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Abstract: The ultimate objective of a microscope of the highest resolution is to map the
molecules of interest in the sample. Traditionally, linear imaging systems are characterized by
their spatial frequency transfer function, which is given, in real space, by the point spread function
(PSF). By extending the concept of the PSF towards the molecular contribution function (MCF),
that quantifies the average contribution of a single fluorophore to the image, a straightforward
concept for counting fluorophores is obtained. Using reversible saturable optical fluorescence
transitions (RESOLFT), fluorophores are effectively activated only in a small, subdiffraction-sized
volume before they are read out. During readout the signal exhibits an increased variance due to
the stochastic nature of prior activation, which scales quadratically with the brightness of the
active fluorophores while the mean of the signal scales only linearly with it. Using a two-state
Markov model for the activation, showing comparable behavior to the switching kinetics of
the switchable fluorescent protein rsEGFP2, we can approximate quantitatively the MCF of
RESOLFT nanoscopy allowing to count the number of fluorophores within a subdiffraction-
sized region of the sample. The method is validated on measurements of tubulin structures in
Drosophila melagonaster larvae. Modeling and estimation of the MCF is a promising approach
to quantitative microscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Labeling molecules of interest with a fluorescent marker molecule delivers excellent contrast
and allows optical readout using far-field fluorescence microscopes. For a long time, the spatial
resolution of optical microscopes was limited to about half the wavelength of the used light, but
exploiting molecular state properties of fluorophores, super-resolution microscopy was able to
bring the resolution down to a few nanometers.

Mapping the number density of fluorophores on the nanoscale, where only a few fluorophores
are present in each resolved region, has the potential to significantly advance knowledge about
cellular processes. Knowing the absolute numbers of molecules and stoichiometries are the
basis for structural models of protein complexes and simulations of biological processes. It
also allows to define thresholds on the number of molecules to be able to produce a certain
effect or identifying the content of molecule clusters or small compartments on a quantitative
basis. For example, the estimation of the number of constituent proteins in kinetochores reported
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unexpected high numbers of proteins present [1], while the quantification of numbers of proteins
used for the regeneration of flagella helped refine models for flagella assembly [2]. Cluster of
Tom20 proteins in the mitochondrial outer membrane seem to have a fixed diameter suggesting
an equal number of proteins in each cluster, even though the nanoscale distribution of the clusters
is finely adjusted to growth conditions [3]. Further knowledge of the number of Tom20 on
the nanoscale would support elucidating the regulatory mechanism of the distribution of these
proteins. However, quantifying numbers of fluorophores requires a careful calibration of the
contribution of each fluorophore to the microscopic image.
All fluorescence nanoscopy or super-resolution microscopy methods rely on consecutively

bringing the fluorophores in bright signaling (on) and dark non-signaling (off) states. The state
transitions can be elicited either in a spatially controlled or in a spatially stochastic manner. The
first strategy is realized in methods called stimulated emission depletion [4,5] (STED), saturated
structured-illumination microscopy [6] (SSIM) and reversible saturable optical fluorescence
transition [7,8] (RESOLFT). In these methods, an intensity distribution with one or multiple
intensity minima drives the molecules optically between an on- and an off-state, transferring
the markers to one of these states except those in the vicinity of the minima. The light pattern
is then scanned across the sample so that every position is represented in the super-resolved
image. Spatially stochastic methods such as photoactivated localization microscopy [9] (PALM)
or stochastic optical reconstruction microscopy [10] (STORM) switch adjacent molecules to the
on-state one by one. Once activated, they are able to emit multiple fluorescence photons, which
are used to identify the position of the molecule.

Spatially stochastic methods intrinsically contain information about single fluorophore contri-
butions. However, counting the molecules is not straightforward. Molecules in the on-state may
not emit enough photons to be recognized. Some molecules may not assume this state at all,
while other molecules may occupy the on-state repeatedly and be counted multiple times. These
effects require extensive modelling of the switching and imaging behavior to be able to count the
number of fluorescent molecules in the sample [11–13].
In spatially controlled nanoscopy like STED or RESOLFT, the mean obtained signal is

proportional to the number of active fluorophores. The signal from a fluorophore, which
determines the molecular contribution function (MCF), is measured in detected photons per
fluorophore during readout. One approach to calibrate the average signal from each fluorophore
would be to use a sample with a known label density, and to compare this standard to the
sample of interest. However, with the brightness per fluorophore being sensitive to the kinetics
of the state transition parameters, and different optimal imaging parameters like dwell times
chosen in each experiment, an intrinsic calibration of the fluorophore in the imaging process is
preferable. The average signal can also be calibrated from single bleaching steps, provided that
the signal from single fluorophores is detectable [14]. In the case of diffusing fluorophores, the
average signal of molecules can be estimated intrinsically using the mean and the variance of
the fluctuating signal [15]. For example, the mean and variance method was utilized to estimate
the brightness in combined STED and fluorescence correlation spectroscopy (FCS) experiments
for diffusing probes [16]. In imaging applications, photon antibunching, which is the fact that a
single excited fluorophore can only emit a single photon at a time, and a stochastic model of the
image formation process could estimate the number of molecules from a combination of confocal
and STED recordings without any external calibration of the brightness per molecule [17].
RESOLFT microscopy based on reversibly switchable fluorescent proteins (RSFP) is able to

achieve superresolution using low light levels [18–20]. Here, the diffraction limit is broken using
long-lived dark states, such as the dark isomer of reversibly switchable fluorescent proteins. As
these proteins emit fewer photons in their on-state isomer than the synthetic dyes used for STED
microscopy, bleaching steps cannot be easily detected and the photon antibunching effect would
be rather weak.
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Here, a novel method for the intrinsic estimation of the brightness of RSFPs is developed.
We propose a model for the image formation process in RESOLFT microscopy. The image is
explained by the convolution of the fluorophore distribution with the MCF, which describes
the average contribution of a single fluorophore to the image in a linear imaging system, in an
un-normalized, quantitative way and directly connects number densities with collected signal
levels. Knowledge of the shape and amplitude of the MCF provides a direct method to count the
number of molecules in a highly resolved image.
Based on a suitable switching model for the fluorophores, we approximate the shape of the

MCF. Free model parameters are calibrated from the image data itself using a data analysis
similar to the mean and variance method of [15] but applicable to immobile or only slowly
changing molecule arrangements. The calibrated MCF is then applied to estimate the number
density in RESOLFT images of microtubule filaments in Drosophila melagonaster larvae where
an independent biochemical estimation of the number density is available.

2. Theory

2.1. The molecular contribution function (MCF) for counting in fluorescence imaging

A fluorescence image contains the contribution of each fluorescent molecule in the sample. In
analogy to the point spread function, which is the image of a single theoretical point source, we
define the molecular contribution function (MCF) as the quantitative spatial distribution of the
average number of photons counted from a single fluorophore. We assume a space-invariant,
linear imaging system where identical fluorophores act independently. Denoting the sampled
region by X ⊂ R2, the measured 2D image Y(®x) at each scan position ®x ∈ X is then given by the
convolution of the number density n(®x) with the MCF(®x)

Y(®x) = (n ∗MCF)(®x) + ε(®x) , (1)

where ∗ denotes the convolution operator (f ∗ g)(®x) =
∫

f (®s)g(®x − ®s) d®s and ε(®x) describes the
measurement noise, i.e. the deviation of a recorded image from the average image. The number
density is represented by

n(®x) =
n0∑
j=1

δ(®x − ®xj) , (2)

where δ is the Dirac delta, n0 the total number of fluorophores, and {®xj}j=1,...,n0 are the positions
of the fluorophores within the sampled region X.
The aim of this work is to count the number of molecules in regions as small as the size of

the resolution limit, i.e. the width of the central peak of the MCF. This requires the quantitative
knowledge of the MCF. Note that every fluorescence microscopy technique with linear imaging
conditions and independent and identically behaving fluorophores features an MCF, which lends
itself to mapping the number of fluorophores. The integral over the MCF gives the average total
signal S that each fluorophore contributes to the image,

S =
∫
R2

MCF(®x) d®x. (3)

The estimated number of fluorophores n̂i in an isolated region Xi is then simply estimated by
dividing the signal integrated over Xi by the total signal per fluorophore,

n̂i =
1
S

∫
Xi

Y(®x) d®x. (4)

A sketch of the role of the MCF in estimating the number of fluorophores is shown in Fig. 1. In
the following we refine this framework by deriving analytic expressions of the MCF of RESOLFT
nanoscopy for a specific switching model, and by estimating S using the mean and the variance
of the measured signal.
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Fig. 1. The molecular contribution function (MCF) (center, 2× magnified, with a total
contribution of 20 photons of a single molecule the image) quantitatively relates the number
and positions of molecules n0 = 50 shown in the molecular map (left) with the total number
and distribution of observed photons in the image (right). The number of molecules in a
region could be estimated by adding the recorded photons and dividing by the integrated
MCF.

2.2. The MCF of RESOLFT nanoscopy

The RESOLFT principle is based on using switchable fluorophores with on- and off-states. We
assume that they are independently switching and emitting fluorescence. For simplicity, we
restrict ourselves to positive imaging, i.e. the MCF features a sharp, sub-diffraction sized positive
signal peak.

For each scanning position ®s, two conceptual steps can be differentiated. At first, fluorophores
are transferred from the off-state, in which they reside initially, into the on-state only within a
sharp, subdiffraction sized region centered at ®s. In practice, this is achieved by first activating
fluorophores with a diffraction-limited focus, and then deactivating fluorophores in the periphery
using a doughnut-shaped focus with a central intensity zero. The spatial distribution of the
probability of a single fluorophore to be effectively activated is named pact(®x). Activated
fluorophores are then read out recording their fluorescence signal. The spatial distribution
of the recorded fluorescence photon signal of a single activated fluorophore during readout
time is sread(®x), typically proportional to the confocal point spread function (PSF). The MCF
of RESOLFT nanoscopy is therefore given by the readout signal multiplied by the activation
probability,

MCF(®x) = pact(®x)sread(®x) . (5)

In the following, we derive expressions for the two parts of the MCF within the focal plane
assuming switching kinetics represented by a two-state Markov model, strong saturation of the
off-switching transition while preparing the fluorophore in the on-state, a parabolic intensity
dependence of the deactivation light, and a sufficiently short readout duration.

2.2.1. Effective activation by saturated off-switching

The effective activation step preceding the readout depends on the switching kinetics of the
fluorophore. A simple model for the switching kinetics is the two-state Markov model with light
driven rates depending linearly on the applied light intensity (see Fig. 2a). The evolution of the
state populations for this model is laid out in Appendix B.

The effective activation of a molecule in the on-state in RESOLFT nanoscopy is typically the
result of two sub-steps [18]. First, a diffraction-limited spot of activation light is applied. The
wavelength of the activation light is chosen so that the on-switching cross section is larger than
the off-switching cross section. Consequently, fluorophores are switched on in the focal region.
Then, fluorophores in the periphery of the focus are switched off using a doughnut-shaped focal
spot of deactivation light centered at the scan position. For the wavelength of the deactivation
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Fig. 2. Image formation in RESOLFT nanoscopy. a: Two-state switching model with a
fluorescent on-state and a non-fluorescent off-state. The on- and off-switching rates depend
on the laser intensity. b: Time evolution of the on-state population for the model in (a)
and for a given total switching rate kon + koff. c: Left: Profile of the doughnut-shaped
deactivation light (calculation using vectorial diffraction theory, λ = 491 nm, NA=1.4(oil),
blue) and corresponding parabolic approximation around the focal center (red, dashed).
Right: Population of the on-state after application of the on- and off-switching light (blue)
and with spatially constant on-switching and parabolic off-switching approximations (red,
dashed). The saturation level (σIt) of the off-switching is quite high (equals 20 on the rim
of the doughnut distribution). d: Left: Confocal readout PSF (calculation using vectorial
diffraction theory, λexcitation = 491 nm, λdetection = 525 nm, NA=1.4(oil), blue) and
Gaussian peak approximation of equal (red, dashed) Right: Resulting shape of the molecular
contribution function (MCF/b = pacthread) with calculated illumination and detection
distributions using diffraction theory (blue) and with approximations (red, dashed).

light, the off-switching cross-section is larger than the on-switching cross section. To achieve a
sub-diffraction sized region, the off-switching by the deactivation light is saturated.
For the two-state switching model, the effective population in the on-state after applying the

activation and the deactivation light can be calculated by applying Eq. (25) (see Appendix B)
two times one after another with suitable switching light cross sections, spatially dependent
irradiation doses and the initial condition of a subsequent switching step equating the final state
of the previous switching cycle.
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We introduce some approximations that hold for sufficiently strong saturation of the deactivation
light, allowing us to derive a particularly simple, radially symmetric expression for pact(®x) within
the focal plane.

For strong saturation, the final state is independent of the initial state as all fluorophores switch
to the equilibrium level. The equilibrium level is reached everywhere except close to the focal
center. Close to the central zero of the doughnut-shaped spot of deactivation light, the intensity
profile can be well approximated by a radially symmetric 2D parabola I(®x) ≈ Imaxα |®x|2 with a
pattern steepness parameter α, a maximal intensity on the rim of the doughnut distribution Imax
and ®x being a vector in the focal plane with the focal center as origin. For strong saturation, the
width of the central peak of activated fluorophores will be far below the diffraction-limit, with a
maximal on-state level pon at the center. The effective activation probability in the focal plane,
using the Gaussian peak approximation, is then,

pact(®x) = p∞ + (pon − p∞) exp(−4 ln(2)|®x|2w−2RESOLFT) , (6)

with the equilibrium level p∞. This distribution describes a 2D Gaussian peak function with a
full width at half maximum (FWHM) wRESOLFT and a constant offset. The FWHM of this
peak follows the well-known inverse square root relation on the applied maximal irradiation dose
Imaxt [8],

wRESOLFT =

√
4 ln (2)

σλ/(hc)αImaxt
,

with the energy of a photon of the deactivation light λ/(hc) and the corresponding total switching
cross-section σ (see also Appendix B). From Eq. (6), it becomes apparent that the sharp, central
spot of activated fluorophores is contrasted against a constant background of fluorophores in the
equilibrium state.
The deviation between the used approximations and calculations of focal intensity profiles

based on diffraction-theory is shown in Fig. 2. As already mentioned, the deviation is negligible
at strong saturation levels.

2.2.2. Signal during readout

We assume that the readout duration is chosen sufficiently small so that during the readout, no
additional switching takes place. The signal during readout sread(®x) is assumed to be collected
in a confocal excitation and detection scheme. It can then be described by its shape distribution
hread(®x), normalized so that hread(0) = 1, multiplied by a brightness factor b,

sread(®x) = bhread(®x) . (7)

The focal readout brightness b is the average signal of an activated fluorophore at the focal center
during readout. It summarizes optical and spectral properties of the fluorophores, as well as the
detector integration time, and is regarded to be constant and common to all fluorophores within
the image region. The spatial constancy of b is an assumption, which needs to be verified in real
measurements by means of statistical testing (see the Discussion and Appendix F.3).

For confocal or STED imaging conditions during readout, the shape of the signal distribution
within the focal plane is often well approximated by another 2D Gaussian peak function [21]

hread(®x) = exp(−4 ln(2)|®x|2w−2read) , (8)

with wread the FWHM of the 2D Gaussian peak describing the signal collection.
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2.3. Estimation of the focal readout brightness b from signal mean and variance

To obtain information about the statistical behavior of the signal, we model the signal as the
result of a two-stage stochastic process, where the first stage is the activation and the second
stage is the photon emission by activated fluorophores. The activation is modeled as a Bernoulli
process with a spatially dependent activation probability distribution.
The states of the fluorophores are represented by Bernoulli random variables Aj with the

effective activation probability pact(®xj −®s) for a single fluorophore at position ®xj and scan position
®s. The fluorophore indexed j is active (Aj(®s) = 1) or inactive (Aj(®s) = 0) depending on the value
of the random variable

Aj(®s) ∼ Bernoulli(pact(®xj − ®s)). (9)

A fluorophore that remains in the on-state will on average yield bhread(®xj − ®s) detected photons,
which we model by a Poisson distribution with mean value bhread(®xj − ®s). In the off-state, it is
modeled as not yielding any detectable photons. Therefore, the random variable describing the
signal of a fluorophore Bj(®s) depends on the activation state Aj(®s):

Bj(®s) ∼

{
Poisson

(
bhread(®xj − ®s)

)
, Aj(®s)) = 1

0, Aj(®s)) = 0
(10)

The mean and the variance of the signal of a single fluorophore are given by

E[Bj(®s)] = bhread(®xj − ®s)pact(®xj − ®s)

Var[Bj(®s)] = E[Bj(®s)2] − E[Bj(®s)]2

= E[Bj(®s)] + b2h2read(®xj − ®s)pact(®xj − ®s)(1 − pact(®xj − ®s))
(11)

Here we used that activation and readout are independent processes. Additionally, we assume that
each fluorophore switches its state and emits independently, so that the mean and the variance of
the total signal measured at each scan position are simply the sum of the mean and the variance
of each individual fluorophore. The total signal detected at position ®s is then given by

Y(®s) =
∑

j
Bj(®s) + D(®s), (12)

where D(®s) ∼ Poisson(d(®s)) represents background noise with a mean value of d(®s). We assume
that the background contribution D(®s) is independent of the emission from the fluorophores Bj(®s)
and also uncorrelated with the background signal at other positions.

Furthermore, the mean m(®s) = E[Y(®s)] and the variance v(®s) = Var[Y(®s)] of the total collected
signal Y(®s) at each scan position ®s can conveniently be expressed as convolutions with the density
of fluorophores,

m(®s) = b(n ∗ hreadpact)(®s) + d(®s),

v(®s) = m(®s) + b2(n ∗ h2readpact(1 − pact))(®s).
(13)

The mean is the convolution of the number density with the MCF including an additional
background while the variance exceeds the mean by an additional term with a convolution kernel
b2h2read(®x)pact(®x)(1 − pact(®x)) which is similar but not identical to the MCF.

This additional variance, which is visualized in Fig. 3, can be used to estimate the focal readout
brightness.
Note that for pact(®x) equal to 1 we recover the situation of non-switchable fluorophores, the

excess variance term vanishes and a purely Poisson distributed signal is regained.
For the case of photoswitchable fluorophores, the variance of the collected signal is augmented

due to the stochastic nature of the activation in the preparation step. The excess variance or
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Fig. 3. Concept for counting in RESOLFT nanoscopy. Left: Depiction of a cluster of
n0 = 20 molecules activated with different activation probabilities. Right: Photon counting
histogram of the number of photons measured for different activation probabilities, while
keeping the average number of photons per fluorophore constant. The variance of the
distribution depends on the molecular parameters non-linearly. Mean and variance allow to
calibrate the brightness per fluorophore.

overdispersion term is proportional to the square of the focal readout brightness b, unlike the
mean signal, which scales linearly with it. This relation can be used to estimate b directly from
integrated mean and variance of the image data using a Method of Moments estimator (MME),
to be derived in the following.
To estimate the mean and variance of the signal at position ®s, we require N ≥ 2 statistically

independent images Yj(®s) (j = 1, . . . ,N) of the same structure of interest. The estimated mean
m̂(®s) and the estimated variance v̂(®s) are obtained from the data,

m̂(®s) =
1
N

N∑
j

Yj(®s),

v̂(®s) =
1

N − 1

N∑
j

(
Yj(®s) − m̂(®s)

)2 . (14)

The pixel-wise estimation will still be influenced largely by the image noise. Also, the average
signal and variance depends on the number density in the region of interest. The influence of the
in general unknown and non-constant number density is overcome by integrating the mean and
variance over the sampled region X ⊂ R2. Due to the convolution theorem, only the total number
of molecules nX within the region appears in the resulting expression, such that it is possible to
estimate the focal readout brightness within this region. The integrated mean M =

∫
X m(®s) d®s and

integrated variance V =
∫
X v(®s) d®s of the model in Eq. (13) gives

M = bnXH1 + dtotal,

V = M + b2nXH2,
(15)

with the integrated background signal dtotal =
∫
X d(®s) d®s , and H1 =

∫
R2

(
hreadpact

)
(®s) d®s

and H2 =
∫
R2

(
h2readpact(1 − pact)

)
(®s) d®s being integrals of products of activation probability
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distribution pact and readout PSF hread. Here, we assumed that the convolution kernels decay
fast enough so that contributions of the fluorophores in the region X are mostly confined to the
signal within the region.

The integrated mean M and integrated variance V can be estimated from the data by summing
the estimated pixel mean and variances weighted with the area ∆p of a pixel in the image,

M̂ =
∑
®s∈X

m̂(®s)∆p,

V̂ =
∑
®s∈X

v̂(®s)∆p.
(16)

Equating the integrated model mean and variances in Eq. (15) with the integrated empirical
mean and variances in Eq. (16), and solving for the focal readout brightness b, results in the
MME b̂ for the brightness,

b̂ =
H1
H2

V̂ − M̂
M̂ − dtotal

. (17)

An expression for the variance of b̂ in the limit of many fluorophores of known locations is
given in Appendix F. For the special case of a single, isolated cluster of fluorophores, an analytic
expression for the error in the estimation of b are derived in Appendix C.
Essentially, the relative error of b̂ depends mainly on the number of measurements, and is

roughly independent of the number of molecules in the image.

3. Experimental Results

3.1. Measurements of rsEGFP2 switching kinetics

In the theoretical part, the influence of the switching kinetics model on the shape of the MCF was
derived. For a two-state switching model, the width of the central peak of the MCF is determined
by the switching rate while the peak is offset by the equilibrium off-switching level. To compare
the used switching model with switching of real fluorophores, we observed the switching kinetics
of rsEGFP2, a widely used RSFP in RESOLFT nanoscopy [19]. The measurements were
conducted on a custom built confocal microscope with additional widefield illumination paths
for excitation with a 491 nm CW laser and activation with a 375 nm CW laser, as described
before (Fig. S2 in [22]). The signal was detected with a point-like detector (APD) collecting
fluorescence at 525±25 nm. In this configuration, averaging effects of the observed kinetics
due to an inhomogeneous illumination intensity distribution within the detected volume can be
excluded.
The sample was prepared by mounting living E. coli cells overexpressing rsEGFP2 on a

coverslip in an agarose gel. To measure the ensemble state of the photoswitchable proteins, a
stable reference was prepared for each measurement by saturating the activation using a long
exposure of 1.6 ms of UV light, up to 160 times longer than the UV pulse used for activation
during imaging. The intensity dependence of the switching rate and the switching background
was examined using widefield excitation light exposure of constant light dose (exposure time ×
intensity) using intensities up to 22 kW/cm2.

Due to the saturated activation, we assume that all molecules start in the on-state. The signal
at any given time is then proportional to the population of rsEGFP2 in the on-state at that time.
Results are shown in Fig. 4. As the signal shows systematic deviations from a single exponential
decay especially for intermediate times, we devise a decay model assuming a Gamma distribution
for the switching rate k with α the shape parameter and β the rate parameter,

s(t) = A
∫

βαkα−1

Γ(α)
exp(−βk) exp(−kt) dk + b = A

βα

(β + t)α
+ b , (18)
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Fig. 4. Switching kinetics measurements for rsEGFP2. a: Single switching curve with an
off-switching light intensity of 500 W/cm2. Fits for exponential decay (red) and gamma
distributed exponential decay (yellow) with residuals shown below. b: Measured switching
rate k (inverse of the time where the signal drops to 1/e of the initial value) in dependence
of the off-switching light intensity. c: Equilibrium off-switching level (average level of the
fluorescence in a at long times) in dependence of the off-switching light intensity.

where the amplitude of the decay is given by A and the signal decays to a background level b.
The total switching rate k can be directly measured as the inverse of the time τ = β(exp(1/α) − 1)
until the signal drops to 1/e of the initial value. The ratio of the equilibrium signal after complete
switching and the initial signal is used to estimate the equilibrium population p∞.
The switching rate depends linearly on the intensity for low intensities, up to a few kW/cm2.

These are typical values for light intensities around the center of the intensity zero, which
determine the resolution enhancement of the RESOLFT process.

The equilibrium population does not depend on the intensity used, and is around 2.5% for all
intensities.

3.2. Estimation of the MCF for RESOLFT images of rsEGFP2-α-tubulin

We recorded RESOLFT images of Drosophila melanogaster larvae body wall muscles expressing
ubiquitously rsEGFP2 fused to α-tubulin as described in [23]. Tubulin is known to form helices
with a diameter of approximately 25 nm, each turn comprising 13 dimers of α- and β-tubulin
and spaced 8 nm apart [24]. The total density of α-tubulin along a single filament can thus be
estimated to be ≈ 1625 per µm.
To analyze the ratio of labeled to non-labeled α-tubulin subunits in body wall muscles of

Drosophila melanogaster, L3-larvae were dissected to isolate body wall muscles, which were
subsequently used as a sample for Western blot analysis as described in Appendix A.2.

The ratio of α-tubulin to rsEGFP2-α-tubulin in the muscle tissue is estimated to be ∼ 1:6 (see
Fig. 6). Therefore, we expect the number density of rsEGFP2 molecules along a microtubule
fiber to be ∼ 230 per µm.
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3.2.1. The shape of the MCF

The MCF of RESOLFT nanoscopy is the product of the effective activation probability pact(®s)
and the readout signal sread(®s), as described in Section 2.2. For a two-state Markov model with
a linear dependence of the rates on the applied light intensity, the MCF in the focal plane can be
approximated as the superposition of two Gaussian peaks differing only in amplitude and width.
Using the expressions in (6) and (7) gives

MCF(r) = b
(
p∞ exp(−4 ln(2)r2w−2read) + (pon − p∞) exp(−4 ln(2)r2w−2eff)

)
, (19)

where the width of the sharp RESOLFT peak weff is given by

weff =
(
w−2read + w−2RESOLFT

)−1/2
. (20)

By taking into account prior knowledge about the imaged object, the shape of the MCF may be
estimated from image data itself [25]. The structure in the image of microtubule fibers is known
to consist of homogeneously labeled filaments with a width well below the resolution of the
RESOLFT microscope. Therefore, we model the density of molecules in the image as assembly
of lines. For sufficiently sparse filament structures and a high enough SNR, the filaments can
be localized without quantitative knowledge of the MCF simply by detecting lines in the image
based on the scale space representation of local line profiles [26]. The resulting object model is
considered proportional to the number density (see Fig. 5(b)).
Given the object model, the shape of the MCF and the constant background level can be

estimated by fitting a superposition of two centered Gaussian peaks convolved with the estimated
object to the image data using a maximum likelihood approach for Poisson noise (see Fig. 5(c,d)).

From the widths of the fitted Gaussian peaks, the confocal readout FWHM wread was estimated
to be 235 nm and for the sharp, RESOLFT peak FWHM wRESOLFT a value of 73 nm was
obtained. As the number density was determined only up to a multiplicative constant in the
structure estimation, the absolute amplitude of the MCF remains undetermined. However, the
ratio of the amplitudes of the two Gaussian peaks can be used to estimate the activation probability
at the focal center pon, as the equilibrium population p∞ = 2.5% is known from the kinetics
measurements and assumed to be reached in the periphery of the focal spot (i.e. where the
off-switching transition is strongly saturated).

With a ratio of the amplitudes of the sharp peak to the background peak of ∼ 6.9, we estimate
that about 17% of the rsEGFP2 molecules at the focal center were effectively activated before
readout. Using these values, the ratio of the integrated values of the convolution kernels H1/H2
(see Eq. (17)) can be estimated to be ∼ 1.7.

3.2.2. Inference on the focal readout brightness b

To quantitatively estimate the MCF of the RESOLFT image, the multiplicative constant, given
by the focal readout brightness b, has to be estimated. As was laid out in Section 2.3, this can
be achieved by measuring the integrated mean and the variance of the image signal. For the
estimation of the variance, at least two images of the same structure are required. In practice,
this can also be achieved by acquiring one image with half the desired pixel size in the fast
scanning direction. Splitting the image in two along the fast scanning direction results in two
independent images each with square pixels and only a slight relative shift of half a pixel length
in the splitting direction (here 12 nm). While this allows to obtain multiple images of the same
structure uninfluenced by drift or photobleaching, it can introduce a bias in the empirical variance
in Eq. (14). As shown in Fig. 8 in the Appendix, the magnitude of this bias depends on the
sampling of the image and the orientation of structures in the image. We use an estimator for
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Fig. 5. Measurement of rsEGFP2-α-tubulin and estimation of the shape of the MCF. a:
RESOLFT 2D image of dissected body wall muscles of wandering third instar Drosophila
melanogaster larvae expressing rsEGFP2-α-tubulin. b: Line detection of the structures in
the image in a. c: Result of the PSF estimation (superposition of two Gaussian peaks). d:
Calibration of the activation probability (setting the equilibrium level to the one observed
for rsEGFP in kinetics measurements). e: Simulated image resembling the image of a by
taking the estimated structure from b and uniformly drawing a certain number of molecules
from it. With the estimated MCF in c, noisy images can be simulated. f: Histograms of
estimated readout brightness and estimated total fluorophore number for 1000 simulations.
The true readout brightness and number of molecules in the image were chosen to equal the
estimated readout brightness and number determined from the measurement. Scale bars
1µm (a,b,e), 200nm (c).

the variance with significantly reduced bias, derived in Appendix D (see also [27] for a detailed
analysis of such difference-based variance estimators):

v̂shift (®s) =
2
3

(
Y1(®s) − Y2′(®s)

)2 , (21)

where Y2′(®s) is a split image that has neighboring pixels averaged along the split direction.
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Applying the method of moments estimator for the focal readout brightness in Eq. (17) on
the whole image shown in Fig. 5(a) yields a value of b̂ of ∼ 0.9 photon counts per activated
rsEGFP2 molecule. Analyzing the time resolved readout signal showed that during readout the
effective change in the on-state population was less than 10 %. In Fig. 9, the readout brightness is
estimated locally where only the data of a small region is used in each case. The estimated values
vary between 0.6 and 1.1, but no systematic dependence on the location of the region is visible.

3.2.3. Counting the number of molecules along filaments

The total contribution S of each fluorophore to the RESOLFT image can be estimated by
integrating Eq. (19) using the estimated shape and focal readout brightness. The average value of
S = 3.58 photons per rsEGFP2 molecule can be used to quantify the number of fluorophores in a
region in the image using Eq. (4). The results of applying the estimator to the regions marked
in Fig. 5 are shown in Table 1. The average number of rsEGFP2 molecules per µm along a
microtubule filament is estimated to be ∼ 180, which is similar but below the expected number
density.

Table 1. Number estimation of molecules in the regions A-E of Fig. 5(a).

Region number length in nm density per µm

A 268 1324 203

B 405 2065 196

C 379 2147 176

D 293 1713 171

E 237 1378 172

A-E 1582 8627 183

3.3. Simulation of number and brightness analysis for a known MCF shape

To approximate the error of this estimation, we conducted aMonte Carlo simulation implementing
the model for the image formation process. Placing a certain number of molecules uniformly on
the identified structure and using the obtained effective RESOLFT PSF, images were simulated
(Fig. 5(e)). For each scanning position, the activation of the molecules was simulated by drawing
binomial random numbers according to Eq. (9). From the aggregated mean signal from all active
molecules, Poisson distributed random numbers were generated to represent the measured image.
On the whole image, first the focal readout brightness was estimated, then the total number of
fluorophores in the image was counted.
The estimated total number and focal readout brightness values of the simulated images are

shown in Fig. 5(f). As the total number of detected photon counts is the product of the total
number and the signal per fluorophore, there is a strong reciprocal correlation between these
values. However, the relative deviation from their mean is well below 10%. Moreover, in
Appendix F we derive an analytic expression for the variance of the estimator of b̂. In this
simulation setting, it predicts a value 4.9% for the relative standard deviation of the estimator
from its mean, and the value 4.1% for the standard deviation.

To test if variations of the brightness over the field of view can be detected using our method, we
simulated 1000 images for different brightness values from the setB = {0.05, 0.1, 0.15, . . . , 1.95, 2.0}
and compared estimated brightness values from one half of the image simulated with brightness
b1 ∈ Bwith estimated brightness values from the other half of the image simulated with brightness
b2 ∈ B by applying the 2-sample Welch test [28, p. 447] (see Appendix F.3 for details). As shown
in Fig. 10, differences in brightness between both halves of the image of 0.5 can be detected with
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about 80% probability except when either b1 or b2 are very small. Note that this figure depends
on the distribution of fluorophores in the image, and is thus not universal.

4. Discussion & outlook

We derived a rigorous framework for counting molecules in fluorescence microscopy based on
the molecular contribution function representing the average contribution of a single fluorophore
to the image. The image can be represented as the number density of fluorophores convolved
with the MCF.

The MCF was calibrated for the case of RESOLFT nanoscopy by first estimating the shape
of the MCF from the image data using a model for the structure of fluorophores in the sample,
and then quantifying the focal brightness using the mean and the variance of the measured
fluorescence signal. The excess variance term, caused by the stochastic nature of the fluorophore
activation in RESOLFT, scales quadratically with the focal brightness per fluorophore. This
enables the quantitative estimation of the MCF for RESOLFT nanoscopy from multiple images
of the same structure.

The estimation of the shape of the MCF, as well as the focal activation probability requires an
accurate model of the switching kinetics of the used reversibly switchable fluorophore. Reversibly
switchable fluorescent proteins have been shown to undergo switching by a combination of
processes like cis-trans isomerization, protonation, and short scale interactions in the protein [29].
Our kinetics measurements of rsEGFP2 suggest that a two-state Markov model for the switching
between a fluorescent on-state and a non-fluorescent off-state can be applied to estimate the
on-state population of rsEGFP2 with sufficient accuracy. The observed uniform width of the
α-tubulin is a strong indication that the resolution and the switching kinetics remain the same
across the entire field of view.
This model does not take into account the saturation of the switching rate seen for higher

intensities and experimental deviations from the exponential decay predicted in the Markov
model. By modeling the switching kinetics more accurately, the shape of the MCF and the
activation probability may be estimated more precisely. Any relative error in the estimation of
the activation level pon will also directly be present in the estimated number of fluorophores.
To quantify the focal brightness per fluorophore, the mean and the variance of the signal

were calculated for a stochastic model with a binomial activation of the fluorophores and a
Poisson model for the detected signal from each fluorophore. In this model, the variance depends
quadratically on the focal brightness, in contrast to the mean signal, which has a linear dependence.
This allows inferring on the focal brightness of the fluorophores intrinsically from the image data
using a Method of Moments estimator.

The main difference to earlier work about using fluorescence fluctuations to count molecules
([15]) is that our method counts molecules in at least temporarily immobile bright fractions of
the sample, while these earlier methods quantified mobile fractions of the sample.
We applied our framework to RESOLFT recordings of rsEGFP2 fused to α-tubulin in

Drosophila melanogaster larval muscle tissue. The estimated number of rsEGFP2 molecules per
µm microtubule filament in Drosophila melanogaster larval muscle tissue is similar but below
the value derived by quantitative western blot analysis for dissected muscle tissue. This might
hint at a less efficient incorporation of rsEGFP2 fused to α-tubulin.

The focal activation level was estimated to be only ∼ 17%, which limits the emission from the
sharp, central peak. The reason for this may be a non-zero intensity at the center of the used
doughnut-shaped off-switching light distribution or an incomplete activation in the on-switching
step. However, due to increased photobleaching, it may not be desirable to activate a larger
fraction of molecules at each scan position.
We assumed that active fluorophores emit fluorescence independently. While interaction of

multiple close-by fluorophores has been reported, the average distance of active fluorophores at
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the focal center during readout for our measurement in Drosophila melanogaster is about 30 nm,
a quenching interaction seem unlikely.
The focal brightness is calibrated assuming that it does not change over an image region.

This assumption is essential for the method, and we validate it on the image scale by means of
statistical testing. We performed a Welch test respecting the potentially inhomogeneous variance
(see Appendix F.3 and [28], p. 447) at level α = 0.01 for the hypothesis that two halves of the
image have equal brightness, and the test is not able to reject the hypothesis. The detection power
of the test is analyzed in simulations of the image structure, which show that the test can detect
differences of 0.5 in the brightness with roughly 80% probability. Because the focal brightness is
calibrated from the data, a variable brightness between different microscopes, samples or parts of
a sample does not compromise the counting ability.

Our simulations showed that the counting error, apart from possible inaccuracies in the MCF
model, depends mainly on the number of repeated measurements and the brightness. The
achievable number of measurements is limited by the required recording time and the number
of possible switching cycles per fluorophore. Future reversibly switchable fluorophores with a
lower tendency to bleach may enable a larger number of measurements.
The theoretical considerations as well as the experimental results were limited to 2D images

and thin samples corresponding to the commonly used RESOLFT recording mode. The extension
to 3D is uncomplicated in the theory and additionally requires only a sufficiently good calibration
of the 3D shape of the MCF.
The excess variance of the signal features a different convolution kernel from the mean

signal (see Eq. (17)), so that Poisson-likelihood based image deconvolution methods cannot
be expected to be accurate. However, for our images the standard Richardson-Lucy method
performs sufficiently well. In general, special deconvolution techniques adapted to the particular
statistics of RESOLFT images might be needed.

Our counting framework maps the number of switchable fluorophores. To quantify the number
of biological molecules of interest, the degree, efficiency and specificity of the labeling has to
be controlled as well. With an optimal labeling of the target structure with stable labels, this
technique should provide an accurate counting of molecules on the nanoscale.

Appendix

A. Materials and methods

A.1. Sample preparation for switching kinetics measurements

A plasmid, encoding the sequence for rsEGFP2 was cloned into the high-copy expression vector
pQE31 (Qiagen) and used in E. Coli cells to obtain highly concentrated proteins in a cellular
environment. Direct observation of protein properties in the cytosol was accomplished by
immobilizing the bacteria in agarose gel (2%) on standard coverslips (20× 20 mm, #1.5) mounted
to an object slide.

A.2. Western Blot Analysis of Drosophila melagonaster larvae

The front half of one wandering third instar larvae expressing rsEGFP2-α-tubulin was dissected
in 1x PBS to remove all tissues except body wall muscles. Subsequently the cuticle with attached
body wall muscles was transferred to a new Eppendorf tube and mixed with Laemmli Buffer
(Sigma-Aldrich, St. Louis, Missouri, USA) and denatured for 10 min at 95◦ C before loading
onto a SDS-polyacrylamide gel. The protein-lysate of several larvae was mixed and the amount
of approximately one larva was loaded into each lane of the gel. The SDS gel was blotted using a
semi-dry blotter onto a Nitrocellulose membrane. The protein-blot was blocked using 5% fat
free milk powder dissolved in 1 x PBS for 1 hr. The membrane was cut into several pieces and
incubated with antibodies against GFP and alpha-tubulin. The polyclonal α-tubulin antiserum
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Fig. 6. Western blot analysis of body wall muscle protein lysate of rsEGFP2-α-tubulin
expressing Drosophila melanogaster third instar larvae. a: Comparison of the signal from
rsEGFP2-α-tubulin (A) to the signal of unlabeled α-tubulin (B) via labeling using antiserum
against α-tubulin. Ratio was determined on the total signal intensity of the respective peak.
b: Control staining using antiserum against GFP.

(Abcam, Cambridge, England) and the anti-GFP antibody (Clontech, Mountain View, United
States) were used in a concentration of 1:2500 in 2,5% fat free milk powder dissolved in 1x PBS
for 1 hr. HRP-conjugated secondary antibody (Jackson ImmunoResearch, Suffolk, UK) was used
at a dilution of 1:5.000 in 2,5% fat free milk powder dissolved in 1x PBS for 1 hr and detected
with an ECL-kit (Perkin Elmer Life Science, Waltham, USA) using an Amersham Imager 600
(GE Healthcare, Little Chalfont, UK).

A.3. Imaging parameters for the RESOLFT images

The RESOLFT image shown in Fig. 5 was taken as described in [23], using an illumination with
2.8µW for 15 µs for the diffraction-limited activation with a 405 nm laser, an illumination with
17.8µWfor 500 µs using a doughnut-shaped focus of 488 nm light, and finally a diffraction-limited
excitation with 24.2µW using 488 nm light for 100 µs. All powers were measured in the back
aperture of the objective lens. For the RESOLFT image, the first 30µs of the readout time were
integrated.

B. Two-state Markov switching model with linear rates

We assume a stochastic model for the memory-less switching between a single fluorescent
on-state and a single non-fluorescent off-state. A scheme of the model is depicted in Fig. 2(a).
The switching rates kon and koff determine the time evolution of the state populations. The
time evolution of the on-state population pon is given by an exponential decay with an effective
switching rate k = kon + koff, starting from the initial state p0 and ending in the equilibrium state
p∞:

pon(t) = p∞ + (p0 − p∞) exp(−kt) , (22)

where the equilibrium state is given by

p∞ =
kon

kon + koff
. (23)
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With the population of the off-state being 1− pon(t), the two-state system is fully characterized.
For light driven rates that depend linearly on the intensity of the applied light we can define the
switching rates as

kon = σonλ/(hc)I ,
koff = σoffλ/(hc)I .

(24)

where σon and σoff are effective absorption cross-sections for the on- and off-switching,
respectively, hc/λ is the energy of a single photon and I is the intensity of the applied light.

Defining the effective total absorption cross-section σ = σon + σoff, the on-state population
only depends on the initial state and the irradiation dose It:

pon(It) = p∞ + (p0 − p∞) exp(−σλ/(hc)It) . (25)

C. Brightness and number of fluorophores on single clusters

For the case of a single, isolated cluster consisting of n0 molecules all at the same position, the
estimation of the focal readout brightness b as well as the number of fluorophores is especially
straightforward. We assume that N measurements are performed with the cluster location
coinciding with the focal center. All fluorophores in the cluster then are subjected to the same
effective activation probability pon = pact(0) and the average readout signal is simply b.

C.1. Analytic results

In the following, we assume that the average number of background counts d and the activation
probability pon are known with no or negligible error. Following Eq. (13), the mean m and the
variance v of the measured signal are then given by

m = bn0pon + d,

v = m + b2n0pon(1 − pon).
(26)

Equating mean and variance with the sample mean m̂ and the sample variance v̂ from N measured
signals {Yj}j=1,...,N and solving Eq. (26) for number and focal brightness, gives the estimators n̂0
and b̂ for the number of molecules n0 and the focal brightness b using the method of moments

n̂0 =
1 − pon

pon
(m̂ − d)2

v̂ − m̂
,

b̂ =
1

1 − pon
v̂ − m̂
m̂ − d

.
(27)

We approximate the standard deviations of the estimator for the mean ∆m =
√
Var[m̂] and of the

estimator for the variance ∆v =
√
Var[v̂] assuming that the signal follows a normal distribution

with the known expectation and variance. This yields

(∆m)2 = v/N,

(∆v)2 =
2v2

N − 1
.

(28)

By propagating the error for the estimators (27), we get the following result for the relative errors
of the estimation of the number and focal brightness:

∆b
b
'

√
(∆v)2

(v − m)2
+
(∆m)2(

√
v − d)2)

(v − m)2(m − d)2
,

∆n0
n0
'

√
(∆v)2

(v − m)2
+ (∆m)2

(
2

m − d
+

1
v − m

)2
.

(29)
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By only keeping the leading term (∆v)2/(v − m)2 under the square root we find a joint, simple
expression for a lower bound of the relative error of both the estimated number and the estimated
brightness:

∆b
b
,
∆n0
n0
&

√
2

N − 1

(
1 +

1
b(1 − pon)

(
1 +

1
SBR

))
. (30)

Here SBR denotes the signal to background ratio, given by

SBR =
m − d

d
. (31)

Interestingly, the expression (30) for the lower bound of the relative error does not depend on the
number of molecules except in the contribution of the signal to background ratio. This result is
very similar to corresponding analyses in fluorescence fluctuations theory ([30]). The number
of measurements N, the brightness b and the activation probability pon mainly determine the
relative errors.

C.2. Simulation

We simulated RESOLFT data for the simple case of measuring a single, isolated cluster of
n0 fluorophores located directly at the focus. The brightness b, assumed to be equal for all
molecules, and the number of repetitions of the measurements were varied. The number and the
brightness were estimated according to Eq. (27). The relative errors of the estimation are shown

Fig. 7. Simulation of isolated clusters of molecules. Relative standard deviation of the
estimated number (a) and estimated brightness (b) for n0 = 20 molecules in one cluster, with
an activation probability of 20%. Above a minimum threshold brightness, the counting error
depends mainly on the number of measurements (N). Full simulation results are plotted as
dots, the calculated expressions of Eq. (30) are shown as lines.
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in Fig. 7. The lower bounds derived analytically are shown as comparison. The simulations
confirm that the true number and brightness can be inferred accurately. However, the estimates
for the number and focal brightness are highly correlated and will, in general, be scattered along
a hyperbola in number and brightness space. The relative error of brightness and number is
rather independent of the number of molecules and also rather independent of the brightness
above a certain brightness threshold of 1-2 photons. The error decreases with the square root of
the number of repetitions. Above 500 measurements, the relative error is below 10%.

D. Estimator of the variance for shifted images

Due to the image acquisition procedure described in Section 3.2, the recorded image is split
in one direction to deliver two independent images Y1 and Y2 with square pixels of the same
structure but shifted by half a pixel with respect to each other. Depending on the structure, this
can lead to a bias in the estimation of the focal brightness, as there are two contributions to the
variance: first, the variance due to the switching fluorophores and the photon detection, which is
included in our model, and second, the variance due to changes of the structure on the scale of
the pixel shift. In the estimator for the focal brightness devised in Section 2.3, this second source
of variance is not included. However, the bias due to this effect can be suppressed by estimating
the pixel-wise variance in the following way: we examine the squared deviation of the signal in
each pixel of one of the images Y1 to the average signal of the pixels measured directly before
and after this pixel in Y2:

v̂1(®s) =
(
Y1(®s) −

1
2

(
Y2(®s−) + Y2(®s+)

) )2
. (32)

If the variance of Y2(®s−) equals the variance of Y2(®s+) and of Y1(®s), the expectation value of
this quantity is E[v̂1(®s)] = 3/2Var[Y1(®s)]. Defining Y ′2 =

1
2
(
Y2(®s−) + Y2(®s+)

)
, the variance is

estimated using

v̂shift (®s) =
2
3

(
Y1(®s) − Y ′2(®s)

)2 . (33)

Fig. 8. Influence of the pixel shift between the two images Y1 and Y2 after splitting the
recorded image. Simulations of images with line-like structures parallel (‖) and perpendicular
(⊥) to the scanning direction. The biased estimator simply ignores the pixel shift, while the
unbiased estimator implements Eq. (33). Scale bars, 200nm.

Such variance estimators were analyzed in [27]. To show that this estimator reduces the bias
due to the structure in the image, we conducted simulations of line-like structures, both parallel
and perpendicular to the scanning direction. The scanning process was simulated realistically
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by evaluating the signal at positions shifted by half a pixel. The simulation results shown in
Fig. 8 demonstrate, that the bias is pronounced mainly for structures that are perpendicular to the
scanning direction and is reduced strongly using the estimator (33).

E. Estimation of the brightness in regions within images of rsEGFP2-α-tubulin

The data of Fig. 5(a) was taken and regions were defined (see Fig. 9(a)). Then the brightness
was estimated equivalently to Sec. 3.2 but only with the data of each region. The estimated
brightnesses are shown in Fig. 9(b). The average estimated brightness of all regions is 0.79 with
a standard deviation of 0.16. A systematically inhomogeneous brightness distribution like for
example a gradient of the brightness cannot be observed. If the regions would have been made
smaller, the fluctuations in the estimation of the brightness would naturally have increased.

Fig. 9. Estimation of the brightness in regions of the image of Fig. 5(a). The regions were
chosen manually to adapt to the structure and include similar amounts of structure. Their
boundaries are shown as green lines in a. In b the estimated brightness for each region using
only data from this region is shown as color in the respective regions.

Additionally, the differences in estimated brightness using only the left and right half of the
image, the upper and lower half of the image and the inner and outer half of the image were
calculated. The differences in the estimated brightness between these half-image regions was
always smaller than 2%.

F. Variance of the estimated focal readout brightness b

The estimator b̂ in (17) with the bias correction from Section D has the form

b̂ =
H1
H2

1
|X |

∑
®x∈X

[
2
3

(
Y(®x) − 1

2Y(®x−) − 1
2Y(®x+)

)2
− Y(®x)

]
1
|X |

∑
®x∈X

(
Y(®x) − d̂(®x)

) , (34)

where Y(®x) are random variables following the model from Eqs. (9), (10) and (12), and d̂(®x) is an
estimator for the intensity of the Poisson background d(®x). The constants H1 and H2 are defined
in the line following Eq. (15) in the main text (see also Assumption 2 below). For simplicity of
notation, we do not write explicitly in Eq. (34) and in the following the sample splitting used in
Section D to estimate the variance. Instead, we implement the idea of Section D by subtracting
the mean of the neighbor pixels values 1

2
(
Y(®x−) + Y(®x+)

)
in the numerator of (34). Here, ®x− and

®x+ denote the positions of the pixels before and after ®x along the scanning direction (see Section
D for details).
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In this section we derive an asymptotic expression for the variance of b̂ in the limit of many
fluorophores. This limit is realized by a series of experiments where the sampled region X′k
grows in size with k and where the number of fluorophores n(k)0 in X′k also grows with k. Each
experiment yields a set of observations {Yk(®x)}®x∈X′k , which correspond to photon counts at the
scanning positions ®x ∈ X′k. In the following, all limits correspond to the asymptotics where the
size of the sampling region |X′k | and the number of fluorophores n(k)0 in X′k tend to infinity.
Note that in the estimator (34) we need an estimator d̂k(®x) for the intensity of the Poisson

background. The estimator is constructed by selecting a subset X̃k of the sampled region where
no signal is present, and using the mean signal in that region as an estimator for the background,
i.e.,

d̂k(®x) =
1
|X̃k |

∑
®s∈X̃k

Yk(®s). (35)

In particular, the estimator d̂k(®x) is spatially constant, and hence is expected to perform badly if
the true background has strong variations in its intensity. If the background has approximately
constant intensity, then d̂k(®x) is expected to perform better the larger the set X̃k is. We will hence
assume that the set X̃k grows in size as k → ∞, but it remains small in comparison with X′k.
Finally, in order to simplify the computations, we will split the sampled region X′k into the sets X̃k

and Xk = X′k\X̃k, and use the first region to estimate the Poisson background, and the second to
estimate the variance and the expectation of the signal. Hence, for each k ∈ N, our estimator for
the brightness is given by

b̂k =
H(k)1
H(k)2

1
|Xk |

∑
®x∈Xk

(
2
3

(
Yk(®x) − 1

2Yk(®x−) − 1
2Yk(®x+)

)2
− Yk(®x)

)
1
|Xk |

∑
®x∈Xk

(
Yk(®x) − d̂k(®x)

) , (36)

where H(k)1 =
∑
®x∈Xk hread(®x)pact(®x) and H(k)2 =

∑
®x∈Xk h2read(®x)pact(®x)(1 − pact(®x)).

We make the following assumptions:

1) The density of fluorophores converges to a constant ρ ∈ (0,∞), i.e.,

lim
k→∞

n(k)0
|Xk |
= ρ.

Moreover, the local density of fluorophores is also bounded by a constant ρ̃ ∈ (0,∞), i.e.,

lim
k→∞

max
®x∈Xk

{
Number of molecules at ®x

}
= ρ̃.

2) The PSFs hread and pact do not change with k, and have bounded support: supp hread ⊂ S,
supp pact ⊂ S, with |S|<∞. Moreover, the quantities

H(k)1 =
∑
®x∈Xk

hread(®x)pact(®x),

H(k)2 =
∑
®x∈Xk

h2read(®x)pact(®x)(1 − pact(®x)),

converge to constants H1 and H2 as k→∞.
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3) The background noise is independently Poisson distributed D(®x) ∼ Poisson(d(®x)) with
intensity satisfying

lim
k→∞

1
|Xk |

∑
®x∈Xk

d(®x) = D ∈ (0,∞).

Our analysis below uses the fact that D>0, i.e. that there is background noise. We remark
nevertheless that under good experimental conditions, the average noise level D might be
quite small.

Finally, the region X̃k is chosen such that the estimator d̂k(®x) in (35) satisfies

lim
k→∞
E[d̂k(®x)] = D,

Var

∑
®x∈Xk

d̂k(®x)
 = C1 |Xk | + o(|Xk |),

E[d̂k(®x)4] ≤ C2,

as k → ∞, for some constants C1,C2>0. Given the structure of d̂k(®x) in (35), these hold for
instance if the signal in the region X̃k is pure background, the background intensity is constant,
and limk→∞

|X̃k |
|Xk |
∈ (0,∞).

Define the quantities

wk(®x) = E

[
2
3

(
Yk(®x) −

1
2

Yk(®x−) −
1
2

Yk(®x+)
)2
− Yk(®x)

]
,

Wk(®x) =
2
3

(
Yk(®x) −

1
2

Yk(®x−) −
1
2

Yk(®x+)
)2
− Yk(®x) − wk(®x),

zk(®x) = E
[
Yk(®x) − d̂k(®x)

]
,

Zk(®x) = Yk(®x) − d̂k(®x) − zk(®x),

Then the estimator b̂k in (36) can be written as

b̂k :=
H1
H2

1
|Xk |

∑
®x∈Xk Wk(®x) + wk(®x)

1
|Xk |

∑
®x∈Xk Zk(®x) + zk(®x)

.

In the following we will show that the estimator b̂k satisfies a central limit theorem of the form√
|Xk |

(
b̂k − E[b̂k]

)
D
→ N(0,σ2) (37)

as k→∞ for a certain asymptotic variance σ2. This will be proved in the following steps:

1) in Proposition 1, we show that the joint distribution of the quantities 1√
|Xk |

∑
®x∈Xk Wk(®x)

and 1√
|Xk |

∑
®x∈Xk Zk(®x) is asymptotically normal;

2) in Proposition 2, we apply the delta method to show that (37) holds.

In these two steps, we will see that the asymptotic variance σ2 in (37) can be computed explicitly.
Its expression is nevertheless very involved, and hence not very informative. In order to derive a
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useful approximation for the asymptotic variance of b̂k, we will approximate the random variables
Yk(®x) by normal random variables with matching expectation and variance,

Ỹk(®x) ∼ N(E
[
Yk(®x)

]
, Var

[
Yk(®x)

]
), ®x ∈ Xk,

independent from each other. This approximation is motivated by the fact that the distribution
function of a Poisson random variable with large intensity can be well approximated by the
distribution function of normal random variable with matching expectation and variance. In fact,
the approximation error can be shown to behave like the inverse of the square root of the intensity
[31]. In our case, the intensity will be large if there are many fluorophores in the sample, if
their activation probability is not too small, and if the background noise is sufficiently large. We
remark that our observations Yk(®x) are not Poisson, but Poisson conditionally on the molecules
being active, which results in an increased variance. We compensate for this by approximating
Yk(®x) by normal random variables with the same increased variance.

We will further assume that the expectation E[Yk(®x)] and the variance Var
[
Yk(®x)

]
vary slowly

with the position, i.e. E[Yk(®x)] ≈ E[Yk(®x±)] and Var
[
Yk(®x)

]
≈ Var

[
Yk(®x±)

]
. This assumption is

justified by the fact that the pixel size is smaller than the scale at which the PSFs vary.
Under these approximations, we show in Section F.2 that the asymptotic variance σ2 in (37)

can be approximated by

σ̃2 =
1

(ρbH1H2)2

(
ρb(H1 + bH2)

3 + D(H1 + bH2)
2 +

H2
1
|Xk |∑

®x∈Xk

(
35
9

vk(®x)2 −
5
9

vk(®x)mk(®x)2 + vk(®x)mk(®x)
)ª®¬ ,

(38)

for large k, where mk(®x) = E
[
Yk(®x)

]
and vk(®x) = Var

[
Yk(®x)

]
. Using this approximation and the

limit theorem (37) for b̂k, we estimate the standard deviation of the estimator b̂k by σ̃√
|Xk |

. Notice

that σ̃2 behaves like b−2 for small values of b. This is consistent with the fact that our method of
moments estimator is based on the relation Var[Yk(®x)] − E[Yk(®x)] = O(b2), and hence is expected
to perform poorly when b is small. On the other hand, σ̃2 behaves like b2 for large brightness
b, which reflects the natural fact that, the larger the parameter to be estimated, the larger the
absolute error made. Finally, notice that the relative standard deviation of b̂k, given by σ̃

b , tends
to a constant for large brightness. We verify this effect in the simulations shown in Fig. 7.
We remark that Eq. (38) is a generalization of the result in Section C. In fact, the equation

derived there is essentially (38) keeping only the term H2
1
|Xk |

∑
®x∈Xk vk(®x)2, which is in that situation

the dominant term.
Finally, we stress that Eq. (38) is valuable inasmuch as it characterizes the error made by the

estimator b̂k. Indeed, if we know the parameters of the problem, i.e., PSFs, brightness, noise
level and distribution of the fluorophores, then the standard deviation of the estimator b̂k can be
estimated by σ̃√

|Xk |
. We compute this quantity in the setting of the simulations of Section 3.3,

which gives the standard deviation and relative standard deviation

σ̃√
|Xk |
= 0.041,

σ̃

b
√
|Xk |
= 0.049,

for the value b = 0.83 used in the simulations. The relative standard deviation computed from
the simulations in Fig. 5(f) agrees with these predictions.
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In the following Sections F.1 and F.2, we prove the asymptotic normality of b̂k and derive the
expression (38) as an approximation for its asymptotic variance.

F.1. Asymptotic normality of b̂k

Here we will prove (37) as sketched in the previous subsection. First, we prove asymptotic
normality of the joint distribution of 1√

|Xk |

∑
®x∈Xk Wk(®x) and 1√

|Xk |

∑
®x∈Xk Zk(®x).

Proposition 1 In the model presented in Section F with assumptions 1), 2) and 3), the limit

Σ := lim
k→∞

1
|Xk |

©­«
Var

[∑
®x∈Xk Wk(®x)

]
Cov

(∑
®x∈Xk Wk(®x),

∑
®x∈Xk Zk(®x)

)
Cov

(∑
®x∈Xk Wk(®x),

∑
®x∈Xk Zk(®x)

)
Var

[∑
®x∈Xk Zk(®x)

] ª®¬
exists and is a covariance matrix. Moreover, we have

1√
|Xk |

©­«
∑
®x∈Xk Wk(®x)∑
®x∈Xk Zk(®x)

ª®¬ D→ N ©­«©­«
0

0
ª®¬ , Σª®¬ (39)

as k→∞.
The main difficulty in proving Proposition 1 lays in the correlation structure of the random

variables Wk(®x) and Zk(®x). In order to take care of the correlations, we use a central limit theorem
from [32] for m-dependent triangular arrays. In our case we have m = 3, since the random
variable Wk(®x) is correlated with Wk(®x−) and Wk(®x+) and is independent of all other Wk(®x′). For
each k ∈ N, the sequence Wk(®x) forms a 3-dependent sequence of random variables indexed by ®x.

Proof of Proposition 1: First, we show that Σ is a covariance matrix. Since Σ is symmetric, it
is enough to show that

tTΣt > 0 (40)

for all t ∈ R2 with t , (0, 0)T . In the proof of Eq. (45) below we show that, for any k ∈ N,

tTΣkt ≥ C (41)

for any t ∈ R2, t , (0, 0)T , for a constant C>0 independent of k, and

Σk :=
1
|Xk |

©­«
Var

[∑
®x∈Xk Wk(®x)

]
Cov

(∑
®x∈Xk Wk(®x),

∑
®x∈Xk Zk(®x)

)
Cov

(∑
®x∈Xk Wk(®x),

∑
®x∈Xk Zk(®x)

)
Var

[∑
®x∈Xk Zk(®x)

] ª®¬ .
Since Σ = limk→∞ Σk, Eq. (41) implies (40).
Next, we prove the convergence in (39). For that, we use the Cramér-Wold argument (see

Theorem 29.4 in [33]), which in our setting states that (39) holds if and only if the one dimensional
limit

1√
|Xk |

©­«t1
∑
®x∈Xk

Wk(®x) + t2
∑
®x∈Xk

Zk(®x)
ª®¬ D→ N(0, tTΣt) (42)

holds for any t = (t1, t2) with t21 + t22 = 1. Notice that the variance of the right-hand side is

tTΣt = t21Σ1,1 + t22Σ2,2 + 2t1t2Σ1,2 = lim
k→∞

1
|Xk |

Var

∑
®x∈Xk

t1Wk(®x) + t2Zk(®x)
 .

In order to prove (42), we apply Theorem 2.1 in [32]. It applies to our situation, since we consider
the triangular array t1Wk(®x) + t2Zk(®x), k ∈ N, ®x ∈ Xk of 3-dependent random variables. For
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simplicity of the statement and the computations, we will re-index the random variables Wk(®x)
and Zk(®x) by an index i = 1, . . . , |Xk | such that

Wk,i := Wk(®xi), Zk,i := Zk(®xi)

are ordered so that Wk,i, Wk,i−1 and Wk,i−2 have nonzero correlation. Assume for the moment
that, for fixed t21 + t22 = 1, the conditions

E[|t1Wk,i + t2Zk,i |
2+δ] ≤ C1<∞ for all i = 1, . . . , |Xk |, and all k ∈ N, (43)

Var

[
a+L−1∑

i=a
t1Wk,i + t2Zk,i

]
≤ C2L for all a = 1, . . . , |Xk | −L+1, L = 2, . . . , |Xk | and all k ∈ N,

(44)

Var

[
|Xk |∑
i=1

t1Wk,i + t2Zk,i

]
≥ C3 |Xk | for all k ∈ N, (45)

hold for some constants C1,C2,C3>0. Then Theorem 2.1 in [32] states that

1√
Var

[∑ |Xk |
i=1 t1Wk,i + t2Zk,i

] |Xk |∑
i=1

t1Wk,i + t2Zk,i
D
→ N(0, 1)

holds as k→∞. In our original notation, this means that

1√
Var

[∑
®x∈Xk t1Wk(®x) + t2Zk(®x)

] ∑
®x∈Xk

t1Wk(®x) + t2Zk(®x)
D
→ N(0, 1)

holds as k→∞, which is what we wanted to prove. It remains to verify the conditions (43) to
(45).

For condition (43) with δ = 2, we use that |t1 |, |t2 | ≤ 1 and bound

E[|t1Wk,i + t2Zk,i |
4] ≤ E[W4

k,i] + 4|E[W
3
k,izk,i]| + 6E[W2

k,iZ
2
k,i] + 4|E[Wk,iZ3

k,i]| + E[Z
4
k,i]

≤ C max
j=i,i−1,i−2

(
E[Yk(®xj)

8] + E[d̂k(®xi)
4]

)
,

where C > 0 is a constant and we used that Wk,i and Zk,i are polynomials in Yk(®xi), Yk(®xi−1),
Yk(®xi−2) and d̂k(®xi), the maximal power of the product polynomials is 8, and the lower order
moments of random variables can be bounded by the higher order moments. Now, notice that
by assumption, the intensity d(®xi) of the background is bounded for all ®xi. Hence, E[d̂k(®xi)

4]
is bounded. On the other hand, the random variable Yk(®xj) is the sum of independent Poisson
random variables with Bernoulli weights (recall the model in Eqs. (9), (10) and (12)). By the
assumption of finite support of the PSFs and the finite density of molecules, we can bound |Yk(®xj)|

by the number of fluorophores that contribute to the sum, which is finite, times the maximum of
a finite number of Poisson random variables with bounded intensity. The eighth moment of such
a random variable is finite, and we conclude that E[Yk(®xj)

8] ≤ C<∞. Altogether, we conclude
that (43) holds.



Research Article Vol. 27, No. 15 / 22 July 2019 / Optics Express 21981

For (44), we bound

Var

[
a+L−1∑

i=a
t1Wk,i + t2Zk,i

]
=

a+L−1∑
i=a

Var
[
t1Wk,i + t2Zk,i

]
+

+ 2
a+L−1∑

i=a
Cov

[
t1Wk,i + t2Zk,i, t1Wk,i−1 + t2Zk,i−1

]
+

+ 2
a+L−1∑

i=a
Cov

[
t1Wk,i + t2Zk,i, t1Wk,i−2 + t2Zk,i−2

]
≤

a+L−1∑
i=a

Var
[
t1Wk,i + t2Zk,i

]
+

+ 2
a+L−1∑

i=a

√
Var

[
t1Wk,i + t2Zk,i

]
Var

[
t1Wk,i−1 + t2Zk,i−1

]
+

+ 2
a+L−1∑

i=a

√
Var

[
t1Wk,i + t2Zk,i

]
Var

[
t1Wk,i−2 + t2Zk,i−2

]
≤ 5

a+L−1∑
i=a−2

Var
[
t1Wk,i + t2Zk,i

]
using that √xy ≤ 1

2 (x + y) for x, y ≥ 0. Hence to prove (44) it suffices to show that

Var
[
t1Wk,i + t2Zk,i

]
≤ C2

for all i = 1, . . . , |Xk | and a constant C2 independent of k. Notice that

Var
[
t1Wk,i + t2Zk,i

]
≤ t21Var

[
Wk,i

]
+ t22Var

[
Zk,i

]
+ 2t1t2Cov

[
Wk,i,Zk,i

]
≤ 2

(
Var

[
Wk,i

]
+ Var

[
Zk,i

] )
with an argument as above to bound the covariance. Now, the terms Var

[
Wk,i

]
and Var

[
Zk,i

]
can be shown to be bounded with an argument as in the proof of (43). Indeed, there we showed
that the fourth moment of Wk,i is bounded, which implies that Var

[
Wk,i

]
is bounded. The term

Var
[
Zk,i

]
can be bounded in the same way, and we conclude that (44) holds.

For (45), we have to bound the total variance Var
[∑ |Xk |

i=1 t1Wk,i + t2Zk,i

]
from below. Obviously,

the total variance will be bounded from below if the observations Yk(®xi) have a variance bounded
from below, but to verify the quantitative statement of condition (45) we would require lengthy
computations.
Alternatively, we can use the fact that the background noise and the estimator d̂k(®x) give a

nonzero contribution to the variance. Indeed, writing

Zk,i = Yk(®xi) − d̂k(®xi) − E[Yk(®xi) − d̂k(®xi)],

we have

Var

[
|Xk |∑
i=1

t1Wk,i + t2Zk,i

]
= Var

[
|Xk |∑
i=1

t1Wk,i + t2Yk(®xi)

]
+ t22Var

[
|Xk |∑
i=1

d̂k(®xi)

]
+

− 2t2 Cov

(
|Xk |∑
i=1

t1Wk,i + t2Yk(®xi),
|Xk |∑
i=1

d̂k(®xi)

)
︸                                           ︷︷                                           ︸

=0

,
(46)
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where the covariance term vanishes since d̂k(®xi) is independent of Wk,i and Yk(®xi) by the sample
splitting used to compute d̂k(®xi). Hence, if we have |t2 | ≥ ε for some fixed ε > 0 to be specified
below, assumption 3 at the beginning of Section F gives

Var

[
|Xk |∑
i=1

t1Wk,i + t2Zk,i

]
= Var

[
|Xk |∑
i=1

t1Wk,i + t2Yk(®xi)

]
︸                            ︷︷                            ︸

≥0

+t22Var

[
|Xk |∑
i=1

d̂k(®xi)

]
≥ ε2C |Xk |

holds for k large enough and a constant C > 0, which is what we wanted to show. If |t2 | < ε , then
we can express the first term in (46) as the sum of variances and covariances and get

Var

[
|Xk |∑
i=1

t1Wk,i + t2Zk,i

]
= t21Var

[
|Xk |∑
i=1

Wk,i

]
+ t22

(
Var

[
|Xk |∑
i=1

Yk(®xi)

]
+ Var

[
|Xk |∑
i=1

d̂k(®xi)

])
+

+ 2t1t2Cov

(
|Xk |∑
i=1

Wk,i,
|Xk |∑
i=1

Yk(®xi)

)
.

Note that

Var

[
|Xk |∑
i=1

Yk(®xi)

]
≥ |Xk |ρ(bH1 + b2H2) + |Xk |D

for k large enough, and that�����Cov
(
|Xk |∑
i=1

Wk,i,
|Xk |∑
i=1

Yk(®xi)

)����� ≤
√√√
Var

[
|Xk |∑
i=1

Wk,i

]
Var

[
|Xk |∑
i=1

Yk(®xi)

]
≤ max

{
Var

[
|Xk |∑
i=1

Wk,i

]
, Var

[
|Xk |∑
i=1

Yk(®xi)

]}
= Var

[
|Xk |∑
i=1

Wk,i

]
where the last equality follows by the definition of Wk,i, which gives

Var

[
|Xk |∑
i=1

Wk,i

]
≥ Var

[
|Xk |∑
i=1

Yk(®xi)

]
Altogether we have

Var

[
|Xk |∑
i=1

t1Wk,i + t2Zk,i

]
≥ t21Var

[
|Xk |∑
i=1

Wk,i

]
+ t22C |Xk | − 2|t1t2 |

�����Cov
(
|Xk |∑
i=1

Wk,i,
|Xk |∑
i=1

Yk(®xi)

)�����
≥ t21Var

[
|Xk |∑
i=1

Wk,i

]
+ t22C |Xk | − 2|t2t2 |Var

[
|Xk |∑
i=1

Wk,i

]
= |t1 | ((|t1 | − 2|t2 |)Var

[
|Xk |∑
i=1

Wk,i

]
+ t22C |Xk |

Assume without loss of generality that t1, t2 ≥ 0. Then, if t2<ε with ε = 1√
6
, we have

t1 =
√
1 − t22 >

√
1 − ε2 =

√
5
6
,
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and hence we have

t1 (t1 − 2t2) > t1

(√
5
√
6
−

2
√
6

)
≥ t1

0.2
√
6
> 0.05.

So if t2 < ε , we have shown that

Var

[
|Xk |∑
i=1

t1Wk,i + t2Zk,i

]
≥ 0.05Var

[
|Xk |∑
i=1

Wk,i

]
+ t22C |Xk |.

It is not difficult to show that the variance of
∑ |Xk |

i=1 Wk,i is bounded from below by the variance of
the background noise Var

[∑ |Xk |
i=1 Di

]
, which by Assumption 3 behaves like D|Xk | asymptotically.

Hence the lower bound follows, and we conclude that (45) holds. �
We will now use the delta method (see Sections 3.1 and 3.3 in [34]) to prove the asymptotic

normality of b̂k.
Proposition 2 With the notation and assumptions of Section F, we have√

|Xk |
(
b̂k − b

)
D
→ N(0,σ2),

as k→∞, where

σ2 =
1

(ρbH1H2)
2

(
H2
1Σ1,1 + b2H2

2Σ2,2 − 2bH1H2Σ1,2

)
, (47)

with Σi,j being the entries of the covariance matrix in Proposition 1, H1 and H2 the constants in
Assumption 2, and ρ the density in Assumption 1.

Proof of Proposition 2: We prove the proposition by applying the delta method to Eq. (39).
Defining

αk :=
∑
®x∈Xk Wk(®x) + wk(®x)

|Xk |
,

βk :=
∑
®x∈Xk Zk(®x) + zk(®x)

|Xk |
,

and the limits

α := lim
k→∞

∑
®x∈Xk wk(®x)
|Xk |

, β := lim
k→∞

∑
®x∈Xk zk(®x)
|Xk |

,

Eq. (39) can be written as√
|Xk |

©­«©­«
αk

βk

ª®¬ − ©­«
α

β

ª®¬ª®¬ D→ N ©­«©­«
0

0
ª®¬ , Σª®¬ .

Using now the delta method with the function f (α, β) = α
β , we conclude that√

|Xk |

(
αk

βk
−
α

β

)
D
→ N(0,σ2

)

with

σ2 =

(
1
β
,−

α

β2

)
Σ

(
1
β
,−

α

β2

)T
,

where
α = ρb(H1 + bH2) + D, β = ρbH1.

Multiplying by H(k)1
H(k)2

, and using Assumption 2 and the fact that b = H1
H2

α
β , the claim follows. �
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F.2. Approximation of the variance of b̂

Proposition 2 gives us an explicit expression for the asymptotic variance of b̂k. This expression is
nevertheless very involved and not very informative. In this section we will approximate this
expression for the variance by approximating the Poisson random variables Yk(®x) by normal
random variables with matching expectation and variance,

Ỹk(®x) ∼ N
(
E

[
Yk(®x)

]
, Var

[
Yk(®x)

] )
, ®x ∈ Xk,

independent from each other. In the following we will use the notation introduced in (13), i.e.,

mk(®x) = E
[
Yk(®x)

]
, vk(®x) = Var

[
Yk(®x)

]
.

As stated above, we assume that the expectation and the variance of the signals vary slowly, so
that we can approximate mk(®x) ≈ mk(®x±) and vk(®x) ≈ vk(®x±).
Define the quantity

W̃k(®x) =
2
3

(
Ỹk(®x) −

1
2

Ỹk(®x−) −
1
2

Ỹk(®x+)
)2
− Ỹk(®x).

In this setting, we can compute

Σ2,2 = lim
k→∞

1
|Xk |

Var

∑
®x∈Xk

Ỹk(®x) − d̂k(®x)
 = ρb(H1 + bH2) + D.

Moreover, the covariance term between
∑
®x∈Xk W̃k(®x) and

∑
®x∈Xk Ỹk(®x) − d̂k(®x) is given by

1
|Xk |

Cov ©­«
∑
®x∈Xk

W̃k(®x),
∑
®x∈Xk

Ỹk(®x) − d̂k(®x)
ª®¬ =

= −
1
|Xk |

∑
®x∈Xk

vk(®x) +
1
|Xk |

∑
®xi∈Xk

vk(®xi)

(
mk(®xi) +

1
3

mk(®xi−2) −
4
3

mk(®xi−1)

)
+

1
|Xk |

∑
®xi∈Xk

mk(®x)
(
vk(®xi) +

1
3

vk(®xi−2) −
4
3

vk(®xi−1)

)
≈ −

1
|Xk |

∑
®x∈Xk

vk(®x)

using the assumption that the expectation and the variance vary slowly. In the limit k→∞ this
gives

Σ1,2 = lim
k→∞

1
|Xk |

Cov ©­«
∑
®x∈Xk

W̃k(®x),
∑
®x∈Xk

Ỹk(®x) − d̂k(®x)
ª®¬ ≈ −ρb(H1 + bH2) − D

Finally, defining

Tk(®xi) := mk(®xi) +
1
3

mk(®xi−2) −
4
3

mk(®xi−1),
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the variance of
∑
®x∈Xk W̃k(®x) is given by

Var

∑
®x∈Xk

W̃k(®x)
 =

∑
®x∈Xk

vk(®x) + 2vk(®x)2

+
∑
®xi∈Xk

vk(®xi)

(
Tk(®xi)

2 − Tk(®xi) − mk(®xi) +
4
9

mk(®xi−1)mk(®xi−2)

)
+

∑
®xi∈Xk

vk(®xi−1)

(
16
9

mk(®xi)
2 +

16
9

vk(®xi) −
8
3

mk(®xi)
(
Tk(®xi−1) + mk(®xi−1) − 1

) )
+

∑
®xi∈Xk

vk(®xi−2)

(
1
9

mk(®xi)
2 +

1
9

vk(®xi) −
8
9

mk(®xi)mk(®xi−1)+

+
2
3

mk(®xi)
(
Tk(®xi−2) + mk(®xi−2) − 1

) )
.

Using again the assumption that mk(®x) and vk(®x) vary slowly, we can approximate

1
|Xk |

Var

∑
®x∈Xk

W̃k(®x)
 ≈

1
|Xk |

∑
®x∈Xk

vk(®x) +
1
|Xk |

∑
®x∈Xk

(
35
9

vk(®x)2 −
5
9

vk(®x)mk(®x)2 + vk(®x)mk(®x)
)
,

and hence

Σ1,1 ≈ ρb(H1 + bH2) + D + lim
k→∞

1
|Xk |

∑
®x∈Xk

(
35
9

vk(®x)2 −
5
9

vk(®x)mk(®x)2 + vk(®x)mk(®x)
)
,

since the first term can be computed explicitly and equals ρb(H1 + bH2) + D in the limit k→∞.
The second term can be evaluated numerically. Inserting these expressions for Σ1,1, Σ1,2 and Σ2,2
in (47) yields Eq. (38).

F.3. Verification of the homogeneity of the brightness

To test whether local differences in brightness can be detected by ourmethod, we applied the follow-
ing testing procedure to a set of simulated measurements for the model structure (see Section 3.3).
1000 images were simulated for every brightness from the set B = {0.05, 0.1, 0.15, . . . , 1.95, 2.0}.
Each simulated image was evenly split in 8 parts (2 rows with 4 columns). We then took the
4 parts of the first row from a simulation with brightness b1 ∈ B and the 4 parts of the second
row from a simulation with brightness b2 ∈ B. For each part, we estimated the brightness as
described in Section 2.3. We then tested for homogeneity by applying the 2-sample Welch test
([28, p. 447]) to the results from the first row and the second row. The Welch test tests whether
two samples have equal means without assuming that their variances are equal. Equality of
variances can not be assumed here since the two samples stem from different parts of the image
which are in general different. We used the test level α = 0.01.

The relative frequency of rejection of the null hypothesis that the means are equal is shown in
Fig. 10 for different values of b1 and b2. It is striking that the power curves are not symmetric; this
is a consequence of the fact that the two samples come from different parts of the image. For low
values of b2 the variance of the second sample becomes very high such that the null hypothesis
can not be rejected. A related phenomenon occurs for small b1. Ignoring this effect, differences
of 0.5 in the brightness can be detected with roughly 80% probability at this confidence level.
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Fig. 10. Empirical power of the Welch test applied to two samples of the simulated images
in Fig. 5(e) for different brightnesses. The first sample was taken from a set of four possible
area from the upper half and the second sample from four possible areas from the lower
half of the simulated images. The brightness of the first sample is b1 and that of the second
sample b2. The nominal test level was α = 0.01.
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