
ar
X

iv
:1

20
3.

47
93

v2
  [

m
at

h.
R

T
] 

 1
0 

O
ct

 2
01

7

DE CONCINI-KAC FILTRATION AND GELFAND-TSETLIN

GENERATORS FOR QUANTUM glN

VYACHESLAV FUTORNY AND JONAS T. HARTWIG

Abstract. In this note we compute the leading term with respect to the De
Concini-Kac filtration of Uq(gln) of a generating set for the quantum Gelfand-
Tsetlin subalgebra.

1. Introduction

An important class of associative algebras, called Galois rings was introduced in
[FO1]. This class of algebras includes for example Generalized Weyl algebras over
integral domains with infinite order automorphisms (in particular, the n-th Weyl
algebra, the quantum plane, q-deformed Heisenberg algebra, quantized Weyl alge-
bras, Witten-Woronowicz algebra [B], [BO]; the universal enveloping algebra of glN
over the Gelfand-Tsetlin subalgebra [DFO1], [DFO2], associated shifted Yangians
and finite W -algebras [FMO2], [FMO1].

These algebras contain a special commutative subalgebra Γ which allows one to
embed the algebra into a certain invariant subalgebra of some skew group algebra.
In particular, such an embedding enables the computation of the skew field of
fractions [FMO2],[FH].

A natural choice of a commutative subalgebra in many associative algebras is a
so-called Gelfand-Tsetlin subalgebra. Classical Gelfand-Tsetlin subalgebras of the
universal enveloping algebras of a simple Lie algebras were considered in [FM], [Vi],
[KW1], [KW2], [G1], [G2] among the others.

In this paper we study the quantized enveloping algebra Uq(glN ). This algebra
contains a quantum analog of the Gelfand-Tsetlin subalgebra of U(glN ), which we
denote by Γq. Based on the properties of so called generic Gelfand-Tsetlin modules
constructed in [MT], it was shown in [FH] that Uq(glN ) is a Galois ring with respect
to Γq. This allowed us to prove the quantum Gelfand-Kirillov conjecture for Uq(glN )
[FH],[F]. Unlike all the examples listed above, Uq(glN ) is a Galois rings with respect
to a subalgebra which not a polynomial algebra.

Our main result is the calculation of the leading terms of a set of generators drs
for the quantum Gelfand-Tsetlin subalgebra.

Theorem 1.1. The leading term of drs (see (2.13)), with respect to the De Concini-
Kac filtration using (2.1) as decomposition of the longest Weyl group element, is

lt(drs) = λ · t
(0)
1+s,1t

(0)
2+s,2 · · · t

(0)
r,r−s · t

(1)
1,r−s+1t

(1)
2,r−s+2 · · · t

(1)
s,r (1.1)

for some nonzero λ ∈ C.

Notation. Ja, bK denotes the set {x ∈ Z | a ≤ x ≤ b}. The cardinality of a set S
is denoted #S. Throughout this paper, the ground field is C and q ∈ C is nonzero
and not a root of unity. We put C× = C \ {0}.
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2. The algebra Uq(glN )

In this section we recall some facts about the quantized enveloping algebra
Uq(glN ) which will be used.

2.1. Definition. For positive integers N we let UN = Uq(glN ) denote the unital

associative C-algebra with generators E±
i , Kj,K

−1
j , i ∈ J1, N − 1K, j ∈ J1, NK and

relations [KS, p.163]

KiK
−1
i = K−1

i Ki = 1, [Ki,Kj] = 0, ∀i, j ∈ J1, NK,

KiE
±
j K−1

i = q±(δij−δi,j+1)E±
j , ∀i ∈ J1, NK, ∀j ∈ J1, N − 1K,

[E+
i , E−

j ] = δij
KiK

−1
i+1 −Ki+1K

−1
i

q − q−1
, ∀i, j ∈ J1, N − 1K,

[E±
i , E±

j ] = 0, |i − j| > 1,

(E±
i )2E±

j − (q + q−1)E±
i E±

j E±
i + E±

j (E±
i )2 = 0, |i− j| = 1.

2.2. De Concini-Kac filtration. [BG, Section I.6.11] Let αi = εi − εi+1, i ∈
J1, N−1K be the standard simple roots of glN where εi(diag(a1, . . . , aN )) = ai. Fix
the following decomposition of the longest Weyl group element:

w0 = si1 · · · siM = (s1s2 · · · sN−1)(s1s2 · · · sN−2) · · · (s1s2)s1, (2.1)

where si = (i i + 1) ∈ SN , and M = N(N − 1)/2. Let {βj = si1 · · · sij−1 (αij )}
M
j=1

be the corresponding enumeration of positive roots of glN . One checks that

(β1, β2, . . . , βM ) = (β12, β13, . . . , β1N , β23, β24, . . . , β2N , . . . , βN−1,N), (2.2)

where βij = εi − εj for all i, j ∈ J1, NK, i < j. Let Eβi
, Fβi

∈ Uq(glN ) be the
corresponding positive and negative root vectors (see e.g. [BG, Section I.6.8]). The
following PBW theorem for Uq(glN ) is well-known:

Theorem 2.1. The set of ordered monomials

F rKλE
k := F r1

β1
· · ·F rM

βM
·Kλ1

1 · · ·KλN

N · Ek1

β1
· · ·EkM

βM
(2.3)

where r, k ∈ ZM
≥0 and λ ∈ ZN , form a basis for Uq(glN ).

Define the total degree of a monomial F rKλE
k to be

d(F rKλE
k) =

(
kM , . . . , k1, r1, . . . , rM , ht(F rKλE

k)
)
∈ Z

2M+1
≥0 , (2.4)

where

ht(F rKλE
k) =

M∑

j=1

(kj + rj)ht(βj) (2.5)

and ht(β) =
∑N−1

i=1 ai if β =
∑N−1

i=1 aiαi. Equip the monoid Z
2M+1
≥0 with the

lexicographical order uniquely determined by the inequalities

u1 < u2 < · · · < uM

where ui = (0, . . . , 0, 1, 0, . . . , 0) with 1 on the i:th position.
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Theorem 2.2 (De Concini-Kac). The total degree function d defined above equips

U = Uq(glN ) with a Z
2M+1
≥0 -filtration {U(k)}k∈Z

2M+1
≥0

. The associated graded algebra

grU is the C-algebra on the generators

Ēβi
, F̄βj

, K̄α

i = 1, . . . ,M , α ∈ ZN subject to the following defining relations:

K̄αK̄β = K̄α+β K̄0 = 1

K̄αĒβi
= q(α,βi)Ēβi

K̄α K̄αF̄βi
= q−(α,βi)F̄βi

K̄α

Ēβi
F̄βj

= F̄βj
Ēβi

Ēβi
Ēβj

= q(βi,βj)Ēβj
Ēβi

F̄βi
F̄βj

= q(βi,βj)F̄βj
F̄βi

(2.6)

for α, β ∈ ZN and 1 ≤ i, j ≤ M .

Proof. That d actually defines a filtration follows from the commutation relation
known as the Levendorskĭı-Soibelman straightening rule [LS, Proposition 5.5.2]. See
[DK, Proposition 1.7] for details. �

Observe that the root vectors Eα, Fα, hence the De Concini-Kac filtration, de-
pend on the choice of decomposition of the longest Weyl group element.

A simple but important corollary which will be used implicitly throughout is
that

d(ab) = d(a) + d(b) = d(ba) (2.7)

for all a, b ∈ Uq(glN ), where now d(a) denotes the smallest k ∈ Z
2M+1
≥0 such that

a ∈ U(k). This follows from the fact that the associated graded algebra is a domain.

2.3. RTT presentation. Uq(glN ) has an alternative presentation. It is isomorphic
to the algebra with generators tij , t̄ij , i, j ∈ J1, NK and relations

tij = 0 = t̄ji, ∀i < j, (2.8a)

tii t̄ii = 1 = t̄iitii, ∀i, (2.8b)

qδij tiatjb − qδabtjbtia = (q − q−1)(δb<a − δi<j)tjatib (2.8c)

qδij t̄ia t̄jb − qδab t̄jb t̄ia = (q − q−1)(δb<a − δi<j)t̄ja t̄ib (2.8d)

qδij t̄iatjb − qδabtjb t̄ia = (q − q−1)(δb<atja t̄ib − δi<j t̄jatib) (2.8e)

for all i, a, j, b ∈ J1, NK, where δS equals 1 is S is true and 0 if S is false. An
identification of the two sets of generators is given by [KS, Section 8.5.4]:

t̄ii = K−1
i tii = Ki

t̄i,i+1 = (q − q−1)K−1
i Ei ti+1,i = −(q − q−1)FiKi

t̄ij = (q − q−1)(−1)i−j+1K−1
i Eβij

tji = −(q − q−1)Fβij
Ki

(2.9)

for j > i+ 1, where Eβij
, Fβij

are the root vectors, defined in Section 2.2.

2.4. Gelfand-Tsetlin subalgebra. Let Uq = Uq(glN ). It is immediate by the

defining relations that, for each r ∈ J1, NK, the subalgebra U
(r)
q of Uq generated by

Ei, Fi,Kj for i ∈ J1, r − 1K, j ∈ J1, rK (or equivalently, by tij , t̄ij for i, j ∈ J1, rK)
can be identified with Uq(glr). Thus we have a chain of subalgebras

U (1)
q ⊂ U (2)

q ⊂ · · · ⊂ U (N)
q = Uq.
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Let Zr denote the center of U
(r)
q . The subalgebra of Uq generated by Z1, . . . , ZN

is called the Gelfand-Tsetlin subalgebra and will be denoted by Γq. It is immediate
that Γq is commutative.

In [HM, Section 5] it is proved that Zr is generated by the coefficients of the

following polynomial in U
(r)
q [u−1]:

zr(u) =
∑

σ∈Sr

(−q)−l(σ)
r∏

j=1

(
tσ(j)j − t̄σ(j)jq

2(j−1)u−1
)
. (2.10)

It will be useful to rewrite this polynomial in a different way. For this purpose it
will be convenient to use the notation

t
(k)
ij =

{
tij , k = 0,

t̄ij , k = 1.
(2.11)

A direct computation gives that

zr(u) =

r∑

s=0

(−1)rdrs(q
2u)−s, (2.12)

where

drs =
∑

σ∈Sr

(−q)−l(σ)
∑

k∈{0,1}r:
∑

ki=s

q2(k1+2k2+···+rkr)t
(k1)
σ(1)1 · · · t

(kr)
σ(r)r. (2.13)

Observe that dr0 = d−1
rr . Therefore, the (commuting) elements drs, 1 ≤ s ≤ r ≤

N , generate Γq, provided we allow taking negative powers of drr. We show that
they are algebraically independent.

Lemma 2.3.

Γq ≃ C[drs | 1 ≤ s ≤ r ≤ N ][d−1
rr | 1 ≤ r ≤ N ]. (2.14)

Proof. By applying the quantum Harish-Chandra isomorphism hr : Zr → (U0
r )

Wr

(see [FH, Lemma 5.3]) to the polynomial zr(u) from (2.10) (as in [HM, Section 5])
we get

hr(zr(u)) =(K1 −K−1
1 u−1)(K2 − q2K−1

2 u−1) · · · (Kr − q2(r−1)K−1
r u−1)

=qr(r+1)(K1 · · ·Kr)
−1

r∏

j=1

(q−2jK2
j − (q2u)−1)

So

hr(drs) = qr(r+1)/2(K̃1 · · · K̃r)
−1 · ers(K̃

2
1 , . . . , K̃

2
r ), r ∈ J1, NK, s ∈ J0, rK

where K̃i = q−iKi, and ers is the elementary symmetric polynomial in r variables
of degree s. By the proof of [FH, Lemma 5.3], this shows that

Zr ≃ C[drs | s = 1, 2, . . . , r][d−1
rr ]. (2.15)

Recall that ΛG ≃ ΛW1
1 ⊗ · · · ⊗ ΛWN

N . As shown in [FH] there is an injective map

ϕ : U → ((FracΛ) ∗ Z
n(n−1)/2)G such that ϕ restricts to an isomorphism ϕ|Γq

:
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Γq → ΛG and ϕi := ϕ|Zm
: Zm → ΛWm

m for each m ∈ J1, NK. Thus we have a
commutative diagram

Γq

ϕ|Γq
// ΛG

Z1 ⊗ · · · ⊗ ZN

f

OO

ϕ1⊗···⊗ϕN
// ΛW1

1 ⊗ · · · ⊗ ΛWN

N

g

OO

where the vertical arrows are given by multiplication. The horizontal maps and g
are isomorphisms. Hence f is an isomorphism. Combining this fact with (2.15) we
obtain the required isomorphism. �

3. Leading term of generators

In this section we prove the main theorem which determines the leading term of
each of the generators drs of Γq with respect to the De Concini-Kac filtration.

Theorem 3.1. The leading term of drs (see (2.13)), with respect to the De Concini-
Kac filtration using (2.1) as decomposition of the longest Weyl group element, is
obtained by taking

σ = (1 2 · · · r)s.

in the sum (2.13). That is,

lt(drs) = λ · t
(0)
1+s,1t

(0)
2+s,2 · · · t

(0)
r,r−s · t

(1)
1,r−s+1t

(1)
2,r−s+2 · · · t

(1)
s,r (3.1)

for some nonzero λ ∈ C.

Example 3.2. As an example, we determine directly the leading term of d42. The
most significant component of the total degree (2.4) is the height. Using (3.2)-(3.3),
it is easy to see that there are four permutations in S4 which gives the maximal
possible height 8:

(13)(24), (14)(23), (1324), (1423).

The monomial associated to such a permutation σ is

t
(k1)
σ(1)1t

(k2)
σ(2)2t

(k3)
σ(3)3t

(k4)
σ(4)4

where ki = 0 if σ(i) > i and ki = 1 if σ(i) < i. After the height we need to compare
the exponent of Fβ34 in the four different monomials, because β34 is the largest
positive root in the ordering

β12 < β13 < β14 < β23 < β24 < β34

(see (2.2)). This exponent is the same as the exponent (either 1 or 0) of t
(0)
43 due

to the identifications (2.9). But this exponent is 0 in all four cases because none of
the permutations map 3 to 4.

So we look at the second largest positive root, which is β24. As in the previous
case, we ask if σ(2) = 4 in any of the four permutations. There are two for which
this holds, (13)(24) and (1324). The others do not map 2 to 4 which means their
corresponding monomials are of lower total degree.

To compare the two candidates (13)(24) and (1324) we look at the third largest
root, β23. But σ(2) 6= 3 in both. Next is β14 but again σ(1) 6= 4 in both. Next
is β13 and now σ(1) = 3 for both σ = (13)(24) and σ = (1324). Next is β12 and



6 VYACHESLAV FUTORNY AND JONAS T. HARTWIG

σ(1) 6= 2 in both. So we still don’t know which monomial is largest. We have
compared the 1 + 6 biggest components of the total degree, namely the height and
the 6 exponents of the negative root vectors Fβ .

Thus we turn to comparing the remaining 6 exponents of the positive root vectors
Eβ . Now care must be taken since, by (2.4), these are ordered in reverse relative
to the positive roots themselves. Therefore, the next component to compare is the
exponent of Eβ12 because β12 is the smallest root. By (2.9), this is the same as the

exponent of t
(1)
12 so we check if the permutations satisfy σ(2) = 1. None of them

do, so we move on, checking Eβ13 which amounts to checking if σ(3) = 1. Here
we finally get a discrepancy, (13)(24) satisfies this, but (1324) does not. Therefore
(13)(24) is the permutation that gives the leading term in d42.

Of course, (13)(24) = (1234)2, so this proves Theorem 3.1 in the case (r, s) =
(4, 2).

We will need several lemmas. The following notation will be used for a permu-
tation σ ∈ Sr:

EX(σ) = {i ∈ J1, rK | σ(i) > i}, AX(σ) = {i ∈ J1, rK | σ(i) < i}.

Elements of EX(σ) (respectively AX(σ) are called exceedances (respectively anti-
exceedances) for σ.

The following lemma describes which nonzero terms appear in drs.

Lemma 3.3. Let s ∈ J1, rK and let σ ∈ Sr. Then the following two statements are
equivalent.

(i) t
(k1)
σ(1)1t

(k2)
σ(2)2 · · · t

(kr)
σ(r)r 6= 0 for some k ∈ {0, 1}r with

∑r
i=1 ki = s;

(ii) #AX(σ) ≤ s and #EX(σ) ≤ r − s.

Proof. This follows from the fact that t
(1)
ij 6= 0 iff i ≤ j and t

(0)
ij 6= 0 iff i ≥ j. �

Define the height of a permutation σ ∈ Sr by

ht(σ) :=

r∑

i=1

|σ(i)− i|. (3.2)

The motivation for this terminology comes from the fact that

ht(σ) = ht(t
(k1)
σ(1)1t

(k2)
σ(2)2 · · · t

(kr)
σ(r)r) (3.3)

where the right hand side is given by (2.5) and the identification (2.9).
As the next step towards proving Theorem 3.1, we show that the permutation

σ which gives the leading term of drs has to be a derangement (i.e. σ(i) 6= i ∀i ∈
J1, rK).

Lemma 3.4. Let s ∈ J1, rK and let σ ∈ Sr be a permutation such that

t
(k1)
σ(1)1t

(k2)
σ(2)2 · · · t

(kr)
σ(r)r 6= 0

for some k ∈ {0, 1}r with
∑

i ki = s. Then there exists a σ̃ ∈ Sr such that

(i) t
(l1)
σ̃(1)1 · · · t

(lr)
σ̃(r)r 6= 0 for some l ∈ {0, 1}r with

∑
i li = s;

(ii) t
(l1)
σ̃(1)1 · · · t

(lr)
σ̃(r)r ≥ t

(k1)
σ(1)1 · · · t

(kr)
σ(r)r with respect to the De Concini-Kac filtration;

(iii) σ̃ is a derangement.

In particular, the permutation σ such that (3.1) holds is a derangement.
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Proof. If σ already is a derangement, there is nothing to prove (take σ̃ = σ). So
suppose f := #{i ∈ Sr | σ(i) = i} > 0. It is enough to construct σ̃ satisfying
properties (i)-(ii) with #{i ∈ Sr | σ̃(i) = i} = f − 1 because then we can iterate
this construction to arrive at a permutation satisfying all three conditions (i)-(iii).

For brevity, we call (i, σ(i)) ∈ J1, rK2 a σ-jump (respectively σ-drop) if i is
an exceedance (respectively anti-exceedance) for σ. It will be useful to visualize a
sequence (i, σ(i), . . . , σk(i)) as a graph with vertex set {(x, σx(i)) | x ∈ J0, kK} ⊂ Z2,
connecting adjacent vertices (a, b) and (a+1, σ(b)), as in Figure 1. Then drops and
jumps are simply as in Figure 2.

1

3

4

2

1

Figure 1. Pictorial representation of the cyclic permutation (1342).

i1

i2

(a)

i′1

i′2

(b)

Figure 2. A σ-drop (A) and a σ-jump (B). The diagrams mean
i2 = σ(i1), i1 > i2 and i′2 = σ(i′1), i

′
1 < i′2.

A σ-drop (i1, i2) will be called drop-admissible if we can “add another drop
between i1 and i2”, that is, if there exists j ∈ J1, rK with σ(j) = j and i2 < j < i1.
Then we can put σ̃ = σ ◦ (i1 j). With this σ̃ we have

#AX(σ̃) = 1 +#AX(σ), #EX(σ̃) = #EX(σ).

Similarly, a σ-drop (i1, i2) is jump-admissible if there exists j ∈ J1, rK with σ(j) =
j and j /∈ Ji2, i1K. Then σ̃ = σ ◦ (i1 j) satisfies

#AX(σ̃) = #AX(σ), #EX(σ̃) = 1 +#EX(σ).

See Figure 3 for an illustration of the possible scenarios in the case of a σ-drop.
Analogously, a σ-jump (i1, i2) is jump-admissible if ∃j ∈ J1, rK with σ(j) = j and

i1 < j < i2. A σ-jump (i1, i2) is drop-admissible if ∃j ∈ J1, rK with σ(j) = j and
j /∈ Ji1, i2K.

We will now show that there always exists a jump-admissible σ-drop or σ-jump.
We know that σ is not the identity permutation since

∑
i ki = s ≥ 1. Thus there

exists a tuple (i1, i2, . . . , ip, ip+1) ∈ J1, rKp+1, where p > 2, such that (see Figure 4)
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i1

j

i2

(a)

i1

j

i2

(b)

i1

j

i2

(c)

Figure 3. The three possible ways the i1, j, i2 piece of σ̃ = σ ◦
(i1 j) can look like, when (i1, i2) is a σ-drop: i1 < j < i2 (A),
j > i1, i2 (B), and j < i1, i2 (C). The σ-drop (i1, i2) is drop-
admissible in case (A), and jump-admissible in (B) and (C).

i1

i2

i3

ip

ip+1

Figure 4. Illustration of a permutation σ satisfying conditions (a)-(d).

(a) ij+1 = σ(ij) for j ∈ J1, pK;
(b) i1 > i2;
(c) ij < ij+1 for j ∈ J2, p− 1K;
(d) ip > ip+1.

Note that we do not exclude the possibility that (ip, ip+1) = (i1, i2). Also, since σ
is not a derangement, there is some j ∈ J1, rK \ {i1, . . . , ip+1} fixed by σ.

If j /∈ Ji2, i1K, then (i1, i2) is a jump-admissible σ-drop (as in case (B) or (C) in
Figure 3). So suppose i1 > j > i2. If j < ip then (ia, ia+1) is a jump-admissible
σ-jump for the a ∈ J2, p−1K with ia < p < ia+1. So suppose j > ip. Then (ip, ip+1)
is a jump-admissible σ-drop. This proves that, provided σ(j) = j for some j, there
always exists a jump-admissible σ-drop or σ-jump.

Similarly one proves there always exists a drop-admissible σ-drop or σ-jump.
If #AX(σ) < s then we add a drop by putting σ̃ = σ ◦ (i j) where (i, σ(i))

is a drop-admissible σ-drop or σ-jump. Then σ̃ will have one more drop than σ
but the same number of jumps. That is, #AX(σ̃) = 1 + #AX(σ) + 1 ≤ s and
#EX(σ̃) = #EX(σ) ≤ r − s which by Lemma 3.3 ensures that property (i) is
satisfied.

Analogously, if instead #EX(σ) < r − s we add a jump by putting σ̃ = σ ◦ (i j)
for appropriate i.

Clearly σ̃ has one less fixpoint than σ.
It remains to verify that property (ii) holds. The change from σ to σ̃ has the

following effect on monomials:

t
(kj)
jj t

(ki)
σ(i)i 7−→ t

(kj)

σ̃(j)jt
(ki)
σ̃(i)i = t

(kj)

σ(i)jt
(ki)
ji
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(unchanged factors omitted).
If j is not between i and σ(i), then by definition of the height (3.2) one checks

that ht(σ̃) > ht(σ) so (ii) holds by just looking at the height, which is the most
significant part of the total degree (see (2.4)).

If j is between i and σ(i), then ht(σ̃) = ht(σ) so we must compare roots in order
to establish property (ii).

Suppose i < j < σ(i). Then the change from σ to σ̃ corresponds to

t
(0)
σ(i)it

(kj)
jj 7−→ t

(0)
σ(i)jt

(0)
ji

The change in total degrees is

d(Fβi,σ(i)
) 7−→ d(Fβj,σ(i)

Fβij
)

Since βj,σ(i) > βi,σ(i), βi,j (recall the ordering (2.2)) it follows that property (ii)
holds in this case. The case i > j > σ(i) is analogous, keeping in mind that Eβ are
ordered in reverse. This finishes the proof of Lemma 3.4. �

The following result describes the height of the permutation giving rise to the
leading term.

Lemma 3.5. Fix r ∈ Z>0 and let s ∈ J1, rK. Let σ ∈ Sr be the permutation which
gives rise to the leading term of drs. That is,

lt(drs) = λt
(k1)
σ(1)1t

(k2)
σ(2)2 · · · t

(kr)
σ(r)r (3.4)

for some nonzero λ ∈ C and some k ∈ {0, 1}r with
∑

i ki = s. Then

ht(σ) = 2s(r − s). (3.5)

Proof. First we prove that ht(σ) ≥ 2s(r − s). Let τ = (1 2 · · · r)s. We show that
ht(τ) = 2s(r − s). Since

τ(i) =

{
i+ s, i+ s ≤ r

i+ s− r, i+ s > r

we have by definition of ht(τ)

ht(τ) =

r−s∑

i=1

(i+ s− i) +

r∑

i=r−s+1

(i− (i + s− r)) = 2s(r − s).

Since (3.4) is the leading term of drs, we in particular have ht(σ) ≥ ht(τ) = 2s(r−s)
by definition of total degree of a monomial (2.4).

It remains to show that ht(σ) ≤ 2s(r − s). By Lemma 3.4, σ is a derangement.
Thus

ht(σ) =
r∑

i=1

|σ(i)− i| =
∑

i:σ(i)<i

(i− σ(i)) +
∑

i: σ(i)>i

(σ(i)− i),

where the first sum has s terms and the second has r − s terms. Clearly we have
the estimate

∑

i: σ(i)<i

(i − σ(i)) +
∑

i: σ(i)>i

(σ(i)− i)

≤ (r + (r − 1) + · · ·+ (r − s+ 1))− (1 + 2 + · · ·+ s)

+ (r + (r − 1) + · · · (s+ 1))− (1 + 2 + · · ·+ (r − s)) = 2s(r − s).

This proves the claim. �
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We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. The case r = s is trivial: By (2.13), drr = λ · t
(1)
11 · · · t

(1)
rr ,

where λ ∈ C
×. Thus drr has only one term, corresponding to the identity permu-

tation (1). Thus the conjecture holds in this case because (1 2 · · · r)r = (1). So
we may assume s < r.

Let σ ∈ Sr be the permutation which gives rise to the leading term of drs. That
is,

lt(drs) = λt
(k1)
σ(1)1t

(k2)
σ(2)2 · · · t

(kr)
σ(r)r

for some nonzero λ ∈ C and some k ∈ {0, 1}r with
∑

i ki = s. By Lemma 3.4, σ
is a derangement. In particular, k is uniquely determined: ki = 0 iff σ(i) > i and
ki = 1 iff σ(i) < i. Moreover, since σ is a derangement, Lemma 3.3 implies that s
equals the number of anti-exceedances for σ:

s = #{i ∈ J1, rK | σ(i) < i}. (3.6)

We will now show that
σ−1(r) = r − s. (3.7)

This is equivalent to that t
(0)
r,r−s occurs in lt(drs). By (2.9) and that the Ki don’t

contribute to the total degree, we have d(t
(0)
r,r−s) = d(Fβr−s,r

). To show (3.7), note

that t
(0)
r,r−s occurs in the monomial corresponding to τ = (1 2 · · · r)s. Thus it is

enough to prove that if t
(0)
ji occurs in the leading monomial of drs then βij ≤ βr−s,r.

Suppose the opposite is true, i.e. that σ−1(j0) = i0 ∈ Jr− s+1, j0 − 1K for some
j0 with i0 < j0 ≤ r. We show that this leads to a contradiction in the height of σ.
We have

ht(σ) =

r∑

i=1

|σ(i)− i| =
∑

i:σ(i)<i

(i− σ(i)) +
∑

i: σ(i)>i

(σ(i)− i). (3.8)

The first sum has s elements, by (3.6), and the second one has r− s terms, since σ
is a derangement. Since σ(i0) = j0 > i0, we may estimate the first sum from above
by assuming that i runs through the s largest elements of J1, rK\{i0}, and σ(i) just
runs through the s smallest elements of J1, rK. That is,

∑

i:σ(i)<i

(i− σ(i)) ≤ (r + (r − 1) + · · ·+ (r − s)− i0)− (1 + 2 + · · ·+ s)

= r − i0 + s(r − s− 1). (3.9)

On the other hand, i0 does belong to the summation range of the other sum and
therefore

∑

i: σ(i)>i

(σ(i)− i) ≤ (r + (r − 1) + · · ·+ (s+ 1))− (1 + 2 + · · ·+ (r − s− 1) + i0)

= (r − s− 1)s+ r − i0, (3.10)

i.e. the sum of the r − s largest elements of J1, rK minus the smallest sum of r − s
elements of J1, rK requiring that one of them is i0. Combining (3.8)-(3.10) we obtain

ht(σ) ≤ 2(r − s− i0) + 2s(r − s) < 2s(r − s) (3.11)

since i0 > r− s by assumption. This contradicts Lemma 3.5 and finishes the proof
of (3.7).
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Then, since βr−s−1,r−1 is the largest positive root of the form βr−s−1,j where
j < r, βr−s−2,r−2 is the largest positive root of the form βr−s−2,j with j < r − 1,
and so on, we conclude that the leading term of drs must have the form

λ · t
(0)
1+s,1t

(0)
2+s,2 · · · t

(0)
r,r−s · t

(k1)
σ(r−s+1),r−s+1 · · · t

(ks)
σ(r)r.

But
∑

ki = s which forces ki = 1 for i ∈ J1, sK. So σ(i) < i for i ∈ Jr − s + 1, rK.

Since d(t
(1)
ij ) = d(Eβij

) for i < j and by definition (2.4) of the total degree, the
Eβ are ordered in reverse with respect to the order of the positive roots β, we are
led to the question: What is the smallest possible root βij (i < j) which may still
occur in the monomial?

We know that {σ(r − s + 1), σ(r − s + 2), . . . , σ(r)} = {1, 2, . . . , s}. Thus, the
smallest root we can get is β1,r−s+1, obtained iff σ(r−s+1) = 1. But this happens
for the permutation τ = (1 2 · · · r)s. So, to have any chance of getting a larger
monomial we must continue. But at each step we see that the smallest possible
root is βi,r−s+i for i = 1, 2, . . . , s. This proves that (1 2 · · · r)s indeed is the
permutation that gives the leading term of drs. �

For a, b ∈ J1, NK, a 6= b, and u ∈ Uq, let degab(u) ∈ Z≥0 denote the component of
the De Concini-Kac filtration degree d(u) ∈ (Z≥0)

2M+1 corresponding to the root
βab = εa − εb. The following result describes which positive roots that occur in the
leading term of drs.

Corollary 3.6. If 1 ≤ b < a ≤ N and 1 ≤ s < r ≤ N , then

degba(lt(drs)) =

{
1, a− b = r − s and a ≤ r

0, otherwise

Proof. By Theorem 3.1, lt(drs) is (up to multiplication by some Ki and a scalar) a
product of distinct root vectors, and the positive root vector Eβ , β = βba, occurs
in lt(drs) if and only if (b, a) ∈ {(1, r − s + 1), (2, r − s + 2), . . . , (s, r)} which is
equivalent to a− b = r − s and a ≤ r. �

Corollary 3.7. If 1 ≤ b < a ≤ N , 1 ≤ s < r ≤ N , then

degba
(
lt(

∏

1≤s<r≤N

dkrs

rs )
)
=

N∑

r=a

kr,r−(a−b).

Remark 3.8. Define
X(r, s) = t(1)sr (3.12)

for each 1 ≤ s ≤ r ≤ N . Then, by Theorem 3.1, X(r, s) occurs in the leading
term of drs, however it sometimes does occur in the leading term of some other
dab, (a, b) 6= (r, s). Thus one cannot use the technique from [FMO2] to prove that
Uq(gln) is a Galois order. In fact we were not able to generalize our approach in
any way to make it work.

References

[B] Bavula V., Generalized Weyl algebras and their representations, Algebra i Analiz 4

(1992), 75–97. (English translation: St. Petersburg Math. J. 4 (1993), 71–92.

[BO] Bavula V., Oystaeyen F., Simple Modules of the Witten-Woronowicz algebra, Journal of
Algebra 271 (2004), 827–845.

[DFO1] Drozd Yu.A., Ovsienko S.A., Futorny V.M. On Gelfand–Zetlin modules, Suppl. Rend.
Circ. Mat. Palermo, 26 (1991), 143-147.



12 VYACHESLAV FUTORNY AND JONAS T. HARTWIG

[DFO2] Drozd Yu.A., Ovsienko S.A., Futorny V.M., Harish-Chandra subalgebras and Gelfand–
Zetlin modules, in: ”Finite dimensional algebras and related topics”, NATO ASI Ser. C.,
Math. and Phys. Sci., 424, (1994), 79-93.

[DK] De Concini C., Kac V.G., Representations of quantum groups at roots of 1 in “Operator
Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory” (Paris
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