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Abstract.
In this paper one presents a collection of results about the “bar codes”

and “Jordan blocks” introduced in [3] as computer friendly invariants of a
tame angle-valued map and one relates these invariants to the Betti numbers,

Novikov Betti numbers and the monodromy of the underlying space and map.

Among others, one organizes the bar codes as two configurations of points
in C \ 0 and one establishes their main properties: stability property and

when the underlying space is a closed topological manifold, Poincaré duality

property. One also provides an alternative computer friendly definition of the
monodromy of an angle valued map based on the algebra of linear relations as

well as a refinement of Morse and Morse-Novikov inequalities.
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2 DAN BURGHELEA AND STEFAN HALLER

1. The results

In this paper a nice space is a friendlier name for a locally compact ANR (Abso-
lute Neighborhood Retract).1 Finite dimensional simplicial complexes and finite di-
mensional topological manifolds are nice spaces but the class is considerably larger.
A tame map is a proper continuous map f : X → R or f : X → S1, defined on a
nice space X, which satisfies:

(i) each fiber of f is a neighborhood deformation retract, and
(ii) away from a discrete set Σ ⊂ R or Σ ⊂ S1 the restriction of f to X \ f−1(Σ)

is a fibration, cf. [3]. In particular for t /∈ Σ(f) there exists a neighborhood
U 3 t such that for any t′ ∈ U, the inclusion f−1(t′) ⊂ f−1(U) is a homotopy
equivalence.

All proper simplicial maps and proper smooth generic maps defined on a smooth
manifold,2 in particular proper real or angle valued Morse maps, are tame. At least
for spaces homeomorphic to simplicial complexes the set of tame maps is residual
in the space of all continuous maps and weakly homotopy equivalent to the space
of all continuous maps (equipped with compact open topology).3

Most of the time we will have an a priory fixed field κ and homology, Novikov
homology, Betti numbers, etc. will be considered with respect to this field. For
simplicity in writing, the field κ will be omitted from the notations.

In this paper we consider a tame map, f : X → S1, and as in [3], one associates
to the map f :

(i) the set of critical angles 0 < θ1 < θ2 < · · · < θm ≤ 2π,
(ii) for any r = 0, 1, . . . ,dimX, four types of intervals of real numbers,

(1) closed ([a, b]),
(2) open ((a, b)),
(3) closed-open ([a, b)),
(4) open-closed ((a, b]),
subsequently called r-bar codes, whose ends mod 2π are critical angles, with
0 < a ≤ 2π,

(iii) for any r = 0, 1, . . . ,dimX, a collection of isomorphism classes of indecom-
posable pairs J = (VJ , TJ), where TJ is a linear automorphism of a finite
dimensional κ-vector space VJ , subsequently called Jordan blocks.

The bar codes can be also regarded as equivalence classes of intervals as above
modulo translation by an integer multiple of 2π, with ends mod 2π critical angles.

Recall that a pair (V, T ) is indecomposable if not isomorphic to the sum of two
nontrivial pairs. In this case if T has λ ∈ κ as an eigenvalue all other eigenvalues
are equal to λ, and (V, T ) is isomorphic to (κk, T (λ, k)) where T (λ, k) is the k × k

1A metrizable, locally compact, finite dimensional locally contractible space is nice, see [23].
2Here “generic” means that for any x ∈M the quotient algebra of germs of smooth functions

at x by the ideal of partial derivatives is a finite dimensional vector space.
3In case that the space X is homeomorphic to a finite dimensional simplicial complex, this is

consequence of the approximability of continuous maps by pl-maps.
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. . .

. . . 0
...

. . .
. . . λ 1

0 · · · 0 0 λ


(1)

if k ≥ 2, and T (λ, 1) = (λ) if k = 1. In [3] the indecomposable pairs (κk, T (λ, k))
were called Jordan cells. When κ is algebraically closed all Jordan blocks are Jordan
cells.

We denote by Bcr(f), Bor(f), Bcor (f), Bocr (f) the collections of closed, open, closed-
open and open-closed r-bar codes and by Jr(f) the collection of r-Jordan blocks.
For brevity we also write Br(f) := Bcr(f) t Br(f) t Br(f) t Br(f). Each bar code
or Jordan block appears with a multiplicity possibly larger than one. All these
collections are multisets which means each element appears with multiplicity. For
u ∈ κ\0 we denote by Jr,u(f) the sub-collection of r-Jordan blocks with eigenvalue
u. In view of the definitions in Section 3, cf. also [3], each tame map has finitely
many bar codes and Jordan blocks.

It was shown in [3] that for simplicial maps these invariants are effectively com-
putable and an algorithm for their calculation was proposed. Existence of such
algorithms is what we mean by computer friendly invariants. All these invariants
are described in Section 3.

In order to formulate the results, we recall that any continuous map f : X → S1

determines an integral cohomology class ξf ∈ H1(X;Z) via pull back of a fixed
generator in H1(S1;Z) ∼= Z. By homotopy invariance, homotopic maps f1, f2 : X →
S1 determine the same class, ξf1 = ξf2 . If X an ANR, then this assignment induces
a bijection between the set of homotopy classes of maps X → S1 and H1(X;Z).
In other words, any class ξ ∈ H1(X;Z) is of the form ξ = ξf for some continuous
angle-valued map f which is unique up to homotopy. This follows from the fact
that the circle S1 is an Eilenberg–MacLane space K(Z, 1), see [21, Section 4.3].

We say that two pairs (X1, ξ1) and (X2, ξ2), ξ1, ξ2 ∈ H1(X;Z), are homotopy
equivalent if there exists a homotopy equivalence ω : X1 → X2 s.t. ω∗(ξ2) = ξ1.

The basic algebraic topology invariants associated with a pair (X, ξ), ξ ∈ H1(X;Z),
a field κ, and a positive integer r ∈ N0 we consider in this paper are:

(1) the singular homology Hr(X), a κ-vector space whose dimension, when finite,
is called the Betti number βr(X);

(2) the Novikov homology HN
r (X; ξ), a vector space over the field of Laurant power

series κ[t−1, t]] with coefficients in κ, whose dimension, when finite, is called
the Novikov–Betti number βNr (X; ξ); and

(3) the r-monodromy, an isomorphism class of pairs (Vr, Tr) where Vr is a κ-vector
space and Tr : Vr → Vr is a linear isomorphism.

If X is a compact ANR then βr(X), βNr (X; ξ), and dim(Vr) are finite.
The first result we prove in this paper is Theorem 1.1 below.

Theorem 1.1 (Homotopy invariants). If f : X → S1 is a tame map and ξf ∈
H1(X;Z) is the integral cohomology class represented by f then:



4 DAN BURGHELEA AND STEFAN HALLER

(a) ]Bcr(f) + ]Bor−1(f) is a homotopy invariant of the pair (X, ξf ), more precisely

is equal to the Novikov–Betti number βNr (X; ξf ).
(b) The collection Jr(f) is a homotopy invariant of the pair (X, ξf ). More pre-

cisely,
⊕

J∈Jr(f) J :=
⊕

J∈Jr(f)(VJ , TJ) is the r-monodromy (Vr, Tr) of (X; ξf ).

(c) ]Bcr(f) + ]Bor−1(f) + ]Jr,1(f) + ]Jr−1,1(f) is equal to the Betti number βr(X).

The definition of Novikov–Betti numbers and of the monodromy are given in
Section 4 and “]” denotes the cardinality of a multiset.

Item (c) has been already established in [3, Theorem 3.2] and is included in
Theorem 1.1 only for the completeness of the topological information derived from
bar codes and Jordan blocks.

In view of Theorem 1.1 it is natural to put together Bcr(f) and Bor−1(f). For this
purpose consider T = R2/Z and ∆T = ∆/Z where the Z-action on R2 is given by
(n, (a, b)) 7→ (a + 2πn, b + 2πn) and ∆ := {(a, b) ∈ R2 | a = b}. One denotes the
Z-orbit of (a, b) ∈ R2 by 〈a, b〉 ∈ T. Note that T can be identified to C \ 0 via the
map 〈a, b〉 7→ z := e(a−b)/2+i(a+b)/2. Via this identification, ∆T corresponds to the
unit circle S1 = {z ∈ C : |z| = 1}.

We will record the collections Bcr(f)tBor−1(f) as a finite configuration of points
in T = C \ 0, denoted by Cr(f), and the collection Bcor (f) t Bocr (f) as a finite
configuration of points in T \∆T = C \ (0 t S1), denoted by Cmr (f).

More precisely, in the first case a closed r-bar code [a, b] will be written as 〈a, b〉 ∈
T or the complex number z = e(a−b)/2+i(a+b)/2 ∈ C\0 and an open (r−1)-bar code
(α, β) as 〈β, α〉 ∈ T or the complex number z = e(β−α)/2+i(β+α)/2 ∈ C\0. Similarly,
in the second case, a closed-open r-bar code [a, b) will be written as 〈a, b〉 ∈ T \∆T
or the complex number e(a−b)/2+i(a+b)/2 ∈ C\(0tS1) and an open-closed r-bar code
(α, β] as 〈β, α〉 ∈ T \∆T or the complex number e(β−α)/2+i(β+α)/2 ∈ C \ (0 t S1).

In view of Theorem 1.1(a), if f is in the homotopy class defined by ξ ∈ H1(X;Z),
then the configuration Cr(f) has the total cardinality of the support 4 exactly
βNr (X; ξ) and can be regarded as a point in the n-fold symmetric product Sn(T) of
T where n = βNr (X; ξ). Identifying T with C\0 as above, the space Sn(T) identifies
to the space of monic polynomials of degree n with non-vanishing free coefficient,
that is, Cn−1×(C\0), by assigning to a complex polynomial its configuration of zeros
with multiplicities. Hence, each Cr(f) can be regarded as a monic polynomial P fr (z)
of degree n with non-vanishing free coefficient. We equip Sn(T) with the topology
of the symmetric product or equivalently with the topology of Cn−1 × (C \ 0).

Let C(X,S1) denote the space of all continuous maps equipped with the compact
open topology and let Cξ(X,S1) be the connected component corresponding to ξ.
Let Cξ,t(X,S1) be the subspace of tame maps in Cξ(X,S1). Our next result is the
following theorem which will be referred to below as Strong Stability Theorem.

Theorem 1.2 (Stability). Suppose X is a compact ANR. Then the assignment

Cξ,t(X,S1) 3 f 7→ Cr(f) ∈ Sn(T),

equivalently,

Cξ,t(X,S1) 3 f 7→ P fr (z) ∈ Cn−1 × (C \ 0),

is continuous, where n = βNr (X, ξ).

4The total cardinality of the support of a configuration is the sum of the multiplicities of its
points.
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Moreover, if X is homeomorphic to a simplicial complex, this extends to a con-
tinuous map, Cξ(X,S1)→ Sn(T), equivalently, Cξ(X,S1)→ Cn−1 × (C \ 0).

In particular, if X is triangulable, then the configuration Cr(f) and therefore the
closed and open bar codes, can be defined for any continuous map. It is expected
that the triangulability hypothesis can be removed. 5

The configuration Cr(f), equivalently the polynomial P fr (z), can be viewed as a
refinement of the Novikov–Betti number in dimension r. The Poincaré duality for
closed manifolds extends from Novikov–Betti numbers to these refinements and we
have the following theorem.

Theorem 1.3 (Poincaré duality). If Mn is a closed κ-orientable 6 topological man-
ifold and f : M → S1 a tame map, then

Cr(f)(〈a, b〉) = Cn−r(f)(〈b, a〉).
Equivalently, Cr(f)(z) = Cn−r(f)(τ(z)) where τ(z) := 1/z̄ = z/|z|2 denotes the
inversion across the unit circle, z ∈ C \ 0.

The proofs of Theorems 1.2 and 1.3 use an alternative definition of the configu-
ration Cr(f). One defines the function δfr on T with values in N0, with no reference
to “bar codes” or to graph representations, and one verifies that it is equal to the
configuration Cr(f). One verifies Theorems 1.2 and 1.3 for δfr instead of Cr(f).

The Jordan blocks introduced in [3] via graph representations, can be also recov-
ered in a different manner, more precisely, as the regular part of a linear relation.
This makes their computations achievable by an algorithm less expensive than the
one presented in [3], cf. [7].

A linear relation, R : V  V , is a concept generalizing a linear map, V → V .
To every linear relation R on a κ-vector space V one can associated canonically a
pair, Rreg = (Vreg, Treg), where Vreg is a κ-vector space and Treg : Vreg → Vreg is a
linear isomorphism. This construction will be discussed in Section 8.1.

To a tame map f : X → S1 one associates linear relations Rθr : Hr(f
−1(θ))  

Hr(f
−1(θ)) described as follows. Let f̃ : X̃ → R be the infinite cyclic covering

defined by the pullback diagram

X̃

��

f̃ // R

p

��
X

f // S1.

For t with p(t) = θ the linear relation Rθr is obtained by passing to homology in the
sequence, see Section 8.2 for more details,

f−1(θ) = f̃−1(t) ↪→ f̃−1
(
[t, t+ 2π]

)
←↩ f̃−1(t+ 2π) = f−1(θ).

We have the following result.

Theorem 1.4 (Monodromy theorem). If f is a tame map and r a non-negative
integer, then for any angle θ the pair (Rθr)reg is isomorphic to

(
⊕

J∈Jr(f)

VJ ,
⊕

J∈Jr(f)

TJ),

5Results on Hilbert cube manifolds permit to remove the triangulability hypothesis, cf. [5].
6If κ has characteristic 2 any manifold is κ-orientable if not the manifold should be orientable.
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with J = (VJ , TJ) and is a homotopy invariant of the pair (X, ξf ).

The next results refers to the collections Bcor (f) and Bocr (f) of mixed bar codes.
First we note that the collection Bcor (f) can be identified to the collection of finite

persistence intervals considered in [17] or [11] for the map f̃ : X̃ → R made equiv-
alent modulo 2π-translation. Similarly, the collection Bocr (f), after changing (a, b]
into [−b,−a), can be identified to the collection of finite persistence intervals of the

map −f̃ modulo 2π-translation.
The configurations Cmr (f) obtained by putting together Bcor (f) and Bocr (f) also

enjoy a stability property and Poincaré duality, cf. Theorem 1.5 and Theorem 1.6
below, however with different quantitative and qualitative properties. Theorem 1.5
is a reformulation of the famous stability result of [11] and is stated here only for
comparison with Theorem 1.2.

Note that for tame angle valued maps in the same homotopy class the configu-
rations Cmr (f) do not have the support of the same cardinality therefore a stability
property will require a new topology on the set of configuration; in such topology
the definition of “proximity” ignores the points near the diagonal ∆T. This topology
on the space of configurations of points in T \ ∆T, called the bottleneck topology,
can be derived from a metric proposed in [11], the bottleneck metric.

Here is an alternative definition of the “bottleneck topology” on the set Confg(X\
K) of configurations of points in X \K, X locally compact space and K a closed
subset of X without involving metric. Recall that a configuration is a map with
finite support, δ : X \K → N0. A base for the bottleneck topology is given by the
collection of sets U(S) indexed by systems S = {(U1, k1), . . . , (Ur, kr), V } satisfying

(i) Ui, i = 1, . . . , r open subsets of X \K, V open neighborhood of K,
(ii) k1, k2, . . . , kr positive integers.

and defined by

U(S) :=
{
δ ∈ Confg(X \K)

∣∣ supp(δ) ⊂ U1 ∪ · · · ∪ Ur ∪ V,
∑
x∈Ui δ(x) = ki

}
.

A set U ⊂ Confg(X \K) is open in the bottleneck topology if for any δ ∈ U there
exists S such that

δ ∈ U(S) ⊂ U .
When X is a complete locally compact metric space and K is a closed subspace

the bottleneck metric of Confg(X \ K) given by the formulae in [11] induces the
bottleneck topology described above.

The “main theorem” in [11] implies:

Theorem 1.5 (CEH stability). The assignment f 7→ Cmr (f) is a continuous map
from the space Ct(X,S1) of tame maps to Confg(T \ ∆T) when the first space is
equipped with the compact open topology and the second with the topology described
above in case (X,K) = (T,∆T).

To better realize the differences between Theorem 1.2 and 1.5 we point out that:

(a) Arbitrary small perturbations of a tame map can introduce arbitrary many
mixed bar codes, see Example 1 in Appendix B.

(b) Arbitrary small perturbations of some tame maps (which have closed r-bar
codes of the form [a, a]) can decrease the number of closed r-barcodes and
increase the number of open (r − 1)-bar codes, see Example 2 in Appendix B.
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(c) Continuous deformations of tame maps can make the mixed r-barcodes, i.e.,
closed r-bar codes and open r-bar codes, appear or disappear. The decrease or
the increase in the number of closed r-bar codes is at the expense of the increase
or the decrease in the number of open (r − 1)-barcodes, see Examples 2 and 3
in Appendix B.

(d) The assignment f 7→ Cmr (f), as opposed to the assignment f 7→ Cr(f), can not
be extended continuously to the entire space Cξ(X,S1) and this because of the
lack of completeness of the bottleneck metric.

For the reader familiar with Morse theory we point out that the disappearance
of a closed-open r-bar code by a continuous deformation of tame map is similar to
the cancellation of a pair of two critical points one of index r one of index (r − 1)
in Morse theory as described in [27].

For a closed topological manifold Mn the configurations Cmr (f) satisfy Poincaré
duality but in analogy to the the Poincaré duality for the torsion subgroups of the
integral homology groups for closed orientable manifolds. Precisely, we have the
following result.

Theorem 1.6 (Poincaré duality). If Mn is a closed κ-orientable topological man-
ifold, f : M → S1 a tame map, then

Cmr (f)(〈a, b〉) = Cmn−1−r(f)(〈b, a〉).

Equivalently, Cmr (f)(z) = Cmn−1−r(f)(τ(z)), where τ(z) := 1/z̄ = z/|z|2 denotes
the inversion across the unit circle, z ∈ C \ 0.

It is interesting to regard the elements (i), (ii), (iii), that is, the critical values,
bar codes and Jordan blocks associated to a tame angle valued map f : X → S1,
as parallels to the rest points, the isolated trajectories between rest points and the
closed trajectories (actually Poincaré return maps for closed trajectories) of a vector
field which has a Morse angle-valued map f : M → S1 as Lyapunov map. These
last ones are the concepts which enter the Morse–Novikov theory, cf. [30, 31], and
are related to the topology of (X, ξf ), where ξf denotes the integral cohomology
class defined by f , in a similar way as the elements described in (i), (ii) and (iii)
are.

The last result, Theorem 1.7 below, improves on Morse inequalities for real-
valued maps resp. Morse–Novikov inequalities for angle-valued maps, the simplest
and most familiar applications of Morse resp. Morse–Novikov theory, cf. [26, 31].

Recall that for a smooth closed manifold Mn a smooth real or angle valued
map is Morse if all critical points x are non degenerate, hence have a Morse index,
indf (x) ∈ {0, 1, . . . , n}. Recall that a point x ∈ M is critical if, with respect to
any local coordinates (t1, t2, . . . , tn) with x given by t1 = t2 = · · · = tn = 0,
all partial derivatives ∂f/∂ti(0) vanish. A critical point is non-degenerate if in

addition the Hessian, i.e. the symmetric matrix ∂2f
∂ti∂tj

(0), has all eigenvalues non-

zero. These eigenvalues are all real, and the Morse index of f at x coincides with
the number of negative eigenvalues. The concepts critical points, non-degenerate
critical points, and index of a non-degenerate critical points are independent of the
local coordinates (t1, t2, . . . , tn).
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Let ci(f) be the number of critical points of index i. The Morse inequalites claim
that for any r ∈ N0, and with respect to any field κ, one has

r∑
i=0

(−1)r−ici(f) ≥
r∑
i=0

(−1)r−ibi

where bi = βi(M) if f is real-valued Morse map, and bi = βNi (M ; ξf ) if f is an
angle-valued Morse map, see [26, Equation (4λ)].

The following result refines the Morse inequalities:

Theorem 1.7. Let Mn be closed smooth manifold, 7 consider a field κ, and suppose
r is a non-negative integer. If f : M → R is a real-valued Morse map, then

cr(f) = βr(M) + ]Bcor (f) + ]Bcor−1(f).

Moreover, if f : M → S1 is an angle-valued Morse map, then

cr(f) = βNr (M ; ξf ) + ]Bcor (f) + ]Bcor−1(f).

Note that the right side of the above equalities make sense for an arbitrary
compact ANR equipped with a tame map rather than compact manifolds equipped
with a Morse function, an attractive feature in comparison with the classical Morse–
Novikov theory.

The paper contains, in addition to the present section which summarizes the
results, eight more sections which describe the concepts involved in and provide the
proofs of the results and three appendices. In Section 2 we review simple results
about graph representations of the two graphs relevant for this paper, G2m and Z.
In Section 3 we define the sets B...r (f) and Jr(f) and provide the preliminaries for
the proof of Theorem 1.1. In Section 4 we prove Theorem 1.1. In Section 5 we
define the function δfr and prove Theorem 1.2. In Sections 6 and 7 we discuss the
Poincaré duality for the configurations Cr(f) and Cmr (f) and prove Theorems 1.3
and 1.6. In Section 8 we discuss some linear algebra of linear relations and prove
Theorem 1.4. In Section 9 we verify Theorem 1.7. Appendix A provides an example
of tame map and describes its bar codes and Jordan cells. Appendix B illustrates
the behavior of bar codes with respect to a continuous deformation of the map.
Appendix C provides a few observations about κ[t−1, t]-modules.

Note that if f : X → S1 is not surjective, then the set Jr(f) vanishes for all r.
Note also that a real-valued f can be viewed as a non-surjective angle-valued map,
and the bar codes are essentially the same as the zigzag persistence barcodes cf.
[10]. In this case there is no need to consider T and T \∆T; the natural place for
the support of the configuration Cr(f), consisting of closed r-barcodes and open
(r − 1)-barcodes, is C; and the natural place for the support of Cmf (f), consisting

of the closed-open r-barcodes and open-closed r-barcodes, is C \∆.

Prior work. Relating the topology of a space to the homological behavior of the
sublevel sets of a real or angle-valued map represents what “persistence theory”
introduced in [17] intends to do. Prior efforts to extend Morse theory to all contin-
uous real-valued functions (fonctionelles) can be found in the papers of M. Morse
[28] and R. Deheuvels [13], which preceded persistence theory. The work of R. De-
heuvels [13], permits to derive the barcodes (the support of persistence diagrams as

7The result remains true for compact manifolds with boundary satisfying an appropriate hy-
pothesis on the behavior of f along the boundary.
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considered in [17] or [16]) from the differentials of Leray spectral sequence of a real
valued tame map. The same observation holds about the barcodes in the zigzag
persistence and persistence for circle valued maps but we can not find this in this
existing in literature.

A stability phenomena for the persistence diagrams associated to a real valued
map in classical persistence theory was first established in [11].

The first use of graph representations in connection with persistence appears
first in [10] under the name of zigzag persistence. The graphs considered are all
linear finite graphs whose collection of indecomposable representations is finite and
not hard to describe and interpret as bar codes (of four types).

The definition of bar codes and of Jordan cells for S1-valued tame maps was
first provided in [3] based on graph representations of the cyclic graph G2m whose
indecomposable representations are more complex and led in addition to bar codes
to Jordan cells.

The referee points out a that a number of the results in this paper are reminiscent
of behavior of the bar codes in zigzag persistence cf. [10] and this deserves to be
mentioned. We are happy to do so. Reminiscences of the work of [12] in the
Poincaré duality Theorems 1.6 should be also acknowledged.

Some more recent work. Using results from topology of Hilbert cube manifolds,
it was recently observed that the hypothesis “X homeomorphic to a simplicial
complex” in Theorem 1.2 can be weaken to “X compact ANR”, and the hypothesis
“tame map” in Theorems 1.1, 1.3, and 1.4 can be weaken to “continuous map” cf
[5] and [6].

In case of a real valued map and in the presence of a scalar product on Hr(X) (the
field κ being R or C) the configuration Cr(f) can be implemented as a configuration

δ̂fr of subspaces δ̂fr (z) ⊆ Hr(X), z in the support of Cr(f), which are mutually

orthogonal and have dim δ̂fr (z) equal to the multiplicity of z. The assignment f  
δ̂fr remains continuous w.r. to the obvious topologies and in case of closed manifolds

Poincaré duality between configurations Cr(f) extends to the configurations δ̂fr
of vector spaces. This is the case when X is the underlying space of a closed
Riemannian manifold Mn and κ = R with the scalar product on Hr(M) provided
by the identification with the space of harmonic forms in complementary dimension
(n− r). This will be discussed in details in [5].

A similar fact remains true for angle valued maps. If κ = C the Novikov ho-
mology HN

r (X; ξf ) can be replaced by the L2-homology HL2
r (M̃) of the infinite

cyclic cover X̃ defined by the map f . When regarded as a Hilbert module over the
von Neumann algebra L∞(S1) this Hilbert module has the von Neumann dimension
equal to the Novikov–Betti number βNr (X; ξf ). The mutually orthogonal subspaces
are in this case mutually orthogonal Hilbert submodules. This will be discussed in
[6].

If f : Mn → R or f : Mn → S1 is a Morse function, Lyapunov for a smooth vec-
tor field X on a closed manifold M, the Morse complex resp. the Novikov complex
tensored by a field κ derived geometrically from the critical points of f and the iso-
lated trajectories of X between critical points, can be recovered up to isomorphism
from the closed, open and closed-open bar codes of f via the results discussed in
this paper. Actually the closed-open barcodes determine the rank of the boundary
maps in these complexes. More about can be found in the forthcoming book [8].
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The precise relation between Reidemeister torsion, closed trajectories for a vector
field with an angle valued map f as Lyapunov and the Jordan cells and barcodes
is the topic of work in preparation under the name Alternative to Morse–Novikov
theory.

Applications. The angle valued maps are as interesting and frequent as the real
valued maps. Observing/sampling an environment/shape from a central point in
each direction should be as interesting and natural as observing the sublevel sets
with respect to a real valued function of a shape.

So far there are pleasant mathematical applications of the results in this paper
and of the subsequent work, cf. [5, 6, 7, 8], in Computational Topology, Geometric
Analysis and Dynamics.

• Computational Topology. Theorems 1.1 and 1.4 imply precise relations
between Betti numbers of X, Novikov Betti numbers and the monodromy,
i.e., Jordan cells of a pair (X; ξf ). They lead to computer implementable
algorithms for the calculation of the last two without involving the infinite
cyclic cover of ξf , a computer unfriendly object (being infinite even when
X is a finite simplicial complex), cf. [3] and [7]. In particular, they lead
to alternative methods to calculate the Alexander polynomial of knots and
some Reidemeister torsions, to recognition of when f : X → S1 is homotopic
to a fibration with compact fiber, and in this case to the calculation of
the Betti numbers of the fiber. A paper on these type of results is in
preparation.
• Algebraic Topology of complements of complex hyper surfaces. The com-

plement of a complex hyper surface in Cn comes equipped with a natural
angle valued map. The relevant algebraic topology invariants of this space
are quite important in algebraic geometry. They can be express in therms
of bar codes and Jordan cells and then are in principle computable. Results
in this direction are available in [6, 7, 8].
• Geometric Analysis. The implementation of Cr(f) to a configuration of mu-

tually orthogonal spaces provides an orthogonal decomposition of the space
of complex harmonic (n − r)-differential forms in subspaces, i.e., compo-
nents, each subspace corresponding to the complex number represented by a
closed r-barcode or an open (r−1)-barcode. For generic f each component
has dimension one. A pleasant consequences of this additional structure is
the existence for a generic pair (g, f) g-Riemannian metric, f smooth map
of a canonical base in the space of r-differential forms, analogous of the base
provided by the trigonometric functions in the space of smooth functions
on S1.
• Dynamics. The presence of Jordan cells (i.e. non-trivial monodromy) for

a map f : X → S1 implies the existence of closed trajectories for flows on
X for which f : X → S1 is Lyapunov. The non-triviality of Cmr (f) implies
existence of instantons between rest points. More precisely, Theorem 1.7
above permits to describe the rank of boundary map ∂r in the Morse com-
plex or the Novikov complex relevant quantity in the counting of instantons.
More can be found in Chapter 8 of the book in preparation [8].

The authors thank the referee for a careful reading and useful observations. The
present version ows much to his critics and suggestions.
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2. Graph representations

Fix a field κ. Let Γ be an oriented graph, possibly with infinitely many ver-
tices. A Γ-representation ρ assigns to each vertex x of Γ a finite dimensional vector
space Vx and to each arrow a : x → y between two vertices x and y a linear map
φa : Vx → Vy. Suppose ρ′ is another Γ-representation with vector spaces V ′x and
linear maps φ′a : V ′x → V ′y . A morphism from ρ to ρ′ is a collection of linear maps
ψx : Vx → V ′x such that φ′aψx = ψyφa for all arrows a : x → y between any two
vertices x and y. More succinctly, a Γ-representation may be defined as a covariant
functor from the (small) category generated by the graph Γ to the (abelian) category
of finite dimensional vector spaces. A morphism of Γ-representations is just a natu-
ral transformation between two such functors. Consequently, Γ-representations and
morphisms between Γ-representations form an abelian category, see [2, 32]. In par-
ticular, the concepts of isomorphism (equivalence), direct sum, kernel, image, and
short exact sequence are well defined for (morphisms between) Γ-representations.

Suppose ρα, α ∈ A, is a family of Γ-representations with vector spaces V αx
and linear maps φαa : V αx → V αy . If, for every vertex x, all but finitely many of
the vector spaces V αx are trivial, then one considers the Γ-representation

⊕
α∈A ρα

which assigns to a vertex x the vector space
⊕

α V
α
x and to an arrow a : x→ y the

linear map
⊕

α φ
α
a :
⊕

α V
α
x →

⊕
α V

α
y .

A Γ-representation ρ is called: regular, if all the linear maps φa are isomorphisms;
with finite support, if Vx = 0 for all but finitely many vertices; and indecomposable,
if it is not isomorphic to the sum of two non-trivial representations.

A standard result in abelian categories, see [1, Theorem 1], [32, Chapter 5] or
[2, Theorem 6.45], formulated for Γ-representations with finite support, reads:

Theorem 2.1 (Krull–Remak–Schmidt). Any Γ-representation with finite support
is isomorphic to a direct sum ρ1 ⊕ · · · ⊕ ρn with indecomposable summands ρi.
Moreover, the components ρi are unique up to isomorphism and reordering.

In this paper the oriented graph Γ of primary concern will be G2m and for
technical reasons we will need the infinite oriented graph Z. The graph Γ = G2m

has vertices x1, x2, . . . , x2m and arrows ai : x2i−1 → x2i, 1 ≤ i ≤ m, and bi : x2i+1 →
x2i, 1 ≤ i ≤ m− 1 and bm : x1 → x2m, see Figure 1. The graph Γ = Z has vertices
xi, i ∈ Z, and arrows ai : x2i−1 → x2i and bi : x2i+1 → x2i, see Figure 2.

Both G2m and Z-representations ρ will be recorded as

ρ =
{
Vr, αi : V2i−1 → V2i, βi : V2i+1 → V2i

}
in the first case with 1 ≤ r ≤ 2m, 1 ≤ i ≤ m, with the convention that V2m+1 = V1,
in the second case with r, i ∈ Z.

Any regular G2m-representation ρ = {Vr, αi, βi}, not necessarily indecompos-
able, is equivalent i.e. isomorphic to the representation

ρ(V, T ) :=
{
V ′r = V, α′1 = T, α′i = Id i 6= 1, β′i = Id

}
with T = β−1

m · α−1
m · · ·β−1

1 · α1. The isomorphism i.e. conjugacy class of the pair
(V, T ) is called monodromy.

According to the Krull–Remak–Schmidt theorem, every G2m-representation ρ
decomposes as sum, ρ ∼= ρ′ ⊕ ρ′′, where ρ′′ is regular and ρ′ has no non-trivial
regular summand. Moreover, both parts ρ′ and ρ′′ are unique up to isomorphisms.
The regular part ρ′′ provides the monodromy of ρ which as pointed out above is
determined by an isomorphism class of pairs (V, T ).
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Figure 1. The graph G2m.

· · · x2i−1

bi−1oo ai // x2i x2i+1
bioo ai+1 // x2i+2 · · ·bi+1oo

Figure 2. The graph Z.

The Z-representations we consider are either with finite support or periodic. The
representation is periodic if for some integer N , Vr = Vr+2N , αi = αi+N , βi = βi+N .
Both type of Z-representations, periodic and with finite support, as well as a finite
direct sum of of such representations will be referred to as good Z-representations.

2.1. The indecomposable G2m-representations and the indecomposable
good Z-representations. The indecomposable G2m-representations are of two
types, cf. [3, Section 4]. In a slightly different formulation the identification below
was first established in [29] and [15].

Type I (bar codes). These representations are labeled by the four types of intervals
with integer valued ends r and s, r ≤ s, 1 ≤ r ≤ m, namely [r, s] with r ≤ s, and
(r, s), [r, s), (r, s] with r < s. If I is an interval of this form, then the corresponding
representation will be denoted by ρG(I). More explicitly, they are denoted by
ρG({r, s}) with “{” notation for either “[” or “(” and “}” for either “]” or “)” and
graphically described as follows.8

Suppose the vertices x1, x2, . . . , x2m−1, x2m are located counter-clockwise on the
unit circle, say at the the angles t1 < θ1 < t2 < θ2 < · · · < tm < θm, with 0 < t1
and θm ≤ 2π.

To describe the representation ρG({i, j + mk}), 1 ≤ i, j ≤ m, draw the coun-
terclockwise spiral curve from a = θi to b = θj + 2πk with the ends a black or an
empty circle to indicate “closed” or “open” interval. Black circle indicates that the
end is on the spiral, empty circle that is not.

8A simpler labeling is possible but the one proposed is consistent with the geometric situation
the representations are derived from.
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Figure 3. The spiral for [i, j + 2m).

The vector space Vi is generated by the intersection points of the spiral with the
radius corresponding to the vertex xi and αi and βi are defined on generators as
follows: A generator e of V2i±1 is sent to the generator e′ of V2i if connected by a
piece of spiral or to 0 if not. The spiral in Figure 3 below corresponds to k = 2,
and defines the representation ρG([i, j + 2m)).

Type II (Jordan blocks / cells). They are labeled by Jordan blocks J = (V, T )
and denoted by ρG(J). Recall that a Jordan block is an isomorphism class of
indecomposable pairs (V, T ), V a vector space T : V → V an isomorphism. The
representation ρG(J) has all vector spaces equal to V , α1 = T and β1 = αi = βi =
Id for 2 ≤ i ≤ m. If J = (κk, T (λ, k)) we also write ρG(J) := ρG(λ, k).

One refers to both the labeling interval {r, s} and the representation ρG({r, s})
as bar code and to the indecomposable pair J and the representation ρG(J) as
Jordan block.

By the Krull–Remak–Schmidt theorem and the classification of indecomposables,
any G2m-representation ρ can be decomposed as a sum of indecomposables,

ρ ∼=
⊕
I∈B(ρ)

ρG(I)⊕
⊕

J∈J (ρ)

ρG(J). (2)

Here B(ρ) denotes the collection of all bar codes (with proper multiplicity) appear-
ing in the decomposition of ρ, and J (ρ) denotes the collection of all Jordan blocks
(with proper multiplicity) appearing in the decomposition of ρ.

We further decompose,

B(ρ) = Bc(ρ) t Bo(ρ) t Bco(ρ) t Boc(ρ)

where Bc(ρ), Bo(ρ), Bco(ρ) and Boc(ρ) denote the subcollections (with multiplici-
ties) of barcodes with both ends closed, open, closed-open and open-closed, respec-
tively. For λ ∈ κ \ 0 one denotes by Jλ(ρ) the collection (with multiplicities) of
Jordan blocks with eigenvalue λ.9

9If the linear map T in the Jordan block J = (V, T ) has an eigenvalue λ ∈ κ then this is the
only eigenvalue, and J is similar to (κk, T (λ, k)), see (1).
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The indecomposable Z-representations with finite support are all bar codes in-
dexed by four type of intervals I with ends i and j, [i, j] with i ≤ j, or [i, j), (i, j],
(i, j) with i < j and denoted by ρZ(I). The only periodic indecomposable repre-
sentation is denoted by ρZ∞. The representation denoted by ρZ(I) has all vector
spaces equal to either κ or 0, the linear maps αi and βj are equal to the identity if
both, the source and the target, are non-trivial and zero otherwise. Precisely,

(i) ρZ([i, j]), i ≤ j has Vr = κ for r = 2i, . . . , 2j, and Vr = 0 otherwise,
(ii) ρZ([i, j)), i < j has Vr = κ for r = 2i, . . . , 2j − 1, and Vr = 0 otherwise,

(iii) ρZ((i, j]), i < j has Vr = κ for r = 2i+ 1, . . . , 2j, and Vr = 0 otherwise,
(iv) ρZ((i, j)), i < j has Vr = κ for r = 2i+ 1, . . . , 2j − 1, and Vr = 0 otherwise.

Both, the labeling interval I and the representation ρZ(I), will be referred to as
bar code.

The indecomposable representation ρZ∞, has all vector spaces Vr = κ and all
linear maps αi = βi = Id.

The Krull–Remak–Schmidt decomposition for representations with finite support
extends to all good Z-representations. For the reader’s convenience an argument is
presented at the end of the next section since it involves the definition of truncation.

Precisely, any such (good) representation ρ is a sum (in the sense described
above) of possibly infinitely many indecomposables with finite support and finitely
many copies of ρZ∞,

ρ ∼=
⊕
I∈B(ρ)

ρZ(I)⊕
⊕
n

ρZ∞, (3)

with indecomposable factors and their multiplicity unique up to isomorphism. Here
B(ρ) the collection of all bar codes (with multiplicity) appearing in the decomposi-
tion, and

⊕
n ρ
Z
∞ denotes the sum of n copies of ρZ∞. Each indecomposable ρZ(I) or

ρZ∞ appears with finite multiplicity. We let Bc(ρ), Bo(ρ), Bco(ρ) and Boc(ρ) denote
the subcollections (with multiplicities) of closed, open, closed-open and open-closed
bar codes in B(ρ). Moreover, J Z(ρ) denotes the collection of all copies of ρZ∞ which
appear as independent direct summands in ρ. The decomposition (3) is discussed
in the next subsection.

In view of the above comments, statements about G2m-representations or about
good Z-representations, formulated in this paper, will be verified first for the inde-
composable representations described above and if hold true, by the Krull–Remak–
Schmidt decomposition theorem, concluded for arbitrary representations.

2.2. Two basic constructions. The infinite cyclic covering of a G2m-represen-
tation ρ = {Vr, ai, bi, 1 ≤ r ≤ 2m, 1 ≤ i ≤ m} is the periodic Z-representation

ρ̃ := {Ṽr, ãi, b̃i, r, i ∈ Z} defined by Ṽr+2mk = Vr, ãi+km = ai, and b̃i+km = bi.
When applied to indecomposable ρG(I) or ρG(J), where I denotes an interval and
J = (V, T ) is a Jordan block, one obtains:

ρ̃G(I) =
⊕
k∈Z

ρZ(I +mk)

ρ̃G(J) =
⊕
n

ρZ∞, n = dimV, J = (V, T ).
(4)

Here I + r, r ∈ Z denotes the translate of the interval I, by r units.
The truncation Tk,l(ρ) of a Z-representation ρ is defined for any pair of integers

k, l with k ≤ l. If ρ is a G2m-representation, then the truncation Tk,l(ρ) is defined
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for any pair of integers k, l with 1 ≤ k ≤ l ≤ m. In either case, if ρ = {Vr, αi, βi}
is a representation then the truncation is defined by Tk,l(ρ) := {V ′r , α′i, β′i} where:

V ′r =

{
Vr if 2k ≤ r ≤ 2l, and

0 otherwise.

α′r =

{
αr if k + 1 ≤ r ≤ l, and

0 otherwise.

β′r =

{
βr if k ≤ r ≤ l − 1, and

0 otherwise.

(5)

When applied to indecomposable Z-representations one obtains

Tk,l(ρ
Z
∞) = ρZ([k, l]),

Tk,l(ρ
Z(I)) = ρZ(I ∩ [k, l]),

(6)

and when applied to indecomposable G2m-representations one obtains

Tk,l(ρ
G(I)) =

⊕
r∈Z

ρG(Ir), Ir = (I + rm) ∩ [k, l],

Tk,l(ρ
G(J)) =

⊕
n

ρG([k, l]), n = dimV, J = (V, T ).
(7)

Here I + rm denotes the translate of the interval I to the right by rm units.
Given a G2m-representation ρ one writes: J̃ (ρ) for the collection which contains

with any Jordan block J = (V, T ) ∈ J (ρ), a number of n(J) = dim(V ) copies of

ρZ∞ hence a total of
∑
J=(V,T )∈J (ρ) dimV copies of ρZ∞, and B̃−(ρ) := {I + 2πk |

I ∈ B−(ρ), k ∈ Z} with B̃− any of B̃, B̃c, B̃o, B̃co, B̃oc.
In terms of this notation is convenient to keep in mind the following book-

keeping.

Lemma 2.2. (a) If ρ is a G2m-representation then

B(ρ̃) = B̃(ρ), J (ρ̃) = J̃ (ρ),

Bc(ρ̃) = B̃c(ρ), Bo(ρ̃) = B̃o(ρ), Bco(ρ̃) = B̃co(ρ), Boc(ρ̃) = B̃oc(ρ),

and:

Bc(Tk,l(ρ)) = {I ∩ [k, l] : I ∈ B̃(ρ) such that I ∩ [k, l] is non-empty and closed}
t {[k, l] with multiplicity ]J̃ (ρ)},

Bo(Tk,l(ρ)) = {I ∈ B̃o(ρ) : I ⊂ [k, l]}
J (Tk,l(ρ)) = ∅.

(b) If ρ is a good Z-representation then:

Bc(Tk,l(ρ)) = {I ∩ [k, l] : I ∈ B(ρ) such that I ∩ [k, l] is non-empty and closed}
t {[k, l] with multiplicity ]J (ρ)},

Bo(Tk,l(ρ)) = {I ∈ Bo(ρ) : I ⊂ [k, l]},
J (Tk,l(ρ)) = ∅.
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Proof. To see (a) observe that infinite cyclic covering and truncation are both

additive constructions, that is to say, ρ̃1 ⊕ ρ2 = ρ̃1 ⊕ ρ̃2 and Tk,l(ρ1 ⊕ ρ2) =
Tk,l(ρ1) ⊕ Tk,l(ρ2) for any two G2m-representations ρ1 and ρ2. The expressions
for B(ρ), Bc(ρ), Bo(ρ), Bco(ρ), Boc(ρ), and J (ρ) thus follow immediately from
(4). Similarly, the expressions for Bc(Tk,l(ρ)), Bo(Tk,l(ρ)), and J (Tk,l(ρ)) follow
from (7). Since the truncation is also additive for good Z-representations, part (b)
follows from (6). �

Krull-Remak-Schmidt decomposition for good Z− representations:
If ρ has finite support this is the standard Krull-Remak-Schmidt decomposition

theorem in an abelian category.
If ρ is periodic it is isomorphic to some ρ̃′ with ρ′ a G2m−representation. nei-

ther m nor ρ′ is unique. Clearly a decomposition of ρ′ as sum of the barcode-
representations I ′1 with multiplicity r′1, I ′2 with multiplicity r′2 . . . I

′
N ′ with multi-

plicity r′N ′1
and Jordan blocks whose total dimension of the underlying vector space

n′1 provides a decomposition of ρ as an infinite sum of I ′1 +mk with multiplicity r′1,
I ′2 +mk with multiplicity r′2 . . . I

′
N ′ +mk with multiplicity r′N ′1

for any k ∈ Z and

n′1 copies of ρmatchZ∞ . This implies the existence of decomposition as stated in (3).
Note that for any decomposition of type (3) the following holds:
- there are only finitely many barcodes up to translation by multiples of m which

makes the length of bar codes bounded from above,
- each barcode appears with finite multiplicity and
- there are finitely many components ρZ∞.

Since a truncation Ti,j converts a barcode into a barcode (possibly empty) and ρZ∞

into a closed barcode [i, j], comparing the outcome of enough many truncation Ti,j
(with (j− i) larger than the length of the barcodes of the two representations) and
in view of the validity of the Krull-Remak-Schmidt theorem for finite graphs, on
obtains the equality in the number of each type of barcodes and of the number of
components ρZ∞ in any two decompositions (3).

2.3. The matrix M(ρ) and the representation ρu. For everyG2m-representation
ρ = {Vr, αi, βi}, 1 ≤ r ≤ 2m, 1 ≤ i ≤ m, we introduce a linear map, M(ρ) :

⊕
1≤i≤m V2i−1 →⊕

1≤i≤m V2i, defined by the block matrix:

α1 −β1 0 . . . 0

0 α2 −β2
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 αm−1 −βm−1

−βm 0 . . . 0 αm


.

Moreover, for u ∈ κ \ 0 we let ρu = {V ′r , α′i, β′i} denote the G2m-representation
where V ′r = Vr, α

′
1 = uα1, α′i = αi for i 6= 1 and β′i = βi.

For a Z-representation ρ = {Vr, αi, βi} the linear map M(ρ) :
⊕

i∈Z V2i−1 →⊕
i∈Z V2i, is defined by the infinite block matrix with entries:

M(ρ)2r−1,2s =


αr if s = r,

βr−1 if s = r − 1, and

0 otherwise.
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If the Z-representation ρ̃ is the infinite cyclic covering of a G2m-representation ρ,
then the shift i 7→ i+m defines isomorphisms todd :

⊕
i∈Z V2i−1 →

⊕
i∈Z V2(i+m)−1

and teven :
⊕

i∈Z V2i →
⊕

i∈Z V2(i+m) such that teven ◦M(ρ̃) = M(ρ̃) ◦ todd. The
induced automorphisms on kerM(ρ̃) and cokerM(ρ̃) will be denoted by:

t : kerM(ρ̃)→ kerM(ρ̃) and t : cokerM(ρ̃)→ cokerM(ρ̃). (8)

For every Γ-representation ρ introduce an N0-valued function dim ρ on the set of
vertices of Γ, defined by dim ρ(x) := dimVx, where Vx is the vector space assigned
to the vertex x by ρ. Moreover, for every representation ρ of G2m or Z we put
dim ker(ρ) := dim kerM(ρ) and dim coker(ρ) := dim cokerM(ρ).

As noticed in [3] one has:

Lemma 2.3 ([3]). Suppose ρ, ρ1 and ρ2 are representations of G2m or Z. Then
the following hold true for λ, u ∈ κ \ 0, k ∈ N, and all intervals I with integral
endpoints:

(a) dim(ρu) = dim(ρ).
(b) (ρ1 ⊕ ρ2)u = (ρ1)u ⊕ (ρ2)u.
(c) ρG(λ, k)u = ρG(uλ, k).
(d) ρG(I)u = ρG(I).
(e) dim(ρ1 ⊕ ρ2) = dim(ρ1) + dim(ρ2).
(f) dim ker(ρ1 ⊕ ρ2) = dim ker(ρ1) + dim ker(ρ2).
(g) dim coker(ρ1 ⊕ ρ2) = dim coker(ρ1) + dim coker(ρ2).

Proof. The statements in parts (a) and (b) are trivial. Part (c) follows from the fact
that the Jordan block T (uλ, k), see (1), is conjugate to uT (λ, k) via the diagonal
matrix diag(1, u, u2, . . . , uk−1). Part (d) readily follows from the classification of
indecomposable G2m-representations. The statement in (e) is obvious. To see (f)
and (g) note that M(ρ1 ⊕ ρ2) = M(ρ1) ⊕M(ρ2), hence ker(ρ1 ⊕ ρ2) = ker(ρ1) ⊕
ker(ρ2) and coker(ρ1 ⊕ ρ2) = coker(ρ1) ⊕ coker(ρ2). For G2m-representations the
latter can be found in [3, Proposition 4.1]. �

Moreover:

Proposition 2.4 ([3]).

(a) For indecomposable G2m-representations of type I we have
(a1) dim ker ρG([i, j]) = 0, dim coker ρG([i, j]) = 1,
(a2) dim ker ρG([i, j)) = 0, dim coker ρI([i, j)) = 0,
(a3) dim ker ρG((i, j]) = 0, dim coker ρG((i, j]) = 0,
(a4) dim ker ρG((i, j)) = 1, dim coker ρG((i, j)) = 0,
and for indecomposable Z-representations with finite support:
(a5) dim ker ρZ([i, j]) = 0, dim coker ρZ([i, j]) = 1,
(a6) dim ker ρZ([i, j)) = 0, dim coker ρZ([i, j)) = 0,
(a7) dim ker ρZ((i, j]) = 0, dim coker ρZ((i, j]) = 0,
(a8) dim ker ρZ((i, j)) = 1, dim coker ρZ((i, j)) = 0.

(b) For indecomposable G2m-representations of type II we have
(b1) dim ker ρG(J) = 0 if J 6= (κk, T (1, k)); dim ker ρG(κk, T (1, k)) = 1
(b2) dim coker ρG(J) = 0 if J 6= (κk, T (1, k)); dim coker ρG(κk, T (1, k)) = 1
and for the Z-representation ρZ∞:
(b3) dim ker(ρZ∞) = 0,
(b4) dim coker(ρZ∞) = 1.
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Proof. The statements in (a1), (a2), (a3), (a4), (b1), and (b2) can be found in
[3, Proposition 4.3]. Parts (a5), (a6), (a7), (a8), (b3), and (b4) can be proved
analogously. Indeed, the calculation of the kernel of M(ρ) reduces to the description
of the space of solutions of the linear system:

α1(v1) = β1(v3)

α2(v3) = β2(v5)

...

αm(v2m−1) = βm(v1)

wit v2i−1 ∈ V2i−1. This is straight forward for indecomposable representations. �

Lemma 2.5. If ρ = {Vi, αi, βi} is a regular Z-representation, i.e. all αi and βi are
isomorphisms, then kerM(ρ) = 0, and for every i the canonical inclusion V2i →⊕

r∈Z V2r followed by the projection onto cokerM(ρ) provides an isomorphism V2i
∼=

cokerM(ρ).

Proof. By regularity, the system of equations αr(v2r−1) = βr(v2r+1) does not have
a non-trivial solution for which only finitely many of the v2r−1 ∈ V2r−1 are non-
trivial, whence kerM(ρ) = 0. To see that V2i intersects the image of M(ρ) trivially,
suppose w ∈ V2i ∩ imgM(ρ). Then there exist v2r−1 ∈ V2r−1, almost all zero,
such that w = αi(v2i−1) − βi(v2i+1) and αr(v2r−1) = βr(v2r+1) for all r 6= i. As
v2r+1 = 0 for sufficiently large r, the latter equations imply v2i+1 = 0. Similarly,
since v2r−1 = 0 for sufficiently small r, we obtain v2i−1 = 0, whence w = 0. Finally,
if u ∈ V2r, then the corresponding element in cokerM(ρ) can also be represented
by by an element in V2r+2, namely αr+1β

−1
r (u). Consequently, each element in

cokerM(ρ) can be represented by an element in V2i. �

To formulate a refinement of Proposition 2.4 we introduce additional notation:

Definition 2.6. For a set S denote by κ[S] the vector space generated by S, i.e.
the vector space of κ-valued maps on S with finite support, and by κ[[S]] the vector
space of all κ-valued maps on S. If S is finite, then κ[S] = κ[[S]].

For two subsets S1 and S2 of S the canonical linear maps κ[S1]→ κ[S2], κ[S1]→
κ[[S2]], or κ[[S1]]→ κ[[S2]] are the unique linear maps which restrict to the identity
on S1 ∩ S2 and to zero on S1 \ S2.

We warn the reader of the “unfortunate notational similarity” between κ[S] and
κ[T−1, T ] with the last one denoting the ring of Laurent polynomials of variable T .
Fortunately they appear below in contexts which exclude confusion.

If ρ = {Vr, αi, βi} is a G2m-representation, then the diagram⊕
k<i≤l V2i−1

//

M(Tk,l(ρ))

��

⊕
k′<i≤l′ V2i−1

//

M(Tk′,l′ (ρ))

��

⊕
i V2i−1

M(ρ)

��⊕
k≤i≤l V2i

//⊕
k′≤i≤l′ V2i

//⊕
i V2i

(9)

commutes, for all integers 1 ≤ k′ ≤ k ≤ l ≤ l′ ≤ m, and we obtain induced linear
maps

kerM(Tk,l(ρ))
i // kerM(Tk′,l′(ρ))

i′ // kerM(ρ) (10)
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as well as

cokerM(Tk,l(ρ))
j // cokerM(Tk′,l′(ρ))

j′ // cokerM(ρ). (11)

The same holds true if ρ is a good Z-representation and k′ ≤ k ≤ l ≤ l′. For either
representation, the linear maps i and i′ in (10) are injective since the horizontal
inclusions in diagram (9) are injective. The maps j and j′ in (11) need not be
injective in general. Correspondingly, see Definition 2.6, we consider the linear
maps

κ[Bo(Tk,l(ρ))] // κ[Bo(Tk′,l′(ρ))] // κ[Bo(ρ) t J ] (12)

and

κ[Bc(Tk,l(ρ))] // κ[Bc(Tk′,l′(ρ))] // κ[Bc(ρ) t J ] (13)

where J is defined as follows. In (12) J = ∅ if ρ is a good Z-representation and
J = J1(ρ) if ρ is a G2m-representation. In (13) J = J (ρ) if ρ is a good Z-
representation and J = J1(ρ) if ρ is a G2m-representation. The linear maps in
(12) are injective since, according to Lemma 2.2, we have inclusions Bo(Tk,l(ρ)) ⊆
Bo(Tk′,l′(ρ)) ⊆ Bo(ρ) ⊆ Bo(ρ) t J . Lemma 2.2 also shows that the linear maps
in (13) will not be injective in general. Using decompositions as in (2) and (3),
additivity of the constructions, and Proposition 2.4, we see that there are linear
isomorphisms

κ[Bo(Tk,l(ρ))] ∼= kerM(Tk,l(ρ)), κ[Bo(ρ) t J ] ∼= kerM(ρ),

κ[Bc(Tk,l(ρ))] ∼= cokerM(Tk,l(ρ)), κ[Bc(ρ) t J ] ∼= cokerM(ρ),

and that the ranks of the linear maps in (10) and (11) coincide with the ranks
of the corresponding linear maps in (12) and (13), respectively. The following
refinement of Proposition 2.4 asserts that these isomorphisms may even be chosen
to be compatible with truncation.

Proposition 2.7. (a) Let ρ be a G2m-representation. Then every decomposition
ρ =

⊕
I∈B(ρ) ρ

G(I)⊕⊕J∈J (ρ) ρ
G(J) induces isomorphisms Ψo, Ψo

k,l, Ψc, and Ψc
k,l

such that the diagrams

kerM(Tk,l(ρ))
i // kerM(Tk′,l′(ρ))

i′ // kerM(ρ)

κ[Bo(Tk,l(ρ))]

∼=Ψok,l

OO

// κ[Bo(Tk′,l′(ρ))]

∼=Ψo
k′,l′

OO

// κ[Bo(ρ) t J1(ρ)]

∼=Ψo

OO
(14)

and

cokerM(Tk,l(ρ))
j // cokerM(Tk′,l′(ρ))

j′ // cokerM(ρ)

κ[Bc(Tk,l(ρ))]

∼=Ψck,l

OO

// κ[Bc(Tk′,l′(ρ))]

∼=Ψc
k′,l′

OO

// κ[Bc(ρ) t J1(ρ)].

∼=Ψc

OO
(15)

commute for all integers 1 ≤ k′ ≤ k ≤ l ≤ l′ ≤ m.
(b) Let ρ be a good Z-representation. Then every decomposition ρ =

⊕
I∈B(ρ) ρ(I)⊕⊕

n ρ
Z
∞, where n = ]J(ρ), induces isomorphisms Ψo, Ψo

k,l, Ψc, and Ψc
k,l such that
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the diagrams

kerM(Tk,l(ρ))
i // kerM(Tk′,l′(ρ))

i′ // kerM(ρ)

κ[Bo(Tk,l(ρ))]

∼=Ψok,l

OO

// κ[Bo(Tk′,l′(ρ))]

∼=Ψo
k′,l′

OO

// κ[Bo(ρ)]

∼=Ψo

OO
(16)

and

cokerM(Tk,l(ρ))
j // cokerM(Tk′,l′(ρ))

j′ // cokerM(ρ)

κ[Bc(Tk,l(ρ))]

∼=Ψck,l

OO

// κ[Bc(Tk′,l′(ρ))]

∼=Ψc
k′,l′

OO

// κ[Bc(ρ) t J (ρ)].

∼=Ψc

OO
(17)

commute for all integers k′ ≤ k ≤ l ≤ l′.
Proof. Since the involved constructions are all additive, that is to say, compati-
ble with direct sums of representations, it suffices to construct the isomorphisms
Ψo, Ψo

k,l, Ψc, and Ψc
k,lfor indecomposable representations. For indecomposable

representations, however, the constructions are tautological in view of Proposition
2.4. �

We close this section with an observation about the infinite cyclic covering asso-
ciated with a G2m-representation. Let ρ = {Vr, αi, βi} be a G2m-representation and

let ρ̃ = {Ṽr, α̃i, β̃i} denote the associated infinite cyclic covering Z-representation,
cf. the beginning of Section 2.2. Recall that the shift by m induces automorphisms
denoted by t on kerM(ρ̃) and cokerM(ρ̃), see (8). These automorphisms turn
kerM(ρ̃) and cokerM(ρ̃) into κ[T−1, T ]-modules such that T acts by t and T−1

acts by t−1. Appendix C contains some basic facts on κ[T, T−1]-modules.
Correspondingly, the translation of intervals, I 7→ I + m, induces bijections on

Bo(ρ̃) and Bc(ρ̃), see (4). The induced automorphisms on κ[Bo(ρ̃)] and κ[Bc(ρ̃)] turn
these two vector spaces into κ[T−1, T ]-modules. Moreover, identifying κ[J (ρ̃)] =⊕

(V,T )∈J (ρ) V , we obtain an automorphism
⊕

(V,T )∈J (ρ) T on κ[J (ρ̃)] which we

use to turn this vector space into a κ[T−1, T ]-module. Via κ[Bc(ρ̃) t J (ρ̃)] =
κ[Bc(ρ̃)]⊕ κ[J (ρ̃)], we obtain a κ[T−1, T ]-module structure on κ[Bc(ρ̃) t J (ρ̃)].

Lemma 2.8. Let ρ be a G2m-representation and let ρ̃ denote the associated infinite
cyclic covering Z-representation. Then the following hold true:

a) The linear isomorphisms

Ψo : κ[Bo(ρ̃)]→ kerM(ρ̃) and Ψc : κ[Bc(ρ̃) t J (ρ̃)]→ cokerM(ρ̃)

in Proposition 2.7(b) are isomorphisms of κ[T−1, T ]-modules (since by construction
compatible with the m−periodicity).

b) The modules κ[Bo(ρ̃)] and κ[Bc(ρ̃)] are free. More precisely, we have isomor-
phisms of κ[T−1, T ]-modules

κ[Bo(ρ̃)] ∼= κ[T−1, T ][Bo(ρ)] and κ[Bc(ρ̃)] ∼= κ[T−1, T ][Bc(ρ)].

c) The torsion part of the κ[T−1, T ]-module cokerM(ρ̃) equipped with the auto-
morphism induced by T is isomorphic to the monodromy of the representation ρ,
that is, κ[J (ρ̃)] ∼=

⊕
J∈J (ρ) J .
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Proof. Since the statement is additive in the G2m-representation ρ, it suffices to
consider indecomposable G2m-representations ρ. Part c) follows from Lemma 2.5.
Indeed if ρ is a barcode representation the result follows from Proposition 2.4. In
this case both ker(M(ρ̃)) and coker(M(ρ̃)) are free of rank 1 or 0. and there is no
regular part of ρ. If ρ is a Jordan block, hence ρ is regular, the result follows from
Lemma 2.5. �

3. Bar codes and Jordan blocks via graph representations

In this section we will describe graph representations associated with a tame
circle valued map. Furthermore, we will establish fundamental exact sequences
that permit to compute the (twisted) homology of the underlying space in terms of
the corresponding barcodes and Jordan blocks.

Let f : X → S1 be a tame map and 0 < θ1 < θ2 < · · · < θm ≤ 2π be the
critical angles (the angles of the set Σ in the definition of tameness). Choose the
regular values t1 < t2 < · · · < tm with θi−1 < ti < θi and 0 < t1 < θ1. In order
to differentiate between regular and singular fibers we write Ri := f−1(ti) and
Xi := f−1(θi).

The tameness of f induces the maps ai : Ri → Xi for 1 ≤ i ≤ m, bi : Ri+1 → Xi

for i ≤ m − 1 and bm : R1 → Xm which are unique up to homotopy; this means
that different choices of the regular values, say t′i instead of ti, lead to homotopy
equivalences ωi : Ri → R′i s.t. a′i · ωi is homotopic to ai and b′i · ωi is homotopic to
bi.

Indeed the fiber Ri identifies up to homotopy to regular fibers f−1(t) and f−1(t′),
θi−1 < t < t′ < θi since f−1(θi−1, θi)→ (θi−1, θi) is a fibration. One chooses t and t′

to make sure that f−1(t) and f−1(t′) are contained in open sets which retract to Xi

resp. Xi−1. The maps bi−1 and ai are the composition of such identifications with
the retractions to Xi−1 resp. Xi. We leave the reader to do the tedious verification
that the homotopy classes of ai and bi−1 are independent of the choices made.

Passing to r-homology one obtains the G2m-representation ρr = ρr(f) whose
vector spaces are V2s = Hr(Xs) and V2s−1 = Hr(Rs) and the linear maps αi and
βi are induced by the continuous maps ai and bi.

The representation ρr(f) has bar codes whose ends are i, j + km, 1 ≤ i, j ≤ m.
Denote by Br(f), the collections of intervals defined by the bar codes of ρr(f) but
with the ends i and j + km replaced by θi and θj + 2πk. Denote by Jr(f) the
collection of Jordan blocks of the representation ρr(f).

If f̃ : X̃ → R is the infinite cyclic covering of f then the real numbers θi + 2πk
are the critical values and ti + 2πk are regular values (between consecutive critical

values) and the tameness of f̃ gives the maps ai+km : X̃ti+1+2πk → X̃θi+2πk and

bi+km : X̃ti+2πk → X̃θi+2πk. By passing to homology in dimension r one obtains a

good Z-representation ρr(f̃) which is exactly the infinite cyclic covering ρ̃r(f).

The collections Br(f̃), Bcr(f̃), Bor(f̃), Bcor (f̃), Bocr (f̃) also denoted by B̃r(f), B̃cr(f),

B̃or(f), B̃cor (f), B̃ocr (f) are the bar codes of the representation ρ̃r(f). They are
invariant w.r. to the 2π translation and the collections Br(f), Bcr(f), Bor(f), Bcor (f),
Bocr (f) can be viewed as equivalence classes (modulo the 2π translation) of elements

of Bcr(f̃), Bor(f̃), Bcor (f̃), Bocr (f̃). For X compact and f tame the sets Br(f) are

finite while B̃r(f), if nonempty, are infinite.
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Given ξ ∈ H1(X;Z) and u ∈ κ \ 0, the pair (ξ, u) denotes the rank one represen-
tation H1(X;Z) → Z → κ \ 0, where the first arrow is given by ξ and the second
by the homomorphism 〈u〉 : Z → κ \ 0 defined by 〈u〉(n) = un. One denotes by
Hr(X; (ξ, u)) the homology of X with coefficients in the local system defined by the
representation (ξ, u), see [21, Section 3.H]. To describe the latter homology group,

recall that the singular chain complex of the infinite cyclic covering, C∗(X̃), can be
regarded as a chain complex of κ[T−1, T ]-modules where the action of T is induced
by the fundamental deck transformation. The homology Hr(X; (ξ, u)) is canonically

isomorphic to the r-th homology of the κ-cochain complex C∗(X̃) ⊗u κ obtained
by tensorizing with the representation κ[T−1, T ] → κ determined by T 7→ u. If

u = 1, then we have a canonical isomorphism C∗(X̃) ⊗u κ = C∗(X) and thus
Hr(X; (ξ, 1)) = Hr(X).

Replacing homology by homology with coefficients in the local system (ξ, u)
leads also to the replacement of the representations ρf (f) with the representations
ρr(f)u. as explained below. Since the local system becomes trivial over Ri and
Xi, we have isomorphisms Hr(Ri; (ξ, u)) ∼= Hr(Ri) and Hr(Xi; (ξ, u)) ∼= Hr(Xi).
The maps induced by ai and bi, however, will not all coincide with the maps
in the representation ρr(f) but with the ones for ρr(f)u. More precisely, every
trivialization of the infinite cyclic covering over [θ1, t1 + 2π], induces isomorphisms
φi and φ′i, 1 ≤ i ≤ m, such that the diagram

Hr(Xi; (ξ, u)) Hr(Ri+1; (ξ, u))
(ai+1)∗//(bi)∗oo Hr(Xi+1; (ξ, u))

Hr(Xi)

φi ∼=

OO

Hr(Ri+1)

φ′i+1
∼=

OO

βioo αi+1 // Hr(Xi+1)

φi+1 ∼=

OO

commutes for all 1 ≤ i < m, and the diagram

Hr(Xm; (ξ, u)) Hr(R1; (ξ, u))
(a1)∗ //(bm)∗oo Hr(X1; (ξ, u))

Hr(Xm)

φm ∼=

OO

Hr(R1)

φ′1
∼=

OO

βmoo uα1 // Hr(X1)

φ1
∼=

OO

commutes. The G2m-representation obtained by using homology with coefficients
in (ξ, u) will thus be isomorphic to (ρr(f))u, see Section 2.3.

3.1. The relevant exact sequences, cf. [3]. The tool which permits the calcu-

lation of the homology of X, X̃ and various pieces of these spaces is provided by
Proposition 3.1 below. The sequence in (19) has been established in [3, Section 5].

Proposition 3.1. Let f : X → S1 be a tame map and f̃ : X̃ → R its infinite cyclic
covering. Let ρr = ρr(f) and ρ̃r = ρr(f̃) = ρ̃r(f) be the representations associated

with f and f̃ . One has the following short exact sequences

0→ cokerM((ρr)u)→ Hr(X; (ξf , u))→ kerM((ρr−1)u)→ 0, (18)

which for u = 1 becomes

0→ cokerM(ρr)→ Hr(X)→ kerM(ρr−1)→ 0. (19)

Moreover, one has a short exact sequence of κ[T−1, T ]-modules

0→ cokerM(ρ̃r)→ Hr(X̃)→ kerM(ρ̃r−1)→ 0. (20)
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These sequences are all compatible with truncations as explained below, see Dia-
grams (21) and (22).

Recall that the κ[T−1, T ]-module structure on Hr(X̃) is induced by the fun-
damental deck transformation. The κ[T−1, T ]-module structures on ker(ρ̃r) and
coker(ρ̃r) have been described at the end of Section 2.

Observe that for θi ≤ θj critical angles of f , if f[θi,θj ] denotes the restriction of

f to X[θi,θj ] = f−1[θi, θj ], then

ρr(f[θi,θj ]) = Ti,j(ρr(f)).

Similarly, for ci ≤ cj critical values of f̃ , if f̃[ci,cj ] denotes the restriction of f̃ to

X̃[ci,cj ] = f̃−1[ci, cj ], then

ρr(f̃[ci,cj ]) = Ti,j(ρ̃r(f)).

Since f and therefore f̃ is tame one also has:
for any θ′ with θi−1 < θ′ ≤ θi and θ′′ with θj ≤ θ′′ < θj+1

ρr(f[θ′,θ′′]) = ρr(f[θi,θj ])

and for any c′ with ci−1 < c′ ≤ ci and c′′ with cj ≤ c′′ < cj+1

ρr(f[c′,c′′]) = ρr(f[ci,cj ]).

In the case of the G2m-representation ρr(f) “compatibility with truncation”
means that for any pairs of critical angles (θi, θj) and (θi′ , θj′), 0 < θi ≤ θi′ ≤ θj′ ≤
θj ≤ 2π the following diagram is commutative:

0 // cokerM(Ti′,j′(ρr))

vl

��

// Hr(X[θi′ ,θj′ ]
)

π′ //

v

��

kerM(Ti′,j′(ρr−1)) //

vr

��

0

0 // cokerM(Ti,j(ρr))

v′l
��

// Hr(X[θi,θj ])
π′′ //

v′

��

kerM(Ti,j(ρr−1)) //

v′r
��

0

0 // cokerM((ρr)u) // Hr(X; (ξf , u))
π // kerM((ρr−1)u) // 0

(21)
In the case of the Z-representation ρ̃r, this means that for any pairs of critical values
(ci, cj) and (ci′ , cj′) with ci ≤ ci′ ≤ cj′ ≤ cj the following diagram is commutative:

0 // cokerM(Ti′,j′(ρ̃r))

vl

��

// Hr(X̃[ci′ ,cj′ ]
)

π′ //

v

��

kerM(Ti′,j′(ρ̃r−1)) //

vr

��

0

0 // cokerM(Ti,j(ρ̃r))

v′l

��

// Hr(X̃[ci,cj ])
π′′ //

v′

��

kerM(Ti,j(ρ̃r−1)) //

v′r

��

0

0 // cokerM(ρ̃r) // Hr(X̃)
π // kerM(ρ̃r−1) // 0.

(22)
Note that diagrams (21) and (22) implies that any splitting (= right inverse) of π′

or π′′ extend to a splitting of π′′ or π respectively.
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Proof. The reader should recognize in the matrices M(Ti,j(ρ̃r)), M((ρr)u) and
M(ρ̃r) the linear maps induced from

⊕
i≤k≤j Hr(Rk) toHr(X[θi,θj ]), from

⊕
1≤i≤mHr(Ri)

to Hr(X; (ξf , u)) and from
⊕

1≤i≤mHr(Ri) to Hr(X̃) respectively.

Denote by R :=
⊔

1≤i≤mRi, R̃ :=
⊔
i∈ZRi, X :=

⊔
1≤i≤mXi and X̃ :=

⊔
i∈ZXi.

The short exact sequence (18) follows from the long exact sequence

→ Hr(R)
M((ρr)u)−−−−−−→ Hr(X )→ Hr(X; (ξ, u))→ Hr−1(R)

M((ρr−1)u)−−−−−−−−→ Hr−1(X )→
(23)

with Hr(R) =
⊕

1≤i≤mHr(Ri) and Hr(X ) =
⊕

1≤i≤mHr(Xi), and the short exact

sequence (20) follows from the long exact sequence

· · · → Hr(R̃)
M(ρr)−−−−→ Hr(X̃ )→ Hr(X̃)→ Hr−1(R̃)

M(ρr−1)−−−−−−→ Hr−1(X̃ )→ · · · .
(24)

which remain to be established. The sequence in (19) appears as a special case of
the sequence in (18) for u = 1.

Since both long exact sequences (23) and (24) are derived in the same way we
will treat only (23) and for simplicity only the case u = 1.

First choose an ε > 0 small enough so that 2ε < t1 and θi−1 + 2ε < ti < θi − 2ε.
To simplify the writing, since i ≤ m, introduce θm+1 = θ1 + 2π, let

f−1
(
[θm ± ε, θm+1 ± ε)

)
:= f̃−1

(
[θm ± ε, θ1 + 2π ± ε]

)
,

and define

P ′ :=
⊔

1≤i≤m

f−1
(
[θi, θi+1 − ε)

)
, P ′′ :=

⊔
1≤i≤m

f−1
(
(θi + ε, θi+1]

)
.

Observe that in view of the choice of ε and of the tameness of f the inclusions
X ⊂ P ′, X ⊂ P ′′, and X t R ⊂ P ′ ∩ P ′′ are homotopy equivalences. The Mayer–
Vietoris long exact sequence for X = P ′ ∪ P ′′ gives the commutative diagram

Hr(R)
M(ρr(f)) // Hr(X )

##
// Hr+1(X)

44

∂r+1 // Hr(R)⊕Hr(X )

pr1

OO

N // Hr(X )⊕Hr(X )

(Id,− Id)

OO

(ir,−ir)// Hr(X) //

Hr(X )

in2

OO

Id // Hr(X )

∆

OO

(25)
where ∆ denotes the diagonal, in2 the inclusion on the second component, pr1 the
projection on the first component, ir the linear map induced in homology by the
inclusion X ⊂ X. Recall that the matrix M(ρr(f)) is defined by

αr1 −βr1 0 · · · 0

0 αr2 −βr2
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 αrm−1 −βrm−1

−βrm 0 · · · 0 αrm
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with αri : Hr(Ri) → Hr(Xi) and βri : Hr(Ri+1) → Hr(Xi) induced by the maps ai
and bi. The block matrix N is defined by

N :=

(
αr Id
−βr Id

)
where αr and βr are the matrices

αr1 0 · · · 0

0 αr2
. . .

...
...

. . .
. . . 0

0 · · · 0 αrm−1

 and



0 βr1 0 . . . 0

0 0 βr2
. . .

...
...

...
. . .

. . . 0
0 0 . . . 0 βrm−1

βrm 0 . . . 0 0

 .

The long exact sequence (23) is the top sequence in the diagram (25).
The long exact sequence (24) can be established analogously. The naturality

of the Mayer–Vietoris sequence w.r. to maps which preserve the decomposition
of a space in two pieces implies that the homomorphisms in the sequence (24)
intertwine the automorphisms induced by the fundamental deck transformation on
Hr(R̃), Hr(X̃ ), and Hr(X̃), respectively. Hence, (20) is a short exact sequence of
κ[T−1, T ]-modules. Compatibility with truncations follows from the naturality of
the Mayer–Vietoris sequence too. � �

4. Proof of Theorem 1.1 and some refinements.

Let f : X → S1 be a tame map on a compact ANR, and let ξ = ξf ∈ H1(X;Z)

denote the corresponding integral cohomology class. Moreover, let π : X̃ → X
denote the associated infinite cyclic covering, that is, the pull back by f of the
universal covering p : R → S1. There exists a tame map f̃ : X̃ → R which is
equivariant with respect to the (principal) Z-actions on X̃ and R such that the
following diagram commutes:

X̃

π

��

f̃ // R

p

��
X

f // S1.

Recall that the vector space Hr(X̃) is a κ[T−1, T ]-module10 where the multiplica-
tion by T is the linear isomorphism induced by the fundamental deck transformation
τ : X̃ → X̃ corresponding to the action of 1 ∈ Z.

Let κ[T−1, T ]] be the field of Laurent power series and define

HN
r (X; ξ) := Hr(X̃)⊗κ[T−1,T ] κ[T−1, T ]].

The κ[T−1, T ]]-vector spaces HN
r (X; ξ) is called the r-th Novikov homology11 and

its dimension over the field κ[T−1, T ]], the Novikov–Betti number βNr (X; ξ).

10κ[T−1, T ] denotes the ring of Laurent polynomials with coefficients in κ, i.e., the group

algebra κ[Z].
11Instead of κ[T−1, T ]] one can consider the field κ[[T−1, T ] of Laurent power series in T−1,

which is isomorphic to κ[T−1, T ]] by an isomorphism induced by T → T−1. The (Novikov)
homology defined using this field has the same Novikov–Betti numbers as the one defined using

κ[T−1, T ]].
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Consider Hr(X̃) → HN
r (X; ξ) the κ[T−1, T ]-linear map induced by taking the

tensor product with κ[T−1, T ]] over κ[T−1, T ]. The κ[T−1, T ]-module Vr(ξ),

Vr(ξ) := ker
(
Hr(X̃)→ HN

r (X; ξ)
)
,

when regarded as a κ-vector space equipped with the linear isomorphism Tr(ξ)
provided by the multiplication by T , is referred to as the r-monodromy of (X, ξ).

As a κ[T−1, T ]-module Vr(ξ) is exactly the torsion of the κ[T−1, T ]-module Hr(X̃).

A base for Vr(ξ) provides a parametrization of the abstract set J̃r(f) and there-

fore an identification of Vr(ξ) to κ[J̃r(f)]. We continue to call “monodromy” and

denote by Tr(ξ) the isomorphism Tr(ξ) : κ[J̃r(f)]→ κ[J̃r(f)] obtained by using the
above identification.

Proof of Theorem 1.1. Part (c) follows from Propositions 3.1 and 2.7 which relate
the Betti numbers to the bar codes and Jordan cells via the short exact sequence
(19). Similarly one can compute dimHr(X, (ξf , u)) in terms of barcodes and Jordan
cells using the short exact sequence (18).

To check parts (a) and (b) recall that according to Lemma 2.8 we have isomor-
phisms of κ[T−1, T ]-modules:

cokerM(ρ̃r(f)) ∼= κ[T−1, T ][Bcr(f)]⊕ κ[J̃r(f)],

kerM(ρ̃r−1(f)) ∼= κ[T−1, T ][Bor(f)].

In particular, the κ[T−1, T ]-module kerM(ρ̃r−1(f)) is free. Hence, the short exact
sequence (20) splits and we obtain an isomorphism of κ[T−1, T ]-modules,

Hr(X̃) ∼= κ[T−1, T ][Bcr(f) t Bor−1(f)]⊕ κ[J̃r(f)].

Tensorizing with κ[T−1, T ]], we obtain an isomorphisms of κ[T−1, T ]]-vector spaces,

HN
r (X; ξf ) ∼= κ[T−1, T ]][Bcr(f) t Bor−1(f)].

We conclude βNr (X; ξf ) = ]Bcr(f) + ]Bor−1(f), whence part (a). Moreover,

Vr(ξf ) ∼= κ[J̃r(f)] ∼=
⊕

J∈Jr(f)

J,

whence part (b). � �

More calculations

A nonempty subset K of S1 or R, will be called a closed multi-interval if it is a
finite union of disjoint closed intervals [θ1, θ2] with 0 ≤ θ1 ≤ θ2 < 2π in the case
of S1, and [a, b] with a ≤ b or (−∞, a] or [b,∞) in the case of R. One denotes by

XK := f−1(K) if K ⊂ S1 and by X̃K = f−1(K) if K ⊂ R.
In case K ⊂ S1 one considers

Bcr,K(f) = {I ∈ Bcr(f) | I ∩K 6= ∅},
Bor,K(f) = {I ∈ Bor(f) | I ⊂ K},

and for u ∈ κ \ 0 the sets

Sr,u(f) = Bcr(f) t Bor−1(f) t Jr,u(f) t Jr−1,u(f),

Sr,K,u(f) = Bcr,K(f) t Bor−1,K(f) t Jr,u(f).
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Recall that Jr,u(f) denotes the set of Jordan blocks J = (V, T ) ∈ Jr(f) whose
linear isomorphism T has u as eigenvalue. Since u ∈ κ \ 0, J is actually a Jordan
cell.

In case K ⊂ R an one considers the sets

B̃r(f) = {I ∈ Br(f̃)},
B̃cr,K(f) = {I ∈ Bcr(f̃) | I ∩K 6= ∅},
B̃or,K(f) = {I ∈ Bor(f̃) | I ⊂ K},

and
S̃r,K(f) = B̃cr,K(f) t B̃or−1,K(f) t J̃r(f),

S̃r(f) = B̃cr(f) t B̃or−1(f) t J̃r(f).
(26)

These sets have the following properties:

(i) If K1,K2,K are closed multi-intervals in S1 or R with K1 ∩ K2 = ∅ and

K = K1 ∪K2 then Sr,K,u = Sr,K1,u ∪ Sr,K2,u and S̃r,K = S̃r,K1
∪ S̃r,K2

.
(ii) If K1,K2,K are closed multi-intervals in S1 or R with K1 ∩ K2 = K then

Sr,K,u = Sr,K1,u ∩ Sr,K2,u and S̃r,K = S̃r,K1
∩ S̃r,K2

.
(iii) If K1,K2 closed multi-intervals with K1 ⊂ K2 then Sr,K1,u ⊆ Sr,K2,u and

S̃r,K1
⊆ S̃r,K2

.

For K a multi-interval in S1 or R denote by:

Ir(f ;K,u) := img
(
Hr(XK)→ Hr(X; (ξ, u)

)
,

Ir(f̃ ;K) := img
(
Hr(X̃K)→ Hr(X̃)

)
.

Let f : X → S1 be a tame map with m critical values 0 < θ1 < θ2 · · · < θm ≤ 2π
and f̃ : X̃ → R an infinite cyclic cover of f, with critical values ci, i ∈ Z with
p(ci+mk) = θi.

Recall that for a surjective linear map π : A → B a linear map s : B → A such
that π · s = id is called a splitting.

For the projections

Hr(X̃)→ kerM(ρ̃r−1(f))

Hr(X̃[ci,cj ])→ kerM(Ti,j(ρ̃r−1(f)))
(27)

one considers collections of splittings

s̃r : kerM(ρ̃r−1(f))→ Hr(X̃)

s̃r;i,j : kerM(Ti,j(ρ̃r−1(f)))→ Hr(X̃[ci,cj ])
(28)

such that the diagram

kerM(Ti′,j′(ρ̃r−1(f)))
s̃r−1;i′,j′//

��

Hr(X̃[ci′ ,cj′ ]
)

��
kerM(Ti,j(ρ̃r−1(f)))

s̃r−1;i,j //

��

Hr(X̃[ci,cj ])

��
kerM(ρ̃r−1(f))

s̃r−1 // Hr(X̃)

(29)
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commutes, for all −∞ < i′ ≤ i ≤ j ≤ j′ <∞.
A collection of splittings as above is called a collection of compatible splittings. In

view of the fact that the splitting s̃r−1;i,j and s̃r−1;j,k can be extended to a splitting
s̃r−1;i,k, the existence of collections of compatible splittings is straightforward. The
construction being realized inductively from (i, j) to (i, j + 1) and from (i, j) to
(i− 1, j). Moreover one can produce collections of compatible splittings which are
m-periodic, which means that s̃r intertwines the isomorphism tr with τr. In other
words, s̃r may be assumed to be a homomorphism of κ[T−1, T ]-modules

Precisely, we consider the surjective maps πr,i,j : Hr(X̃[ci,cj ])→ κ[Bo(Ti,j(ρ̃r−1)],

the composition ofHr(X[ci,cj ])→ ker(M(Ti,j(ρ̃r−1)) with the isomorphism (Ψo
i,j)
−1 :

κ[Bo(Ti,j(ρ̃r−1)]→ ker(M(Ti,j(ρ̃r−1)). Here ρ̃r−1 abbreviates ρ̃r−1(f). For any bar

code I ∈ Bo(ρ̃r−1) with ends ci and cj call lift of I an element vI ∈ Hr(X̃[ci,cj ])
s.t. πr,i,j(vI) = I.

It is straightforward to provide a family of lifts vI for any I ∈ Bo(ρr−1) s.t. in
view of surjectivity of πr,i,j all vI with I of the same ends linearly independent and in

view of the isomorphism t∗ : Hr(X̃[ci,cj ])→ Hr(X̃[ci+m,cj+m]), ci+m = ci + 2π, with

vI satisfying vI+2π = t∗(vI). Define sr−1,i,j : κ[Bo(Ti,j(ρ̃r−1) → Hr(X̃[ci,cj ] and

sr−1 : κ[Bo(ρ̃r−1)→ Hr(X̃) by taking sr−1,i,j(I) to be the image of vI in Hr(X̃[ci,cj ]

and s̃r−1(Ψo(I) to be the image of vI in Hr(X̃). Define s̃r−1,i,j = sr−1,i,j ·Ψo
i,j and

s̃r−1 = sr−1 ·Ψo.

A similar definition can be obtained by replacing ρ̃r−1(f) and Hr(X̃) by ρr−1(f)u
and Hr(X; (ξf , u)).

With the notations and the definitions above we have the following technical re-
sults which calculate Ir(f ;K,u) and Ir(f̃ ;K) as well as homologies ofHr(X, (ξf , u)),

Hr(X̃) already described.

Proposition 4.1. Let f : X → S1 be a tame map and suppose that for each r a
decomposition of the representation ρr(f) as a sum of bar code representations and
Jordan block and a collection of compatible splittings is provided. Then:

a) For u ∈ κ \ 0 the decompositions and the collections of compatible splittings
provide the isomorphisms

ωr,u : κ[Sr,u(f)]→ Hr(X; (ξf , u))

and for any closed multi interval K ⊂ S1 the isomorphisms

ωr,K,u : κ[Sr,K,u(f)]→ Ir(f ;K,u)

such that for any pair K ′,K of closed multi-intervals in S1 with K ′ ⊂ K, the
diagram (30) is commutative.

Ir(f ;K ′, u)
⊆ // Ir(f ;K,u)

⊆ // Hr(X; (ξf , u))

κ[Sr,K′,u(f)]

∼=ωr,K′,u

OO

// κ[Sr,K,u(f)]

∼=ωr,K,u

OO

// κ[Sr,u(f)].

∼=ωr,u

OO
(30)

The horizontal arrows in the bottom line are induced by the inclusions of the sets
in brackets.

b) The decompositions and the collection of compatible splittings provide the iso-
morphisms

ω̃r : κ[S̃r(f)]→ Hr(X̃)
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and for any closed multi interval K ⊂ R the isomorphisms

ω̃r,K : κ[S̃r,K(f)]→ Ir(f̃ ;K)

such that for any pair K ′,K of closed multi-intervals in R with K ′ ⊂ K, the diagram
(31) is commutative.

Ir(f̃ ;K ′)
⊆ // Ir(f̃ ;K)

⊆ // Hr(X̃)

κ[S̃r,K′(f)]

∼=ω̃r,K′

OO

// κ[S̃r,K(f)]

∼=ω̃r;K

OO

// κ[S̃r(f)].

∼=ω̃r

OO

(31)

The horizontal arrows in the bottom line are induced by the inclusions of the sets
in brackets. The isomorphism ω̃r is an isomorphism of κ[T−1, T ]-modules.

c) The decompositions and the splittings provide the isomorphisms

ωNr : κ[T−1, T ]] [Bcr(f) t Bor−1(f)]→ HN
r (X; ξf ).

Even more calculations

It is also possible to calculate Hr(XK) for K ⊂ S1 and Hr(X̃K) for K ⊂ R. In
this case, in addition to closed and open bar codes and to Jordan blocks, the mixed
bar codes will appear.

For the purpose of definition below we treat a closed interval K ′ = [θ′, θ′′] ⊂ S1,
0 < θ′ ≤ θ′′ < 2π as the closed interval K = [θ′, θ′′] ⊂ R

To formulate the result for K a closed interval of R we add to the previous
definitions, see formulae (26), the sets:

B̃cor,K(f) = {I ∈ B̃cor (f) | I ∩K 6= ∅ and closed},

B̃ocr,K(f) = {I ∈ B̃ocr (f) | I ∩K 6= ∅ and closed}
B̃oor,K(f) = {I ∈ B̃or(f) | I ⊃ K}

and denote by S̃′r,K(f) the set

S̃′r,K(f) = B̃cor,K(f) t B̃ocr,K(f) t B̃oor,K(f) t S̃r,K . (32)

We have S̃r,K(f) ⊆ S̃′r,K(f).

Proposition 4.2. a) The decompositions and the collections of compatible splittings
provide for any pair of angles θ′, θ′′, 0 < θ′ ≤ θ′′ < 2π, the isomorphisms

ω′r,[θ′,θ′′] : κ[S′r,[θ′,θ′′](f)]→ Hr(X[θ′,θ′′])

such that for 0 < θ1 ≤ θ2 ≤ θ3 ≤ θ4 < 2π the diagram (33) below is commutative:

Hr(X[θ2,θ3])
vr // Hr(X[θ1,θ4])

v′r // Hr(X; (ξf , u))

κ[S′r,[θ2,θ3](f)]

ω′r,[θ2,θ3]

OO

// κ[S′r,[θ1,θ4](f)]

ω′r,[θ1,θ4]

OO

// κ[Sr,u(f)].

ωr,u

OO
(33)

b) The decompositions and the compatible splittings provide for any a ≤ b, a, b
real numbers or ±∞ the isomorphisms

ω̃′r,[a,b] : κ[S̃′r,[a,b](f)]→ Hr(X̃[a,b])
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such that for a ≤ b ≤ c ≤ d the diagram (34) below is commutative.

Hr(X̃[b,c])
vr // Hr(X̃[a,d])

v′r // Hr(X̃)

κ[S̃′r,[b,c](f)]

ω̃r,[b,c]

OO

// κ[S̃′r,[a,d](f)]

ω̃r,[a,d]

OO

// κ[S̃r(f)].

ω̃r

OO

(34)

In both diagrams the horizontal arrows in the top line are linear maps induced by the
obvious inclusions, while in the bottom line are the canonical linear maps provided
by the sets in brackets subsets of a larger set of all bar codes and all J̃ (f)′s, cf.

Definition 2.6. A bar code in the set S′r,··· or in S̃′r,··· is sent to itself if belongs to
the next set and if not, to zero in the next vector space.

Proposition 4.2 permits to express the vector spaces Hr(X̃[a,b]), Hr(X̃[c,d]\X̃(a,b))

and the linear maps Hr(X̃[a,b]) → Hr(X̃[c,d]) and Hr(X̃[c,d] \ X̃(a,b)) → Hr(X̃[c,d])

in terms of the bar codes B̃−−(f) and J̃−(f). This will be used in section (6).

Proof of Propositions 4.1 and 4.2. In view of the properties of the sets SK,− and

S̃K,−, it suffices to prove the statements for K consisting of one single interval and
in view the tameness of f one can suppose that θ1, θ2 are critical angles and a, b
critical values. We treat first the part (a) in both Propositions (4.1) and (4.2).

The compatible splittings lead to the commutative diagram (35) with horizontal
arrows isomorphisms.

cokerM(Tθ2,θ3(ρr))⊕ kerM(Tθ2,θ3(ρr−1))

vl⊕vr
��

// Hr(X[θ2,θ3])

v

��
cokerM(Tθ1,θ4(ρr))⊕ kerM(Tθ1,θ4(ρr−1))

v′l⊕v
′
r

��

// Hr(X[θ1,θ4])

v′

��
cokerM((ρr)u)⊕ kerM((ρr−1)u) // Hr(X; (ξf , u))

(35)

Proposition 2.7 combined with Lemma 2.2 gives the commutative diagram (36)
with horizontal lines isomorphisms.

κ[S̃′r,[θ1,θ4](f)]

��

// cokerM(Tθ2,θ3(ρr))⊕ kerM(Tθ2,θ3(ρr−1))

vl⊕vr
��

κ[S̃′r,[θ2,θ3](f)]

��

// cokerM(Tθ1,θ4(ρr))⊕ kerM(Tθ1,θ4(ρr−1))

v′l⊕v
′
r

��
κ[Sr,u] // cokerM((ρr)u)⊕ kerM((ρr−1)u)

(36)

The isomorphism ωr,u (in Proposition 4.1) is the composition of horizontal arrows
in the last line of diagrams (35) and (36) and the isomorphisms ωr,[θ2,θ3],u and
ωr,[θ1,θ4],u are restrictions of ωr,u. Similarly he isomorphism ω′r,[θ2,θ3] and ω′r,[θ1,θ4]

(in Proposition 4.2) are the compositions of the horizontal arrows in the first and
second lines of the same diagrams. The commutativity of the diagrams (30) and
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(33) is the consequence of the commutativity of the diagrams (35) and (36). This
establishes part (a) in both Propositions 4.1 and 4.2.

Parts (b) are verified essentially in the same way. More precisely, the decompo-
sitions of the representations ρr imply decompositions of ρ̃r and Tk,l(ρ̃r). Observe
that the commutative diagrams (35) and (36) remain valid when one replaces X

by X̃, the representation ρr by ρ̃r, and θ1, θ2, θ3, θ4 by a, b, c, d. In this case ω̃
is defined in the same way as ωu, namely as the composition of the horizontal ar-
rows in the last lines of the diagrams which replace diagrams (35) and (36) derived
considering ω̃ instead of ωu.

To check part (c) in Proposition 4.1, observe first that κ[S̃r(f)] = κ[B̃or−1(f)]⊕
κ[B̃cr(f) t J̃r(f)] and as pointed out by Lemma 2.8 at the end of Section 2, both
linear maps Ψo and Ψc are actually isomorphisms of κ[T−1, T ] modules; therefore

so is ω̃r. Then one takes ωNr = ω̃r ⊗κ[T−1,T ] κ[T−1, T ]]. Clearly κ[S̃r(f)]⊗κ[T−1,T ]

κ[T−1, T ]] = κ[T−1, T ]][Bcr(f) t Bor−1(f)] since κ[J̃(f)] as a κ[T−1, T ]-module is a
torsion module, cf. Lemma 2.8. � �

5. Stability for configurations Cr(f). Proof of Theorem 1.2

The proof of Theorems 1.2 and 1.3 will require an alternative definition of the
configurations Cr(f). This will be provided by the integer valued functions δfr
which will be defined for a proper real-valued tame map and then, via the infinite
cyclic covering for a tame angle-valued map. Ultimately they are defined for any
continuous map.

5.1. Real valued maps. For f : X → R a map and a, b ∈ R, introduce the no-

tation Xf (a) = f−1(a), Xf
a = f−1((−∞, a]), Xb

f = f−1([b,∞)), fXb
a = Xa

f ∩Xf
b .

Let ifa : Xf
a → X and ibf : Xb

f → X be the obvious inclusions. Denote by

Ifa(r) := img
(
ifa(r) : Hr(X

f
a )→ Hr(X)

)
,

Ibf (r) := img
(
ibf (r) : Hr(X

b
f )→ Hr(X)

)
,

and let F fr (a, b) := dim(Ifa(r) ∩ Ibf (r)) and Gfr (a, b) := dimHr(X)/(Ifa(r) + Ibf (r)).
Observe that:

Lemma 5.1.

(a) For a ≤ a′ and b′ ≤ b, we have F fr (a, b) ≤ F fr (a′, b′) and Gfr (a, b) ≥ Gfr (a′, b′).
(b) If |f − g| < ε and a ≤ b then F fr (a − ε, b + ε) ≤ F gr (a, b) and Gfr (a, b) ≤

Ggr(a− ε, b+ ε).
(c) F fr (a, b) = F−fr (−b,−a) and Gfr (a, b) = G−fr (−b,−a).

Proof. To check (a), notice that Xf
a ⊆ Xf

a′ and Xb′

f ⊇ Xb
f imply Ifa ⊆ Ifa′ and

Ib′f ⊆ Ibf and Ib′f ⊆ Ibf , hence Ifa ∩ Ibf ⊆ Ifa′ ∩ Ib′f and Ifa + Ibf ⊆ Ifa′ + Ib′f , then

the statement. To check (b), notice that |f − g| < ε implies f − ε < g < f + ε

which implies Xf
a−ε ⊆ Xg

a and Xf
b+ε ⊆ Xg

b . These inclusions imply Ifa−ε ⊆ Iga and

Ib+εf ⊆ Ibg, hence F f (a − ε, b + ε) ≤ F g(a, b). The arguments for G are similar. To

check (c), one uses the fact that f−1((−∞, a]) = (−f)−1([−a,∞)). � �

If X is a compact ANR it is immediate that both F fr (a, b) and Gfr (a, b) are
finite since dimHr(X) is finite. The same remains true for f : X → R a tame
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map (hence proper) with X not compact despite the fact that dimHr(X) is not
necessarily finite.

Proposition 5.2. If f : X → R is a tame map, then:

(a) F fr (a, b) <∞.
(b) Gfr (a, b) <∞.

Proof. To ease the writing, we (sometimes) drop f from notation. We start with
(a). In view of Observation 5.1 it suffices to check the statements for a > b.

Consider

ia(r)− ib(r) : Hr(Xa)⊕Hr(X
b)→ Hr(X),

let p1 : Hr(Xa)⊕Hr(X
b)→ Hr(Xa) be the first factor projection and observe that

Ifa(r) ∩ Ibf (r) = (ia(r) · p1)(ker(ia(r)− ib(r)).
Then

dim
(
Ifa(r) ∩ Ibf (r)

)
≤ dim ker

(
ia(r)− ib(r)

)
.

Since a ≥ b we have X = Xa ∪ Xb. In view of the Mayer–Vietoris long exact
sequence associated with X = Xa ∪Xb

ker
(
ia(r)− ib(r)

)
= img

(
Hr(X

b
a)→ Hr(Xa)⊕Hr(X

b)
)

has finite dimension since dimHr(X
b
a) is finite.

Next we prove (b). If a < b one uses the long exact sequence of the pair
(X,Xa tXb) to conclude that Hr(X)/(Ifa(r) + Ibf (r)) is isomorphic to a subspace

of Hr(X,Xa t Xb) = Hr(X
b
a, X(a) t X(b)) which is of finite dimension. Indeed,

f tame implies that X(a), X(b), and Xb
a are compact ANRs, hence with finite

dimensional homology.
If a ≥ b one uses the Mayer–Vietoris exact sequence associated with Xa, Xb to

conclude that Hr(X)/(Ifa(r) + Ibf (r)) is isomorphic to a subspace of Hr(X
b
a) which

is of finite dimension. � �

Let a < b and c < d. We refer to the set

B(a, b : c, d) = (a, b]× [c, d) ⊂ R2, a < b, c < d,

as a “box”, and define:

µF,fr (B) = F fr (a, d) + F fr (b, c)− F fr (a, c)− F fr (b, d),

µG,fr (B) = −Gfr (a, d)−Gfr (b, c) +Gfr (a, c) +Gfr (b, d).
(37)

One has:

Proposition 5.3. If X is compact or f is a tame map, then:

(a) µF,fr (B) = µG,fr (B).
(b) Putting µfr (B) := µF,fr (B) = µG,fr (B), we have µfr (B) ≥ 0.
(c) If B = B1∪B2, B1∩B2 = ∅ with B1, B2 boxes, then µf (B) = µf (B1)+µf (B2).
(d) If if B′ and B′′ are boxes with B′ ⊆ B′′ one has µf (B′) ≤ µf (B′′).
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H

Ib
Ia

Ic
Id

Figure 4. An illustration for the proof of Proposition 5.3.

Proof. To ease the writing, we drop f and r from notation and introduce:

I1 := dim
(
Ia ∩ Id

)
,

I2 := dim
(
(Ia ∩ Ic)/(Ia ∩ Id)

)
,

I3 := dim
(
(Ib ∩ Id)/(Ia ∩ Id)

)
,

I4 := dim
(
(Ib ∩ Ic)/(Ia ∩ Ic + Ib ∩ Id)

)
,

I5 := dim
(
Ib/(Ia + Ib ∩ Ic)

)
,

I6 := dim
(
Ic/(Ia ∩ Ic + Id)

)
,

I7 := dim
(
H/(Ib + Ic)

)
, with H = Hr(X).

Using Figure 4, it is not hard to notice that:

F (a, d) = I1, G(a, d) = I7 + I6 + I5 + I4,

F (b, c) = I1 + I2 + I3 + I4, G(b, c) = I7,

F (a, c) = I1 + I2, G(a, c) = I7 + I5,

F (b, d) = I1 + I3, G(b, d) = I7 + I6.

Then we have:

F (a, d) + F (b, c)− F (a, c)− F (b, d)

= I1 + (I1 + I2 + I3 + I4)− (I1 + I2)− (I1 + I3) = I4

and

G(a, d) +G(b, c)−G(a, c)−G(b, d)

= (I7 + I6 + I5 + I4) + I7 − (I7 + I5)− (I7 + I6) = I4.

These equalities establish (a) and (b). Part (c) follows from (37) by inspecting the
all relative positions of B1 and B2 as disjoint subsets of B. To check part (d) one
tiles B′′ as a disjoint union of boxes B′′ = B′′1 t B′′2 · · · t B′′r−1 t B′′r s.t. B′ is one
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of these boxes and use item (c) to inductively derive that µ(B′′) =
∑

1≤i≤r µ(B′′u).
This implies the result

� �

Note that both Propositions (5.2) and (5.3) remain valid for f a proper contin-
uous map but with more elaborated arguments and this is not not needed in this
paper.

Define the jump function, δfr : R2 → Z≥0, by

δfr (a, b) := lim
ε→0

µf
(
(a− ε, a+ ε]× [b− ε, b+ ε)

)
. (38)

The limit exists since, by Proposition 5.3(c), the right side decreases when ε de-
creases. This function has values in Z≥0. Since the critical values of a tame map
are discrete, δfr has discrete support and satisfies the following proposition.

Proposition 5.4. If X is compact or f is a tame map then:

(a) For a < b and c < d one has µfr
(
(a, b]× [c, d)

)
=
∑
a<x≤b,c≤y<d δ

f
r (x, y).

(b) F fr (b, c) =
∑
x≤b,c≤y δ

f
r (x, y).

(c) Gfr (a, d) =
∑
a≤x,y≤d δ

f
r (x, y).

Proof. Item (a) follows from Proposition 5.3(c) as shown below.
First observe that in in view of (37) if both (b− a) and (d− c) are small enough

then µfr
(
(a, b] × [c, d)

)
= δfr (c, d). Then choose subdivisions a0 = a < a1 < · · · <

ar = b and c = c0 < c1 < · · · < ck = d such that all critical values between a and b
rep. between c and d are among ai’s and cj ’s respectively and both ai − ai−1 and
cj−cj−1 are small enough s.t. µfr ((ai−1, ai]×[ci, ci+1)) = δfr (ai, ci).Applying Propo-
sition 5.3(c) one obtains µfr

(
(a, b] × [c, d)

)
=
∑
i≥1,j≥1 µ

f
r

(
(ai−1, ai] × [cj−1, cj , d)

)
which implies the result as stated.

Item (b) follows from (a) by letting a → −∞ and d → ∞. Similarly, item (c)
follows from item (a) by letting b→∞ and c→ −∞. � �

Since for a tame map f the set of critical values is discrete we write them as a
sequence · · · < ci−1 < ci < ci+1 < · · · and define

ε(f) = inf
i∈Z

(ci+1 − ci).

Clearly, if f : X → R is tame with X compact, then ε(f) > 0 and if f : X → S1 is

tame then the infinite cyclic covering f̃ : X̃ → R is tame and ε(f̃) > 0.

Proposition 5.5. Let f : X → R be a tame map with ε(f) > 0. For any ε, ε′ < ε(f)
one has:

F fr (ci, cj) = F fr (ci + ε, cj − ε′) = F fr (ci+1 − ε, cj−1 + ε′), (39)

and

δfr (ci, cj) = F fr (ci−1, cj+1) + F fr (ci, cj)− F fr (ci−, cj)− F fr (ci, cj+1). (40)

Proof. The tameness of f and the hypothesis ε, ε′ < ε(f) imply that the inclu-

sions Xf
ci ⊆ Xf

ci+ε, X
f
ci ⊆ Xf

ci+1−ε′ and X
cj−ε
f ⊇ X

cj
f , X

cj−1+ε′

f ⊇ X
cj
f induce

isomorphisms in homology. These facts imply that Ifci = Ifci+ε = Ifci+1−ε′ and

Icj−1+ε
f = Icj−ε

′

f = Icjf which imply (39). To check (40), recall that in view of (37),

(38) and (39), for ε very small, one has δfr (ci, cj) = Fr(ci− ε, cj + ε)+Fr(ci+ ε, cj−
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ε) − Fr(ci − ε, cj − ε) − Fr(ci + ε, cj + ε). Thus (40) follows from (39) by taking
ε < ε(f). � �

For a pair (a, b) ∈ R2 and ε > 0 consider the box B(a, b; 2ε) = (a− 2ε, a+ 2ε]×
[b− 2ε, b+ 2ε).

Proposition 5.6. Let f : X → R be a tame map with ε(f) > 0 and ε < ε(f)/4.
For any tame map g with |f − g| < ε and any (a, b) ∈ supp δfr the following holds:

(a) supp(δfr ) ∩B(a, b; 2ε) ≡ (a, b)
(b) ]

(
supp(δgr ) ∩

(⊔
(a,b)∈supp δfr

B(a, b; 2ε)
))

= ] supp(δfr ).

In particular, if the cardinality of the supports12 of δfr and δgr are equal and |g−f | <
ε, then the support of δgr lies in an ε-neighborhood13 of the support of δfr .

This Proposition is closed to Box Lemma in [11] page 112.

Proof. Item (a) follows from the definition of δfr . To prove item (b) observe that if
(a, b) ∈ supp δf both numbers have to be critical values, hence the a = ci, b = cj .
In view of Proposition 5.5, for any ε′, ε′′ < ε(f) one has:

F fr (ci−1, cj+1) = F fr (a− ε′, b+ ε′′)

F fr (ci, cj) = F fr (a+ ε′, b− ε′′)
F fr (ci, cj+1) = F fr (a+ ε′, b+ ε′′)

F fr (ci−1, cj) = F fr (a− ε′, b− ε′′)

(41)

Since |f − g| < ε, in view of Observation 5.1 one has:

F fr (a− 3ε, b+ 3ε) ≤ F gr (a− 2ε, b+ 2ε) ≤ F fr (a− ε, b+ ε)
F fr (a+ ε, b− ε) ≤ F gr (a+ 2ε, b− 2ε) ≤ F fr (a+ 3ε, b− 3ε)
F fr (a+ ε, b+ 3ε) ≤ F gr (a+ 2ε, b+ 2ε) ≤ F fr (a+ 3ε, b+ ε)
F fr (a− 3ε, b− ε) ≤ F gr (a− 2ε, b− 2ε) ≤ F fr (a− ε, b− 3ε)

(42)

Since ε < ε(f)/4, equations (41) and (42) imply:

F gr (a− 2ε, b+ 2ε) = F fr (ci−1, cj+1)

F gr (a+ 2ε, b− 2ε) = F fr (ci, cj)

F gr (a+ 2ε, b+ 2ε) = F fr (ci, cj+1)

F gr (a− 2ε, b− 2ε) = F fr (ci−1, cj)

(43)

In view of Proposition 5.4 we have

]
(
supp(δgr ) ∩B(a, b; 2ε)

)
= µgr

(
B(a, b; 2ε)

)
= F gr (a− 2ε, b+ 2ε) + F gr (a+ 2ε, b− 2ε)

− F gr (a− 2ε, b− 2ε)− F gr (a+ 2ε, b+ 2ε).

Using the equations (43) and the equation (40) in Proposition 5.5 one derives

]
(
supp(δgr ) ∩B(a, b; 2ε)

)
= ]
(
supp(δfr ) ∩B(a, b; 2ε)

)
= δfr (a, b),

� �

12Recall that the cardinality of the support is the sum of multiplicity of the elements in the

support.
13Here ε-neighborhood of (a, b) means the domain (a− ε, a+ ε)× (b− ε, b+ ε).
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5.2. Angle valued maps. Let f : X → S1 be a tame map and f̃ : X̃ → R its
infinite cyclic covering. Note that ε(f̃) > 0. Observe that

δf̃r (a, b) = δf̃r (a+ 2π, b+ 2π). (44)

Consider the projection p : R2 → T = R2/Z, with T the quotient space of R2

by the action Z × R2 → R2 given by (n, (a, b)) → (a + 2πn, b + 2πn). Write
p(a, b) = 〈a, b〉. Define

ε(f) := ε(f̃)

and

δfr (〈a, b〉) := δf̃r (a, b). (45)

In view of (44), δfr : T → Z≥0 is a well defined function with finite support and
Proposition 5.6 holds true for f : X → S1.

For the proof of Theorem 1.2 we also need to show that δfr and Cr(f), when
viewed as functions on T, are equal.

Proposition 5.7. If f is a tame real- or angle-valued map defined on X, a compact
ANR, then δfr and Cr(f) are equal Z≥0−valued functions defined on R2 or T.

Proof. We check the case of an angle valued map f : X → S1 only. The real valued
case can be regarded as a particular case of the angle valued map. First note that

ε(f) > 0. In view of the definition of δf̃r it suffices to check that:

(i) If at least one, a or b, is not a critical value then we have δf̃r (a, b) = 0.
(ii) If a = ci and b = cj are critical values with ci ≥ cj , then

δf̃r (ci, cj) = ]
{
I ∈ B̃cr(f)

∣∣ I = [cj , ci]
}
.

(iii) If a = ci and b = cj are critical values with ci < cj , then

δf̃r (ci, cj) = ]
{
I ∈ B̃or−1(f)

∣∣ I = (cj , cj)
}
.

Recall that δf̃r (a, b) = limε→0(−F f̃r (a− ε, b− ε)−F f̃r (a+ ε, b+ ε) +F f̃r (a− ε, b+

ε)+F f̃r (a+ε, b−ε)). In view of Proposition 5.5, if a is not a critical value, y ∈ R and

ε > 0 is sufficiently small, then F f̃r (a − ε, y) = F f̃r (a + ε, y) and thus δf̃r (a, y) = 0.
Similarly, if b is not a critical value, x ∈ R and ε > 0 is sufficiently small, then

F f̃r (x, b− ε) = F f̃r (x, b+ ε) and thus δf̃r (x, b) = 0. This establishes statement (i).
Suppose that a = ci and b = cj critical values. In view of Proposition 5.5 and of

the definition of δf̃ one has

δf̃r (ci, cj) = −F f̃r (ci−1, cj)− F f̃r (ci, cj+1) + F f̃r (ci−1, cj+1) + F f̃r (ci, cj). (46)

By Propositions 4.2 (b) when ci ≥ cj , one has

F f̃r (ci, cj) = ]
{
I ∈ B̃cr(f)

∣∣ I ∩ [cj , ci] 6= ∅
}

+ ]
{
I ∈ B̃or−1(f)

∣∣ I ⊂ (cj , ci)
}

+ ]J̃r(f), (47)

and when ci > cj one has

F f̃r (ci, cj) = ]
{
I ∈ B̃cr(f)

∣∣ I ⊃ [ci, cj ]
}

+ ]J̃r(f). (48)
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Indeed Proposition 4.2 (b) calculates If̃a(r) and Ib
f̃
(r) as the κ−vector space

generated by

{I ∈ B̃cr | I ∩ (−∞, a] 6= ∅} ∪ {I ∈ B̃or−1 | I ⊂ (−∞, a)}
and

{I ∈ B̃cr | I ∩ ([b,∞) 6= ∅} ∪ {I ∈ B̃or−1 | I ⊂ (b,∞)}
of which the above descriptions follow.

Comparing the collections of bar codes whose cardinality are given by F f̃r (ci−1, cj),

F f̃r (ci, cj+1), F f̃r (ci−1, cj+1) and F f̃r (ci, cj) and using (46), (47) and (48) one derives
the statement (ii), and (iii). � �

To prove Theorem 1.2 one begins with a few observations.

(i) Consider the space of continuous maps C(X,S1), X a compact ANR, with the
compact open topology. This topology is induced from the metric D(f, g) :=
supx∈X d(f(x), g(x)) with d(θ1, θ2) given by d(θ1, θ2) = inf(|θ1−θ2|, 2π−|θ1−
θ2|), 0 ≤ θ1, θ2 < 2π. Equipped with this metric (C(X,S1), D) is a complete
metric space.

Recall that the set of connected components of the space C(X,S1) identifies
to H1(X;Z). Denote by Cξ(X,S1) the connected component corresponding
to the class ξ ∈ H1(X;Z) and by Cξ,t(X,S1) the subset of tame maps in this
connected component equipped with the induced topology.

(ii) Observe that if f, g are in a connected component Cξ(X,S1) of C(X,S1) and
D(f, g) < π then for any t ∈ [0, 1] the map ht := ht(f, g) ∈ C(X;S1) defined
below lies in the connected component of Cξ(X,S1). Moreover for any 0 =
t0 < t1 < · · · < tN−1 < tN = 1 one has

D(f, g) =
∑

0≤i<N

D(hti+1 , hti). (49)

Considering the inclusion of S1 ⊂ R2 as the unit circle centered at origin, if
one regards f and g as R2-valued maps, the map ht is defined by

ht(x) =
tf(x) + (1− t)g(x)

‖tf(x) + (1− t)g(x)‖ .

(iii) Recall that f is a p.l. map onX if with respect to some subdivision is simplicial
(i.e. the liftings to R of the restriction of f to simplexes of the subdivision are
linear) and for any two p.l. maps f, g there exists a common subdivision of X
which makes f and g simultaneously simplicial, hence any ht is a simplicial
map.

If X is a simplicial complex and U ⊂ Cξ(X,S1) denotes the subset of p.l.
maps then:
(1) U is a dense subset in Cξ(X,S1).
(2) f, g ∈ U implies ht ∈ U hence ε(ht) > 0 hence for any t ∈ [0, 1] there

exists o(t) > 0 so that |t′ − t| < o(t) implies D(ht′ , ht) < ε(ht)/6.
Indeed (1) follows from approximability of continuous maps by p.l. maps

and (2) from the continuity in t of the family ht and the compacity of X.
(iv) For k a positive integer consider SkT = (T × · · · × T)/Σk, with Σk the k-

symmetric group acting on the k-fold cartesian product of T by permutations
equipped with the metric D induced from the complete metric on T = R2/Z.
With this metric (SN (T), D) is a complete metric space.
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(v) Proposition 5.6 states that f, g ∈ C(X,S1)t,ξ and D(f, g) < ε(f)/6 implies

D(δfr , δ
g
r ) < 2D(f, g). (50)

Proof of Theorem 1.2:
Observation (v) makes the assignment C(X,S1)t,ξ 3 f 7→ δfr ∈ Sβ

N
r (X,ξ)(T) a

continuous map.
In order to conclude the existence of a continuous extension of δfr to the entire

Cξ(X,S1), in view of the completeness of the metrics D, and D, stated in observa-
tions (i) and (iv) above, it suffices to show that for a Cauchy sequence {fα}, fα ∈ U ,

the sequence δfαr is a Cauchy sequence in Sβ
N
r (X,ξ)(T). This will follow once we can

show that (50) holds for any two f, g ∈ U with d(f, g) < π. To establish this we
proceed as in [11, Section 3.3].

Start with f, g ∈ U with D(f, g) < π and consider ht, t ∈ [0, 1] defined in (ii)
above. Choose a finite sequence 0 = t0 < t2 < t4 < · · · < t2L−2 < t2L = 1, Lpositive
integer, so that the open intervals I2i = (t2i − o(t2i), t2i + o(t2i)) cover [0, 1] with
o(t) from item (iii) (2). The compacity of [0, 1] makes such choice possible.

By possibly removing some of the points t2i and decreasing o(t2i) if necessary
one can make I2i ∩ I2i+2 6= ∅ and t2t−2, t2i+2 /∈ I2i. Choose t1 < t3 < · · · < t2L−1

with t2i < t2i+1 < t2i and t2i+1 ∈ I2i ∩ I2i+2. We have then |t2i+1 − t2i| < o(t2i)
and |t2i+2 − t2i+1| < o(t2i+2).

In view of item (iii), |t2i+1 − t2i| < o(t2i) implies

D(ht2i , ht2i+1) < ε(ht2i)/3

and |t2i+2 − t2i+1| < o(t2i+2) implies

D(ht2i+2
, ht2i+1

) < ε(ht2i+2
)/6.

In view of item (v) the last inequalities imply

D(δ
ht2i+1
r , δ

ht2i
r ) < 2D(ht2i , ht2i+1

)

as well as

D(δ
ht2i+2
r , δ

ht2i+1
r ) < 2D(ht2i+2

, ht2i+1
).

Therefore, for any 0 ≤ k ≤ 2L− 1 one has D(δ
htk+1
r , δ

htk
r ) < 2D(htk+1

, htk). Then
by (50) and (49) cf item (ii), one obtains

D(δf , δg) ≤
∑

0≤i<2L−1

D(δhti+1 , δhti ) ≤ 2
∑

0≤i<2L−1

D(hti+1 , hti) = D(f, g).

This finishes the proof of Theorem 1.2.

6. Poincaré duality for configurations Cr(f). Proof of Theorem 1.3

For an n-dimensional manifold, not necessarily compact, Poincaré duality can be
better formulated using Borel–Moore homology, cf. [9], especially tailored for locally
compact spaces Y and pairs (Y,K), K closed subset of Y . Borel–Moore homology
coincides with the standard homology when Y is compact. In general, for a locally
compact space Y , it can be described as the inverse limit of the homology vector
spaces Hr(Y, Y \ U) for all U open sets with compact closure.

One denotes by HBM
r (· · · ) the Borel–Moore homology in dimension r. For Y an

n-dimensional topological κ-orientable manifold, g : Y → R a tame map, hence a
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proper continuous map, and a a regular value of g,14 Poincaré duality provides the
commutative diagrams

HBM
r (Ya)

��

// HBM
r (Y )

��

// HBM
r (Y, Ya)

��
Hn−r(Y, Y a)

��

// Hn−r(Y )

��

// Hn−r(Y a)

��
(Hn−r(Y, Y

a))∗ // (Hn−r(Y ))∗ // (Hn−r(Y
a))∗

(51)

and

HBM
r (Y a)

��

// HBM
r (Y )

��

// HBM
r (Y, Y a)

��
Hn−r(Y, Ya)

��

// Hn−r(Y )

��

// Hn−r(Ya)

��
(Hn−r(Y, Ya))∗ // (Hn−r(Y ))∗ // (Hn−r(Ya))∗.

(52)

Recall that Ya = f−1((−∞, a]) and Y a = f−1([a,∞)). The first vertical arrow in
each column of the diagrams (51) and (52) is the Poincaré duality isomorphism,
the second is the isomorphism between cohomology and the dual of homology with
coefficients in a field. The horizontal arrows are induced by the inclusions of Ya or
Y a in Y and the inclusion of the pairs (Y, ∅) in (Y, Ya) or (Y, Y a).

We apply diagrams (51) and (52) to Y = M̃ and g = f̃ , where M̃ is an infinite
cyclic cover of M defined by f : M → S1, a tame map, M a closed κ-orientable topo-
logical manifold, and f̃ : M̃ → R the lift of f to M̃. One obtains the commutative
diagrams

HBM
r (M̃a)

��

iBM
a (r) // HBM

r (M̃)

��

jBM
a (r) // HBM

r (M̃, M̃a)

��
Hn−r(M̃, M̃a)

��

sa(n−r) // Hn−r(M̃)

��

ra(n−r) // Hn−r(M̃a)

��
(Hn−r(M̃, M̃a))∗

(ja(n−r))∗ // (Hn−r(M̃))∗
(ia(n−r))∗ // (Hn−r(M̃

a))∗

(53)

14i.e. f : f−1(a− ε, a+ ε)→ (a− ε, a+ ε) is a fibration
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and

HBM
r (M̃ b)

��

iBM,b(r) // HBM
r (M̃)

��

jBM,b(r) // HBM
r (M̃, M̃ b)

��
Hn−r(M̃, M̃b)

��

sb(n−r) // Hn−r(M̃)

��

rb(n−r) // Hn−r(M̃b)

��
(Hn−r(M̃, M̃b))

∗ (jb(n−r))∗ // (Hn−r(M̃))∗
(ib(n−r))∗ // (Hn−r(M̃b))

∗.

(54)

For M̃ , M̃a, and M̃a the Borel–Moore homology can be described as the following
inverse limits:

HBM
r (M̃) = lim←−

0<l→∞
Hr(M̃, M̃−l t M̃ l),

HBM
r (M̃a) = lim←−

0<l→∞
Hr(M̃a, M̃a−l),

HBM
r (M̃a) = lim←−

0<l→∞
Hr(M̃

a, M̃a+l),

(55)

The inclusions of pairs (M̃, M̃−l′ t M̃ l′) ⊆ (M̃, M̃−l t M̃ l) for l′ > l induce in

homology an inverse system whose limit is HBM
r (M̃). Similar inclusions of pairs

associated with l′ > l induce inverse systems whose limits are the remaining Borel–
Moore homology vector spaces considered above.

The horizontal arrows in both diagrams are inclusion induced linear maps in
Borel-Moore homology, cohomology and homology.

In view of the use of Borel–Moore homology, in addition to If̃a(r) and Ia
f̃
(r), one

considers

IBM,f̃
a (r) = img

(
HBM
r (M̃a)→ HBM

r (M̃)
)
,

IBM,a

f̃
(r) = img

(
HBM
r (M̃a)→ HBM

r (M̃)
)
,

and FBM,f
r (a, b) = dim

(
IBM,f̃
a (r) ∩ IBM,b

f̃
(r)
)
.

The first step in the proof of Theorem1.3 is the verification of the equality

FBM,f̃
r (a, b) = Gfn−r(b, a),

the second the verification of the equality

FBM,f̃
r (a, b) + ]J̃r(f) = F f̃r (a, b)

and the third step the verification of the equality

δf̃n−r(b, a) = δf̃r (a, b).

In view of the definition of δfr (〈a, b〉), cf. (45), the last equality implies δfr (〈a, b〉) =

δfn−r(〈b, a〉) hence Theorem 1.3.

STEP 1:
Recall that if α′ : A′ → B and α′′ : A′′ → B are linear maps, one writes α′ + α′′

for the linear map α′ + α′′ : A′ ⊕A′′ → B defined by

(α′ + α′′)(a′, a′′) := α(a′) + α′′(a′′),
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and if β′ : A → B′ and β′′ : A → B′′ are linear maps, one writes (β′, β′′) for the
linear map (β′, β′′) : A→ B′ ⊕B′′ defined by

(β′, β′′)(a) :=
(
β′(a), β′′(a)

)
.

One has the canonical isomorphisms

ker(β′, β′′)∗ ' coker((β′)∗ + (β′′)∗)

ker(α′ + α′′)∗ ' coker((α′)∗, (α′′)∗).
(56)

The exact sequences in Borel–Moore homology of the pairs (M̃, M̃a) and (M̃, M̃ b),
which are the top horizontal rows of the two diagrams (53) and (54), imply

FBM,f̃
r (a, b) = dim

(
IBM,f̃
a (r) ∩ IBM,b

f̃
(r)
)

= dim ker
(
jBM
a (r), jBM,b(r)

)
. (57)

Looking to the right side corners of the diagrams (53) and (54) one concludes

ker
(
jBM
a (r), jBM,b(r)

)
≡ ker

(
ra(n− r), rb(n− r)

)
. (58)

In view of the canonical isomorphism between cohomology vector space and the
dual of homology vector space one obtains:

ker
(
ra(n− r), rb(n− r)

)
≡
(
coker

(
ia(n− r) + ib(n− r)

))∗
. (59)

Observe that:

(1) In view of the finite dimensionality of Gf̃ (a, b) one has

dimGf̃n−r(b, a) = dimGf̃n−r(b, a)∗.

(2) In view of the definition of Gfn−r one has

dimGf̃n−r(b, a)∗ = dim coker
(
ib(n− r) + ia(n− r)

)∗
.

(3) In view of (56) one has

coker
(
ib(n− r) + ia(n− r)

)∗
= dim

(
ker
(
ib(n− r)∗ + ia(n− r)∗

))∗
(4) In view of (58) and (59) one has

dim coker
(
ib(n− r) + ia(n− r)

)∗
= dim

(
ker
(
jBM,b(r), jBMa (r)).

(5) In view of (57) one has
dim

(
ker
(
jBM,b(r), jBMa (r)) = FBM,f

r (a, b).

Consequently, FBM,f̃
r (a, b) = Gf̃n−r(b, a).

STEP 2:
We first provide below the description of the Borel–Moore homologies considered

above in terms of subsets of B̃r(f)tB̃r−1(f)tJ̃r(f)tJ̃r−1(f). This is a little more
than we need but is useful for future references.

For α < β, we use the notations

iα,β(r) :Hr(M̃α)→ Hr(M̃β)

iα,β(r) :Hr(M̃
β)→ Hr(M̃

α)

iβα(r) :Hr(M̃α t M̃β)→ Hr(M̃)

(60)

for the linear maps induced by the inclusions M̃α ⊆ M̃β , M̃
β ⊆ M̃α and M̃α∪M̃β ⊆

M̃.
We begin by considering the commutative diagram (61) below whose rows are

the long exact sequences of the pairs (M̃a, M̃−l), (M̃, M̃−l t M̃ l), (M̃ b, M̃ l) for
−l < a and b < l and vertical arrows induced by the inclusions of pairs

(M̃a, M̃−l) ⊂ (M̃, M̃−l t M̃ l) ⊃ (M̃ b, M̃ l).
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· · · // Hr(M̃−l)
i−l,a(r) //

��

Hr(M̃a) //

��

Hr(M̃a, M̃−l) //

��

Hr−1(M̃−l)

��

// · · ·

· · · // Hr(M̃−l t M̃ l)
il−l(r) // Hr(M̃) // Hr(M̃, M̃−l t M̃ l) // Hr−1(M̃−l t M̃ l) // · · ·

· · · // Hr(M̃ l)
ib,l(r) //

OO

Hr(M̃
b) //

OO

Hr(M̃
b, M̃ l) //

OO

Hr−1(M̃
l)

OO

// · · ·

.

(61)
The diagram (61) leads to the following commutative diagram whose rows are

short exact sequences.

0 // coker(i−l,a(r)) //

��

Hr(M̃a, M̃−l) //

��

ker(i−l,a(r − 1)) //

��

0

0 // coker(il−l(r))
// Hr(M̃, M̃−l t M̃ l) // ker(il−l(r − 1)) // 0

0 // coker(ib,l(r)) //

OO

Hr(M̃
b, M̃ l) //

OO

ker(ib,l(r − 1)) //

OO

0

.

(62)
Note that there exists compatible linear maps induced by inclusions when passing

from the diagram corresponding to (l′, a′, b′) to the diagram corresponding to (l, a, b)
when l′ ≥ l, a′ ≥ a, b′ ≤ b. Note also that for M compact and f tame the set of
bar codes Br(f) is finite and therefore there is a maximal length of all bar codes
say L(f).

Proposition 4.2 item (b) implies on the nose that following calculations.

Proposition 6.1. Let a, b fixed and suppose l satisfies a > −l, b < l. Then

(a) coker(i−l,a(r)) = κ[M−l,a(r)] with

M−l,a(r) := {[α, β] ∈ Bcr | −l < α ≤ a}
∪ {(α, β) ∈ Bor−1 | −l < β ≤ a}
∪ {[α, β) ∈ Bcor | −l < α ≤ a < β}.

(b) ker(i−l,a(r)) = κ[N−l,a(r)] with

N−l,a(r) := {[α, β) ∈ Bcor | α ≤ −l < β ≤ a}.
(c) coker(ib,l(r)) = κ[Mb,l(r)] with

Mb,l(r) := {[α, β] ∈ Bcr | b ≤ β < l}
∪ {(α, β) ∈ Bor−1 | b ≤ α < l}
∪ {(α, β] ∈ Bocr | α < b ≤ β < l}.

(d) ker(ib,l(r)) = κ[N b,l(r)] with

N b,l(r) := {(α, β] ∈ Bocr | b ≤ α < l ≤ β}.
If 2l > L(f) then:
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(e) coker(il−l(r)) = κ[Ml
−l(r)] with

Ml
−l(r) := {[α, β] ∈ Bcr | [α, β] ⊂ (−l, l)}

∪ {(α, β) ∈ Bor−1 | α < l, β > −l}.

(f) ker(il−l(r)) = κ[N l
−l(r) t J̃r(f)] with15

N l
−l(r) := {[α, β) ∈ Bcor | (α, β) 3 −l}

∪ {(α, β] ∈ Bocr | (α, β) 3 l}.

Clearly for l′ > l and l′ − l > L(f) one has:

M−l′,a(r) ⊇M−l,a(r), N−l′,a(r) ∩N−l,a(r) = ∅,
Mb,l′(r) ⊇Mb,l(r), N b,l′(r) ∩N b,l(r) = ∅,
Ml′

−l′(r) ⊇Ml
−l(r), N l′

−l′(r) ∩N l
−l(r) = ∅.

Note that the sets M−−(r), N−− (r), J̃r, and J̃r−1 are all subsets of S = B̃r t
B̃r−1 t J̃r t J̃r−1. Note also that all inclusions induced linear maps between the
homologies involved in the diagrams (61) and (62), via the identifications of these
homologies to vector spaces generated by subsets of S, correspond to canonical
linear maps.

Recall that if S1, S2 ⊆ S then the canonical linear map κ[S1] → κ[S2] is the
unique linear extension of the map which the identity on S1 ∩ S2 and zero on
S1 \ S2, cf. Definition 2.6.

To finalize the verification of Step 2 for α, β ∈ R one denotes

Bcr,α := B̃cr,(−∞,α](f) = {I ∈ Bcr(f̃) | I ∩ (−∞, α] 6= ∅},
Bc,βr := B̃cr,[β,∞)(f) = {I ∈ Bcr(f̃) | I ∩ [β,∞) 6= ∅},
Bor,α := B̃or,(−∞,α](f) = {I ∈ Bor(f̃) | I ⊂ (−∞, α]},
Bo,βr := B̃or,[β,∞)(f) = {I ∈ Bor(f̃) | I ⊂ [β,∞)}.

and one considers the commutative diagram (63) below.

If̃α(r)

��

κ[Bcr,α t Bor−1,α t J̃r(f)]

vα

��

ω̃r,(−∞,α]oo πα // κ[[Bcr,α t Bor−1,α]]

vα

��

ωBM
r,(−∞,α]// IBM,f̃

α (r)

��
Hr(M̃) κ[Bcr t Bor−1 t J̃r(f)]

ω̃roo π // κ[[Bcr t Bor−1]]
ω̃BM
r // HBM

r (M̃)

Iβ
f̃
(r)

OO

κ[Bc,βr t Bo,βr−1 t J̃r(f)]

vβ

OO

ω̃r,[β,∞)oo πβ // κ[[Bc,βr t Bo,βr−1]]

πβ

OO

ω̃BM
r,[β,∞) // IBM,β

f̃
(r)

OO

(63)

Propositions 4.2 (b) provides the left side of the diagram with ω̃r,(−∞,α], ω̃r,
ω̃r,[β,∞) isomorphisms.

By passing to the inverse limit when l→∞, Proposition (6.1) provides the right
side of the diagram with ω̃BM

r,(−∞,α], ω̃
BM
r , and ω̃BM

r,[β,∞) isomorphisms.

15In view of the hypothesis (a, b) can not contain both −l and l.
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The canonical linear maps πα, π, πβ ,vα and vβ defined by the sets in brackets
when regarded as subsets in B̃r(f)t B̃r−1(f)t J̃r(f)t J̃r−1(f) (cf. Definition 2.6)
provide the middle of the diagram.

Diagram (63) implies that If̃α(r) ∩ Iβ
f̃
(r) identifies to

κ[(B̃cr,α ∩ B̃c,βr ) t (B̃or−1,α ∩ B̃o,βr−1) t J̃r(f)]

and IBM,f̃
α (r) ∩ IBM,β

f̃
(r) identifies to

κ[[(B̃cr,α ∩ B̃c,βr ) t (B̃or−1,α ∩ B̃o,βr−1)]].

which in view of the fact that the set in brackets is finite (hence there is no difference
between κ[[· · · ]] and κ[· · · ]) imply the exactness of the sequence

0→ κ[J̃r(f)]→ If̃α(r) ∩ Iβ
f̃
(r)→ IBM,f̃

α (r) ∩ IBM,β

f̃
(r)→ 0.

Note that If̃α(r)∩ Iβ
f̃
(r)→ IBM,f̃

α (r)∩ IBM,β

f̃
(r) is the composition ω̃BM

r ·π · ω̃−1
r . The

exact sequence above implies

FBM,f̃
r (a, b) + ]J̃r(f) = F f̃r (a, b)

which finalizes Step 2.
As a side remark note that by passing to the inverse limit when l→∞ Proposi-

tion 6.1 and Diagram (61) led to the following calculations used in the next section.

Proposition 6.2.

(1) HBM
r (X̃) = κ[[S̃r(f) t J̃r−1(f)]] = κ[[B̃cr(f) t B̃or−1(f) t J̃r−1(f)]].

(2) IBM,f̃
a (r) = κ[[S̃r,(−∞,a](f)]] = κ[[B̃cr,(−∞,a](f) t B̃or−1,(−∞,a](f)]].

(3) HBM
r (X̃a) = κ[[S̃′r,(−∞,a](f)]] = κ[[B̃cor,(−∞,a] t S̃r,(−∞,a](f)]].

(4) IBM,b

f̃
(r) = κ[[S̃r,[b,∞)(f)]] = κ[[B̃cr,([b,∞)(f) t B̃or−1,[b,∞)(f)]].

(5) HBM
r (X̃b) = κ[[S̃′r,(b,∞)(f)]] = κ[[B̃ocr,[b,∞) t S̃r,(−∞,a](f)]].

The canonical linear map Hr(X̃) → H
BM(
r (X̃) can be also read off from Dia-

gram (63) in terms of barcodes. It is exactly the unique linear map which is identity

on Bcr t Bor−1 and zero on J̃r(f).

STEP 3:
In view of the fact that by δf̃r (a, b) = µf̃r ((a− ε, a+ ε]× [b− ε, b+ ε) for ε small

enough, cf. (38), and of Proposition (5.4) the equality in Step 3 follows.

7. The mixed bar codes. Proof of Theorem 1.5

Let f : X → S1 be a tame angle-valued map and f̃ : X̃ → R be the infinite cyclic
covering of f.The sets Bcor (f) and Bocr (f) which define the configuration Cmr (f), cf.
Section 3, are equivalence classes modulo translation by integer multiple of 2π of
the bar codes of B̃cor (f) = Bcor (f̃) and B̃ocr (f) = Bocr (f̃).

Note also that an interval [a, b) is an element in Bcor (f̃) with multiplicity k iff
(a, b) is an r−persistence bar code in the sense of [17] with the same multiplicity for

the sublevel filtration associated with f̃ . Similarly the interval (a, b] is an element

in Bocr (f̃) with multiplicity k if (−b,−a) is an r−persistence bar code with the

same multiplicity for the sublevel-filtration associated with −f̃ . Recall that a point
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〈a, b〉 ∈ (R2 \∆)/Z is in the support of Cmr (f) with multiplicity k iff [a, b) ∈ Bcor (f)
with multiplicity k when a > b, or (a, b] ∈ Bocr (f) when a < b with multiplicity k.

The stability result in [11] , the MAIN THEOREM, remains valid with the same
proof if instead of real-valued tame maps one considers angle-valued tame maps
f : X → S1.

More precisely the assignment f  Bcor (f), with Bcor (f) viewed as a multiset (=
configuration of points) in R2

+/Z ⊂ (R2 \∆)/Z = T \∆T is continuous w.r. to the
compact open topology on Cξ,t(X,S1) and the topology induced by the bottleneck
metric on the space of configurations Confg ((R2

+/Z) ⊂ Confg ((R2 \∆)/Z).
Similarly the assignment f  Bocr (f), with Bocr (f) viewed as a multi set in

R2
−/Z ⊂ (R2 \∆)/Z, is continuous w.r. to the same topologies. The spaces R2

+ :=
{(x, y) | x < y} and R2

− := {(x, y) | x < y} are invariant w.r. to the action
Z× R2 → R2 given by (n, (x, y))→ (x+ 2nπ, y + 2nπ).

The bottleneck metric defined in [11] induces the bottleneck topology defined
without metric in Section 1. In terms of the configuration Cmr (f) the stability
result in [11] can be reformulated in the following way.

Theorem The assignment f 7→ Cmr (f) from Cξ,t(X,S1) the space of tame maps
equipped with the compact open topology to Confg(T\∆) equipped with the bottleneck
topology for case (X,K) = (T,∆T) as described in Section 1 is continuous. 16

This because the bottleneck metric induces the bottleneck topology. This The-
orem is exactly Theorem 1.5.

In parallelism with the configuration Cr(f), for the proof of Theorem 1.6 one
can identify the configuration Cmr (f) with the map δm,fr : T\∆T → Z≥0. This map

can be derived from the function of two variables T f̃r : R2 \∆ → Z≥0 in a similar

manner to the description of the configuration Cr(f) in Section 5. The function T f̃r
is defined by:

T f̃r (a, b) :=

{
dim ker

(
Hr(X̃a)→ Hr(X̃b)

)
if a < b

dim ker
(
Hr(X̃

a)→ Hr(X̃
b)
)

if a > b.
(64)

If f is tame then so is f̃ and the limit

δm,f̃r (a, b) = lim
ε→0

(
T f̃r (a+ ε, b+ ε)− T f̃r (a− ε, b+ ε)

+ T f̃r (a− ε, b− ε)− T f̃r (a+ ε, b− ε)
)

(65)

exists and defines the function δm,f̃r which satisfies

δm,f̃r (a, b) = δm,f̃r (a+ 2π, b+ 2π).

Then, as in Section 5, one defines the function δm,fr : T \∆T → Z≥0 by

δm,fr (〈a, b〉) := δm,f̃r (a, b).

As in Section 5 Proposition 5.7, using Proposition 4.2 one verifies that δm,fr and
Cmr (f) are equal.

16 A direct verification of Theorem 1.5 without reference to [17] can be found in the forthcoming
book [8].
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Proposition 7.1. If f is a tame real- or angle-valued map defined on X, a compact
ANR, then δm,fr and Cmr (f) are equal Z≥0−valued functions defined on R2 \∆ or
T \∆T.

The proof is exactly the same as of Proposition. 5.7 provided one replaces (47)
and (48) by (66) which follows in a straightforward manner from Proposition 4.2.
precisely the following calculations.

T fr (ci, cj) = ]{I ∈ Bc,or | I = [ci, cj)}if ci < cj

T fr (ci, cj) = ]{I ∈ Bc,or | I = [ci, cj)}if ci > cj.
(66)

In order to prove Theorem 1.6 we first recall some notations.
For f̃ : X̃ → R the infinite cyclic covering of the tame map f : X → S1, a, b ∈ R, a ≤
b

• one considers the inclusion induced linear maps :

ia(r) : Hr(X̃a)→ Hr(X̃), iBM
a (r) : HBM

r (X̃a)→ HBM
r (X̃),

ia(r) : Hr(X̃
a)→ Hr(X̃), iBM,a(r) : HBM

r (X̃a)→ HBM
r (X̃).

ia,b(r) : Hr(X̃a)→ Hr(X̃b), iBM
a,b (r) : HBM

r (X̃a)→ HBM
r (X̃b),

ib,a(r) : Hr(X̃
b)→ Hr(X̃

a), iBM,b,a(r) : HBM
r (X̃b)→ HBM

r (X̃a).

• one defines

Ka(r) := ker ia(r), KBM
a (r) := ker iBM

a (r),

Ka(r) := ker ia(r), KBM,a(r) := ker iBM,a(r),

and
• one denotes by

ι̃a,b(r) : Ka(r)→ Kb(r), ι̃BM
a,b (r) : KBM

a (r)→ KBMb (r),

ι̃b,a(r) : Kb(r)→ Ka(r), ι̃BM,b,a(r) : KBM,b(r)→ KBM,a(r)

the restrictions of ia,b(r), i
BM
a,b (r) and ib,a(r), iBM,b,a(r) to these kernels.

Note that in view of the definition (64)

T fr (a, b) = ker ia, b(r), a < b

T fr (a, b) = ker ia,b(r), a > b
(67)

by elementary linear algebra argument

ker ι̃a,b(r) = ker ia,b(r)

ker ι̃a,b(r) = ker ia,b(r)
(68)

and In view of the calculations of the Borel–Moore homology of X̃a, X̃a, X̃ cf
Proposition 6.2, and the description of the linear maps from homology to Borel–
Moore homology one concludes that

K(r) = KBM(r)

ι̃(r) = ι̃BM(r)
(69)

Proposition 4.2 permits to describe the vector spaces Ka(r), Ka(r), ker(ι̃a,b(r)),
coker(ι̃a,b(r)), ker(ι̃b,a(r)), coker(ι̃b,a(r)) in terms of mixed bar codes as in Propo-
sition 7.2 below. The verification is a straightforward reading of Proposition 4.2.
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Proposition 7.2. Suppose f : X → S1 is a tame map with f̃ : X̃ → R its infinite
cyclic covering, and a, b real numbers with a ≤ b. Then:

Ka(r) = κ
[
{I ∈ B̃cor (f) | I 3 a}

]
,

Ka(r) = κ
[
{I ∈ B̃ocr (f) | I 3 a}

]
,

ker
(
ι̃a,b(r)

)
= κ

[
{I ∈ B̃cor (f) | I 3 a, b /∈ I}

]
,

coker
(
ι̃a,b(r)

)
= κ

[
{I ∈ B̃cor (f) | I 3 b, a /∈ I}

]
,

ker
(
ι̃b,a(r)

)
= κ

[
{I ∈ B̃ocr (f) | I 3 b, a /∈ I}

]
,

coker
(
ι̃b,a(r)

)
= κ

[
{I ∈ B̃ocr (f) | I 3 a, b /∈ I}

]
.

Note that Ka(r) and Ka(r) are finite dimensional vector spaces.

In view of the tameness of f and of (65), (67) and (68) one concludes that for
a < b and ε small enough

δm,f̃k (a, b) = dim ker
(
ia+ε,b+ε(k)

)
− dim ker

(
ia−ε,b+ε(k)

)
− dim ker

(
ia+ε,b−ε(k)

)
+ dim ker

(
ia−ε,b−ε(k)

)
= dim ker

(
ι̃a+ε,b+ε(k)

)
− dim ker

(
ι̃a−ε,b+ε(k)

)
− dim ker

(
ι̃a+ε,b−ε(k)

)
+ dim ker

(
ι̃a−ε,b−ε(k)

) (70)

and for a > b and ε small enough one has

δm,f̃k (a, b) = dim ker
(
ia−ε,b−ε(r)

)
− dim ker

(
ia+ε,b−ε(r)

)
− dim ker

(
ia−ε,b+ε(r)

)
+ dim ker

(
ia+ε,b+ε(r)

)
= dim ker

(
ι̃a−ε,b−ε(r)

)
− dim ker

(
ι̃a+ε,b−ε(r)

)
− dim ker

(
ι̃a−ε,b+ε(r)

)
+ dim ker

(
ι̃a+ε,b+ε(r)

)
.

(71)

Next observe that the long exact sequence for the pair (X̃, X̃α), α ∈ R

· · · → Hn−r(X̃)
jα(n−r)−−−−−→ Hn−r(X̃, X̃

α)
∂α(n−r)−−−−−→

→ Hn−r−1(X̃α)
iα(n−r−1)−−−−−−−→ Hn−1−r(X̃)→ · · ·

provides the isomorphism

∂̂α(n− r) : coker
(
jα(n− r)

)
→ ker

(
iα(n− r − 1)

)
= Kα(n− r − 1) (72)

which, being “natural” w.r. to the inclusion of pairs (X̃, X̃β) ⊆ (X̃, X̃α) for α ≤ β,
makes the diagram below commutative.

coker
(
jβ(n− r)

)
��

∂̂β(n−r) // Kβ(n− r − 1)

ι̃β,α(n−r−1)

��
coker

(
jα(n− r)

) ∂̂α(n−r) // Kα(n− r − 1)

(73)

Proof of Theorem 1.6
Suppose now that X = M is a closed κ-orientable n−dimensional manifold and

α is a regular value of f̃ . Poincaré duality for the manifold M̃ and for the pairs
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(M̃, M̃α) and (M̃, M̃α) provides the commutative diagram

Kα(r) // Hr(M̃α)

��

iα(r) // Hr(M̃)

��
KBM
α (r)

PD1

��

// HBM
r (M̃α)

PD2

��

iBM
α (r) // HBM

r (M̃)

PD3

��
(coker jα(n− r))∗ // (Hn−r(M̃, M̃α))∗ // (Hn−r(M̃))∗

(74)

with the bottom vertical arrows PD1, PD2, PD3 isomorphisms. This is because
PD2 and PD3 which appear in (53) are isomorphisms as indicated in Section 5.
The diagram is natural w.r. to the inclusion of pairs (X,Xα) ⊆ (X,Xβ), provided
α and β are regular values. It leads to the following commutative diagram whose
vertical arrows are all isomorphisms:

Kα(r)

��

ι̃a,b(r) // Kβ(r)

��
(coker jα(n− r))∗ // (coker jb(n− r))∗

Kα(n− r − 1)∗

∂̂a(n−r)∗

OO

ι̃β,α(n−r−1)∗ // Kβ(n− r − 1)∗

∂̂β(n−r)∗

OO
(75)

To finalize the proof of Theorem 1.6, recall that the tameness of f implies the
tameness of f̃ and for a, b critical values and ε < ε(f), the numbers a± ε, b± ε are
regular values, therefore by (75) one has

ι̃a±ε,b±ε′(r) =
(
ι̃b±ε,a±ε

′
(n− 1− r)

)∗
. (76)

The equations (70), (71), and (76) imply δm,f̃r (a, b) = δm,f̃n−r−1(b, a) and then

Cmr (f)(〈a, b〉) = δm,fr (〈a, b〉) = δm,fn−r−1(〈b, a〉) = Cmn−r−1(f)(〈b, a〉). equality which
establishes Theorem 1.6.

8. Linear relations and monodromy. Proof of Theorem 1.4

We begin this section with a discussion of linear relations. To every linear rela-
tion R : V  V we associate a linear relation Rreg : Vreg  Vreg on a subquotient,
Vreg, of V . In Proposition 8.2 we show that Rreg is a linear isomorphism. If V
is a finite dimensional vector space, then, according to the Krull–Remak–Schmidt
theorem, R can be decomposed as a direct sum of indecomposable linear relations,
R ∼= R1 ⊕ · · · ⊕ RN , where the factors Ri : Vi  Vi are unique up to permutation
and isomorphism. In this case, Rreg is isomorphic to the direct sum of factors which
are indecomposable linear isomorphisms see Proposition 8.3. For linear relations
on complex vector spaces Rreg can easily be derived using the detailed structure
theorem in [33]. Here we will be concerned with vector spaces over arbitrary fields.
Most of this material can be developed for linear relations on modules over commu-
tative rings, and this is the setting for the basic definitions, although in this paper
we are interested only in the case of vector spaces.
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In the second part of this section, we consider the level Xθ = f−1(θ) associated
with a continuous map f : X → S1 and a value θ ∈ S1 s.t. f−1(θ) is an ANR. Using

the corresponding infinite cyclic covering X̃ → X one obtains a linear relation Rθ
on H∗(Xθ), see Section 1 or (81) below. We will show that (Rθ)reg is conjugate to
the isomorphism induced by the fundamental deck transformation on

ker
(
H∗(X̃)→ HNov,−

∗ (X̃)⊕HNov,+
∗ (X̃)

)
,

see Theorem 8.14. Here HNov,±
∗ (X̃) denote Novikov type homology groups ex-

plained below. The second part of Theorem 8.14 implies that this is isomorphic to
ker(Hr(X̃)→ HN

r (X, ξf )) considered in Section 4.
This result holds true without compactness assumptions on X (and with ar-

bitrary coefficients not necessary in a field). It implies that Rreg is a homotopy
invariant of f .

At the end of Section 8.2 we will give a proof of Theorem 1.4.

8.1. Linear relations. Suppose V and W are two modules over a fixed commu-
tative ring. Recall that a linear relation from V to W can be considered as a
submodule R ⊆ V ×W . Notationally, we indicate this situation by R : V  W .
For v ∈ V and w ∈ W we write vRw iff v is in relation with w, i.e. (v, w) ∈ R.
Every module homomorphism V →W can be regarded as a linear relation V  W
in a natural way. If U is another module, and S : W  U is a linear relation,
then the composition SR : V  U is the linear relation defined by v(SR)u iff there
exists w ∈ W such that vRw and wSu. Clearly, this is an associative composition
generalizing the ordinary composition of module homomorphisms. For the identical
relations we have R IdV = R and IdW R = R. Modules over a fixed commutative
ring and linear relations thus constitute a category. If R : V  W is a linear rela-
tion we define a linear relation R† : W  V by wR†v iff vRw. Clearly, R†† = R
and (SR)† = R†S†.

A linear relation R : V  W gives rise to the following submodules:

dom(R) := {v ∈ V | ∃w ∈W : vRw}
img(R) := {w ∈W | ∃v ∈ V : vRw}
ker(R) := {v ∈ V | vR0}

mul(R) := {w ∈W | 0Rw}

Clearly, ker(R) ⊆ dom(R) ⊆ V , and W ⊇ img(R) ⊇ mul(R). Note that R is a
homomorphism (map) iff dom(R) = V and mul(R) = 0. One readily verifies:

Lemma 8.1. For a linear relation R : V  W the following are equivalent:

(a) R is an isomorphism in the category of modules and linear relations.
(b) dom(R) = V , img(R) = W , ker(R) = 0, and mul(R) = 0.
(c) R is an isomorphism of modules.

In this case R−1 = R†.



50 DAN BURGHELEA AND STEFAN HALLER

For a linear relation R : V  V , we introduce the following submodules:

K+ := {v ∈ V | ∃k ∃vi ∈ V : vRv1Rv2R · · ·RvkR0}
K− := {v ∈ V | ∃k ∃vi ∈ V : 0Rv−kR · · ·Rv−2Rv−1Rv}
D+ := {v ∈ V | ∃vi ∈ V : vRv1Rv2Rv3R · · · }
D− := {v ∈ V | ∃vi ∈ V : · · ·Rv−3Rv−2Rv−1Rv}

D := D− ∩D+ = {v ∈ V | ∃vi ∈ V : · · ·Rv−2Rv−1RvRv1Rv2R · · · },
Clearly, K− ⊆ D− ⊆ V ⊇ D+ ⊇ K+. Also note that passing from R to R†, the
roles of + and − get interchanged. Moreover, we introduce a linear relation on the
quotient module

Vreg :=
D

(K− +K+) ∩D (77)

defined as the composition

Vreg =
D

(K− +K+) ∩D
π†

 D
ι
 V

R
 V

ι†

 D
π
 

D

(K− +K+) ∩D = Vreg,

where ι and π denote the canonical inclusion and projection, respectively. In other
words, two elements in Vreg are related by Rreg iff they admit representatives in D
which are related by R. We refer to Rreg as the regular part of R.

Proposition 8.2. The relation Rreg : Vreg  Vreg is an isomorphism of modules.
Moreover, the natural inclusion induces a canonical isomorphism

Vreg =
D

(K− +K+) ∩D
∼=−→ (K− +D+) ∩ (D− +K+)

K− +K+
(78)

which intertwines Rreg with the relation induced on the right hand side quotient.

Proof. Clearly, (78) is well defined and injective. To see that it is onto let

x = k− + d+ = d− + k+ ∈ (K− +D+) ∩ (D− +K+),

where k± ∈ K± and d± ∈ D±. Thus

x− k− − k+ = d+ − k+ = d− − k− ∈ D+ ∩D− = D.

We conclude x ∈ D +K− +K+, whence (78) is onto. We will next show that this
isomorphism intertwines Rreg with the relation induced on the right hand side. To
do so, suppose xRx̃ where

x = k− + d+ = d− + k+ ∈ (K− +D+) ∩ (D− +K+),

x̃ = k̃− + d̃+ = d̃− + k̃+ ∈ (K− +D+) ∩ (D− +K+),

and k±, k̃± ∈ K± and d±, d̃± ∈ D±. Note that there exist k′+ ∈ K+ and k̃′− ∈ K−
such that k+Rk

′
+ and k̃′−Rk̃−. By linearity of R we obtain

(x− k+ − k̃′−)︸ ︷︷ ︸
∈D−

R (x̃− k′+ − k̃−)︸ ︷︷ ︸
∈D+

.

We conclude d := x−k+−k̃′− ∈ D, d̃ := x̃−k′+−k̃− ∈ D, and dRd̃. This shows that
the relations induced on the two quotients in (78) coincide. We complete the proof
by showing that Rreg is an isomorphism. Clearly, dom(Rreg) = Vreg = img(Rreg).

We will next show ker(Rreg) = 0. To this end suppose dRd̃, where

d ∈ D and d̃ = k̃− + k̃+ ∈ (K− +K+) ∩D
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with k̃± ∈ K±. Note that k̃− = d̃−k̃+ ∈ K−∩D+. Thus there exists k− ∈ K−∩D+

such that k−Rk̃−. By linearity of R, we get (d−k−)Rk̃+, whence d−k− ∈ K+ and
thus d ∈ K−+K+. This shows ker(Rreg) = 0. Analogously, we have mul(Rreg) = 0.
In view of Lemma 8.1 we conclude that Rreg is an isomorphism of modules. � �

We will now specialize to linear relations on finite dimensional vector spaces and
provide another description of Vreg in this case. Consider the category whose objects
are finite dimensional vector spaces V equipped with a linear relation R : V  V
and whose morphisms are linear maps ψ : V → W such that for all x, y ∈ V with
xRy we also have ψ(x)Qψ(y), where W is another finite dimensional vector space
with linear relation Q : W  W . It is readily checked that this is an abelian
category. By the Krull–Remak–Schmidt theorem, every linear relation on a finite
dimensional vector space can therefore be decomposed into a direct sum of indecom-
posable ones, R ∼= R1 ⊕ · · · ⊕RN , where the factors are unique up to permutation
and isomorphism. The decomposition itself, however, is not canonical.

Proposition 8.3. Let R : V  V be a linear relation on a finite dimensional
vector space over a field , and let R ∼= R1 ⊕ · · · ⊕ RN denote a decomposition
into indecomposable linear relations. Then Rreg is isomorphic to the direct sum of
factors Ri whose relations are linear isomorphisms.

Proof. Since the definition of Rreg is a natural one, we clearly have

Rreg
∼= (R1)reg ⊕ · · · ⊕ (RN )reg.

Consequently, it suffices to show the following two assertions:

(a) If R : V  V is an isomorphism of vector spaces, then Vreg = V and Rreg = R.
(b) If R : V  V is an indecomposable linear relation on a finite dimensional vector

space which is not a linear isomorphism, then Vreg = 0.

The first statement is obvious, in this case we have K− = K+ = 0 and D = D− =
D+ = V . To see the second assertion, note that an indecomposable linear relation
R ⊆ V × V gives rise to an indecomposable representation R→→V of the quiver G2.
Since R is not an isomorphism, the quiver representation has to be of the bar code
type. Using the explicit descriptions of the bar code representations, it is straight
forward to conclude Vreg = 0. � �

In the subsequent discussion we will also make use of the following result:

Proposition 8.4. Suppose R : V  V is a linear relation on a finite dimensional
vector space. Then:

D+ = D +K+, D− = K− +D, and (79)

K− ∩D+ = K− ∩K+ = D− ∩K+. (80)

For the proof we first establish two lemmas.

Lemma 8.5. Suppose R : V  W is a linear relation between vector spaces such
that dimV = dimW <∞. Then the following are equivalent:

(a) R is an isomorphism.
(b) dom(R) = V and ker(R) = 0.
(c) img(R) = W and mul(R) = 0.
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Proof. This follows immediately from the dimension formula

dim dom(R) + dim mul(R) = dim(R) = dim img(R) + dim ker(R)

and Lemma 8.1. � �

Lemma 8.6. If V is finite dimensional, then the composition of relations

D+/K+
π†

 D+
ι
 V

Rk

 V
ι†

 D+
π
 D+/K+,

is a linear isomorphism, for every k ≥ 0, where ι and π denote the canonical
inclusion and projection, respectively. Analogously, the relation induced by Rk on
D−/K− is an isomorphism, for all k ≥ 0. Moreover, for sufficiently large k,

D− = img(Rk) and D+ = dom(Rk).

Proof. One readily verifies dom(πι†Rkιπ†) = D+/K+ and ker(πι†Rkιπ†) = 0. The
first assertion thus follows from Lemma 8.5 above. Considering R† we obtain the
second statement. Clearly, dom(Rk) ⊇ dom(Rk+1), for all k ≥ 0. Since V is finite
dimensional, we must have dom(Rk) = dom(Rk+1), for sufficiently large k. Given
v ∈ dom(Rk), we thus find v1 ∈ dom(Rk) such that vRv1. Proceeding inductively,
we construct vi ∈ img(Rk) such that vRv1Rv2R · · · , whence v ∈ D+. This shows
dom(Rk) ⊆ D+, for sufficiently large k. As the converse inclusion is obvious we get
D+ = dom(Rk). Considering R†, we obtain the last statement. � �

Proof of Proposition 8.4. From Lemma 8.6 we get img(πι†Rk) = D+/K+, whence
D+ ⊆ img(Rk)+K+, for every k ≥ 0, and thus D+ ⊆ D−+K+. This implies D+ =
D+K+. Considering R† we obtain the other equality in (79). From Lemma 8.6 we
also get mul(πι†Rk) = 0, whence mul(Rk) ∩D+ ⊆ K+, for every k ≥ 0. This gives
K− ∩D+ = K− ∩K+. Considering R† we get the other equality in (80). � �

Let us describe the regular part of a linear transformation ϕ : V → V on a
finite dimensional vector space V more explicitly. In this case, we clearly have
K− = 0, K+ =

⋃
n kerϕn, D+ = V and D = D− =

⋂
n imgϕn. Moreover,

(K−+K+)∩D = 0 according to (80) in Proposition 8.4. Hence, the regular part of
ϕ coincides with the restriction ϕ :

⋂
n imgϕn → ⋂

n imgϕn, see (77). According to
Proposition 8.2, the regular part of ϕ can alternatively be described as the induced
isomorphism ϕreg : V/

⋃
n kerϕn → V/

⋃
n kerϕn, for we have V = D− + K+ in

view of (79) in Proposition 8.4.
The following notation and observation will be used in the appendix. For two

linear maps, A,B : V → W , we let R(A,B) : V  V denote the linear relation
R(A,B) := {(v1, v2) | A(v1) = B(v2)}.

Observation 8.7. Suppose A,B : V →W are two linear maps.

(a) If A′, B′ : V → W ′ denote the composition of A and B with an inclusion of
vector spaces, W ⊆W ′, then R(A,B) = R(A′, B′).

(b) If A is invertible then R(A,B) = R(Id, A−1B) = R(A−1B, Id)†.
(c) If A is invertible then R(A,B)reg = ((A−1B)reg)−1.
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8.2. Monodromy. Suppose f : X → S1 is a continuous map and let

X̃

��

f̃ // R

��
X

f // S1

denote the associated infinite cyclic covering. For r ∈ R we put X̃r = f̃−1(r) and let

H∗(X̃r) denote its singular homology with coefficients in any fixed field. If r1 ≤ r2

we define a linear relation

Br2r1 : H∗(X̃r1) H∗(X̃r2)

by declaring a1 ∈ H∗(X̃r1) to be in relation with a2 ∈ H∗(X̃r2) iff their images in

H∗(X̃[r1,r2]) coincide, where X̃[r1,r2] = f̃−1([r1, r2]).
If r1 ≤ r2 ≤ r3 we clearly have Br3r2B

r2
r1 ⊆ Br3r1 . To formulate a criterion which

guarantees equality of relations, Br3r2B
r2
r1 = Br3r1 , we introduce the following notation:

A number r ∈ R is called tame value if, for every ε > 0, there exists a neighborhood
U of X̃r in X̃[r−ε,r+ε] such that each of the inclusions X̃r ⊆ U , X̃[r−ε,r] ∩ U ⊆ U ,

and X̃[r,r+ε] ∩ U ⊆ U , induces isomorphisms in homology. The crucial point is

that in this case the triad (X̃[r−ε,r+ε]; X̃[r,r+ε], X̃[r−ε,r]) gives rise to a long exact
Mayer–Vietoris sequence. Note that for a tame map as considered in Section 1, all
values are tame.

Lemma 8.8. Suppose r1 ≤ r2 ≤ r3 and assume r2 is a tame value. Then, as linear
relations, Br3r2B

r2
r1 = Br3r1 .

Proof. Since r2 is a tame value, we have an exact Mayer–Vietoris sequence,

H∗(X̃r2)→ H∗(X̃[r1,r2])⊕H∗(X̃[r2,r3])→ H∗(X̃[r1,r3]).

This immediately gives Br3r2B
r2
r1 ⊇ Br3r1 . As the converse inclusion, Br3r2B

r2
r1 ⊆ Br3r1 ,

is obvious, the lemma follows. � �

Fix a tame value θ ∈ S1 of f and a lift θ̃ ∈ R, eiθ̃ = θ. Using the projection
X̃ → X, we may canonically identify X̃θ̃ = Xθ = f−1(θ). Moreover, let τ : X̃ → X̃

denote the fundamental deck transformation, i.e. f̃ ◦τ = f̃+2π. Note that τ induces
homeomorphisms between levels, τ : X̃r → X̃r+2π, and define a linear relation

Rθ : H∗(Xθ) H∗(Xθ)

as the composition

H∗(Xθ) = H∗(X̃θ̃)
Bθ̃+2π

θ̃ H∗(X̃θ̃+2π)
τ†∗ H∗(X̃θ̃) = H∗(Xθ). (81)

In other words, for a, b ∈ H∗(Xθ) we have aRb iff aBθ̃+2π

θ̃
(τ∗b), i.e. iff a and τ∗b

coincide in H∗(X̃[θ̃,θ̃+2π]). Particularly, we have:

Lemma 8.9. If a, b ∈ H∗(Xθ) and aRb, then a = τ∗b in H∗(X̃).

We will continue to use the notationK±, D±, andRreg introduced in the previous
section for this relation R on H∗(Xθ). Particularly, its regular part,

Rreg : H∗(Xθ)reg → H∗(Xθ)reg,

is a module automorphism.
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Lemma 8.10. We have:

K+ = ker
(
H∗(Xθ)→ H∗(X̃[θ̃,∞))

)
K− = ker

(
H∗(Xθ)→ H∗(X̃(−∞,θ̃])

)
Both maps are induced by the canonical inclusion Xθ = X̃θ̃ → X̃.

Proof. We will only show the first equality, the other one can be proved along
the same lines. To see the inclusion K+ ⊆ ker(H∗(Xθ) → H∗(X̃[θ̃,∞))), let a ∈
K+. Hence, there exist ak ∈ H∗(Xθ), almost all of which vanish, such that

aRa1Ra2R · · · . In H∗(X̃[θ̃,θ̃+2π]), we thus have:

a = τ∗a1, a1 = τ∗a2, a2 = τ∗a3, . . .

In H∗(X̃[θ̃,∞)), we obtain:

a = τ∗a1 = τ2
∗a2 = τ3

∗a3 = · · ·
Since some ak have to be zero, we conclude that a vanishes in H∗(X̃[θ̃,∞)).

To see the converse inclusion, K+ ⊇ ker(H∗(X̃θ)→ H∗(X̃[θ̃,∞))), set

U :=
⊔

0 ≤ k even

X̃[θ̃+2πk,θ̃+2π(k+1)], V :=
⊔

1 ≤ k odd

X̃[θ̃+2πk,θ̃+2π(k+1)]

and note that U ∪ V = X̃[θ̃,∞), as well as U ∩ V =
⊔
k∈N X̃θ̃+2πk. Since θ is a tame

value, we have an exact Mayer–Vietoris sequence⊕
k∈N

H∗(X̃θ̃+2πk) = H∗

(⊔
k∈N

X̃θ̃+2πk

)
→ H∗(U)⊕H∗(V )→ H∗(X̃[θ̃,∞)).

For b ∈ ker(H∗(Xθ) → H∗(X̃[θ̃,∞))) we thus find bk ∈ H∗(X̃θ̃+2πk), almost all of

which vanish, such that:

b = b1 ∈ H∗(X̃[θ̃,θ̃+2π])

b1 + b2 = 0 ∈ H∗(X̃[θ̃+2π,θ̃+4π])

b2 + b3 = 0 ∈ H∗(X̃[θ̃+4π,θ̃+6π])

...

Putting ck := (−1)k−1τ−k∗ bk ∈ H∗(X̃θ̃), we obtain the following equalities in

H∗(X̃[θ̃,θ̃+2π]):

b = τ∗c1, c1 = τ∗c2, c2 = τ∗c3, . . .

In other words, we have the relations bRc1Rc2Rc3R · · · . Since some ck has to be
zero, we conclude b ∈ K+, whence the lemma. � �

Introduce the upwards Novikov complex as a projective limit of relative singular
chain complexes,

CNov,+
∗ (X̃) := lim←−

r

C∗(X̃, X̃[r,∞)),

and let HNov,+
∗ (X̃) denote its homology. Alternatively, CNov,+

∗ (X̃) can be described
as the chain complex of formal, possibly infinite, linear combinations of singular
simplices in X̃ such that the number of simplices intersecting X̃(−∞,r] is finite, for all

real values r. Analogously, we define a downwards Novikov complex CNov,−
∗ (X̃) =
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lim←−r C∗(X̃, X̃(−∞,r]) and the corresponding homology, HNov,−
∗ (X̃). We will also use

similar notation for subsets of X̃.

Lemma 8.11. We have:

D+ = ker
(
H∗(Xθ)→ HNov,+

∗ (X̃[θ̃,∞))
)

D− = ker
(
H∗(Xθ)→ HNov,−

∗ (X̃(−∞,θ̃])
)

Both maps are induced by the canonical inclusion Xθ = X̃θ̃ → X̃.

Proof. Using the exact Mayer–Vietoris sequence∏
k∈N

H∗(X̃θ̃+2πk) = HNov,+
∗

(⊔
k∈N

X̃θ̃+2πk

)
→ HNov,+

∗ (U)⊕HNov,+
∗ (V )→ HNov,+

∗ (X̃[θ̃,∞)),

this can be proved along the same lines as Lemma 8.10. � �

Let us introduce a complex

C l.f.
∗ (X̃) := lim←−

r

C∗(X̃, X̃(−∞,−r] ∪ X̃[r,∞))

and denote its homology by H l.f.
∗ (X̃). If f is proper, this is the complex of locally

finite singular chains.

Lemma 8.12. We have:

K− +K+ = ker
(
H∗(Xθ)→ H∗(X̃)

)
K− +D+ = ker

(
H∗(Xθ)→ HNov,+

∗ (X̃)
)

D− +K+ = ker
(
H∗(Xθ)→ HNov,−

∗ (X̃)
)

D− +D+ = ker
(
H∗(Xθ)→ H l.f.

∗ (X̃)
)

All maps are induced by the canonical inclusion Xθ = X̃θ̃ → X̃.

Proof. The first statement follows from the exact Mayer–Vietoris sequence

H∗(X̃θ̃)→ H∗(X̃(−∞,θ̃])⊕H∗(X̃[θ̃,∞))→ H∗(X̃)

and Lemma 8.10. The second assertion follows from the exact Mayer–Vietoris
sequence

H∗(X̃θ̃)→ H∗(X̃(−∞,θ̃])⊕HNov,+
∗ (X̃[θ̃,∞))→ HNov,+

∗ (X̃)

and Lemma 8.10 and 8.11. Similarly, one can check the third equality. To see the
last statement we use the exact Mayer–Vietoris sequence

H∗(X̃θ̃)→ HNov,−
∗ (X̃(−∞,θ̃])⊕HNov,+

∗ (X̃[θ̃,∞))→ H l.f.
∗ (X̃)

and Lemma 8.11. � �

Lemma 8.13. We have

ker
(
H∗(X̃)→ HNov,−

∗ (X̃)⊕HNov,+
∗ (X̃)

)
⊆ img

(
H∗(X̃θ̃)→ H∗(X̃)

)
,

where all maps are induced by the tautological inclusions.
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Proof. This follows from the following commutative diagram of exact Mayer–Vie-
toris sequences:

H l.f.
∗+1(X̃)

∂ // H∗(X̃) // HNov,−
∗ (X̃)⊕HNov,+

∗ (X̃)

H l.f.
∗+1(X̃)

∂ // H∗(X̃θ̃)

OO

// HNov,−
∗ (X̃(−∞,θ̃])⊕H

Nov,+
∗ (X̃[θ̃,∞))

OO

A similar argument was used in [24, Lemma 2.5]. � �

Theorem 8.14. The inclusion ι : Xθ = X̃θ̃ → X̃ induces a canonical isomorphism

H∗(Xθ)reg =
D

(K− +K+) ∩D
∼=−→ ker

(
H∗(X̃)→ HNov,−

∗ (X̃)⊕HNov,+
∗ (X̃)

)
,

intertwining Rreg with the monodromy isomorphism induced by the deck transfor-

mation τ : X̃ → X̃ on the right hand side. Moreover, working with coefficients in
a field, and assuming that H∗(Xθ) is finite dimensional, the common kernel on the
right hand side above coincides with

ker
(
H∗(X̃)→ HNov,−

∗ (X̃)
)

= ker
(
H∗(X̃)→ HNov,+

∗ (X̃)
)
.

Particularly, in this case the latter two kernels are finite dimensional too.

Proof. It follows immediately from Lemma 8.12 and 8.13 that ι∗ : H∗(Xθ)→ H∗(X̃)
induces an isomorphism

(K− +D+) ∩ (D− +K+)

K− +K+

∼=−→ ker
(
H∗(X̃)→ HNov,−

∗ (X̃)⊕HNov,+
∗ (X̃)

)
.

In view of Lemma 8.9, this isomorphism intertwines the isomorphism induced by
R on the left hand side, with the monodromy isomorphism on the right hand side.
Combining this with Proposition 8.2 we obtain the first assertion. For the second
statement it suffices to show

ker
(
H∗(X̃)→ HNov,+

∗ (X̃)
)
⊆ ker

(
H∗(X̃)→ HNov,−

∗ (X̃)⊕HNov,+
∗ (X̃)

)
, (82)

as the converse inclusion is obvious, and the corresponding statement for the
downward Novikov homology can be derived analogously. To this end, suppose

a ∈ ker
(
H∗(X̃) → HNov,+

∗ (X̃)
)
. Then there exists k such that τk∗ a is contained in

the image of H∗(X̃(−∞,θ̃])→ H∗(X̃). Using the exact Mayer–Vietoris sequence

H∗(X̃θ̃)→ H∗(X̃(−∞,θ̃])⊕HNov,+
∗ (X̃[θ̃,∞))→ HNov,+

∗ (X̃)

we conclude, that τk∗ a is contained in the image of H∗(X̃θ̃) → H∗(X̃). Thus τk∗ a
is contained in ι∗(D+), see Lemma 8.12. Since H∗(Xθ) is assumed to be a finite
dimensional vector space, we have ι∗(D−) = ι∗(D) = ι∗(D+), see (79). Using
Lemma 8.12 we thus conclude τk∗ a is contained in the kernel on the right hand side

of (82). Since this common kernel is invariant under the isomorphism τ∗ : H∗(X̃)→
H∗(X̃), we conclude that a has to be contained in the common kernel too, whence
the theorem. � �

We conclude this section with a proof of Theorem 1.4. Suppose X is a compact
ANR and let f : X → S1 be a tame map as in Section 1. Fix regular and critical
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angles, 0 < t1 < θ1 < · · · < tm < θm ≤ 2π, and consider the associated G2m-
representation ρr = {Vi, αi, βi}, see Section 3. Note that the linear relation Rθr on
Hr(Xθ) introduced in Section 1 is just the degree r part of the relation considered
in this section, see (81). From Lemma 8.8 we immediately obtain:

Lemma 8.15. The following equalities of relations on Hr(Xθ) hold true:

(a) If θ = θi, then Rθr = αiβ
†
i−1αi−1 · · ·β†1α1β

†
mαm · · ·αi+2β

†
i+1αi+1β

†
i .

(b) If θ = ti, then Rθr = β†i−1αi−1β
†
i−2 · · ·β†1α1β

†
mαm · · ·β†i+1αi+1β

†
iαi.

Lemma 8.16. Suppose ρ = {Vi, αi, βi} is a G2m-representation with Jordan blocks⊕
J∈J T (J). Then, for all 1 ≤ i ≤ m, the following hold true:

(a)
(
αiβ
†
i−1αi−1 · · ·β†1α1β

†
mαm · · ·αi+2β

†
i+1αi+1β

†
i

)
reg

is conjugate to
⊕

J∈J T (J).

(b)
(
β†i−1αi−1β

†
i−2 · · ·β†1α1β

†
mαm · · ·β†i+1αi+1β

†
iαi
)

reg
is conjugate to

⊕
J∈J T (J).

Proof. W.l.o.g. it suffices to consider an indecomposable representation ρ. For
such a ρ, however, the statement follows immediately from the classification of
indecomposable representations discussed in Section 2, see also Proposition 8.3.

� �

Combining the preceding two lemmas, we obtain Theorem 1.4.

9. Proof of Theorem 1.7

Suppose f : X → S1 is a tame map. For 0 < θ′ ≤ θ′′ ≤ 2π we will use the
notation X[θ′,θ′′] := f−1([θ′, θ′′]), and write X(θ) := X[θ,θ] = f−1(θ).

Let 0 < θ1 < θ2 < · · · < θN ≤ 2π be the collection of all critical values and put
ε(f) := min{|θi+1 − θi| : 1 ≤ i ≤ N} where θN+1 := θ1 + 2π. Note that any bar

code I ∈ B̃r(f) has the left end of the form θi + 2πk and the right end of the form
θj + 2πk′ where i, j ∈ {1, . . . , N} and k, k′ ∈ Z. Put l(I) := θi and r(I) := θj .
The numbers l(I) and r(I) are well defined for barcodes in Br(f) which can be

considered as equivalency classes of elements in B̃r(f).

Proposition 9.1. For any tame map f : X → S1 and 0 < ε < ε(f) we have:

dimHr

(
X[θi−ε,θi+ε], X(θi − ε)

)
= ]{I ∈ Bcr(f) | l(I) = θi}+ ]{I ∈ Bor−1(f) | r(I) = θi}

+ ]{I ∈ Bcor (f) | l(I) = θi}+ ]{I ∈ Bcor−1(f) | r(I) = θi}.
Proof. By the long exact homology sequence of the pair (X[θi−ε,θi+ε], X(θi − ε)),

dimHr

(
X[θi−ε,θi+ε], X(θi − ε)

)
= dim coker

(
Hr(X(θi − ε)) ir−→ Hr

(
X[θi−ε,θi+ε])

)
+ dim ker

(
Hr−1(X(θi − ε))

ir−1−−−→ Hr−1(X[θi−ε,θi+ε])
)
. (83)

According to Proposition 4.2, there exist isomorphisms ω1(r) and ω2(r) such that
the diagram

Hr(X(θi − ε))
ir // Hr(X[θi−ε,θi+ε])

κ[S1(r)]

∼=ω1(r)

OO

// κ[S2(r)]

∼= ω2(r)

OO
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commutes, where

S1(r) = {I ∈ B̃r(f) | θi − ε ∈ I} t J̃r(f),

S2(r) = {I ∈ B̃r(f) | θi ∈ I} t J̃r(f),

and the lower horizontal arrow in the diagram denotes the canonical map associated

with the subsets S1(r) and S2(r) of B̃r(f)tJ̃r(f). From this description one readily
obtains coker(ir) ∼= κ[S3(r)] and ker(ir−1) ∼= κ[S4(r)], where

S3(r) = {I ∈ Bcr | l(I) = θi} t {I ∈ Bcor | l(I) = θi},
S4(r) = {I ∈ Bor−1 | r(I) = θi} t {I ∈ Bcor−1 | r(I) = θi},

and thus

dim coker(ir) = ]{I ∈ Bcr | l(I) = θi}+ ]{I ∈ Bcor | l(I) = θi},
dim ker(ir−1) = ]{I ∈ Bor−1 | r(I) = θi}+ ]{I ∈ Bcor−1 | r(I) = θi}.

Combining these equations with (83) we obtain the proposition. �

Let M be a closed manifold of dimension n, and suppose f : M → S1 is a Morse
map, i.e., all critical points are non-degenerated. Let X (f) denote the set of critical
points of f . For r = 0, . . . , n and i = 1, . . . , N let

Xr,i(f) :=
{
x ∈ X (f) : ind(x) = r and f(x) = θi

}
denote the set of critical points of Morse index r corresponding to the critical value
θi. Moreover, put cr,i := ]Xr,i.

Recall that the Morse Lemma, see [26, Lemma 2.2], asserts that for every non-
degenerate critical point x of f there exists an open neighborhood Ux of 0 in Rn
and a diffeomorphism onto its image, ϕx : Ux →M , such that ϕx(0) = x and

f(ϕx(t1, . . . , tn)) = f(x)− t21 − · · · − t2k + t2k+1 + · · ·+ t2n

holds for all (t1, . . . , tn) ∈ Ux, where k = indf (x). In particular, X (f) is finite, for
M is assumed to be compact. We fix Morse coordinates ϕx : Ux →M as above for
every critical point x ∈ X (f). Moreover, we assume 0 < ε < ε(f) 17 is sufficiently
small such that Dn(ε) := {(t1, . . . , tn) :

∑n
i+1 t

2
i ≤ ε} ⊆ Ux for all x ∈ X (f).

Proposition 9.2 (Morse theorem). If ε > 0 is sufficiently small, then

dimHr

(
M[θi−ε,θi+ε],M(θi − ε)

)
= cr,i,

for every r = 0, . . . , n and all i = 1, . . . , N .

The proof of this proposition can be found in any book in Morse theory, see for
instance [26, Section §5]. The idea is simple. For every critical point x ∈ X (f) one

defines Bx := ϕx(Dind(x)(ε)), where Dk(ε) :=
{

(t1, . . . , tk, 0, . . . , 0) :
∑k
i=1 t

2
i ≤ ε

}
.

For each i = 1, . . . , N one considers

X(i) := M(θi − ε) ∪
⋃

x∈X (f):f(x)=θi

Bx ⊆M[θi−ε,θi+ε].

17A Morse map is tame when M is compact.
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As in [26, Section §3] one can verify that M[θi−ε,θi+ε] retracts by deformation
to X(i). The deformation is obtained using the flow of the gradient vector field
− gradg(f) where g is a conveniently choosen Riemannian metric. Consequently,

Hr

(
M[θi−ε,θi+ε],M(θi − ε)

)
= Hr

(
X(i),M(θi − ε)

)
=

⊕
x∈Xr,i(f)

Hr

(
Dr
x(ε), ∂Dr

x(ε)
) ∼= κcr,i .

From Propositions 9.1 and 9.2 we get

cr(f) =

N∑
i=1

cr,i = ]Bcr(f) + ]Bor−1(f) + ]Bcor (f) + ]Bcor−1(f).

Combining this with Theorem 1.1(a), we obtain the statement for angle-vcalued
maps in Theorem 1.7. A real-valued map can be viewed as an angle-valued map
after composition with an embedding of R in S1. In this case the Novikov–Betti
numbers coincide with the Betti numbers, whence the statement for real-valued
maps in Theorem 1.7 follows from the statement for angle-valued maps.

Appendix A. An example

Consider the space X obtained from Y described in Figure 5 by identifying its
right end Y1 (a union of three circles) to the left end Y0 (a union of three circles)
following the map φ : Y1 → Y0 given by the matrix3 3 0

2 3 −1
1 2 3

 .

The meaning of this matrix as a map φ is the following: circle (1) is divided in
6 parts, circle (2) in 8 parts and and circle (3) in 4 parts; the first three parts of
circle (1) wrap clockwise around circle (1) to cover it three times, the next two
wrap clockwise around circle (2) to cover it twice and around circle three to cover
it three times. Similarly circle (2) and (3) wrap over circles (1), (2) and (3) as
indicated by the matrix. The first part of circle (3) wraps counterclockwise around
circle (2). The map f : X → S1 is induced by the projection of Y on the interval
[0, 2π].

The critical angles. Clearly the critical angles of f are

{θ0 = 0 = 2π, θ1, θ2, θ2, θ3, θ4, θ5, θ6}.

The Jordan blocks. The r-monodromy of f calculated at θ = 0 is given by the
regular part of the linear relation R(Ar, Br) with Ar := φr : Hr(Y1) → Hr(Y )
induced by φ and Br := ir : Hr(Y1) → Hr(Y ) induced by the inclusion Y1 ⊂
Y . Since H2(Y1) = 0 there is no monodromy for r = 2 and for r = 0 one has
Rreg(A0, B0) = Id which leads to

J0(f) = {(1, 1)}.
For r = 1 the reader can see from the picture above that H1(Y1) = κ3 generated
by the circles 1, 2, 3, and H1(Y ) = κ4 generated by the circles 1, 2, 3, and an
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φ

2πθ4θ2θ10

circle 1

circle 3

circle 2

1

2

3

Y0 Y1Y

θ6θ5θ3

map φ r-invariants

circle 1: 3 times around circle 1
circle 2: 1 time around 2 and 3 times around 3
circle 3: the identity

dimension bar codes Jordan cells
0 (1, 1)

(θ6, θ1 + 2π] (3, 1)
1 [θ2, θ3] (1, 2)

(θ4, θ5)

Figure 2: Example of r-invariants for a circle valued map

4 Representation theory and r-invariants
The invariants for the circle valued map are derived from the representation theory of quivers. The quivers
are directed graphs. The representation theory of simple quivers such as paths with directed edges was
described by Gabriel [8] and is at the heart of the derivation of the invariants for zigzag and then level
persistence in [4]. For circle valued maps, one needs representation theory for circle graphs with directed
edges. This theory appears in the work of Nazarova [14], and Donovan and Ruth-Freislich [10]. The reader
can find a refined treatment in Kac [15].
Let G2m be a directed graph with 2m vertices, x1, x1, · · · x2m. Its underlying undirected graph is a

simple cycle. The directed edges in G2m are of two types: forward ai : x2i−1 → x2i, 1 ≤ i ≤ m, and
backward bi : x2i+1 → x2i, 1 ≤ i ≤ m − 1, bm : x1 → x2m.

x2

b1
a2

b2

x3

x2m−1

x2m−2

x4

a1

bm

am

x2m

x1

We think of this graph as being residing on the unit circle cen-
tered at the origin o in the plane.
A representation ρ on G2m is an assignment of a vector space

Vx to each vertex x and a linear map Ve : Vx → Vy for each oriented
edge e = {x, y}. Two representations ρ and ρ′ are isomorphic if for
each vertex x there exists an isomorphism from the vector space Vx

of ρ to the vector space V ′
x of ρ′, and these isomorphisms intertwine

the linear maps Vx → Vy and V ′
x → V ′

y . A non-trivial representa-
tion assigns at least one vector space which is not zero-dimensional.
A representation is indecomposable if it is not isomorphic to the
sum of two nontrivial representations. It is not hard to observe that
each representation has a decomposition as a sum of indecompos-

able representations unique up to isomorphisms.

6

Figure 5. Example of r-invariants for a circle valued map.

additional generator coming from the small cylinder above [θ2, θ3]. In this case

A1 =


3 3 0
2 3 −1
1 2 3
0 0 0

 and B1 =


0 0 0
0 1 0
0 0 1
0 0 0

 .

Let

A =

3 3 0
2 3 −1
1 2 3

 and B =

0 0 0
0 1 0
0 0 1

 .

In view of Observation 8.7 one has R(A1, B1) = R(A,B), and since A is invertible,

Rreg(A1, B1) = Rreg(A,B) = Rreg(Id, A−1B) = (Rreg(A−1B, Id))−1 ∼=
(

2 1
0 2

)
,

hence

J1(f) = {(2, 2)}.

The bar codes. In view of Proposition 4.2(b) by inspections of f−1([θ, θ′]) one con-
cludes that B0(f) = ∅, B2(f) = ∅, and in dimension 1 one has: one closed bar code
[θ2, θ3]; one open bar code (θ4, θ5); and one open-closed bar code (θ6, θ1 + 2π].

Appendix B. More examples

The three examples below support the comments (a), (b), and (c) about the
differences between the stability results Theorems 1.2 and 1.5 in the introduction.
In all three examples we construct a 1-parameter family of maps, fε : X → S1, and
analyze the dependence of the barcode structure on the parameter ε.

As in Appendix A, the maps in these examples are derived from maps f ε : Y →
[0, 2π] by identifying f

−1

ε (0) with f
−1

ε (2π) and 0 with 2π, respectively.
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f ε(x)

x

2π

π+ε
π-ε

π-ε π+ε 2π

Figure 6. The graph of the map f ε : [0, 2π]→ [0, 2π] in Example B.1.

Example B.1. Take Y = [0, 2π]. For 0 ≤ ε < π define a map f ε : [0, 2π]→ [0, 2π]
by

f ε(x) :=


π+ε
π−εx if 0 ≤ x ≤ π − ε,
−x+ 2π if π − ε ≤ x ≤ π + ε, and
π+ε
π−εx− 4πε

π−ε if π + ε ≤ x ≤ 2π.

Figure 6 displays the graph of f ε. Clearly, fε can be made is arbitrary closed to f0.
For ε = 0 there are no barcodes and only one Jordan cell, J0(f0) = {(κ1, id)}. For
0 < ε < π we have the same Jordan block, J0(fε) = {(κ1, id)}, and in addition two
barcodes, B0(fε) = {[π − ε, π + ε), (π − ε, π + ε]}.
Example B.2. Take Y = Y1 ∪ Y2 ∪ Y3 ⊆ R2, where

Y1 = {(x, 0) | 0 ≤ x ≤ 2π},
Y2 = {(x, y) | (x− π/2)2 + y2 = (π/4)2, y ≥ 0}, and

Y3 = {(x, y) | y = x− π, 5π/4 ≤ x ≤ 7π/4}.
For 0 ≤ ε ≤ π/4 define f ε : Y → [0, 2π] as composition f ε = lε ◦ p, where p : Y →
[0, 2π] denotes the coordinate projection given by p(x, y) = x and lε : [0, 2π] →
[0, 2π] is the piecewise linear map defined by

lε(t) :=



t
π/4 (π/4 + ε) if 0 ≤ t ≤ π/4,
3π/4−t
π/2 (π/4 + ε) + t−π/4

π/2 (3π/4− ε) if π/4 ≤ t ≤ 3π/4,
5π/4−t
π/2 (3π/4− ε) + t−3π/4

π/2 (5π/4 + ε) if 3π/4 ≤ t ≤ 5π/4,
7π/4−t
π/2 (5π/4 + ε) + t−5π/4

π/2 (7π/4− ε) if 5π/4 ≤ t ≤ 7π/4, and
2π−t
π/4 (7π/4− ε) + t−7π/4

π/4 2π if 7π/4 ≤ t ≤ 2π.

The graph of the map lε is displayed in Figure 7, the space Y and the map f ε are
indicated in Figure 8. For 0 ≤ ε < π/4 we have one Jordan cell, J0(fε) = {(κ1, id)},
two 0-barcodes, and no 1-barcodes, that is, B0(fε) = {(π/4 + ε, 3π/4− ε), (5π/a+
ε, 7π/4− ε]}. For ε = π/4 we have the same Jordan cell, J0(fπ/4) = {(κ1, id)}, no
0-barcodes, and one 1-barcode, B1(fπ/4) = {[π/2, π/2]}.
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lε(t)

t

0
π
4

3π
4

5π
4

7π
4 2π

0

π
4 + ε

3π
4 − ε

5π
4 + ε

7π
4 − ε

2π

Figure 7. The graph of the map lε : [0, 2π]→ [0, 2π] in Example B.2.

0 π/2 3π/2
f ε

2π

Figure 8. The map f ε : Y → [0, 2π] in Example B.2.

Example B.3. Take Y = Y1 ∪ Y2 ⊆ [0, 2π] × S1 where Y1 = [0, 2π] × {p}, Y2 =
[2π/3, 4π/3] × S1, and p ∈ S1 is a base point. For 0 ≤ ε < 4π/3 we define a map
f ε : Y → [0, 2π] by

f ε(x, y) :=


2π+3ε

2π x if 0 ≤ x ≤ 2π/3,
2π−6ε

2π x+ 3ε if 2π/3 ≤ x ≤ 4π/3, and
2π+3ε

2π x− 3ε if 4π/3 ≤ x ≤ 2π.

The space Y and the map f ε are illustrated in Figure 9. For 0 ≤ ε ≤ π/3 we have
one Jordan cell, J0(fε) = {(κ1, id)}, no 0-barcodes, and one 1-barcode, B1(fε) =
{[2π/3 + ε, 4π/3− ε]}. For π/3 < ε < 4π/3 we have the same Jordan cell, J0(fε) =
{(κ1, id)}, two 0-barcodes and one 1-barcode, that is, B0(fε) = {[4π/3− ε, 2π/3 +
ε), (4π/3− ε, 2π/3 + ε]}, and B1(fε) = {[4π/3− ε, 2π/3 + ε]}.

Denote by fX1
ε : X1 → S1 and fX2

ε : X2 → S1 the maps fε : X → S1 described in
Examples B.2 and B.3, respectively. Moreover, let Q denote the Hilbert cube, that
is, the product of countably many copies of the unit interval. Note that X1 × Q
and X2 × Q are homeomorphic compact ANRs. Moreover, for i = 1, 2 we have
Br(fXiε : Xi → S1) = Br(fXiε ◦ pi : Xi × Q → S1) where pi : Xi × Q → Xi denotes
the canonical projection. Hence, one can clearly provide four homotopic tame
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4π/3 2π/3 2π 0 0 2π/3 4π/3 2π 

Figure 9. The map f ε : Y → [0, 2π] in Example B.3 for 0 ≤ ε <
π/3 (left) and π/3 < ε < 4π/3 (right).

maps, h1, h2, h3, h4 : X1 × Q → S1, with Br(h1) = Br(fX1
0 ), Br(h2) = Br(fX1

π/4),

Br(h3) = Br(fX2

π/3), and Br(h4) = Br(fX2

2π/3).

Appendix C. Structure of finitely generated modules over principal
ideal domains

In this appendix we recall basic facts about modules over principal ideal domains,
and we provide more specific information about modules over the principal ideal
domain of Laurant polynomials, κ[t−1, t].

Recall that an integral domain is a commutative ring with unit 1 6= 0 which has
no zero divisors. An integral domain R is called principal ideal domain (PID) if
every ideal I ⊆ R is generated by a single element a ∈ R, that is, I = Ra. Familiar
examples of principal ideal domains are Z, the ring of integers; κ[t], the ring of
polynomials of one variable t with coefficients in a field κ; and κ[t−1, t], the ring of
Laurent polynomials of one variable t with coefficients in the field κ.

Let M be a module over a principal ideal domain R. Recall that M is called free
if it admits a basis {xi}i∈I , i.e. if it is isomorphic to

⊕
i∈I R for some index set I.

In this case, the cardinality of the basis is uniquely determined and referred to as
the dimension of the free R-module M , see [25, Chapter III§7].

A proof of the following basic fact can be found in [25, Theorem III.7.3] or [22,
Theorem I.5.1].

Theorem C.1. Suppose M is a submodule of a free module F over a principal
ideal domain. Then M is free and its dimension is at most the dimension of F .

The preceeding result readily implies that submodules of finitely generated mod-
ules over a principal ideal domain are finitely generated, see [25, Corollary III§7.2].

Let M be a module over a principal ideal domain R. The torsion submodule of
M is defined to be the submodule of all torsion elements, Tor(M) := {x ∈ M |
∃λ ∈ R \ 0 such that λx = 0}. If Tor(M) = 0, then M is called torsion free. If
Tor(M) = M , then M is called torsion module.

We have the following fundamental structure theorem, see [25, Theorem III§7.3].

Theorem C.2. If M is a finitely generated module over a principal ideal do-
main, then M/Tor(M) is free, and there exists an isomorphism M ∼= Tor(M) ⊕
(M/Tor(M)).
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In other words, if M is a finitely generated module over a principal ideal domain
R, then there exists a decomposition M ∼= T ⊕ F where T is a finitely generated
torsion module and F is a finite dimensional free module. Moreover, the summands
T and F are uniquely determined, up to isomorphism. More precisely, T ∼= Tor(M)
and F ∼= Rm where m ∈ N0 denotes the dimension of M/Tor(M).

Let us now consider the pricipal ideal domain R = κ[t−1, t] where κ is a field.
A module over this ring is exactly the same thing as a pair (M,T ) where M a
κ-vector space and T : M → M is a κ-linear isomorphism. The vector space M
is the underlying vector space of the module and the κ-linear isomorphism T is
defined by multiplication by t, its inverse being the multiplication by t−1. Note
that M is a finite dimensional κ-vector space if and only if the module is a finitely
generated torsion module. Hence, finitely generated torsion modules over κ[t−1, t]
can equivalent be regarded as pairs (M,T ) where M is a finite dimensional κ-vector
space and T : M →M is an isomorphism.

If M is a finitely generated module over κ[t−1, t], then its torsion submodule
coincides with the kernel of the homomorphism obtained by tensorizing the natural
inclusion κ[t−1, t] ⊆ κ[t−1, t]] with M , that is,

Tor(M) = ker
(
M → κ[t−1, t]]⊗κ[t−1,t] M

)
.

Here κ[t−1, t]] denotes the field of Laurant series in one variable.
Consider a G2m-representation ρ and a decomposition

ρ ∼=
⊕
I∈B(ρ)

ρI ⊕
⊕

J∈J (ρ)

ρJ

as in Section 2. Then the infinite cyclic covering ρ̃ is a finitely generated module

over κ[t−1, t] in a natural way. Its free part is isomorphic to the vector space κ[B̃(ρ)]
equipped with the isomorphism T induced by the translation τ(I) = I + 2π. Its
torsion part is isomorphic to the pair (V, T ) where V =

⊕
J∈J (ρ) VJ and T =⊕

J∈J (ρ) TJ . Clearly V = κ[J̃ (ρ)]. The underling vector space of this module is

κ[B̃(ρ) t J̃ (ρ)].
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