limit theorem [21] dictates

xn = x0 + b
√
n∆tξ.

b
√
n∆tξ =

√
b2n∆tξ is a normally distributed random number with zero mean and a

standard deviation of
√
b2n∆t. We can introduce the time t as

t = n∆t

When we take the limit ∆t→ 0 equation (2.8) becomes the SDE

dx(t) = ξ(t)b
√

dt (2.9)

with ξ(t) a Gaussian distributed random number with 0 mean and a variance of 1. Simul-
taneously the probability distribution for the position remains a Gaussian and becomes

ρ(x, t) =
1√

2πb2t
exp

[
−(x− x0)2

2b2t

]
. (2.10)
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Equation (2.10) also is a solution to the diffusion equation

∂tρ = D∆ρ, (2.11)

where ∆ is the Laplace operator. We can therefore obtain sampling positions distributed
according to equation (2.11) by solving equation (2.9), or its time-discrete counterpart
equation (2.8), for every sampling position. The random numbers ξ have to be indepen-
dent for each sampling position.

2.4.3.2. Langevin Equation

It is possible to find the SDE that yields a probability distribution equivalent to the
solution of a diffusion-advection equation without solving the diffusion-advection equa-
tion beforehand. A derivation is for example given by Ichimaru [22, p. 294ff]. Particles
following the stochastic differential equation, SDE, also known as Langevin equation,

dx = a dt+
↔

b · ξ(t)
√

dt, (2.12)

are distributed according to the solution of the Fokker-Plank equation

∂f

∂t
= −a∇xf +∇x ·

∇x ·
↔

b ·
↔

b

2
f

 . (2.13)

↔

b is a tensor describing the typical step width in different directions, and
↔
b ·

↔
b

2
=

↔

D is

the diffusion coefficient where
↔

b ·
↔

b is the matrix product of
↔

b with itself. In one dimension

or when the diffusion is isotropic we can replace
↔

b and
↔

D with scalars. ξ are normally
distributed random numbers with zero mean and a variance of 1. ξ(t1) and ξ(t2) are
uncorrelated except if t1 = t2.

We now interpret the initial condition of the diffusion-advection equation (2.13) as
probability distribution and draw sampling positions according to it. Then we advance
the sampling positions according to the Langevin equation (2.12). The sampling positions
are then distributed according to the solution of the diffusion-advection equation. We
can interpret each sampling position as position of a hypothetical particle, called marker,
whose equation of motion is the Langevin equation.

The equation for quantities derived from the distribution function (2.4)

〈s〉 =

∫
D

s(x)f(x) dx (2.14)

then becomes

Is =
Nphys

N

N∑
i=1

s(xi),

14



2.5. Conclusion

where N is the number of markers, Is the estimate for 〈s〉 and

Nphys =

∫
D

f(x) dx

the number of physical particles. We define the weight of a marker as

wi =
Nphys

N

and finally arrive at

Is =
N∑
i=1

s(xi)wi. (2.15)

As presented here the weights of the markers wi are identical, making the index redundant.
But in general the weight can be different for each marker.

2.5. Conclusion

After discussing effects influencing the ion distribution function, collisions (section 2.1)
and wave interactions (section 2.2), we showed examples for the ion distribution function
in figure 2.1 and qualitatively discussed why a high energy tail develops. We can calculate
the ion distribution function by solving the Vlasov equation with Monte Carlo methods.
For this we have to solve many instances of the Langevin equation that corresponds to
the Vlasov equation, as presented here this requires a collision operator that only consists
of diffusion and advection terms.

When investigating the high energy tail the low energy part of the distribution is of
little interest. Regardless of what exactly we want to calculate, for example the total
energy or momentum in the tail, a histogram of the distribution function in the tail, or
the number of energetic ions that leave the plasma, the function s in equation (2.4) will
be large in the tail and small at low energies. As discussed in section 2.4.2 our sampling
points, and therefore markers, should be concentrated in the high energy tail.

However, as we can see in figure 2.1 the low energy Maxwellian part of the distribution
contains most of the physical particles. When we solve for the distribution function with
Monte Carlo methods also most markers will be concentrated at low energies and high
densities. The topic of this thesis is how we can modify the Monte Carlo method for
diffusion-advection equations to use sampling positions that are not proportional to the
density function. For this we will duplicate and delete markers when they propagate to
different regions of phase space and adjust their weights.
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3. Reweighting

3.1. Introduction

In section 2.5 we discussed that we have to modify the marker distribution we get from
solving the SDE such that we can weight the markers to get less variance. To solve
diffusion-advection equations we have to use markers following the Langevin equation
due to construction of the method. The weighting function w depends on the position x,
and the markers will move across different regions of configuration space. This means the
marker has to change weight during runtime, but conservation of particle number, repre-
sented by weight, should not be violated. More generally, the distribution function itself
should not be affected. This won’t be achieved perfectly, but to good approximation: The
mean is unchanged by the methods we propose, while fluctuations in normally conserved
quantities are kept small and do not grow with time. We will do this by duplicating and
deleting markers.

3.2. Classic Reweighting

There are different approaches on how to duplicate and delete markers to keep the weights
of the markers identical to the weight prescribed by the weighting function w(x). We will
start with a simple algorithm, which we will call classic reweighting.

We specify discrete regions and a weight for each of those regions, w(x) is a discrete
function. We show in section 3.3.3 that having markers of different weight in the same re-
gion of phase space increases the variance compared to markers of equal weight. Therefore
all the ratios of the weights of the different regions shall be integers, otherwise splitting
one marker into several of equal weight is not trivial.

We denote the weight in region A with w(A).
When a marker moves from region A to region B there are three possibilities:

w(A) = w(B)
We do not take further actions.

w(A) > w(B)

The weight of the marker will be reduced by a factor of w(B)
w(A)

. To conserve weight we

create w(A)
w(B)
− 1 new identical markers at the same position. We call this operation

’split’.

w(A) < w(B)

The weight of the marker will be increased by a factor of w(B)
w(A)

. As we only consider
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one marker at a time we cannot merge it with other markers. We want to conserve
the distribution function on average, so that when many markers cross this boundary
the relative error will be small. We achieve this by deleting the marker with a
probability of 1− w(A)

w(B)
. We call this operation ’shoot’. The simple algorithm we use

when shooting a marker is called Roulette, and we will introduce more advanced
versions of the roulette with our new schemes.

This method has several shortcomings which we will discuss in the following sections.
Later we will propose methods to avoid some of them.

3.2.1. Correlated Marker Positions

To understand this fundamental behavior let us consider a simplified situation, the Wiener
process we defined in 2.4.3.1. One stationary solution is the constant probability distribu-
tion, and we initialize markers with this distribution. Evaluating a measure, for example
the density using a histogram, will give fluctuating results. The standard deviation of the
result depends among others on which quantity we are measuring. But it always scales
as O(1/

√
n) if the markers are uncorrelated, where n is the number of markers.

When one marker is split in two identical markers the markers are of course correlated.
Thus, the O(1/

√
n) scaling does not hold anymore. Because they are at the same position

and have the same properties the splitting does not decrease the error. If the markers
would follow a deterministic ODE they would have the same position forever and we
would never gain accuracy. Instead, the stochastic term in the SDE causes the markers to
become more and more independent as time progresses, restoring the O(1/

√
n) scaling.

To get a better understanding how this decorrelation occurs we consider the following
situation: Consider two markers that start at the same time at the same random position,
after this both independently perform a random walk. The markers follow the Wiener
process on a periodic domain. We then calculate the standard deviation of a histogram
based density measurement. The calculation and the result is shown in the appendix A.
In figure A.1 we see that the standard deviation of the result initially is the same as for
a single marker. It then sinks to the level of two uncorrelated markers.

We refer to the time after which the error has dropped significantly as tdecorr.

3.2.1.1. Decorrelation Length

In the appendix A we found the decorrelation time tdecorr of two markers that were created
at the same position. For the Wiener Process we know that ∆x ≈

√
2D ∆t. Using this

relationship we can estimate the distance the two markers travelled before becoming
decorrelated. One conclusion is that measurements that are taken far from the boundary
are unaffected by the correlation. This can also be understood in a more direct manner.
We already saw that the decorrelation time depends on what we measure. This is then
also the case for the decorrelation length. We will continue our investigation with the
histogram based density measurement defined in equation (2.5) as it is an important
example. The density measurement counts markers that are in the respective bin. It does
not distinguish where they are inside the bin. Therefore it does not matter if markers

18



3.2. Classic Reweighting
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Figure 3.1.: A random walk in x as a function of the time t in three different zoom levels.
The grey boxes indicate the plot ranges of the smaller zoom levels. In the
first plot it appears that the trajectory crosses the red line only once, but if
we zoom in far enough we see that there are in fact many crossings.

that start at the same position are at the same position, or if they are at opposite ends
of the bin. The markers have to leave the bin to stop being correlated according to the
binned density measurement. For this they have to travel a distance of the order of the
bin size l. The decorrelation length ldecorr is therefore approximately l.

We can expect that a measurement that was taken several decorrelation lengths away
from a boundary is comparably unaffected by the correlation. This distance is longer if
the bins used are larger.

3.2.2. Multiple Crossings

The correlated marker positions have one further effect that can be mitigated. We illus-
trate it with an example:

We start with 100 markers just next to a boundary, on the high-weight side. Let all
of them move to the other side, and each marker is split into two. We will refer to two
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markers that started at the same position as twins. Next assume they all return to the
high-weight side. When crossing to the high-weight side approximately half of the markers
are deleted. But as we flip a coin for each marker separately it is not unlikely that both
twins are deleted, or that both survive.

This means that while we might still have 100 markers, just as in the beginning, some
of them are correlated. Therefore we reduced the accuracy by splitting and deleting. If
we repeat this we even get correlations between four markers, then eight, and so on. As
particles undergoing a Wiener process exhibit a typical zig-zag trajectory such repeated
border crossings are likely. As we see in figure 3.1 a typical random walk would cross
our boundary often. In fact, the number of crossings diverges if we continue to zoom in
because the Wiener process is self-similar [23].

3.2.3. Non-Constant Total Weight

There is an additional problem with multiple crossings, one which cannot be solved by
decorrelation. We revisit the example from section 3.2.2. After we split and shoot the
initial 100 markers we will not have exactly 100 markers. Instead the number of markers
will be a stochastic variable, with a finite variance. When the markers cross the boundary
again, even after a long time, there will be some additional uncertainty about the number
of markers afterwards.

We see that the number of markers in a simulation will deviate more and more from
the initial value the longer we simulate. This also applies to the total weight and mass.
This is clearly an undesired behavior.

3.3. Alternative Schemes

As we discussed in the last section the classic reweighting has shortcomings that should be
improved. Possible approaches include merging particles instead of deleting them, keeping
the first three moments of the distribution constant. This however can lead to artificial
thermalization of the distribution [24]. Another approach is the reweighting in the energy
dimension in the orbit following code ASCOT 3.5. It was implemented by A. Salmi, and
the markers are not required to have the same weight in the same region of phase space.
It uses uncorrelated random number for the roulette, and then readjusts the weights to
achieve energy or momentum conservation. This approach only allows conservation of a
single moment.

Instead of using a probabilistic approach for the roulette one could merge markers that
moved into the high weight region. This can however be computationally expensive and
lead to a modified mean compared to the case without reweighting [24].

In this section we propose new schemes for reweighting. We describe our new methods
and discuss advantages and disadvantages. An overview is shown in table 3.1. The
algorithms we are proposing in this section do not alter the mean result of the simulation.
As a trade off mass and all other moments of the distribution are not conserved exactly,
but the fluctuations around the mean do not increase with time and are kept small.
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Shooting schemes
advantages disadvantages

Correlated
Roulette 3.3.2.1

very accurate conservation of
the particle number
fluctuation-decreasing correla-
tion effect in 1D

in multiple dimensions strong
local fluctuations

Deterministic
Roulette 3.3.2.2

avoids correlations between
markers

larger global fluctuations of the
particle number
requires storing an additional
parameter for each marker

Splitting schemes
advantages disadvantages

Classic
Splitting 3.2

does not introduce additional
fluctuations

only works for integer weight
ratios

Correlated
Splitting 3.3.3.1

conserves the total weight more
accurately than the determinis-
tic splitting

stronger local fluctuations

Deterministic
Splitting 3.3.3.2

independent of number of di-
mensions

larger global fluctuations of the
particle number
requires storing an additional
parameter for each marker for
each boundary

Avoiding frequent crossings
advantages disadvantages

Hysteresis 3.3.4.2
independent of diffusion or ad-
vection coefficients

Discrete Time
Reweighting
3.3.4.1

waiting between reweightings
reduces the overhead compared
to simulations with constant
weight

requires knowledge of the lo-
cal diffusion coefficient to ad-
just the time between reweight-
ings

Table 3.1.: Overview of the schemes proposed in section 3.3. Classic Splitting is not new,
but included for comparison.
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Figure 3.2.: We define a continuous weighting function wc = x
2

exp [−2.5y] +
1
4

exp
[
− (x−1)2+(y−1)2

0.08

]
and define discrete weight regions that differ by a factor

of 1/2. We show the weight regions.

3.3.1. Definition of Weight Regions

Both the classic reweighting and the new schemes we will propose rely on a phase space
that is separated into discrete regions. All markers in the same regions have the same
weight. It should be easy to compute in which region a marker is as we have to do this
often and should not use a lot of computation time. We propose the following procedure:

First we define a continuous weight function wc(x) which we will use to define our
discrete weight regions. We define n weight levels, for example

Wi = 2−(n−1)

Wn+1 = 0

with i = 1, .., n. Then, we define the i-th region as set of all points x where

Wi+1 < wc(x) ≤ Wi.
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The weight of the markers as a function of x is not wc, but the smallest weight Wi that
is larger than or equal to wc(x). The individual regions are not necessarily connected,
in general islands may exist. Such islands could for example arise when choosing wc
proportional to the density, what is favorable as is discussed in section 4.4.1, and when the
simulation yields a so-called bump-on-tail distribution function [25]. A fictional example
for wc leading to islands and the resulting weight regions are shown in figure 3.2. We
compute wc at the position of the marker to determine what region a marker is in and
find the appropriate weight level. Because wc is continuous, the weight regions are ordered
what is important for keeping track where markers were created. If a marker travels from
region i to the region j the marker passes through all regions whose index lies in between
i and j, because the step-size is distributed according to a Gaussian such large jumps
always have a finite possibility.

3.3.2. New Roulette Schemes

We propose three new roulette schemes that mitigate some of the negative effects discussed
in section 3.2. Developing them and investigating the behavior of these schemes is the
main task of this thesis. As we will see in section 4.3.4 they can indeed reduce the
fluctuations of results significantly.

3.3.2.1. Correlated Roulette

The first new scheme is called the correlated roulette. It avoids the variance in total
weight as discussed in section 3.2.3 by using correlated random numbers.

For example, if we have a weight ratio of 2:1 between the high weight region and the low
weight region we have to delete 50 % of the markers coming from the low weight region.
The first marker that enters the high weight region is deleted with 50 % probability, just
as in the classical roulette. The next marker is deleted when the first one survived, and
survives when the first one was deleted. By following this procedure the total weight
can only deviate from the mean by the weight of a single low-weight marker. If we have
several boundaries this deviation can increase, but will remain low compared to the typical
marker number and does not increase with time: For every boundary between regions we
can have at most one marker from the lower weight region too much or too little. Because
the weight per marker is inversely proportional to the number of markers the fluctuations

of the total weight are O
(
1/N

)
compared to the typical scaling of O

(
1/
√
N
)

for Monte

Carlo Methods. In figure 3.3a we show a sketch visualizing the correlated roulette.
The correlated roulette does not avoid correlations between many markers as described

in section 3.2.2 in more than one dimension. In one dimension there is a beneficial
correlation effect as we will discuss in section 4.2.4.2.
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high weight region low weight region

(a) An illustration of the correlated
roulette. When the markers move
inside one weight region (black arrows)
they are not altered. When a marker
moves from the high to the low weight
region (golden arrow) it is split into
two smaller markers. When markers
travel from the low to the high weight
region (purple arrow) some are deleted,
the weight of the remaining ones is
doubled. Because we use correlated
random numbers to decide whether to
delete a marker, the remaining markers
are at most ’half’ a marker too much
or too little.

high weight region low weight region

(b) An illustration of the deterministic
roulette. When the markers move in-
side one weight region (black arrows)
they are not altered. In the high weight
region only blue markers exist. When
a marker moves from the high to the
low weight region (golden arrow) it is
split into two smaller markers, one of
which is blue and one is green. When
a green marker travels from the low to
the high weight region (purple arrow) it
is deleted. When a blue marker travels
from the low to the high weight region
(purple arrow) its weight is doubled.

Figure 3.3.: Sketches illustrating the correlated and deterministic roulettes. We show
markers as filled circles. The dark ones circles are the initial markers, the
pale markers are the new markers. The arrows show how the markers move.
The weight step between the high and low weight regions is 1 : 2.
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We can generalize the correlated roulette from the weight ratio 1 : 2 in the example to
fractional weight rations:

p := 1− w(A)

w(B)
=
k

l
,

with k and l integer and w(B) > w(A). We take an urn and fill it with l balls. Of these k
are black, the other l − k are white. Whenever a marker undergoes the roulette we draw
a ball from the urn. If it is black we delete the marker, otherwise not. We do not put the
ball back into the urn. When it is empty we fill the urn anew.

3.3.2.2. Deterministic Roulette

The deterministic roulette, which we also call the blue-green roulette, on the other hand
relies on an additional property that we save for each marker. When splitting a marker we
mark one as ’blue’, for example the original marker. The newly created marker is marked
as ’green’. When a marker travels to the high weight region we let it survive only when
it is the ’blue’, otherwise we delete it. This means that when we duplicate a marker and
delete its twin afterwards, it is as if it was never split in the first place. It therefore cannot
be correlated to other survivors. We call this method the deterministic roulette, as we
do not use a random number to decide whether to delete. In figure 3.3b we show a sketch
visualizing the deterministic roulette.

With the deterministic roulette the fluctuations of the total weight do not increase
with time. There still are variations in the number of markers and the total weight: Two
markers that were created simultaneously will probably not return to the high weight
region at the same time. In the time period where only one of the two markers returned
we will have either too little or too much total weight. Because we have many markers
this is always the case for some of them. But these variations do not accumulate over
time because those variations vanish as soon as all markers have returned.

In a simulation one usually has more than one boundaries. Instead of keeping track
of the blue-green property for every boundary it is sufficient to store in which region the
marker was created.

3.3.2.3. Correlated Blue-Green Roulette

We now have two schemes:

Blue-Green Roulette
We avoid unnecessary correlations between markers and simultaneously limit vari-
ations in total weight.

Correlated Random Numbers
We enforce the conservation of total weight by correlating the survival and deletion
between markers.

Ideally we would like to have both positive traits. One could try to not immediately
decide what marker survives when splitting, but only later when the first of those markers
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3. Reweighting

crosses the boundary. But that means that the markers cannot be advanced independent
of each other. This is a serious constrain for the implementation and parallelization of
the algorithm.

Therefore for now we will not consider such a hybrid scheme.

3.3.3. New Splitting Schemes

Until now we have restricted ourselves to integer weight ratios between regions. If we do
not have this cumbersome restrain we would have to create markers of different weight to
conserve the total weight. Having markers of different weight in the same region of phase
space increases the variance of the result: The variance of our result from the simulation,
given by equation (2.15), are

Var (Is) = Var

 N∑
i=1

s(xi)wi

 =
N∑
i=1

Var
(
s(xi)wi

)
=

N∑
i=1

Var
(
s(xi)

)
w2
i

= Var
(
s(x)

) N∑
i=1

w2
i

We use Bienaymé’s formula [19] and equation (2.6). Minimizing the variance as a function
of wi while maintaining

∑N
i=1 wi = const with a Lagrange multiplier quickly shows that

choosing all wi identical is optimal. In our derivation we assumed that wi are constants
and do not depend on xi. Therefore we cannot infer that reweighting itself reduces the
accuracy of results even though it depends on nonequal weights.

We will now introduce two different options we found to use fractional instead of integer
ratios between the weights of regions that keep the weights in each region equal.

3.3.3.1. Correlated Random Splitting

We can use a probabilistic approach for splitting, similar to what we do when shooting. As
uncorrelated random numbers will lead to fluctuations we use correlated random numbers
for splitting. In section 3.3.2.1 we described how we can draw random numbers such that
we do not introduce growing fluctuations.

Correlated random splitting keeps fluctuations of the first moment of the distribution
from growing with time. The difference between the number of markers prescribed by the
fractional weight ratio and the number of markers actually in the simulation is independent
of the number of markers. The error due to imperfect splitting is only O(1/N), where N
is the number of markers in the simulation, because the weight of the markers is inversely
proportional to N .

In more than one dimensions we can however imagine how we still can get fluctuations:
Let the domain be a square of side length 1 with the coordinates x and y. The boundary
shall be at x = 0.5, with small x forming the high weight region. We have uniformly
distributed markers in the high weight region. After they move across the boundary we
know that the total weight will be almost exactly conserved because of the correlated

26
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random numbers. But it can happen that more new markers were created at high y
values than at low y values, or the other way around. This effect is more pronounced if the
domain has many dimensions and is large, for example compared to the measurement bin
size. This effect is closely related to the correlations between multiple markers described
in 3.2.2.

3.3.3.2. Deterministic Splitting

When we consider longer time scales, every marker will cross the boundaries in the system
several times. This means that we can use a correlated random number generator for
each marker for each boundary individually. Each of those correlated random number
generators introduces some variance in total weight, as discussed in 3.3.2.1. Therefore the
total weight is not as accurately conserved as when using a single generator. But when
using many generators the fluctuations of the distribution function are independent of the
number of dimensions or the size of the domain. It might therefore be better than the
correlated random splitting in some situations. But the differences between the splitting
schemes appear to be only minor when comparing them in section 4.3.4.

When implementing the scheme having that many correlated random number genera-
tors might be undesirable. The weight ratio between two regions shall be w = n/d, with
n and d integer and n > d. Instead of many random number generators we use a fixed
sequence of Boolean numbers, b, with n entries. n−d entries are 1, d are 0. Every marker
stores which element of the sequence b to use next. When a marker crosses the respective
boundary from the high to the low weight region, we reduce its weight, and if the current
element of the sequence b is 1 we also duplicate it. Afterwards we store the position of
the next element of b, if we reached the end of the sequence we start from the beginning.

3.3.4. Avoiding Unnecessary Crossings

As we saw when we discussed the classic reweighting in section 3.2 crossings of markers
between regions have negative effects. And because of the zig-zag structure of the Wiener
process, as shown in figure 3.1, it is probable to have many consecutive crossings. In those
cases it would be better to reweigh only once or not at all instead of after each individual
crossing. We propose two adaptions to the schemes that implement this.

3.3.4.1. Discrete Time Reweighting

Until now we considered situations where the markers are instantaneously split or shot
when crossing a boundary. As we are discussing numerical algorithms this is not viable:
We can only split between time steps of finite length. And checking in which region the
marker is currently located and splitting or shooting takes some computational time. This
means that we always have to wait a little before reweighting.

By waiting between reweighting we neglect all the crossings that happened in the mean-
time and were cancelled by other crossings. We could for example only reweight after
waiting for one decorrelation time tdecorr.
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In between reweightings the markers of the different regions mix. The typical length
over which the markers diffuse in between reweightings depends, other than ldecorr, on
the diffusion coefficient. Therefore it might be hard to optimize for several boundaries in
regions with different diffusion coefficients if we reweight all markers at the same time.

3.3.4.2. Hysteresis

Another way of avoiding unnecessary crossings is to introduce a hysteresis region of width
h. This means that a marker has to cross the boundary and advance beyond a distance of
h/2 to the boundary before being split or shot. As long as we do not reweight the marker
it keeps its old weight, its weight is therefore not only a function of position anymore.
Inside the hysteresis region we have markers of both high and low weight. When h & l
this means that the markers are decorrelated when they would be split again because they
had to travel far. It is however still uncertain how large the hysteresis has to be to yield
good results, what is the exact meaning of ’&’? We will determine this in simulations of
simple test cases.

3.3.5. Summary of Novel Reweighting Schemes

We define regions in phase space, each with markers of a specific weight. When a marker
changes the region it is in we either split it up or delete it, depending on whether the new
region has higher or lower weight than the original one.

After splitting the marker positions are correlated and need some time to decorrelate.

We propose two schemes to avoid growing fluctuations that arise when deleting markers
at random. We use correlated random numbers or the deterministic roulette to determine
whether a marker should be deleted, this is not necessary when the weight ratio between
regions is an integer.

3.4. A Simple Model for Analytical Calculations

To compare the schemes and judge their performance we would like to have analytical
estimates for the errors. This requires approximations: In the appendix B we show a
calculation for the hysteresis region for the deterministic roulette without those simplifi-
cations. This calculation is cumbersome and does not lead to a usable result. We therefore
build a simple model that we will use for some estimates.

In our schemes the markers do not propagate independent from each other. For example
we might create a marker when another marker passes from a high weight to a low weight
region. In our simplified model we will nevertheless treat the markers as completely
independent and equally distributed:

pcombined (x1, x2, . . . , xN) =
N∏
i=1

p (xi) ,
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where pcombined is the combined probability distribution for all markers and xi the coor-
dinates of the respective marker. p (xi) the probability distribution for the i-th marker:
the probability of finding the i-th marker in the phase space volume dx at the position
x is p (xi) dd. Because we model the markers as independent we know that the relative

error scales as O
(
N−1/2

)
, where N is the mean number of markers. We will therefore

calculate the error for only a single marker and scale the error accordingly.
The probability density for a marker without reweighting is proportional to the phase

space density. If we reweight the markers we introduce a probability density in one addi-
tional dimension: we have the spatial dependency as before, and one additional dimension
for the weight. We consider schemes with discrete weights, therefore this additional di-
mension will be discrete as well.

This probability density for the position and weight of a marker, p, depends on the
process. Once we found p we can compute the mean and variance of a measurement. We
will mainly be investigating the binned density measurement ρbin:

ρbin(x,w) =
1bin(x)

V
w,

where x and w are the position and weight of the marker, and V is the volume of the bin.
1bin is the box function defined in (2.5). It is 1 when x is inside the bin and 0 otherwise.
We divide by the (hyper)volume of the bin V to get the density.

We denote the mean with 〈·〉:

〈ρbin〉 =
∑
w

∫
D

1bin(x)

V
wp(x,w) dx

〈
ρ2

bin

〉
=
∑
w

∫
D

12
bin(x)

V 2
w2p(x,w) dx. (3.1)

D is the domain of the process. Observe that 12
bin(x) = 1bin(x). The variance and the

relative error are defined as:

Var (ρbin) =
〈
ρ2

bin

〉
− 〈ρbin〉2

Erel =
√

Var (ρbin)/ 〈ρbin〉 =
√〈

ρ2
bin

〉
/ 〈ρbin〉2 − 1.

As we will test in chapter 4 our schemes keep the expectation value of the distribution
function unaffected. This means if we have markers with less weight we have more of
them to keep the total weight per volume unaffected.

3.5. Noisy Fluxes

We discussed in 3.2.1 that correlations between markers can reduce the accuracy of the
simulation, and that the effect of these correlations decay on the length scale of ldecorr.
There is yet another effect introduced by having regions with different weights and accu-
racy. The regions exchange particles, each region has an influx and outflux of particles. If
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a region has large fluctuations in the number of markers the flux of markers from this re-
gion will also fluctuate strongly. The number of markers in the region where this strongly
fluctuating flux flows into will also fluctuate more. On the other hand, a region with
small fluctuations might decrease the fluctuations of adjacent regions. The relationship
between the fluctuations in a region and the fluctuations of the flux depend on the used
splitting or shooting scheme because reweighting introduces additional fluctuations.

This effect already exists without reweighting. Consider the Wiener process introduced
in 2.4.3.1 on the one dimensional domain [0, L], where L is the length of the domain. The
probability distribution p = 1/L for the Monte Carlo markers for the stationary solution
is uniform. We consider the binned density measurement

s(x) =
L

l
1bin(x),

where l is the width of the bin and 1bin the box function. For the mean and variance of
the measurement of s with a single marker we get

〈s〉 =

∫ L

0

p(x)s(x) dx =

∫
l

1

L

L

l
dx = 1

〈
s2
〉

=

∫ L

0

p(x)s2(x) dx =

∫
l

1

L

L2

l2
dx =

L

l

Varsingle(f) =
〈
s2
〉
− 〈s〉2 =

L

l
− 1.

When we use N markers instead the variance becomes

Var(s) =
1

N

(
L

l
− 1

)
=
L

N

(
1

l
− 1

L

)
. (3.2)

N/L is the average number of markers per unit length. When L = l all markers lie withing
the bin, therefore the measurement does not depend on the specific realization and the
variance is 0. When L � l we get Var(s) = L/Nl, what is the inverse of the expected
number of markers in the bin. In this case we can therefore directly use the number of
markers in the bin as estimate for the uncertainty of the result.

Consider a domain that is large compared to the bin size, L � l. Also imagine a
region inside this domain with a size of e.g. 5l. The number of markers inside this region
fluctuates because there are noisy fluxes into and outwards of the region. If the whole
domain has however a size of L = 5l the number of particles inside the region of size 5l
is constant because there are no noisy fluxes. Equation (3.2) states that the accuracy of
the result is reduced when the domain size is increased while keeping the marker density
constant, or in other words, when noisy fluxes are present.
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3.5.1. Flux-Bin Model

To test whether the fluxes between regions are important for the accuracy of the simulation
we build a model, restricted to the Wiener process, that contains the fluxes between
regions and their fluctuations. On the other hand it reduces the effect of two markers
that started at the same position being in the same density measurement bin. This
separation will not be achieved perfectly, but the so-called Flux-Bin model will still give
insights into the origins of fluctuations.

We start by separating the domain into bins, we will call them flux-bins to distinguish
them from bins we use for density measurements. For each flux-bin we define a weight for
the markers inside. Instead of saving the position for each marker we only store how many
markers are in each flux-bin. After the time ∆t we redistribute the markers. For this we
assume that all particles started in the center of the bin and use the analytical solution
(2.10) of the probability density to calculate the transition probabilities to other flux-
bins. The width of the flux-bins should be small compared to the time step ∆t to avoid
introducing an additional diffusive behavior. We now have the transition probability to
other flux-bins for each marker in the original flux-bin. To determine how many markers
of the original flux-bin travel to each other flux-bin we can draw from the multinomial
distribution, a generalization of the binomial distribution for more than two outcomes
[26]. To decrease the runtime of the simulations we only distribute the markers between
the 20 flux-bins that are closest to the flux-bin the particles originate from.

We then define density-bins that contain several adjacent flux-bins and save the density
for each time step. From these density measurements we compute the variance and
compare it to a direct implementation of the algorithms. In section 4.2.4.3 we compare
the flux-bin model to the direct simulations of the algorithms. We will see that the flux-
bin model is able to reproduce the accuracy of the schemes while the simplified analytical
model from section 3.4 fails to do so.

We have to account for markers travelling between flux-bins of different weight. We
model the two new roulette schemes differently:

Correlated Roulette

We only consider integer weight ratios between the regions. When n markers travel from
the flux-bin A to the flux-bin B, the marker number in flux-bin B is increased by

n

⌊
w(A)

w(B)

⌋
, (3.3)

where b·c denotes rounding to the next smaller or equal integer and w(A) and w(B) are
the weights of the markers in the respective flux-bins. We remove n markers from flux-
bin A. To conserve the total weight we remember how much weight we discarded when
rounding in equation (3.3) and add them again to flux-bin A.
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(a) The flux-bin model for the correlated
roulette. When markers travel from the
high to the low weight region, we add
twice as many markers to the target
flux-bin as we remove from the origin
flux-bin. When markers travel from the
low to the high weight region we add
half as many markers to the target flux-
bin as we remove from the origin flux-
bin.
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(b) The flux-bin model for the determinis-
tic roulette. When markers travel from
the high to the low weight region, we
add an additional green marker to the
target flux-bin for each marker we re-
move from the origin flux-bin. When
markers travel from the low to the high
weight region we only add the blue
markers to the target flux-bin.

Figure 3.4.: Sketches for the flux-bin model for the correlated and deterministic roulette.
The weight step between the high and low weight regions is 1 : 2. The flux-
bins, shown as black boxes, contain markers. The markers of every flux-bin
can travel to other flux-bins every time steps, the probability distribution
for the transitions is given by equation (2.10) and the positions of the flux-
bins. When markers travel between flux-bins inside the same weight region,
shown as black arrows, we simply decrease the number in the original bin and
increase the number of markers in the target bin. When the markers travel
to the low weight region, shown as gold arrows, we additionally have to split
the markers. When the markers travel to the high weight region, shown as
purple arrows, we additionally have to shoot the markers. The correlated and
the deterministic roulette handle markers that travel from one weight region
to the other differently. We show the density-bins in red at the bottom of the
figures.
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Deterministic Roulette

For simplicity we only consider two regions of different weight and only allow integer
weight ratios. We keep track of the blue and green markers individually. When a blue
marker travels from a low to high weight region we remove it from the original flux-bin
and add it to the new flux-bin. If it travels in the other direction we also add a green
marker to the new flux-bin. When a green marker travels to another flux-bin we delete it
if the new flux-bin is of higher weight, otherwise we move it to the new flux-bin.

3.6. Numerical Estimations of Errors

While we already made some analytical calculations this is only possible for very simple
situations. To compare the methods and find good parameter values we have to rely on
numerical simulations.

For this I wrote a FORTRAN 2003 program. It is using the different algorithms to
simulate various processes. To get the variance we can repeat each simulation several
times. For each measure we now have several measurements. The mean µ and variance
σ2 are defined as [21]

µ =

∑
i si
N

(3.4)

σ2 = Var(s) =

∑
i (si − µ)

N − 1
. (3.5)

N is the number of samples which are in the order of 1× 106 for our purposes. We can
therefore neglect the difference between N − 1 and N . The standard deviation σ is given
by the square root of the variance. We compute the variance and compare the mean of
these measurements with simulations without reweighting to judge the performance of
the methods. We will use the time average instead of performing the simulation multiple
times.

33





4. Performance of Novel Schemes

4.1. Overview

To judge the performance of our reweighting schemes we have to analyze several splitting
and shooting schemes in various configurations. This gives rise to a large number of cases
to investigate, especially if one also wants to perform parameter scans. We will first give
an overview of the studies we perform and the results thereof before covering the different
aspects in detail.

Starting from a single boundary and the Wiener process we will add complexity until
we arrive at the full schemes for a more general diffusion-advection equation. Using the
conclusions drawn from the analysis of these cases I finally propose a general approach
for choosing all parameters of the schemes in section 4.4.

We will use the variance of the results of the schemes as measure for the accuracy. This
is only justified if the mean of the results is unchanged by reweighting. We will establish
this important property both in the beginning with a single boundary with the Wiener
process and when we arrive at a more complex process in section 4.3.4.2.

We start with the Wiener process introduced in 2.4.3.1 in a one dimensional domain
with mirror boundary conditions and with constant diffusion coefficient. The domain is
split into a low weight and a high weight region, we are only looking at a single boundary.
We establish:

• Reweighting indeed increases accuracy in the low weight region. In one dimension
the correlated roulette outperforms the deterministic roulette.

• Far from the boundary the accuracy agrees with the flux-bin model.

• Hysteresis and time-discrete reweighting both decrease fluctuations.

• The effects of hysteresis and time-discrete reweighting add predictably. This is
important for selecting the hysteresis width and the time between reweighting.

• The decorrelation length is independent of the weight ratio between the regions.

• Using noninteger weight ratios is possible, both proposed methods for splitting per-
form well.

We then go to multiple boundaries. With an analytical investigation we find that using
many boundaries is beneficial compared to using only few. Extending the problem to two
dimensions in section 4.2.4.6 we find that the deterministic roulette can perform similarly
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to the one dimensional case, while the correlated roulette suffers from correlation between
many markers.

The goal of using reweighting is to increase accuracy in areas of low density. We
introduce a constant flow to get different densities in different regions in section 4.3. At
first we focus on a single boundary in section 4.3.3 and find that decorrelation is mostly
unaffected by the presence of flow. We then increase the flow velocity such that we
get densities that vary over several orders of magnitude in section 4.3.4 and use several
boundaries. We find that with reweighting we can achieve the same level of fluctuations
in the low density region as without reweighting with a factor of 2000 less markers.

4.2. Wiener Process

4.2.1. Introduction

Diffusion-advection equations contain, as the name suggests, two different terms determin-
ing the temporal evolution: diffusion and flow. As discussed in section 3.2.1 the diffusive
term decorrelates markers and is a requirement for reweighting. This is not the case for
the advection term. We therefore first analyze how our algorithms behave under a pure
diffusive process. For simplicity we keep the diffusion coefficient constant, what leaves us
with the Wiener process which we introduced in 2.4.3.1. We will restrict ourselves to the
constant stationary solution.

For time independent ρ equation (2.11) becomes

∆ρ = 0. (4.1)

For the one dimensional Wiener process solving (4.1) is straight forward. We can
obtain it by integrating twice, ρ(x) is a linear function. For mirror or periodic boundary
conditions ρ will be constant. A sloped solution would mean that particles appear on one
side of the domain and vanish at the other.

In more dimensions equation (4.1) is solved by a constant ρ as well, which is also
compatible with mirror and periodic boundary conditions.

4.2.2. Required Number of Markers

To judge the performance of the schemes we have to determine the variance of the results
accurately. This requires many repetitions, we typically average over 1 000 000 measure-
ments, and much more cpu time than determining the mean of the results to similar
accuracy.

Usually the error of Monte Carlo algorithms is O(1/
√
N) (equation (2.7)), where N is

the number of markers. This however only holds for uncorrelated markers what is not
the case for our methods. For many markers we suspect that the error nevertheless is
of O(1/

√
N). We will perform a convergence test for this hypothesis, and to see how

many markers are required to be able to reach the O(1/
√
N) regime. To obtain the

convergence behavior we make simulations with different numbers of markers and plot
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the variance of the result as a function of the number of markers. As result we looked at
the density measurement in the bin with the largest x coordinate, referring to the region
with smallest marker weight. In figure 4.1 we see that the convergence order O(1/

√
N)

is indeed recovered for N larger than 100 to 1000, depending on the setting. For our
investigations right now 100 markers should be plenty enough. Because we know the
scaling is O(1/

√
N) it would be a waste of computational time to use more markers, the

computational time is better invested in more repetitions to improve statistics. If we use
more than three boundaries we have to use more markers.

4.2.3. Hysteresis Region in 1D

Before discussing numerical results we derive the error that we expect for the binned
density measurement according to the theory introduced in section 3.4. We will compare
the theoretical expectations with numerical results in section 4.2.4. The domain shall be
I = [0, 1]. The hysteresis region starts at a and ends at b with 0 < a < b < 1. The weights
are 1 in the high weight region and w in the low weight region.

The probability density for each species has to be a linear function of x. When there is
a source or sink of particles the slope of the probability density may change, this is at a
and b respectively. We can immediately write down the densities of the individual marker
distributions:

p1(x) = A


1 if x < a
b−x
b−a if a < x < b

0 if x > b

pw(x) = A


0 if x < a
1
w
x−a
b−a if a < x < b

1
w

if x > b

A =

[
1

w
+
a+ b

2

(
1− 1

w

)]−1

where p1 the probability density for markers of weight 1, pw the probability density of
markers of weight w, and A is a normalization constant. A does not depend on the
hysteresis width, only on the boundary position (a+ b)/2.

We can now use equation (3.1) to calculate the variance of the density measurement.
To avoid using many case distinctions we require that the bin l lies completely within or
outside of the hysteresis region, in figure 4.2 valid and forbidden bin positions are shown.
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Figure 4.1.: The statistical error σ defined in equation (3.5) of the methods as a function of
the number of markers N . On the left we see simulations with 3 boundaries
and 10 bins, on the right with 9 boundaries and 20 bins. For comparison
there is a line depicting O(1/

√
N). For large N we have as expected an

inverse square root dependency. The required number of markers to reach

the O
(

1/
√
N
)

behavior depends on the number of boundaries used.

0 a b 1

Figure 4.2.: The domain [0,1] with a hysteresis region from a to b. Different bins for
measuring the density are shown as rectangles, the three blue ones are cov-
ered in equation (4.4). To accurately calculate the mean and variance of
the measurements using the three red ones would have to make more case
distinctions.
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We obtain

〈ρbin〉 (x) = A

〈
ρ2

bin

〉
(x) =

A

l


1 if x < a
b−x
b−a + 1

w
x−a
b−a if a < x < b

w if x > b

(4.2)

Var (ρbin) =
〈
ρ2

bin

〉
− 〈ρbin〉2 = −A2 +

A

l


1 if x < a
b−x
b−a + 1

w
x−a
b−a if a < x < b

w if x > b

. (4.3)

As we would expect the variance is lower in regions with lower weight w. In the hysteresis
region the variance should be interpolated linearly, neglecting that the markers are not
independent of each other.

For the analysis we are interested in the relative error. We therefore divide the variance
by the squared mean. For the variance we then get:

Var (ρbin) (x) = −1 +
1

Al


1 if x < a
b−x
b−a + 1

w
x−a
b−a if a < x < b

w if x > b

= −1 +
1
w

+ a+b
2

(
1− 1

w

)
l


1 if x < a
b−x
b−a + 1

w
x−a
b−a if a < x < b

w if x > b

. (4.4)

For x < a and x > b, whenever the bin is outside of the hysteresis region, the variance
is independent of the width of the hysteresis region.

4.2.4. Numerical Investigation

At first we want to understand the behavior of the algorithms when only a single bound-
ary is used. For this we consider the variance multiplied by the mean number of markers,
which we denote as ’normalized variance’. We know that the variance is inversely propor-
tional to the mean number of markers, by multiplying with the mean number of markers
we can compare simulations with different numbers of markers directly. We also divide
by the squared density because we are interested in the relative error, for the constant
densities we investigate here this only gives a constant factor. The normalized density
can be interpreted as inverse of the relative accuracy we achieve per marker.

We start with an integer weight ratio of 1/2. Noninteger weight ratios will be investi-
gated when we use multiple boundaries in section 4.3.4. As we will split each marker in
two we do not need to use a probabilistic splitting mechanism as described in 3.3.3.

As discussed in section 3.3.2 we expect that the particles decorrelate on length scales of
the histogram bin width. This means that if we use a histogram to analyze the boundary
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region, we will only have very few data points as the phenomena we are investigating is
of comparable size to the bins. We circumvent this issue by using bins with a width of
0.1, but place one hundred of them in the domain [0, 1]. The bins overlap. This gives
us more information about what is happening, but it is important to remember that the
density would be calculated on a much coarser grid than the lines shown for example in
figure 4.3. In the bottom left corner of figure 4.3 we show the overlapping x-positions of
the first 20 bins used to compute the density.

In figure 4.3 we can show how the methods proposed in 3.3.2 compare. Both methods
increase the accuracy of the simulation in the low weight region as desired, while decreasing
the accuracy in the rest of the domain. The difference in accuracy is not as strong as
suggested by the theoretical calculation from section 4.2.3. In the following we will analyze
various aspects in detail.

4.2.4.1. Unchanged Mean

At first we will ensure that reweighting does not change the mean of the simulation results.
For this we run 5000 short simulations (50 time steps where measurements are taken after
10 000 equilibration time steps) and calculate the mean and the standard error of the
mean. The standard error of the mean is given by [21]

SE =
σ√
m

where σ is the standard deviation of the samples defined in equation (3.5) and m is the
number of samples.

In figure 4.4 we can see that the mean results of the methods lie close to each other,
most of the time within one σ of the uncertainty of each other. It is to be expected that
some values lie further away than one σ. The standard deviation of a single simulation is
by a factor of

√
5000 ≈ 70 larger than the uncertainty of the mean shown in figure 4.4.

This makes it improbable that a deviation of the mean that is significant compared to
the noise of the Monte Carlo method is concealed by the noise in figure 4.4.

4.2.4.2. Roulette without further Measures

We will analyze the results of a boundary without any further additions to the reweighting
like hysteresis or discrete time reweighting.

Deterministic Roulette (orange in figure 4.3)

The deterministic roulette shows mostly the expected behavior: On the left side of the
boundary the variance neither increases nor decreases when approaching the boundary.
The accuracy of the density measurement only changes once the bin contains markers from
the right side. Pairwise correlated markers should not lead to an increase of variance above
the level of the left side.
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Figure 4.3.: The variance, multiplied with the mean number of markers. The bins have a
width of 0.1, but because we use 100 overlapping bins the resolution is finer
than one would expect for a histogram with bins of width 0.1. In the bottom
left corner we show the overlapping x-positions of the bins. The hysteresis
width, if present, is 0.2. The time between reweightings is 2.5× 10−5, except
for the lines denoted with discrete time reweighting: here we set it to 1× 10−3.
This corresponds to a typical ∆x = 0.045, approximately half a bin width.
For comparison we also show the theoretical values without reweighting, and
for no hysteresis and uncorrelated markers. We also include the prediction of
the variance by equation (4.4) for uncorrelated markers. The actual results
show less variance in the high weight region, and more in the low weight
region than predicted. This will be addressed when we discuss the flux-bin
model.
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Figure 4.4.: The mean and standard error of the mean of simulations of the Wiener pro-
cess. The bin size is 0.1, the time between reweighting is 2.5× 10−5. All
means lie within one σ of each other for most of the data points, suggest-
ing reweighting does not introduce significant changes to the mean of the
simulation result.
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When a marker is split the resulting twins are not necessarily shot simultaneously. This
means that after n crossings there can be 1 to n+ 1 correlated markers on the right side
because we can have more or less ’green’ markers than weight conservation would require.
The bump is consistent with the expectation that the fluctuations in the number of ’green’
markers should reduce the accuracy directly after the boundary.

After the boundary the variance decays, the decay length is as expected of the order of
the bin width.

Correlated Roulette (blue in figure 4.3)

The results show in figure 4.3 for the correlated roulette is rather surprising: Already on
the left side the error is reduced considerably compared to uncorrelated markers. The
markers close to the boundary are more correlated than further away from it. This means
that the boundary leads to correlation between the markers such that the error is reduced
compared to uncorrelated markers. In the appendix C I present a model explaining the
reduced fluctuations due to correlation.

This explains why the variance is so low just left of the boundary. After having crossed
the boundary from right to left the markers decorrelate, increasing the error. At the same
time markers that crossed from left to right and were therefore split decorrelate as well,
decreasing the error. A saddle point is present at the boundary.

Comparison

The correlated roulette is clearly better than the deterministic roulette. With it the
variance is always smaller than with the deterministic roulette. Close to the boundary
this is probably due to the positive correlation effect. Further away this is due to fluxes
between the regions that are less affected of noise. We will also compare the fluctuations
in total weight and total number of markers for the deterministic and correlated roulette:

〈N〉 σN 〈W 〉 σW
Deterministic 93.1 6.6 63.0 3.8

Correlated 100.5 3.6 66.97 0.35

When we introduced the roulette schemes in section 3.3.2 we explained that weight fluc-
tuations are kept low with the correlated scheme compared to the deterministic scheme.
We find the predicted behavior in our simulation results. Fluctuations in the number of
markers N arise both because the total weight is not conserved and because the marker
positions fluctuate. When more than average markers are in the high weight region the
total number of markers is lower than when more than average are in the low weight
region.
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4.2.4.3. Comparison to Flux-Bin Model

In section 3.5.1 we introduced the flux-bin model. It captures the noisy fluxes between
regions but reduces correlations between particles originating at the same position by
collecting them in bins.

Comparing the flux-bin model to the direct implementation of the schemes serves two
purposes: First we want to understand what determines the fluctuation level. Second, if
we use small flux-bins we should recover the results from the direct simulation. This gives
us an opportunity to test both implementations for mistakes.

Figures 4.5 and 4.6 show both the flux-bin model and the direct simulation of the
Wiener process with the correlated and the deterministic roulette. The flux-bin model
can predict the accuracy of the schemes further away from the boundaries, and gives
results that are very similar to the direct simulation when we use small flux-bins. The
results suggest that the variance far from the boundary is indeed determined by the noise
level of markers that flow into the regions and the size of the markers, and not only the
latter. The analytical result from section 4.2.3 suggests that one can achieve arbitrary
high accuracies when selecting a very low weight in the low weight region and a small low
weight region. Because the influx of particles will however reduce the accuracy we cannot
achieve this. Another insight from the flux-bin model is that both the implementations of
the flux-bin model and the direct simulation agree, making errors leading to false results
more improbable.

We can predict the variance for the high weight region with the deterministic roulette.
If we do not use reweighting, we set w = 1 in equation (4.4) and get

Var (ρV ) (x) =
1

l
− 1. (4.5)

In the deterministic scheme we have two kinds of markers: blue ones survive passing
the boundary, green ones are deleted. The blue markers are not influenced in any way
by the green markers. The markers in the high weight region are all blue markers, and
they behave as if the whole domain was populated by blue markers of high weight. We
therefore can use equation (4.5) to calculate the variance, but we have to scale the variance
according to Bienaymé’s formula [19]. We have a weight ratio of 1 : 2 and the boundary
is in the center of the domain. Therefore on average 2/3 of our markers are blue. We
multiply the variance given by (4.5) by 3/2 and get Var (ρV ) (x < 0.45) = 13.5, what is
what both the direct numerical simulation and the flux model yield. We require x < 0.45
because the bin of width l = 0.1 must not be placed across the boundary at x = 0.5,
otherwise the green markers influence the result.

4.2.4.4. Hysteresis and Time-Discrete Reweighting

Overview

In figure 4.3 we already saw the influence of a hysteresis and discrete-time reweighting.
For the correlated roulette both procedures did little more than smoothing out the saddle
point. We do not expect an effect due to multiple crossings as there is no direction parallel
to the boundary, meaning we cannot correlate a variable other than x itself.
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Figure 4.5.: A comparison of the normalized variance for the correlated roulette for the
direct numerical simulation, and the flux-bin model with high and coarse reso-
lution. The density-bin size is 0.1, the time between reweighting is 2.5× 10−5.
The flux-bin width is 0.01, for the coarse simulation 0.05. The direct simu-
lation and the flux-bin model with high resolution are very similar, but the
flux-bin smooths the saddle point. When using larger flux-bins, denoted as
coarse, the transition between the regions differs strongly from the direct sim-
ulation. Far from the boundary the results are similar, although the flux-bin
model overestimates the fluctuations.

45



4. Performance of Novel Schemes

0.0 0.2 0.4 0.6 0.8 1.0
x

6

7

8

9

10

11

12

13

14

n
or

m
al

iz
ed

va
ri

an
ce

uncorrelated markers

no reweighting

direct implementation

flux-bin width = 0.01

flux-bin width = 0.05

Figure 4.6.: A comparison of the normalized variance for the deterministic roulette for the
direct numerical simulation, and the flux-bin model with high and coarse reso-
lution. The density-bin size is 0.1, the time between reweighting is 2.5× 10−5.
The flux-bin width is 0.01, for the coarse simulation 0.05. The flux-bin model
with small bins, shown as orange line, is similar to the direct simulation using
hysteresis (figure 4.3). When using larger flux-bins, denoted as coarse, the
transition between the regions differs strongly from the direct simulation. Far
from the boundary the results are similar, close to the edge of the domain we
see edge effects for the flux-bin model.
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Figure 4.7.: The normalized variance for density measurements using the correlated
roulette. The bin size is 0.1, the time between reweighting is 2.5× 10−5 un-
less otherwise noted. We can see that the effect of discrete time reweighting
and of hysteresis are similar. Waiting longer between reweightings reduces
the computational cost while the hysteresis does not influence the execution
time. Using discrete time reweighting is therefore better, when possible.

For the deterministic roulette this is different. Both methods cut away the bump
presumably caused by multiple crossings and extend the region of increased accuracy into
the left region.

Correlated Roulette

In figure 4.7 we compare the effects of hysteresis and discrete time reweighting. The
characteristic step length between two reweightings is

∆xtyp =
√

2∆t.

We choose the hysteresis width to be 4∆xtyp, and plotted the data for the corresponding
discrete time in the same color as the hysteresis data. We can see that the effects of
discrete time reweighting are similar to those from the hysteresis.
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Figure 4.8.: The normalized variance for density measurements using the deterministic
roulette. The bin size is 0.1, the time between reweighting is 2.5× 10−5

unless otherwise noted. The results are similar for large hysteresis widths or
reweighting after long time periods, when the hysteresis is narrow or reweight-
ing happens fast the hysteresis has a clear advantage.

Deterministic Roulette

We repeated this for the deterministic roulette, we can see the data In figure 4.8 we
repeated the comparison between the hysteresis and discrete time reweighting for the
deterministic roulette. There is not a significant difference between the hysteresis and
waiting between reweighting for large parameters. But the hysteresis clearly has advan-
tages for short hysteresis widths compared to short waiting periods between reweightings.

Conclusion

For a weight ratio of 1/2 and the one dimensional Wiener process the correlated roulette
does not need further measures to avoid multiple crossings like hysteresis or discrete time
reweighting. The deterministic roulette profits from a hysteresis, the effect saturates
when the hysteresis width is 2 to 4 times the bin width. Reweighting only after a certain
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amount of time has passed, has a similar effect as hysteresis. Wider hysteresis regions and
reweighting after longer times has no effect except smoothing the transition between the
regions. If the overhead when reweighting often is not an issue using a hysteresis gives
better results than reweighting less often. If the overhead is non-negligible reweighting
less often can be a good alternative to the hysteresis.

Superposing Effects

In figure 4.7 we see that a hysteresis with width h and reweighting after finite times ∆t
have similar effects on the variance if

h = 4
√

2∆t. (4.6)

When we use reweighting in practice a hysteresis and a non-negligible ∆t will likely be
used together. We will now investigate what the transition width is in this case.

First we define the transition width. The difference between the variance at the position
x and the lowest variance at the highest x falls from 100 % at the lowest x and highest
variance to 0 % at the highest x and lowest variance. The transition width is then defined
as the distance it takes the variance difference to fall from 80 % to 20 %:

We then make a parameter scan where we keep

wtot = whyst + w∆t = h+ 4
√

2∆t = 0.4 (4.7)

and vary whyst.
The results are shown in figure 4.9. We have w ≈ whyst +w∆t. The effects of hysteresis

and discrete time reweighting add linearly in the sense of equation (4.7). This will be
important when selecting the hysteresis width in practice.

4.2.4.5. Dependency of Decorrelation on Weight Ratio

Until now we focused on a weight ratio between the two regions of 1 : 2. When we use
a large weight ratio the variance in the high weight region is large, making comparing
different weight ratios difficult. We therefore scale the variance of the different cases by a
linear function such that they are identical far from the boundary.

In figure 4.10 we can see the scaled variance for weight ratios 1 : 2 and 1 : 8. The saddle
point with the correlated roulette is at higher variance with the larger weight ratio, other
than that the lines are almost identical. This suggests that we can generalize the results
for a weight ratio of 1 : 2. Another conclusion that we can draw is that we cannot
achieve arbitrary improvements in the accuracy of the simulation. The noisy influx of
particles from the high weight region leads to a noise level in the low weight region that
is significantly higher than the analytical expectation, and at least for the deterministic
roulette already approaches the uncertainty of the case without reweighting.
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Figure 4.9.: The transition width w as a function of the hysteresis width whyst. The bin
size is 0.1. When whyst is increased as prescribed by equation (4.7). There are
only slight variations of the transition width, the discrete values result from
the finite resolution of the measured density function. We can approximate
the resulting transition width w as sum of the effects of the hysteresis and
discrete time reweighting.
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Figure 4.10.: The normalized variance with weight ratio 1 : 2 and 1 : 8. For the weight
ratio 1 : 2 it is scaled such that it is identical far from the boundary to
the case with 1 : 8. The bin size is 0.1, the time between reweighting is
2.5× 10−5. The saddle point sits at different variance, other than this the
lines are very similar. We therefore can apply our findings for the weight
ratio 1 : 2 also to other weight ratios.
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4.2.4.6. Two Dimensional

As stated in the overview, we started with the one dimensional Wiener process and
add complexity after we analyzed the effects we find. The next step is going from one
dimension to two. As we saw in figure 4.3 for the one dimensional problem the correlated
roulette is clearly superior to the deterministic roulette: The uncertainty is lower with
the correlated roulette everywhere in phase space. This is due to several effects:

• Correlated deletion

• Better conservation of weight close to boundary

• More accurate global conservation of weight

Now imagine a two dimensional domain that is large compared to the bins we use for
measuring the density. A boundary separates it in two parts. Across the boundary is a
bin in which we measure the average density. Because the bin is so small it is very likely
that between two crossings of markers inside of the bin many crossings occur outside of
the bin.

A correlated random number generator as described in section 3.3.2.1 depends only on
the last few crossings. That means that the random numbers the roulette uses for two
consecutive crossings inside of the bin are in most cases uncorrelated because the random
numbers are correlated with random numbers used for crossings in other bins. Therefore
the first two of the advantages of methods utilizing correlated random number generators
will likely vanish.

In figure 4.11 we see the uncertainties of the schemes in a two dimensional domain. Let
us first look at the schemes without further measures for reducing errors. For the corre-
lated scheme the now uncorrelated shooting leads to large errors close to the boundary.
The bump for the deterministic scheme we know from 1D scenarios is flat, otherwise the
deterministic roulette is mostly uninfluenced by switching to two dimensions.

When we include a hysteresis region the curves for both schemes resemble their 1D
counterparts. For the correlated scheme a possible explanation is: When the markers
moved across the hysteresis region they had enough time to mix with markers formerly
from y positions outside of the bin.

When we then increase the domain size we can see that the uncertainty is considerably
higher with the correlated scheme compared to the deterministic scheme. This suggests
that the hysteresis can only effectively counteract locally uncorrelated shooting for small
domains.

In conclusion the deterministic roulette appears to be more robust for simulations in
multiple dimensions: While the correlated roulette can deliver as good results as the
deterministic roulette if the hysteresis region is wide enough to avoid negative effects,
it seems to be hard to predict when this condition is met. The deterministic roulette
does not show any additional negative effects when going from one to two dimensions.
A special case might be when one runs the simulation in multiple dimensions, but uses
bins that span all dimensions but one. In the simulation show in figure 4.11 this would
correspond to bin widths in y direction of respectively 1 and 10.
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Figure 4.11.: The normalized variance of the measurement of the density with bins of side
length 0.1. The time between reweighting is 2.5× 10−5. The markers follow
the Wiener process, the computational domain is [0, 1] × [−0.5, 0.5]. For
the simulations with a long y domain the domain is instead [0, 1]× [−5, 5].
The boundary is at x = 0.5, with a weight step of 1 : 2 between the two
regions. Because of symmetry, bins with different y coordinates are identical
except for edge effect, we only show bins spanning from y = −0.05 to y =
0.05. The deterministic roulette behaves similarly to the 1D case, while the
correlated roulette shows a large increase of variance at the boundary. This
is most likely due to locally uncorrelated shooting of markers, and can be
mitigated by using a hysteresis. When we increase the domain size however
the correlated roulette is less accurate than the deterministic roulette, even
when we use a hysteresis. Because the number of markers per phase space
volume is lowered by a factor of 10 we expect that the normalized variance
is approximately by a factor of 10 larger when we increase the length of
the domain in y direction. To compare there results directly we scale these
results by a factor of 10.
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4.3. Flow

4.3.1. Introduction

The Wiener process we discussed so far leads to a constant distribution function. This
is very different from particle distribution functions in nature and experiments. We will
now add a second term to our equation representing a constant flow:

Γ = −D ∂

∂x
ρ+ vρ (4.8)

∂

∂t
ρ = − ∂

∂x
Γ = D

∂2

∂x2
ρ− v ∂

∂x
ρ (4.9)

dx =
√

2D dtξ + v dt. (4.10)

We assume D and v to be constant. Again we restrict ourselves to stationary solutions,
we set ∂tρ = 0. We make the ansatz

ρ(x) = C0 expλx+ C1 (4.11)

and obtain

ρ(x) = C0 exp
v

D
x+ C1. (4.12)

To avoid any edge effects we will set v = 0 close to the domain boundaries. At all other
points v 6= 0. If we have a net flow of 0, enforced by the boundary conditions, b = 0.

4.3.2. Analytical Calculations

For verification and scaling of results we will derive the mean and the variance of the
binned density measurement. At first we will show that the density function is continuous
even when we change the flow velocity. Then we will derive the density function using
continuity and equation (4.12). Finally we calculate the mean and variance of the binned
density measurement.

4.3.2.1. Discontinuous Flow

As stated before we will switch off the flow close to the boundaries. We will derive now
that the density is continuous, but not differentiable at this position. We start with (4.8)
and set it to 0: Integrating (4.9) once leads to a constant flow, but at the boundaries it
has to be 0. Therefore it is 0 everywhere.

Γ = −D ∂

∂x
ρ(x) + v0Θ(x)ρ(x) = 0 (4.13)

∂xρ =
v0

D
Θ(x)ρ (4.14)

ρ− ρ0 =

∫ x

x0

dx′
v0

D
Θ(x′)ρ

(
x′
)
. (4.15)
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Θ is the Heaviside step function, which is 0 below 0 and 1 otherwise. Consider the left
hand side of equation (4.15). Because the integrand is finite ρ(x) is continuous. Equation
(4.14) requires C1 of (4.12) to be 0.

4.3.2.2. Density Function

In our tests we will set the flow to 0 in the regions closer than b to the domain boundaries.
We set the domain length to 1. We know that ρ has to be continuous. Using our results
from subsection 4.3.1 we get the following density function:

ρ(x) = A


1 if x ≤ b

exp
[
v
D

(x− b)
]

if b < x < 1− b
exp

[
v
D

(1− 2b)
]

if x > 1− b
. (4.16)

We will interpret ρ as the probability distribution for a single marker. Therefore we
have to normalize it:

∫ 1

0

ρ(x) dx = A

b(1 + exp

[
v

D
(1− 2b)

])
+
D

v

(
exp

[
v

D
(1− 2b)

]
− 1

)
= A

[
b− D

v
+ exp

[
v

D
(1− 2b)

](
b+

D

v

)]
!

= 1

A =
1

b− D
v

+ exp
[
v
D

(1− 2b)
] (
b+ D

v

) .

4.3.2.3. Mean and Variance of Binned Density Measurement

With the density function we obtained in the last section we can predict the mean and
the variance of the binned density measurement. We will use it in the next section to
scale results.

We calculate the moments of

f(x) =
1(x)

l
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and the density function (4.16). We only consider b+ l/2 < x < 1− b− l/2 and obtain

〈
f(x)

〉
=

∫ 1

0

1

l
A exp

[
v

D
(x− b)

]
=
AD

lv

(
exp

[
v

D
(x+ l/2− b)

]
− exp

[
v

D
(x− l/2− b)

])
〈
f 2(x)

〉
=

∫ 1

0

1

l2
A exp

[
v

D
(x− b)

]
=
AD

l2v

(
exp

[
v

D
(x+ l/2− b)

]
− exp

[
v

D
(x− l/2− b)

])
.

For the relative error we then get

Erel =

√
Var(f)〈
f(x)

〉2 =

√√√√〈f 2(x)
〉〈

f(x)
〉2 − 1 =

√
v

AD

exp
[
v
D
b
]

exp
[
v
D

(x+ l/2)
]
− exp

[
v
D

(x− l/2)
] − 1.

(4.17)

In figure 4.13 we will see that Erel is predicted very accurately.

4.3.3. Single Boundary

We start our investigation of the flow equation again with a single boundary. We place
a single boundary in the middle of the domain and see how the results compare to the
pure Wiener process. To compare the variance of the density measurement between the
Wiener and the flow process we have to scale the variance. Compared to the Wiener
process the variance increases for large x because the marker density decreases. We
therefore divide the measured variance by the theoretical value without reweighting given
in section 4.3.2.3.

For the Wiener process more markers are in the low weight region than for the flow
process if the boundary position and weight step are the same. The variance, when
divided by the variance without reweighting, is therefore in the whole domain higher for
the Wiener process than for the flow process. We additionally scale the variance by a
constant factor such that the variance is identical at large x.

The results are shown in figure 4.12. The decorrelation length is very similar, con-
sidering numerical noise possibly even identical, for both processes. It is an important
quantity when choosing parameters for reweighting, and because it does not depend on
the flow we can use our findings about decorrelation for more complicated processes.
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Figure 4.12.: The scaled variance for both the Wiener process as in figure 4.3 and the flow
process with v/D = −2. The bin size is 0.1, the time between reweighting
is 2.5× 10−5 and the hysteresis width is 0.047. The variance is divided by
the variance obtained without reweighting and multiplied by an additional
factor such that the variances for the different processes agree for large x. For
the correlated roulette the variances show identical behaviour for x > 0.54,
for the deterministic roulette the variance decays slightly faster for the flow
process, but this might be due to noise or imperfect scaling of the results.
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4.3.4. Multiple Boundaries

As stated in the introduction 1 we are mainly interested in the low density regions.
Therefore we use a strong flow of ≈ −13.3, resulting in a quickly decreasing density as
the diffusion constant is 1. We set the weight regions such that we keep the number
of markers per length unit constant. We will place multiple boundaries, more if we use
smaller step sizes. According to what we found in section 4.2.2 we increase the number
of markers we use from 100 to 1000 from now on.

Using equation (4.16) we see that the density is reduced by a factor of 2.4× 10−5 over
a distance of 0.8. As shown in figure 4.13 this leads to an increase of the variance of the
density measurement of about 7× 104. We can reduce the variance in the low density
region by a factor of about 1800 if we use our reweighing schemes. This means to get the
same accuracy without reweighing one has to use 1800 times as many markers. The error
is reduced by a factor of ≈ 40.

4.3.4.1. Weight Ratio

In figure 4.14 we can see how the variance of the measured density depends on the used
weight step. Smaller weight steps result in fluctuations that do not change as much in
between two boundaries, the variance as function of x does not oscillate as much. The
higher accuracy for low densities comes at the cost of lower accuracy for high densities, in
section 4.4.1 we show how we can choose how much accuracy at high densities to invest
in accuracy at low densities. The size of this effect is similar to what one can achieve by
setting the boundaries differently as described in section 4.4.1.

4.3.4.2. Unchanged Mean

As stated in the overview 4.1 it is not sufficient to analyze the variance because the mean
of the simulation results might change. To establish that the mean remains unchanged by
reweighting also for processes with flow we repeat our analysis that we performed on the
Wiener process. We run 350 short simulations (50 time steps where measurements are
taken after 10 000 equilibration time steps). Without reweighting we run 2000 instead of
350 simulations because the results without reweighting suffer from more noise than those
with reweighting. We compute the mean of the simulation results and the uncertainty of
this mean.

In figure 4.15 we show the mean and its uncertainty, but we scale it by exp
(
x v/D

)
to

increase the visibility. Other than with the Wiener process the mean without reweighting
is only useful for comparison for small x because the simulation results fluctuate much
stronger for large x than the simulation results with reweighting. As for the Wiener
process the means lie within one σ of each other for most data points, suggesting the
mean remains unchanged by reweighting.
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Figure 4.13.: The normalized variance when the density varies considerably in phase space
with v/D ≈ −13.314. The bin size is 0.1, the time between reweighting is
2.5× 10−5, the weight step 1 : 2 and the hysteresis width is 90 % of the
weight region width. By using reweighing, both with the correlated and the
deterministic roulette, we can decrease the error considerably. In figure 4.14
we compare different weight ratios for this case. We also show the prediction
for the variance without reweighting from equation (4.17). The agreement
is very good, the slight deviation at large x from the numerical result at
large x is most likely due to the bad resolution without reweighting at low
densities.
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Figure 4.14.: Repetition of figure 4.13, using only the deterministic roulette and different
weight ratios between regions. The hysteresis width is 90 % of the distance
between weight regions. Using the larger weight step 1 : 4 leads to slightly
higher accuracy at low x (5.7 instead of 8), starting at x = 0.15 the error
increases periodically by up to 25 % compared to the 1 : 2 weight step. In
section 4.4.1 we will see that increasing the accuracy for high densities leads
to a reduction of accuracy for low densities to the extent we see here. Using
the noninteger weight step 2 : 5 which lies in between the two integer weight
steps leads to a variance in between the two integer weight steps. There is
only a small difference between deterministic and correlated splitting. The
smaller weight step of 2 : 3 yields only very small oscillations. Our imple-
mentation stores the relative weights of the regions as fractions. Therefore
our implementation can handle only a limited number of boundaries before
problems due to the exponential increasing numerator and denominator oc-
cur. This is most likely the reason for the strongly increasing error at x ≈ 0.6
with the weight step 2 : 3.
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Figure 4.15.: The mean and uncertainty of the mean scaled by exp
(
x v/D

)
as described in

4.3.4.2. All parameters are as in figure 4.13. The solid lines show the mean,
all values inside the shaded regions lie within one standard deviation of the
mean. We see that the mean without reweighting suffers strongly from noise
for large x while it is more reliable for small x. The means for the correlated
and deterministic roulette lie within one σ of the result without reweighting
and within one another for most data points.
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4.4. Parameter Choices

We have many degrees of freedom in our reweighing schemes. Apart from the splitting
and shooting we have to decide on the weighing function, the weight steps, the hysteresis
widths and the time between reweighing. This is on one hand fortunate because each
parameter can be tuned to give the best performance, on the other hand utilizing the
schemes is not straight forward. Finally one also has to define a minimum weight one
wants to use. This depends on the application.

I therefore propose a standard procedure to choose the parameters based on our findings
so far.

4.4.1. Weighting Function

In the section introducing importance sampling 2.4.2 we discussed how we would ideally
choose the weights if we had uncorrelated markers. Because our markers are not uncorre-
lated this changes somewhat. Also, even when we only need markers from a small region
of phase space for our measure, we have to populate the whole phase space to get the
flux densities to and from our region of interest. To get the correct fluxes we also have to
resolve the outside region with reasonable accuracy.

One choice for the weighing function that goes very well with this flux requirement is
one that is proportional to the phase space density. Then the marker density is constant
over all phase space. This is also the weighing function that is suggested by importance
sampling when considering the binned phase space density. At the same time it gives a
greatly improved accuracy in the low density regions. If the domain is infinite we cannot
use a weighting function that results in a constant marker density, we have to introduce a
minimal weight after which markers are not split further. In the next section we will see
that we can use the markers to determine the present density and the weighting function.

In section 4.3.4 we found that for the parameters of the simulation used in section 4.3.4
we can gain several orders of magnitude of accuracy in the low density region, but also
loose almost an order of magnitude at high densities compared to a simulation without
reweighting. When one is interested both in measures that are not peaked in the high tail
of the distribution, and measures that are, loosing accuracy in the bulk of the distribution
is problematic. An example for a measure that is not peaked is for example the real-space
density, an example for a peaked measure is the histrogram of the phase space density.

We can however resolve both regions with good accuracy when choosing the continuous
weighting function that determines the weight regions accordingly.

To get a worst-case estimate of what we can achieve let us consider the following situ-
ation: We run two independent simulations, one with reweighting and one without, each
with N/2 markers. For the bulk region of the distribution we use the result without
reweighting, for the tail the result with reweighting. Compared to the results of a simu-
lation without reweighting and N markers we increased the error in the bulk by

√
2, and

compared to a simulation with reweighting and N markers we increased the error in the
tail by

√
2. Instead of simply discarding the results of the simulation without reweighting

in the tail and the results of the simulation with reweighting in the bulk we can use all
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markers, both the reweighted ones and the ones with constant weight, to evaluate the
measures. When we do this correctly we can further increase the accuracy of the simu-
lation because we have more sampling positions of the distribution function compared to
when we discard markers. In section 3.3.3 we found that using markers of the same weight
at the same position is optimal. We will now define a continuous weighting function that
yields the same phase space density of markers as running independent simulations with
different weighting functions.

In general we can define an ideal weighing function wi for each measure i one wants to
use. This gives us a marker density that would be ideal for each measure:

mi =
ρ

wi
,

where ρ is the phase space density. We combine these marker densities using a weighted
average with the weights ηi:

m =
1∑
i ηi

∑
i

ηimi =
1∑
i ηi

∑
i

ηi
mi

. (4.18)

This gives us a combined weighing function w

w =
ρ

m
=

∑
i ηi∑

i ηi/wi
. (4.19)

An important example is one weighing function optimized for measures without a strong
energy dependence such as real space density, that is constant. And another one optimized
for measures peaked in the tail of the distribution such as phase space density, which is
proportional to the phase space density. If we have a Maxwellian, and therefore an
exponentially decaying distribution, this yields

w(x) =
η1 + η2

η1 + η2 exp[sx]
=

1 + exp(−sb)
1 + exp[s(x− b)]

. (4.20)

where s is the decay speed and b the position where both weighing functions contribute
the same. We can recover the original weighing functions by letting b go to ±∞. In
figure 4.16 we can see what variances we get for different values of b. As expected we
can interpolate between the curve without reweighting and the weighting function that
is proportional to the density. It is for example possible to gain more than two orders of
magnitude at low densities while losing less than 4 % in the high density region, compared
to no reweighing.The accuracy losses we encounter for low densities when increasing the
accuracy for high densities is similar to what we saw in figure 4.14 when we used different
weight ratios between regions.
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Figure 4.16.: Repetition of 4.13 with the weighing function (4.20), the deterministic
scheme and a weight ratio of 1:2. As expected the normalized variance
of the new weighing function interpolates between the purely exponential
and the constant weighing function case. The parameter b controls how
many markers should be put into the tail. As expected we can have a single
simulation that is never worse that a factor of 2 with respect to both no
reweighing and an exponential weighing function (b = 0.2). But we can also
increase the accuracy in the high or low density region without compromis-
ing it in the other region. It is for example possible to gain more than two
orders of magnitude at low densities while losing less than 4 % in the high
density region, compared to no reweighing.
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4.4.1.1. Automatic Weighting Function

Until now we had to guess the distribution function beforehand to choose the weighting
function. Instead, we can use the markers themselves to determine the present density
and the weighting function. We still can combine different types of weighting function
with equation (4.19). For testing purposes we calculate the density with a bin of width
0.3 centered at the marker position for which we want to determine the weighting func-
tion. This increases the order of the reweighting procedure from O(N) to O(N2) with N
the total number of markers. For efficient simulations one can retain O(N) by using a
histogram to compute the density and then interpolated the value to get a density esti-
mation for each position in phase space. To obtain a reliable value for the density for the
weighting function one has to use a minimum number of markers, in our case 1000 were
sufficient.

In figure 4.17 we show that using the measured density for the weighting function gives
just as good results as using the analytical expression, but there is an effect very similar
to using equation (4.20). This is probably due to the large bin we used for calculating the
density. This results in a smoothed measurement of the density, which is less steep than
the exact density.

4.4.1.2. Mean Number of Markers

When prescribing a weighting function the total, mean number of markers may change
with time. For example, let us start with a Maxwellian distribution and a weighting
function constant in time that is proportional to the initial Maxwellian distribution. This
means the weight of a marker at position x is proportional to the initial distribution
function at the position x. When then a highly populated high energy tail develops
due to ICRH many markers travel to low weight regions, increasing the total number of
markers. This is problematic as the runtime of the simulation would increase considerably
and would be hard to predict.

We will now show that this does not occur when we use a weighting function that is a
combination of constant weight and weight proportional to the density. We will make the
assumption that the weight of the markers follows the weighting function exactly and is
not discretized. When we use regions with weight ratios that are not very close to 1 the
mean marker number will only be approximately conserved. We also require conservation
of mass and that the computational domain does not change during runtime.

The marker density is given by

w =
ρ

m
.

For the constant weight we have:

w = w0

m =
ρ

w0

,
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Figure 4.17.: Repetition of 4.13 with the correlated scheme and a weight ratio of 1:2. We
now compare a weighting function that is proportional to the analytically
known density to one that measures the density with a bin of width 0.3 and
the interpolating weighting function (4.20) with b = 0.1. The accuracy of
the weighting function proportional to the measured density values is very
similar to the interpolating weighting function.
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and for the proportional weight:

w = ρw0ρ0

m =
1

w0ρ0

.

Here w0 and ρ0 are normalization constants. w0 is chosen when selecting how many mark-
ers one wants to use in the simulation. A convenient choice of ρ0 is ρ0 = max

(
ρ(t = 0)

)
.

The combined weighting function is then given by equation (4.18)

w = w0
η1 + η2

η1 + η2
ρ0ρ(x)

,

where η1 and η2 determine the relative importance of the constant and the proportional
part of the weighting function.

The mean number of markers N is the zeroth moment of the marker distribution func-
tion:

N =

∫
D

m(x) dx

=

∫
D

ρ(x)

w(x)
dx

=

∫
D

ρ

w0

η1 + η2
ρ0ρ(x)

η1 + η2

dx

=
1

w0

∫
D

ρ
η1

η1 + η2

dx+
1

w0

∫
D

ρ

η2
ρ0ρ(x)

η1 + η2

dx

=
1

w0

η1

η1 + η2

∫
D

ρ dx+
1

w0

η2
ρ0

η1 + η2

∫
D

dx.

The first integral is constant if mass is conserved, and the second one if the computa-
tional domain does not change during runtime.

4.4.2. Hysteresis, Time between Reweighting, and Weight Steps

In section 4.2.4 we found that using hysteresis reduces the variance and smooths the
sharp transition between weight regions, and in section 4.3.4 we found that using many
boundaries results also result in an error that does not oscillate when going to lower
densities. However, using weight steps such that the distance between weight is of the
same order of magnitude as the decorrelation length of the measure one is interested
in, and hysteresis widths that are slightly less than the distance between weight regions,
already gives good results.

We therefore set the hysteresis widths to the decorrelation length of the measure. The
time between reweightings should be as large as possible, but not so large that the markers
mix further than with the neighboring regions.
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In the next step we choose the weight ratios such that the hysteresis regions do not
overlap. If the continuous weighting function wc changes with time one has to make
sure that the hysteresis regions do not overlap later on. This is not a problem when the
weighing function spreads out over time, for example when using the density for ICRH,
which pulls out a tail of the distribution

4.5. Initialization

Depending on the problem one wants to solve, it might be easier to generate markers of
equal weight according to the initial condition of the PDE, than to generate markers with
varying weight and therefore according to a modified probability distribution.

I present two methods with which one can generate markers with the correct weights
for the regions in phase space that they are positioned in using markers that do not have
the correct weights. For the deterministic roulette we additionally have to ensure that
the region the markers were created in is set such that the correct number of markers is
deleted when the markers travel between regions.

The first option, which we will refer to as simple option, requires that the original
markers have equal weight. We take one original marker and reweight it using the splitting
scheme we use for reweighting during runtime, with the additional assumption that the
original marker was associated with the highest weight region. Figuratively speaking we
can imagine that the original marker originally was in the high weight region. Then
the marker travelled in a single time step to the position it occupies now, crossing several
boundaries where it was split. This means that if the marker position is in the high weight
region it is not changed, if the marker position is in a lower weight region it is split once
or several times. We consecutively split and add markers from the original, uniformly
weighted markers until we reached the desired number of markers for the simulation. We
then adjust the weight of all markers such that the total weight of the reweighted markers
is the same as the total weight of the original markers without changing the weight ratios
between markers.

By discarding markers the initial distribution function is represented not as accurately
by the new markers than the original markers. For example consider the region with the
second-highest weights: The markers we have in this region were split, meaning there are
correlations between them. At the same time we probably discarded markers that were
in this region. We can improve on this, let us at first neglect that we need to set the
boundary where the markers will be deleted for the deterministic roulette. We choose
the weight of markers in the first region, which also determines the weight in all other
regions because of the prescribed weight ratios. We then consider one original marker
after the other and determine the region it belongs to. We save what the total weight the
original markers that belong to this region that we considered so far is. We also save how
much weight our new markers that we created in this region have. We now add as many
new markers at the position of the original marker we are currently considering as are
required to most accurately make the total weight of the original markers and the new
markers equal. If the original marker belongs to a high weight region we will not add a
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original markers of 
equal weight

new markers

decreasing density

(a) simple option

original markers of 
equal weight

new markers

decreasing density

(b) advanced option

Figure 4.18.: Two sketches illustrating the two different methods for creating markers with
weights corresponding to the weight regions, separated by black lines, from
markers of equal weight (above the grey line). The original markers that
are used for generating new markers are colored red and connected with
red arrows to the new markers that are initialized at the position of the
original marker. New markers that start at the same position are grouped
with a red ellipse. The simple option, shown on the left, is clearly worse
than the advanced option shown on the right. In all regions except the one
with the highest weight the simple option neglects information about the
distribution function because it ignores available original markers. Therefore
more markers than necessary start at the same position. Additionally the
fourth weight region wrongly contains as much weight as the third weight
region, and the fifth weight region is completely void of markers. Compared
to the simple option the advanced option uses all available information on
the distribution function represented by the original markers and manages
to conserve the total weight in each region. The supremacy of the advanced
scheme appears even larger when we consider that the case shown for the
simple option is a best-case scenario: While the advanced scheme always
considers all original markers the simple option picks the first eight markers.
Depending on how the markers are stored the first eight markers could for
example all be in the first weight region. Then all new markers would also
be in the first weight region.
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marker most of the time, and if the original marker belongs to a low weight region we will
create several new markers whenever an original marker belongs to a low weight region.
Additionally, this method which we will refer to as advanced option can handle initial
markers that have nonuniform weight.

We still have to set the boundary where the new markers will be deleted, provided
we use the deterministic roulette. For this we first recursively calculate what fraction of
markers would be deleted where assuming the markers in the low weight region started
in the high weight region and were split when travelling to the lower weight regions: The
markers in the first region will never be deleted. A fraction of 1/w − 1 of the markers in
the n-th region should be deleted when travelling to the next higher weight region, where
w is the weight step between regions, e.q. 0.5. The rest of the markers in the n-th region
have the same composition as the markers in the next higher weight region. One could
use the same approach for the parameters needed by the deterministic splitting.

4.6. Implementation in ASCOT-RFOF

So far we have developed and characterized our reweighting schemes using simplified
diffusion-advection equations. We will now come back to the physical problem of ICRH.
We choose the parameters for reweighting with the help of section 4.4. For solving the
evolution of the ion distribution function we utilize the simulation code ASCOT (version
4). ASCOT is a Monte Carlo orbit following code for solving the kinetic equation of
motion of plasma particles [8]. Orbit following denotes that the Monte Carlo markers
follow the same equation of motion for the deterministic advective part as the physical
particles. For the collisions it is assumed that the simulated particles collide only with the
background plasma, allowing the use of a Fokker-Planck collision operator like the one
we introduced in section 2.3. The RF interaction of the particles is treated by the code
library RFOF [9]. RFOF predicts when a marker will be in resonance and calculates the
stochastic change in the marker’s phase space position when it passes the resonance. The
effect of passing the resonance depends on the RF wave amplitude. But we prescribe the
absorbed heating power and not the wave amplitude. RFOF handles this by adjusting
the wave amplitude such that the prescribed power is absorbed, this adjustment is called
normalization. Because of normalization the markers cannot be advanced independent of
each other, and a minimum number of markers is required such that the absorbed power
can be calculated with sufficient accuracy.

As test case we consider the simulation setup used by Sipilä et. al. to simulate the
signal of the fast ion loss detector [4]. It is based on the discharge #33147 of the ASDEX
Upgrade tokamak [27] at time t = 1.0 s. Temperature and density profiles1 are shown in
figure 4.19, other key parameters of this diverted2 H mode3 discharge are:

1ρpol is a measure for the distance to the center of the plasma [28].
2When the plasma is diverted, particles that are further away from the center than ρpol = 1 are guided

away from the main plasma to the divertor [12].
3When the heating power is increased above a certain threshold, turbulent transport of particles and

heat from the center of the plasma outwards suddenly drops at ρpol ≈ 1 [29]. The plasma is now
in the ’high confinement mode’ or H mode. The density and the temperature increase abruptly at
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Figure 4.19.: The background density and temperature profiles used in the simulation of
ASDEX Upgrade discharge #33147. The figure is taken from Sipilä et. al.
[4].

Bt Ip NBI ICRH ECRH
−2.5 T 700 kA 2.6 MW 3.6 MW 1.3 MW

Here Bt is the toroidal magnetic field, Ip is the current flowing in the plasma, and NBI4

and ECRH5 are auxilliary heating methods.

4.6.1. Setup for Reweighting

For reweighting we choose a continuous weighting function wc that is proportional to the
number density in phase space. We achieve this by using an automatic weighting function
as described in section 4.4.1.1, with a histogram to estimate the phase space density. The
first 10 of 20 bins of the histogram have a width of only 10 keV, the next 10 bins a width of
200 keV. The first bins are smaller because we have better statistics due to higher phase
space densities, and the thermal bulk of the distribution varies more quickly as a function
of energy than in the high energy tail of the distribution. To initialize our markers we
use the advanced option from section 4.5.

ρpol ≈ 1 due to the better insulation, as shown in figure 4.19. The origin of the H mode, which was
discovered at ASDEX Upgrade, is still not understood [29].

4Neutral Beam Injection (NBI) is a method of heating the plasma. Deuterium atoms with energies in
the order of 100 keV are injected into the plasma and deposit their energy by collisions [1]. The atoms
have to be neutral, otherwise they would be deflected by the magnetic field from the coils.

5Electron Cyclotron Resonance Heating: Similar to ICRH, but uses absorption by electrons instead of
by ions [1].
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We use a histogram with a bin width of 5 keV to analyze the results. As we saw
in figure 4.14 the weight ratio between regions does not have a large impact on the
performance of the schemes, we choose 1 : 3. With an initial ion temperature Ti of
≈ 1 keV the regions have a width of −Ti ln1

3
≈ 1.1 keV. We now need to estimate the

diffusion coefficient in energy space to set the hysteresis width and the time between
reweightings. Helander [7] gives a Focker-Planck type diffusion operator in equation
(3.40). The necessary coefficient, the effective parallel collision frequency, is given in
equations (3.47) and (3.48). We change from speed to energy as coordinate and find
D ≈ 5× 109 eV2 s−1 for the diffusion coefficient in energy space for ions with velocities
that equal the thermal velocity. With equation (4.6), in which we normalized t with the
diffusion coefficient, we can express the typical mixing length due to non-instantaneous
reweighting as function of the time between reweightings. We find that with ∆t ≈ 7 µs
the mixing length is approximately equal to the region size. If we were to reweight this
often, reweighting would use a significant portion of computational time. Because the
diffusion coefficient decreases strongly when going to higher energies we can wait longer
between reweightings, we set the time between reweightings to 0.15 ms. Except for the
first three bins, where the time-discrete reweighting avoids unnecessary crossings due to
the large diffusion coefficient, we avoid unnecessary crossings by using a hysteresis with a
width of 80 % of the region width. We choose 80 % because that smoothes the transition
between weight regions (section 4.2.3) but avoids mixing of markers across several regions.
The final decision to take is how many regions we want to use. We are, for example,
interested in densities that are ≈ 5× 10−5 times smaller than densities in the thermal
bulk. When we choose 10 regions, the last region begins when the phase space density

is a factor of
(
1/3
)9 ≈ 5.1× 10−5 lower than the density at the lowest energy resolved

by the histogram for the automatic weighting function. When one is interested in lower
densities more regions can be used.

4.6.2. Simulation Results

In figure 4.20 we show the hydrogen distribution function f , calculated using the markers
of the simulation after 0.1 s elapsed since the start of the simulation. It was not yet
possible to adapt the ASCOT routine that replaces particles lost in wall collisions for
cases with non-uniformly weighted markers. Deactivating the replacement of particles
leads to a decline of the particle number in the course of the simulation compared to the
500 000 marker simulation from Sipilä et. al. [4]. We therefore scale f such that we can
nevertheless compare the simulation results.

The baseline scenario is using no reweighting and 500 000 markers (blue). At low
energies f decreases rapidly, it is close to thermal distribution with Ti ≈ 1 keV. Going
to higher energies the distribution flattens and we see the high energy tail we expect
based on our discussions in chapter 2. As the density decreases the noise in the result
increases because fewer markers are inside the bins of the histogram. When we decrease
the number of markers to 7 500 (purple) too few markers fulfill the resonance condition
and normalizing the wave field cannot be done accurately enough. The distribution does
not develop a strong tail.
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Figure 4.20.: The scaled distribution function of hydrogen ions as a function of energy
yielded by the ASCOT-RFOF simulation based on ASDEX Upgrade dis-
charge #33147. f is reconstructed from the markers with a histogram with
40 bins. When we use 500 000 markers without reweighting (blue) a high
energy tail develops. When we reduce the number of markers to 7 500 (pur-
ple) normalizing the RF field cannot be done reliably anymore because the
resonance condition is not met often enough, resulting in too much noise in
the absorbed RF power. When we use reweighting (red and yellow) already
≈ 6 000 markers are enough to get reasonable statistics for the absorbed RF
power and a high energy tail develops. The tail is steeper, and the distri-
bution therefore colder, than for the simulation with 500 000 markers. The
distribution is presumably colder because the statistics for the absorbed RF
power are still not good enough with only 6 000 markers or because ASCOT
has problems with such low marker numbers. With ≈ 7 500 markers the
discrepancy to the blue curve is already smaller than with ≈ 6 000 markers.
It is improbable that reweighting itself is the cause of the steeper decline
because we did not find any sign that reweighting influences the mean of the
simulation in sections 4.3.4.2 and 4.15. The figure shows that with reweight-
ing we can get good results, especially at high energies, with significantly
fewer markers than without reweighting.
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The red and yellow lines show the distribution function obtained with only 5 953 and
7 428 markers with reweighting. Other than for the case without reweighting and 7 500
markers a high energy tail develops. This is presumably because we resolve the trapped
particles with a turning point close to the resonance, which we introduced in section
2.3.1.1, better with reweighting (red and yellow curves) than without (purple curve).
This would suggest that we have better statistics on the absorbed RF power, enabling
more accurate normalization of the RF wave field.

The high energy tail of the curves with reweighting is however steeper and therefore
colder than the high energy tail of the simulation with 500 000 markers. The difference is
apparent between 250 keV and 750 keV. In sections 4.3.4.2 and 4.15 we did not find any
sign that reweighting influences the mean of the simulations. The explanations we deem
most probable are that ≈ 7 500 markers are still too little for accurate normalization of
the wave field or that there exist problems with the handling of small marker numbers
by ASCOT. Using ≈ 7 500 markers already gives a distribution function closer to the
blue line than the ≈ 6 000 marker case. Unfortunately time restrictions did not allow for
simulations with reweighting and more markers.

Next we will quantitatively compare the fluctuations of the density estimates given by
the simulations. We will not include the case with 7 500 markers without reweighting
because it fails to develop a high energy tail that we could investigate. In sections 4.2, 4.3
and 4.4 we determined the variance of the results by using many datapoints. We cannot
do this for the heating process because each simulation requires more than 10 orders of
magnitude more computational time.

We can nevertheless estimate the relative error the simulations yield. We increase the
number of bins for the histogram to 2 000, separating each bin from figure 4.20 into 50
subdivisions. We assume that the distribution function changes only slightly across 50 keV
and calculate the mean and variance of the density estimates of the 50 subdivisions of
each bin. The definitions of the mean and variance are given by equations (3.4) and (3.5).
Observe that this does not give an estimate for the fluctuations of the density estimate
using the histogram used in figure 4.20 with 40 bins but for a histogram with 40·50 = 2000
bins.

As before we will compare the simulations using the normalized variance: the variance
divided by the squared mean and multiplied by the marker number. By dividing by the
squared mean we obtain a measure for the relative error. By multiplying by the number
of markers we finally get a measure for the inverse relative accuracy we obtain per marker
we invest in the simulation.

The obtained normalized variance is shown left in figure 4.21. At low energies f changes
rapidly, violating the assumption that f changes only little over 50 keV. We therefore only
consider E ≥ 0.2 MeV. With reweighting the accuracy in the high weight region should
be increased. The high weight region is however only a few keV wide and not resolved in
figure 4.21. Therefore reweighting appears superior everywhere, already at E = 0.2 MeV
reweighting leads to a considerably lower error of the estimate for f . As shown on the
right of figure 4.21 this advantage grows to a factor of ≈ 100 at E > 1.3 MeV.
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Figure 4.21.: On the left we show the normalized variance for simulations without
reweighting and with reweighting using the correlated and the determin-
istic roulette. For small energies the distribution function, show in figure
4.20, changes rapidly. Therefore our assumption that the distribution func-
tion changes little over 50 keV is invalid, and we get wrong estimates for
the amplitude of the fluctuations. Considering only E ≥ 0.2 MeV we find
that, as expected, the fluctuations increase when going to higher energies
and lower densities. With reweighting, regardless which roulette we use,
the normalized variance at 0.2 MeV is by a factor of ≈ 5 smaller than
without reweighting. With reweighting the normalized variance addition-
ally increases much slower than without reweighting. We reweight until the

density declines by a factor of
(
1/3
)9 ≈ 5.1× 10−5. This reduction in den-

sity is reached at E ≈ 1.3 MeV. This is consistent with the faster growth of
variance at E > 1.3 MeV. On the right we show the same data as on the left,
but divide all curves by the normalized variance without reweighting. The
variance that we find at E > 1.3 MeV is reduced by a factor of ≈ 100 when
one uses reweighting. Provided enough markers for normalization are used
one can therefore reduce the computational time needed for this simulation
by a factor of 100.
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The simulation with 500 000 markers requires ≈ 44 000 core hours [4]. Reducing this
to ≈ 440 core hours constitutes a substantial improvement. In the current implemen-
tation reweighting is not yet parallelized. Because the markers from all 256 cpu cores
are reweighted on a single core the execution time is not reduced to 440 core hours but
only to ≈ 3 600 core hours. The markers can be reweighted independently, except for
few communications for the automatic weighting function. Parallelizing the reweighting
routines should give access to the full reduction in execution time.
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The ion distribution function in a fusion plasma evolves according to the Boltzmann
equation (2.2), which can be approximated as a diffusion-advection equation. Solutions
of diffusion-advection equations can be found using Monte Carlo markers that follow a
corresponding stochastic differential equation, the Langevin equation. Without further
measures these markers have equal weight and are distributed according to the solution of
the diffusion-advection equation. When the solution of the equation is small in a region
of phase space, only few markers are inside this region. Therefore this region is not well
resolved and we can only obtain inaccurate information about it.

With Ion Cyclotron Resonance Heating (ICRH) a high energy tail of the distribution
function, which is only sparsely populated compared to the thermal bulk, develops. The
ions in this tail are important. They for example allow the investigation of the confinement
of fast ions [4, 5]. The plasma in a fusion reactor with magnetic confinement is envisioned
to be heated mostly by energetic, fusion-born α-particles, which need to be confined
adequately.

We presented methods that enable us to resolve such regions with a small distribution
function accurately. With them we can choose the marker weights freely for different
regions of configuration space. When travelling between those regions markers are du-
plicated or deleted, and their weights are adjusted. Such roulette methods are not new,
but we introduced additional measures to avoid detrimental effects. By not using uncor-
related random numbers for the deletion procedure, or roulette, we can avoid growing
fluctuations in the total weight and therefore the distribution function. Because of how
the methods are constructed this does not alter the expectation value of the distribution
function. Compared to importance sampling for integrals two complications arise:

• After duplicating a marker the original marker and the duplicate have to decorrelate
to improve statistics. This decorrelation occurs due to the stochastic part in their
equation of motion.

• The number of markers in a region is determined by the initial number of markers
in the region and the flux of markers into and out of the region. If the adjacent
regions are poorly resolved the flux from particles into the region contains a lot of
noise. The number of markers in the region then fluctuates strongly. This limits
the accuracy one can achieve by using markers of little weight in a region.

The splitting of markers only requires additional measures, which we proposed, when
one uses non-integer weight ratios between regions. Determining which markers to delete
when they enter another region is always necessary. With a FORTRAN 2003 program we
investigated two options for the deletion procedure:
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Correlated roulette: The number of markers that are deleted is ensured to be close to
the number prescribed by the weight ratio. The deviation is of constant order and
does not increase with time or with the number of markers used in the simulation.
This is achieved with correlated random number generators, hence the name.

Deterministic roulette: The markers that originally entered the region from a region
with higher weight will not be deleted when they leave the region again. But the
markers that were created when these markers entered the region are deleted when
they advance to a region of higher weight. On one hand the deterministic roulette
does not conserve the total weight as accurately as the correlated roulette. On the
other hand it ensures that markers in the high weight region are not negatively
influenced by any fluctuations in the deletion procedure.

For only two regions the correlated roulette leads to more accurate results, at least in one
dimensions. When going to density functions that vary over several orders of magnitude
and more regions both methods perform similarly. Because the deterministic roulette
appears to be more robust in more than one dimension we recommend using it over
the correlated roulette. To avoid multiple consecutive crossings we also propose using a
hysteresis and to not necessarily reweight after every time step. We also showed how to
place the weight regions and choose the parameters required for reweighting.

In a test case with a one dimensional diffusion-advection equation with constant coeffi-
cients we demonstrated the advantages of reweighting. We kept the variance of a binned
density measurement in the same order of magnitude while the density decreased by a
factor of 2.4× 10−5. To achieve the same accuracy without reweighting as with reweight-
ing for the lowest density region one would have to use 1800× as many markers. Finally
we also implemented our reweighting schemes in the code ASCOT-RFOF. Using a simu-
lation set up by Sipilä et. al. [4] we showed that the runtime needed to obtain accurate
solutions for the ion distribution function with ICRH can be reduced by a factor of 100
with reweighting.

In this thesis we developed and characterized reweighting methods that can accelerate
Monte Carlo simulations of some diffusive-advective processes by orders of magnitude.
The schemes are parallelizable and do not require extensive modifications of the code,
provided the code can handle markers of nonuniform weight and a during runtime fluctu-
ating number of markers.
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A. Decorrelation Time

A.1. Definitions and Setup

We consider a simple Brownian motion:

∆x = kξ
√

∆t,

where ξ is a normally distributed random variable with mean 0 and variance 1. kξ
√

∆t
is therefore also a normally distributed random variable with mean 0 and variance k2∆t.

x(t) =

n(t)∑
i=0

kξ(t)
√

∆t,

with n = t
∆t

. The probability distribution of x(t) is

P (x, t) =
1√
2tk2

exp

(
−(x− x0)2

2tk2

)
,

using the central limit theorem. x0 is the starting position.

When we restrict x to be in the interval [0, L[ and use periodic boundary conditions we
split the distribution into segments and add them up:

P (x, t) =
1√
2tk2

∞∑
i=−∞

exp

(
−(x+ iL− x0)2

2tk2

)
.

This sum is absolute convergent, therefore we can rearrange the summands in any way
we like.

We will calculate the mean number and variance of two particles in the interval I = [a, b[
that were started at the same initial position x0. l = b− a. We will use the characteristic
function of I

1I(x) =

{
1 if x ∈ I
0 otherwise

Observe that 12
I = 1I .
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A. Decorrelation Time

A.2. Mean Value

〈n2〉 =
1

L

∫ L

0

dx 0

∫
dx dyP (x)P (y)

[
1I(x) + 1I(y)

]
,

the integral over x0 and the division by L correspond to averaging over all possible starting
positions. We start by exchanging x and y for the second term

〈n2〉 =
2

L

∫ L

0

dx 0

∫
dx dyP (x)P (y)1I(x)

=
2

L

∫ L

0

dx 0

∫
dx P (x)1I(x)

=
2

L

∫ L

0

dx 0

∫
dx

1√
2tk2

∞∑
i=−∞

exp

(
−(x+ iL− x0)2

2tk2

)
1I(x).

We first perform the x0 integration, making the x integration trivial:

〈n2〉 =
2

L

∫
dx 1I(x)

=
2l

L
,

this result is independent of time.

A.3. Limiting Cases

A.3.1. t = 0

At t = 0 the probability distributions are two delta distributions:

〈
n2

2

〉
=

1

L

∫ L

0

dx 0

∫
dx dy δ(x− x0)δ(y − x0)

[
1I(x) + 1I(y)

]2
=

1

L

∫ L

0

dx 0

[
1I(x0) + 1I(x0)

]2
=

4

L

∫ L

0

dx 01I(x0)

=
4l

L

The variance is

σ2(t = 0) =
〈
n2

2

〉
− 〈n2〉2

= 4

(
l

L
− l2

L2

)
.

82



A.4. Variance for t > 0

A.3.2. t→∞
At t→∞ the probability distributions for both particles are uniform.

〈
n2

2

〉
=

1

L

∫ L

0

dx 0

∫
dx dy

1

L2

[
1I(x) + 1I(y)

]2
=

1

L3

∫ L

0

dx 0

∫
dx dy

[
1I(x) + 1I(y)

]2
=

2

L3

∫ L

0

dx 0

∫
dx dy

[
1I(x) + 1I(x)1I(y)

]
=

2l

L
+

2l2

L2

The variance is now

σ2(t→∞) =
〈
n2

2

〉
− 〈n2〉2

= 2
l

L
+ 2

l2

L2
− 4

l2

L2

= 2

(
l

L
− l2

L2

)
=

1

2
σ2(t = 0)

A.4. Variance for t > 0

〈
n2

2

〉
=

1

L

∫ L

0

dx 0

∫
dx dyP (x)P (y)

[
1I(x) + 1I(y)

]2
=

2

L

∫ L

0

dx 0

∫
dx dyP (x)P (y)

[
1I(x) + 1I(x)1I(y)

]
=

2l

L
+

1

Lk2t

∫
dx dy dx0

∑
i,j

e−
1

2k2t
[(x+iL−x0)2+(y+jL−x0)2]1I(x)1I(y)

=
2l

L
+

1

Lk2t

∫
dx dy dx0

∑
i,j

e−
1

k2t
[ 14 (x−y+L(i−j))2+(x0− 1

2
(x+y+L(n+m)))2]1I(x)1I(y)

=
2l

L
+

1

Lk2t

∫
dx dy dx0

∑
o,p

e−
1

k2t
[ 14 (x−y+Lo)2+(x0− 1

2
(x+y+Lp))2]1I(x)1I(y).

In the last two steps we rearranged the exponent and changed our indices. We now can
easily factor out the exponential and get two sums, one of them independent of x0. The
other one is a normal distribution with x0 as variable, the sum is merely the segmentation
for the periodic boundaries.
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A. Decorrelation Time

〈
n2

2

〉
=

2l

L
+

1

L
√
k2t

∫
dx dy

∑
o

e−
1

4k2t
(x−y+Lo)21I(x)1I(y)

=
2l

L
+

1

L
√
k2t

∫
dy
∑
o

√
πk2t

[
erf

(
y − a− Lo√

4k2t

)
− erf

(
y − b− Lo√

4k2t

)]
1I(y)

Now we have to integrate over the two error functions. The antiderivative of the error
function can be computed using integration by parts.

〈
n2

2

〉
=

2l

L
+

+
1

L

∞∑
o=−∞

[
−(a− b+ Lo) erf

(
−a+ b− Lo√

4k2t

)
+

√
4k2t

π

(
e−

(a−b+Lo)2

4k2t − e−
(Lo)2

4k2t

)
− Lo erf

(
Lo√
4k2t

)

−(−a+ b+ Lo) erf

(
a− b− Lo√

4k2t

)
−
√

4k2t

π

(
e−

(Lo)2

4k2t − e−
(−a+b+Lo)2

4k2t

)
− Lo erf

(
Lo√
4k2t

)]
.

We see that the two parts of the sum are identical by renaming o → −o in the second
one. We arrive at〈
n2

2

〉
=

2l

L
+

+
2

L

∞∑
o=−∞

[
−(−l + Lo) erf

(
l − Lo√

4k2t

)
+

√
4k2t

π

(
e−

(−l+Lo)2

4k2t − e−
(Lo)2

4k2t

)
− Lo erf

(
Lo√
4k2t

)]
.

The variance is then

Var(t) =
2l

L
− 4l2

L2
+

+
2

L

∞∑
o=−∞

[
−(−l + Lo) erf

(
l − Lo√

4k2t

)
+

√
4k2t

π

(
e−

(l−Lo)2

4k2t − e−
(Lo)2

4k2t

)
− Lo erf

(
Lo√
4k2t

)]
.

To recover the limiting cases, the limits for t → 0 and t → ∞ have to be taken. Here
one must be careful because pulling the limit into the infinite sum is not always permitted.
When we nevertheless do this we recover the value for t → 0. This is not the case for
t→∞. Here, all terms tend to 0 while the sum approaches l2

L
.

This behavior has a physical interpretation. We separated the real axis into intervals
of length L. The probability of finding a marker in one interval tends to 0 because it
diffuses to ±∞, but of course the probability of finding the marker anywhere does not.

A.5. Comparison to Simulation

We compare our analytical result to a simulation of the process, the numerical data is
averaged over 100 000 runs.
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A.5. Comparison to Simulation
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Figure A.1.: We compare our analytical result to the simulation, L = 1 and l = 1/8. For
short times using only one term is sufficient, for longer times three terms are
necessary.
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A. Decorrelation Time

In figure A.1 we can see both the numerical data and the analytical result. The agree-
ment is very good, already with only one term, or for longer times three. For very long
times however any finite number of terms will tend to 0.
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B. Probability Density with the
Deterministic Roulette

B.1. Definitions and Setup

In most of our calculations we neglect correlations between the markers. Here we start
a calculation for the deterministic roulette scheme with hysteresis for the very simple
Wiener process. As we will see even this becomes unfeasible.

Markers that survive a transition to the high weight regime will be called blue. Markers
that are deleted will be called green. For the probability density itself we will only consider
the green markers created by a single blue marker, and not the blue marker itself.

The roulette position is at x = 0, the splitting position at x = a. We also assume
that there are no boundaries. This simplifies the calculations significantly, but makes it
impossible to investigate large time scales.

B.2. Probabilities and Probability Distributions for Single
Particles

The Green’s function for the diffusion equation, and also for the probability density of
the Wiener process,

∂tf(x, t) = D∂2
xf(x, t)

is

f(x, t) =
1√

4πDt
e−

(x−x0)
2

4Dt ,

where the particle was started at t = 0 and x = x0.
We require P (x = 0) = 0 as almost all particles at this position will cross the roulette

position in an infinitesimal amount of time. Any nonzero probability would therefore very
quickly become zero.

We want to start the marker at x = a and fulfill this requirement. We achieve this by
making P (x) antisymmetric:

P (x, t) =
1√

4πDt

[
e−

(x−a)2

4Dt − e−
(x+a)2

4Dt

]
This is valid for x > 0. For negative x P = 0.
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B. Probability Density with the Deterministic Roulette

The probability Q that the particle survived until a time t is

Q(t) =

∫ ∞
0

P (x) dx

=

∫ ∞
0

1√
4πDt

[
e−

(x−a)2

4Dt − e−
(x+a)2

4Dt

]
dx

=
1

2

[
1 + erf

(
a√

4πDt

)]
− 1

2

[
1− erf

(
a√

4πDt

)]

= erf

(
a√

4πDt

)
.

This result is plausible: initially Q = 1, but for very long times the particle will almost
certainly cross the roulette position. There it will be deleted or changed to a different
marker type. Therefore Q→ 0.

The rate of deletion of markers created at t = 0 and x = a is

d(t) = −∂tQ(t) =
a√

4πD

e
−a2

4Dt

t3/2
. (B.1)

B.3. Combined Probability Distribution

Suppose that we start a blue marker at time r0 at the position x = 0. A green marker
will be created when it reaches x = a. The probability distribution for this is given by
equation B.1. The probability distribution for the green marker is therefore

P1(x, t) =

∫ t

r0

ds0d(s0 − r0)P (x, t− s0) (B.2)

=
a

4πD

∫ t

r0

ds0

exp
(
− a2

4D(s0−r0)

)
(s0 − r0)3/2

1√
t− s0

exp

(
− (x− a)2

4D(t− s0)

)
− exp

(
− (x+ a)2

4D(t− s0)

) .
(B.3)

Unfortunately this integral is hard, if not impossible, to solve. A numerical solution
can be seen in figure B.1.

This is for a single crossing, but we have to account for several.
We define d(t < 0) = 0 and P (x, t < 0) = 0. Then the combined probability density of

all created particles for a given set of splitting times is

Ptot
(
{xi} , t; {si}

)
=
∑
i

P (xi, t− si) .

Using equation B.1 again we can calculate the expected probability density of green
markers〈
Ptot

(
{xi} , t; {si}

)〉
sr

=

∫ t

r0

ds0d(s0 − r0)

∫ t

s0

dr1d(r1 − s0)

∫ t

r1

ds1d(s1 − r1) . . .
∞∑
i=0

P (xi, t− si) .

88



B.3. Combined Probability Distribution
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Figure B.1.: A numerical solution to equation B.2 with a = 4D = 1 and r0 = 0. We see
that some time elapses until creation of the green marker becomes probable.
The probability density diffuses in x-space, but is required to be 0 at x = 0.
It changes rapidly at x = a = 1 as there is a source at this position.
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B. Probability Density with the Deterministic Roulette

Here we also consider the time it takes for the blue marker to return to x = 0. It is
possible to pull the summands to the corresponding integrals, but this still seems very hard
to solve. Additionally one has to replace the exponentials in the single particle probability
distribution by an infinite sum thereof due to the reflecting boundary conditions. As
an analytical solution to this problem seems improbable, we instead rely on numerical
experiments to characterize the methods.
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C. Influence of Correlated Deletion on
Variance

When using the correlated roulette in one dimension we observe that in the high weight
region we observe lower variance close to the boundary, where the markers are more
strongly correlated, that further away where the markers decorrelated already. We can
understand this effect by considering a simplified situation: We draw many uniformly
distributed random numbers from the interval [0, 1] and count how many are in a specific
bin. By dividing this number by the total number of numbers and bin length we get
an estimate for the density, which should be 1. Now we delete half of the numbers at
random, equivalent to only drawing half as many numbers, and calculate the density
again. Finally, instead of deleting half of the numbers at random we delete every second
number after sorting them. Then we measure the density again.

The variance of the second density measurement is double the variance of the first mea-

surement, as one would expect because the error of Monte Carlo methods is O
(
N−1/2

)
.

The variance of the third measurement however is almost identical to the variance of the
first measurement. After a short calculation, also covering slightly more general situations,
we will understand how this is possible.

We draw N · m real random numbers between 0 and 1, with N and m integers, and
count the numbers inside a bin of length l. We get a mean and a variance:

〈n〉1 = N m l

σ2
count,1 = N m

(
1

l
− 1

)
.

In the second case we draw only N numbers, the mean and variance are:

〈n〉2 = N l

σ2
count,2 = N

(
1

l
− 1

)
.

The third case is more interesting. We start with what we have from the first case, but
delete m−1 numbers, let one survive, and repeat the process. Before doing this we sort the
numbers. If we choose m = 2 we have exactly the situation as before. Compared to the
first measurement we will have less numbers in our bin, by a factor of 1

m
, but not exactly:

Because the random numbers are not necessarily aligned with the bin boundaries we will
in general have too many or too few deleted markers. The additional error is however
restricted: We cannot be off by more than m counts. If m is small this is only a small
contribution to the variance, although we deleted (m− 1)/m of all numbers.
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C. Influence of Correlated Deletion on Variance

We define the relative error to be

σrel,i =
σcount,i

〈n〉i
.

A short numerical experiment verifies that we indeed hardly increase the error. We
choose l = 0.1, N = 1000 and m = 2 and average over 1 000 000 realizations. When
deleting every second sampling position instead of only using half as many the relative
error decreases by a factor of 0.7074. If we would not delete any sampling positions we
expect that the standard deviation is 1/

√
2 = 0.7071.

If we have a boundary with multiplicity m and move N ·m markers from the low-weight
side to the high-weight side we have a situation similar to deleting every second number
in the interval [0, 1].
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D. Wiener Process with Multiple
Boundaries

When we want to resolve a region of configuration space with higher accuracy there
are many degrees of freedom when setting the boundaries. Even after deciding on the
difference of weight between the two regions of interest we have to choose the positions
and number of boundaries. For example a weight difference by a factor of 1/4 could be
realized by a single boundary or two with a factor of 1/2 each.

We use the theory introduced in section 3.4 for the analysis.

D.1. Influence of Boundary Position

The region with larger markers will have higher variance than the region with smaller
markers. But the variance in each region will not only depend on the weight ratio, but
also on the size of the regions. If the low weight region is very small it will hardly
have any impact on the accuracy of the high weight region, neglecting eventually arising
correlations. If we enlarge the low weight region the number of small markers will be
increased and the number of large markers will be increased. Because we gain more small
markers than we lose large markers the total number of markers will increase. This means
that we increased computational costs without increasing accuracy in the high weight
region. The accuracy per marker or computational cost decreased just by changing the
boundary position.

D.2. Influence of Number of Boundaries

In section 4.2.3 we calculated that a hysteresis region interpolates linearly between regions.
Now let us place many equidistant boundaries with equal weight fractions instead of just
one. The variance, without the constant −1, will be reduced by the same factor at each
boundary. This means we do not connect the regions with a linear function but with a
convex exponential function. This exponential lies beneath a linear function connecting
the same regions. This is a first hint that splitting at many boundaries is better than
mixing differently weighted markers in a large hysteresis region.

As we discussed in subsection D.1 we also have to check how large the variance in the low
and high weight regions is. An analytical calculation for zero hysteresis and uncorrelated
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D. Wiener Process with Multiple Boundaries

markers yields

Var(x) =
w(x)

l

∫ L

0

1/w(x) dx− 1

=
w(x)

l

∑
w

Lw/w − 1.

where w(x) is the weight at position x, L is the length of the domain, and l the bin width.
We assume that the bin lies inside a weight region.

Now we will place K equidistant boundaries with equal weight ratios W . The index
j = Floor

(
x
L
K
)

denotes in which region we are. We denote the total weight ratio between

the leftmost and rightmost region as m. We therefore have W = m−1/K .

var(x) =
W j

l

K∑
i=0

L

K + 1
/W i − 1

=
m−j/K

l

K∑
i=0

L

K + 1
mi/K − 1

=
m−j/K

l

L

K + 1

1−m1+1/K

1−m1/K
− 1.

j is approximately proportional to K, therefore the first fraction will only separate var(x)
into discrete steps instead of a continuous function. The rest of var(x) is independent of
x and shrinks monotonously with K.

For equally spaced boundaries it is therefore favorable to use many thereof. The convex
shape is preferable over a linear shape due to hysteresis, and the overall factor is decreased.
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