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DIVISION BY 2 ON ODD DEGREE HYPERELLIPTIC CURVES

AND THEIR JACOBIANS

YURI G. ZARHIN

In memory of V.A. Iskovskikh

Abstract. Let K be an algebraically closed field of characteristic different
from 2, g a positive integer, f(x) a degree (2g+1) polynomial with coefficients
in K and without multiple roots, C : y2 = f(x) the corresponding genus g

hyperelliptic curve over K, and J the jacobian of C. We identify C with the
image of its canonical embedding into J (the infinite point of C goes to the
identity element of J). It is well known that for each b ∈ J(K) there are
exactly 22g elements a ∈ J(K) such that 2a = b. M. Stoll constructed an
algorithm that provides Mumford representations of all such a, in terms of
the Mumford representation of b. The aim of this paper is to give explicit

formulas for Mumford representations of all such a, when b ∈ J(K) is given

by P = (a, b) ∈ C(K) ⊂ J(K) in terms of coordinates a, b. We also prove that
if g > 1 then C(K) does not contain torsion points with order between 3 and
2g.

1. Introduction

Let K be an algebraically closed field of characteristic different from 2.
Let g ≥ 1 be an integer. Let C be the smooth projective model of the smooth

affine plane K-curve

y2 = f(x) =

2g+1
∏

i=1

(x− αi)

where α1, . . . , α2g+1 are distinct elements of K. It is well known that C is a genus
g hyperelliptic curve over K with precisely one infinite point, which we denote by
∞. In other words,

C(K) = {(a, b) ∈ K2 | b2 =

2g+1
∏

i=1

(a− αi)}
⊔

{∞}.

Clearly, x and y are nonconstant rational functions on C, whose only pole is ∞.
More precisely, the polar divisor of x is 2(∞) and the polar divisor of y is (2g+1)(∞).

The zero divisor of y is
∑2g+1

i=1 (Wi) where

Wi = (αi, 0) ∈ C(K) for all i = 1, . . . , 2g, 2g + 1.
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We write ι for the hyperelliptic involution

ι : C → C, (x, y) 7→ (x,−y), ∞ 7→ ∞.

The set of all fixed points of ι consists of ∞ and all Wi. It is well known that
for each P ∈ C(K) the divisor (P ) + ι(P ) − 2(∞) is principal. More precisely, if
P = (a, b) ∈ C(K) then (P ) + ι(P ) − 2(∞) is the divisor of the rational function
x− a on C. If D is a divisor on C then we write supp(D) for its support, which is
a finite subset of C(K).

We write J for the jacobian of C, which is a g-dimensional abelian variety over
K. If D is a degree zero divisor on C then we write cl(D) for its linear equivalence
class, which is viewed as an element of J(K). Elements of J(K) may be described
in terms of so called Mumford representations (see [5, Sect. 3.12], [13, Sect.
13.2, pp. 411–415, especially, Prop. 13.4, Th. 13.5 and Th. 13.7] and Section 2
below.)

We will identify C with its image in J with respect to the canonical regular
map C →֒ J under which ∞ goes to the identity element of J . In other words, a
point P ∈ C(K) is identified with cl((P ) − (∞)) ∈ J(K). Then the action of ι on
C(K) ⊂ J(K) coincides with multiplication by −1 on J(K). In particular, the list
of points of order 2 on C consists of all Wi.

Since K is algebraically closed, the commutative group J(K) is divisible. It is
well known that for each b ∈ J(K) there are exactly 22g elements a = 1

2b ∈ J(K)
such that 2a = b. M. Stoll [12, Sect. 5] constructed an algorithm that provides
Mumford representations of all such a in terms of the Mumford representation of
b. The aim of this paper is to give explicit formulas (Theorem 3.2) for Mumford
representations of all 1

2b when b ∈ J(K) is given by

P = (a, b) ∈ C(K) ⊂ J(K)

on C, in terms of its coordinates a, b ∈ K. (Here b2 = f(a).) The case

b = ∞ = 0 ∈ J(K)

boils down to a well known description of points of order 2 on the jacobian [5, Ch.
3a, Sect. 2]; one may easily write down explicitly Mumford representations for the
order 2 points, see Examples 2.1.

The paper is organized as follows. In Section 2 we recall basic facts about
Mumford representations and obtain auxiliary results about divisors on hyperel-
liptic curves. In particular, we prove (Theorem 2.5) that if g > 1 then the only
point of C(K) that is divisible by two in the theta divisor Θ of J (rather than
in J(K)) is ∞. We also prove that C(K) does not contain points of order n if
3 ≤ n ≤ 2g. In addition, we discuss torsion points on certain natural subvarieties
of Θ when J has “large monodromy”. In Section 3 we describe explicitly for a given
P = (a, b) ∈ C(K) the Mumford representation of 22g divisor classes cl(D − g(∞))
such that D is an effective degree g reduced divisor on C and

2cl(D − g(∞)) = P ∈ C(K) ⊂ J(K).

The description is given in terms of collections of square roots ri =
√
a− αi (1 ≤

i ≤ 2g + 1), whose product
∏2g+1

i=1 ri is −b. (There are exactly 22g choices of such
collections of square roots.)

This paper is a follow up of [1] where the (more elementary) case of elliptic curves
is discussed. (See also [9, 14].)
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2. Divisors on hyperelliptic curves

As usual, a monic polynomial is a polynomial with leading coefficient 1.
Recall [13, Sect. 13.2, p. 411] that if D is an effective divisor of (nonnegative)

degreem, whose support does not contain∞, then the degree zero divisorD−m(∞)
is called semi-reduced if it enjoys the following properties.

• If Wi lies in supp(D) then it appears in D with multiplicity 1.
• If a point Q of C(K) lies in supp(D) and does not coincide with any of Wi

then ι(Q) does not lie in supp(D).

If, in addition, m ≤ g then D −m(∞) is called reduced.
Notice that a point of C(K) that is not one of Wi’s may appear in in a (semi)-

reduced divisor with multiplicity > 1.
It is known ([5, Ch. 3a], [13, Sect. 13.2, Prop. 3.6 on p. 413]) that for each

a ∈ J(K) there exist exactly one nonnegative m and (effective) degree m divisor
D such that the degree zero divisor D −m(∞) is reduced and cl(D −m(∞)) = a.
(E.g., the zero divisor with m = 0 corresponds to a = 0.) If

m ≥ 1, D =

m
∑

j=1

(Qj) where Qj = (aj , bj) ∈ C(K) for all j = 1, . . . ,m

(here Qj do not have to be distinct) then the corresponding

a = cl(D −m(∞)) =

m
∑

j=1

Qj ∈ J(K).

The Mumford representation ([5, Sect. 3.12], [13, Sect. 13.2, pp. 411–415, espe-
cially, Prop. 13.4, Th. 13.5 and Th. 13.7] of a ∈ J(K) is the pair (U(x), V (x)) of
polynomials U(x), V (x) ∈ K[x] that enjoys the following properties.

•

U(x) =

m
∏

j=1

(x − aj)

is a degree m monic polynomial;
• V (x) has degree < m = deg(U);
• the polynomial V (x)2 − f(x) is divisible by U(x);
• each Qj is a zero of y − V (x), i.e.,

bj = V (aj), Qj = (aj , V (aj)) ∈ C(K) for all j = 1, . . .m.

Such a pair always exists, is unique, and (as we have just seen) uniquely deter-
mines not only a but also divisors D and D −m(∞).

Examples 2.1. (i) The case a = 0 corresponds to m = 0, D = 0 and the pair
(U(x) = 1, V (x) = 0).

(ii) The case

a = P = (a, b) ∈ C(K) ⊂ J(K)

corresponds to m = 1, D = (P ) and the pair (U(x) = x− a, V (x) = b).
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(iii) Let m ≤ g be a positive integer and I an m-element subset of the (2g+1)-
element set {1, . . . , 2g, 2g+1} of positive integers. Let us consider a degree
m effective divisor

Dm,I =
∑

i∈I

(Wi)

on C. Then the degree zero divisor Dm,I −m(∞) is reduced and its linear
equivalence class am,I := cl(Dm,I −m(∞)) has order 2 in J(K), because

2cl(Dm,I −m(∞)) = cl

((

∑

i∈I

2(Wi)

)

− 2m(∞)

)

= div(
∏

i∈I

(x− αi).

Let us consider the polynomials

U(x) = Um,I(x) :=
∏

i∈I

(x− αi), V (x) = Vm,I(x) := 0.

Since f(x) =
∏2g+1

i=1 (x− αi) is obviously divisible by Um,I(x),

f(x)− Vm,I(x)
2 = f(x)− 02 = f(x)

is divisible by Um,I(x). It follows that (Um,I(x), 0) is the Mumford repre-
sentation of am,I , since Wi = (αi, 0) for all i.

Clearly, distinct pairs (m, I) correspond to distinct points am,I . Notice
that the number of all (m, I)’s equals 22g−1 (one has to subtract 1, because
we exclude m = 0 and empty I). At the same time, 22g − 1 is the number
of elements of order 2 in J(K). This implies that every order 2 point in
J(K) is of the form for exactly one (m, I). Thus, we obtain the Mumford
representations for all nonzero halves of zero in J(K).

Conversely, if U(x) is a monic polynomial of degreem ≤ g and V (x) a polynomial
such that deg(V ) < deg(U) and V (x)2−f(x) is divisible by U(x), then there exists
exactly one a = cl(D − m(∞)) where D − m(∞) is a reduced divisor, such that
(U(x), V (x)) is the Mumford representation of a.

Let P = (a, b) ∈ C(K), i.e.,

a, b ∈ K, b2 = f(a) =

n
∏

i=1

(a− αi).

Recall that our goal is to divide explicitly P by 2 in J(K), i.e., to give explicit
formulas for the Mumford representation of all 22g divisor classes cl(D − m(∞))
(with reduced D−m(∞)) such that 2D−2m(∞) is linearly equivalent to (P )−(∞),
i.e., the divisor 2D+ ι(P ) is linearly equivalent to (2m+1)(∞). (It turns out that
each such D has degree g and its support does not contain any of Wi.)

The following assertion is a simple but useful exercise in Riemann-Roch spaces
(see Example 4.13 in [11]).

Lemma 2.2. Let D be an effective divisor on C of degree m > 0 such that m ≤ 2g+1
and supp(D) does not contain ∞. Assume that the divisor D−m(∞) is principal.

(1) Suppose that m is odd. Then:
(i) m = 2g + 1 and there exists exactly one polynomial v(x) ∈ K[x] such

that the divisor of y−v(x) coincides with D−(2g+1)(∞). In addition,
deg(v) ≤ g.

(ii) If Wi lies in supp(D) then it appears in D with multiplicity 1.
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(iii) If b is a nonzero element of K and P = (a, b) ∈ C(K) lies in supp(D)
then ι(P ) = (a,−b) does not lie in supp(D).

(2) Suppose that m = 2d is even. Then there exists exactly one monic degree
d polynomial u(x) ∈ K[x] such that the divisor of u(x) coincides with D −
m(∞). In particular, every point Q ∈ C(K) appears in D−m(∞) with the
same multiplicity as ι(Q).

Proof. Let h be a rational function on C, whose divisor coincides with D −m(∞).
Since ∞ is the only pole of h, the function h is a polynomial in x, y and therefore
may be presented as h = s(x)y − v(x) with s, v ∈ K[x]. If s = 0 then h has at ∞
the pole of even order 2 deg(v) and therefore m = 2deg(v).

Suppose that s 6= 0. Clearly, s(x)y has at∞ the pole of odd order 2 deg(s)+(2g+
1) ≥ (2g+1). So, the orders of the pole for s(x)y and v(x) are distinct, because they
have different parity. Therefore the orderm of the pole of h = s(x)y−v(x) coincides
with max(2 deg(s) + (2g + 1), 2 deg(v)) ≥ 2g + 1. This implies that m = 2g + 1;
in particular, m is odd. It follows that m is even if and only if s(x) = 0, i.e.,
h = −v(x); in addition, deg(v) ≤ (2g + 1)/2, i.e., deg(v) ≤ g. In order to finish
the proof of (2), it suffices to divide −v(x) by its leading coefficient and denote the
ratio by u(x). (The uniqueness of monic u(x) is obvious.)

Let us prove (1). Since m is odd,

m = 2deg(s) + (2g + 1) > 2 deg(v).

Since m ≤ 2g + 1, we obtain that deg(s) = 0, i.e., s is a nonzero element of K and
2 deg(v) < 2g + 1. The latter inequality means that deg(v) ≤ g. Dividing h by the
constant s, we may and will assume that s = 1 and therefore h = y − v(x) with

v(x) ∈ K[x], deg(v) ≤ g.

This proves (i). (The uniqueness of v is obvious.) The assertion (ii) is contained
in Proposition 13.2(b) on pp. 409-10 of [13]. In order to prove (iii), we just follow
arguments on p. 410 of [13] (where it is actually proven). Notice that our P = (a, b)
is a zero of y− v(x), i.e. b− v(a) = 0. Since, b 6= 0, v(a) = b 6= 0 and y− v(x) takes
on at ι(P ) = (a,−b) the value −b− v(a) = −2b 6= 0. This implies that ι(P ) is not
a zero of y − v(x), i.e., ι(P ) does not lie in supp(D). �

Remark 2.3. Lemma 2.2(1)(ii,iii) asserts that if m is odd then the divisor D −
m(∞) is semi-reduced. See [13, the penultimate paragraph on p. 411].

Corollary 2.4. Let P = (a, b) be a K-point on C and D an effective divisor on
C such that m = deg(D) ≤ g and supp(D) does not contain ∞. Suppose that the
degree zero divisor 2D + ι(P ) − (2m+ 1)(∞) is principal. Then:

(i) m = g and there exists a polynomial vD(x) ∈ K[x] such that deg(vD) ≤ g
and the divisor of y − vD(x) coincides with 2D + ι(P ) − (2g + 1)(∞). In
particular, −b = vD(a).

(ii) If a point Q lies in supp(D) then ι(Q) does not lie in supp(D). In partic-
ular,
(1) none of Wi lies in supp(D);
(2) D − g(∞) is reduced.

(iii) The point P does not lie in supp(D).
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Proof. One has only to apply Lemma 2.2 to the divisor 2D + ι(P ) of odd degree
2m+1 ≤ 2g+1 and notice that ι(P ) = (a,−b) is a zero of y−v(x) while ι(Wi) = Wi

for all i = 1, . . . , 2g + 1. �

Let d ≤ g be a positive integer and Θd ⊂ J be the image of the regular map

Cd → J, (Q1, . . . , Qd) 7→
d
∑

i=1

Qi ⊂ J.

It is well known that Θd is an irreducible closed d-dimensional subvariety of J that
coincides with C for d = 1 and with J if d = g; in addition, Θd ⊂ Θd+1 for all
d < g. Clearly, each Θd is stable under multiplication by −1 in J . We write Θ for
the (g − 1)-dimensional theta divisor Θg−1.

Theorem 2.5. Suppose that g > 1 and let

C1/2 := 2−1C ⊂ J

be the preimage of C with respect to multiplication by 2 in J . Then the intersection
of C1/2(K) and Θ consists of points of order dividing 2 on J . In particular, the
intersection of C and C1/2 consists of ∞ and all Wi’s. In other words,

C
⋂

2 ·Θ = {0}.

Remark 2.6. The case g = 2 of Theorem 2.5 was done in [2, Prop. 1.5]

Proof of Theorem 2.5. Suppose that m ≤ g − 1 is a positive integer and we have
m (not necessarily distinct) points Q1, . . . Qm of C(K) and a point P ∈ C(K) such
that in J(K)

2
m
∑

j=1

Qj = P.

We need to prove that P = ∞, i.e., it is the zero of group law in J and therefore
∑m

j=1 Qj is an element of order 2 (or 1) in J(K). Suppose that this is not true.

Decreasing m if necessary, we may and will assume that none of Qj is ∞ (but m
is still positive and does not exceed g − 1). Let us consider the effective degree
m divisor D =

∑m
j=1(Qj) on C. The equality in J means that the divisors 2[D −

m(∞)] and (P ) − (∞) on C are linearly equivalent. This means that the divisor
2D + (ι(P )) − (2m + 1)(∞) is principal. Now Corollary 2.4 tells us that m = g,
which is not the case. The obtained contradiction proves that the intersection of
C1/2 and Θ consists of points of order 2 and 1.

Since g > 1, C ⊂ Θ and therefore the intersection of C and C1/2 also consists of
points of order 2 or 1, i.e., lies in the union of ∞ and all Wi’s. Conversely, since
each Wi has order 2 in J(K) and ∞ has order 1, they all lie in C1/2 (and, of course,
in C). �

Remark 2.7. It is known [10, Ch. VI, last paragraph of Sect. 11, p. 122] that the
curve C1/2 is irreducible. (Its projectiveness and smoothness follow readily from the
projectiveness of J and C, the smoothness of C and the étaleness of multiplication
by 2 in J .) See [4] for an explicit description of equations that cut out C1/2 in a
projective space.
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Corollary 2.8. Suppose that g > 1. Let m be an integer such that 3 ≤ m ≤ 2g.
Then C(K) does not contain a point of order m in J(K). In particular, C(K) does
not contain points of order 3 or 4.

Remark 2.9. The case g = 2 of Corollary 2.8 was done in [2, Prop. 2.1]

Proof of Corollary 2.8. Suppose that such a point say, P does exists. Clearly, P
is neither ∞ nor one of Wi, i.e., P 6= ι(P ). Let us consider the effective degree
m divisor D = m(P ). Then the divisor D − m(∞) is principal and its support
contains P but does not contain ι(P ).

If m is odd then the desired result follows from Lemma 2.2(1). Assume that m
is even. By Lemma 2.2(2), the support of D −m(∞) must contain ι(P ), since it
contains P . This gives us a contradiction that ends the proof. �

Example 2.10. Let us assume that char(K) does not divide (2g + 1). Then for
every nonzero b ∈ K the monic degree (2g+1) polynomial x2g+1+b2 has no multiple
roots and the point P = (0, b) of the genus g hyperelliptic curve

C : y2 = x2g+1 + b2

has order (2g + 1) on the jacobian J of C. Indeed, the polar divisor of rational
function y− b is (2g+1)(∞) while P is its only zero. Since the degree of div(y− b)
is 0,

div(y − b) = (2g + 1)(P )− (2g + 1)(∞) = (2g + 1)((P )− (∞)).

This means that the K-point

P ∈ C(K) ⊂ J(K)

has finite order m that divides 2g + 1. Clearly, m is neither 1 nor 2 (since P 6= ∞
and y(P ) = b 6= 0), i.e., m ≥ 3. If m < (2g + 1) then m ≤ 2g and we get a
contradiction to Corollary 2.8. This proves that the order of P is (2g + 1).

Notice that odd degree genus 2 hyperelliptic curves with points of order 5 =
2× 2 + 1 are classified in [3].

Remark 2.11. If char(K) = 0 and g > 1 then the famous theorem of M. Raynaud
(conjectured by Yu.I. Manin and D. Mumford) asserts that an arbitrary genus g
smooth projective curve over K embedded into its jacobian contains only finitely
many torsion points [7].

The aim of the rest of this section is to obtain an information about torsion
points on certain subvarieties Θd when C has “large monodromy”. In what follows
we use the notation [?] for the lower integral part of a real number [?].

Let us start with the following assertion.

Theorem 2.12. Suppose that g > 1 and let N and k be positive integers such that

k < N, N + k ≤ 2g.

Let us put

d(N+k) =

[

2g

N + k

]

.

Let K0 be a subfield of K such that f(x) ∈ K0[x]. Let a ∈ J(K) lies on Θd(N+k)
.

Suppose that there exists a collection of k (not necessarily distinct) field automor-
phisms

{σ1, . . . , σk} ⊂ Aut(K/K0)
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such that
∑k

l=1 σl(a) = Na or −Na. Then a has order 1 or 2 in J(K).

Proof. Clearly,

d(N+k) ≤
2g

N + k
≤ 2g

2 + 1
< g; (N + k) · d(N+k) ≤ 2g < 2g + 1.

Let us assume that 2a 6= 0 in J(K). We need to arrive to a contradiction. There are
a positive integer r ≤ d(N+k) < g and a sequence of points P1, . . . , Pr of C(K)\{∞}
such that the linear equivalence class of D̃ :=

∑r
j=1(Pj)− r(∞) equals a. We may

assume that r is the smallest positive integer that enjoys this property for given
a. Then the divisor D̃ is reduced. Indeed, if D̃ is not reduced then r ≥ 2 and
we may assume without loss of generality that (say) Pr = ι(Pr−1), i.e., the divisor

(Pr−1) + (Pr) − 2(∞) is principal. Since a 6= 0, r > 2 and therefore D̃ is linear
equivalent to

D̃ − ((Pr−1) + (Pr)− 2(∞)) =

r−2
∑

j=1

(Pj)− (r − 2)(∞).

This contradicts to the minimality of r, and this contradiction proves that D̃ is
reduced.

We may assume that (say) P1 does not coincides with any of Wi (here we use
the assumption that 2a 6= 0); we may also assume that P1 has the largest multi-

plicity in D̃ among {P1, . . . , Pr}; let us denote this multiplicity by M . Since D̃ is

reduced, none of Pj ’s coincides with ιP1. The divisor σl(D̃) =
∑r

j=1(σlPj)− r(∞)

is also reduced and its linear equivalence class equals σla for all l ∈ {1, . . . , k}. In

particular, the multiplicity of each σlPj in σl(D̃) does not exceed M ; similarly, the

multiplicity of each ισlPj in ισl(D̃) also does not exceed M for every l. This implies

that if P is any point of C(K) \ {∞} that does not lie in the support of D̃ then its

multiplicity in ND̃+ ι
(

∑k
l=1 σl(D̃)

)

is a nonnegative integer that does not exceed

kM ; in addition, the multiplicity of P in ND̃ +
∑k

l=1 σl(D̃) is also a nonnegative
integer that also does not exceed kM . Notice also that P1 lies in the supports of

both ND̃+ ι
(

∑k
l=1 σl(D̃)

)

and ND̃+
(

∑k
l=1 σl(D̃)

)

and its multiplicities (in both

cases) are, at least, NM .

Suppose that
∑k

l=1 σl(a) = Na. Then the divisor

ND̃ + ι

(

k
∑

l=1

σl(D̃)

)

= N





r
∑

j=1

(Pj)



+

k
∑

l=1





r
∑

j=1

(ισlPj)



 − r(N + k)(∞)

is a principal divisor on C. Since
m := r(N + k) ≤ (N + k) · d(N+k) ≤ 2g < 2g + 1,

we are in position to apply Lemma 2.2, which tells us right away that m is even

and there is a monic polynomial u(x) of degree m/2, whose divisor coincides with

ND̃ + ι
∑k

l=1 σl(D̃). This implies that any point Q ∈ C(K) \ {∞} appears in

ND̃ + ι
(

∑k
l=1 σl(D̃)

)

with the same (nonnegative) multiplicity as ιQ. It follows

that Q = ιP1 appears inND̃+ι
(

∑k
l=1 σl(D̃)

)

with the same multiplicity as P1. On

the other hand, since ιP1 does not appear in D̃, its multiplicity inND̃+ι
∑k

l=1 σl(D̃)
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does not exceed kM . Since the multiplicity of P1 in ND̃ + ι
(

∑k
l=1 σl(D̃)

)

is, at

least, NM , we conclude that NM ≤ kM , which is not the case, since k < N . This
gives us the desired contradiction.

If
∑k

l=1 σl(a) = −Na then literally the same arguments applied to the principal
divisor

ND̃ +

k
∑

l=1

σl(D̃) = N





r
∑

j=1

(Pj)



 +

k
∑

l=1





r
∑

j=1

(σlPj)



 − r(N + k)(∞)

also lead to the contradiction. �

2.13. Let K0 be a subfield of K such that f(x) ∈ K0[x] and K̄0 the algebraic
closure of K0 in K. (E.g., one may take as K0 the field that is generated over
the prime subfield of K by all the coefficients of f(x).) We write Gal(K0) for the
absolute Galois group

Gal(K0) = Aut(K̄0/K)

of K0. It is well known that all torsion points of J(K) actually lie in J(K̄0).
Let us consider the following Galois properties of torsion points of J(K).

(M3) If a ∈ J(K̄0) has finite order that is a power of 2 then there exists σ ∈
Gal(K0) such that σ(a) = 3a.

(M2) If b ∈ J(K̄0) has finite order that is odd then there exists τ ∈ Gal(K0) such
that τ(b) = 2b.

(M) Let a, b ∈ J(K̄0) be points of finite order such that the order of a is a power
of 2 and the order of b is odd. Then there exist σ1, σ2 ∈ Gal(K0) such that

σ1(a) = −a, σ1(b) = 2b; σ2(a) = 5a, σ2(b) = 2b.

Theorem 2.14. (i) Suppose that g ≥ 2 and J enjoys the property (M3). Let
us put

d(4) = [2g/4] = [g/2].

Let a ∈ J(K) be a torsion point that lies on Θd(4)
.

If the order of a is a power of 2 then it is either 1 or 2.
(ii) Suppose that g ≥ 2 and J enjoys the property (M2). Let us put

d(3) = [2g/3].

Let b ∈ J(K) be a torsion point of odd order that lies on Θd(3)
.

Then b = 0 ∈ J(K).
(iii) Suppose that g ≥ 3 and J enjoys the property (M). Let us put

d(6) = [2g/6] = [g/3].

Let c ∈ J(K) be a torsion point that lies on Θd(6)
.

Then the order of c is either 1 or 2.

Remark 2.15. In the case of g = 2 an analogue of Theorem 2.14(i,ii) was earlier
proven in [2, Cor. 1.6].

Proof of Theorem 2.14. Since all torsion points of J(K) lie in J(K̄0), we may as-
sume that K = K̄0 and therefore Gal(K0) = Aut(K/K0). In the first two cases
the assertion follows readily from Theorem 2.12 with N = 3, k = 1 in the case
(i) and with N = 2, k = 1 in the case (ii). Let us do the case (iii). We have
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c = a+ b where the order of a is odd and the order of b is a power of 2. There exist
σ1, σ2 ∈ Gal(K0) = Aut(K/K0) such that

σ1(a) = −a, σ1(b) = 2b; σ2(a) = 5a, σ2(b) = 2b.

This implies that

σ1(c) + σ2(c) = σ1(a) + σ1(b) + σ2(a) + σ2(b) = −a+ 2b+5a+2b = 4(a+ b) = 4c,

i.e., σ1(c) + σ2(c) = 4c. Now the desired result follows from Theorem 2.12 with
N = 4, k = 2. �

Example 2.16. Suppose that g > 1 and K is the field C of complex numbers,
{α1, . . . , α2g+1} is a (2g + 1)-element set of algebraically independent transenden-
tal complex numbers and K0 = Q(α1, . . . , α2g+1) where Q is the field of rational
numbers. It follows from results of B. Poonen and M. Stoll [6, Th. 7.1 and its
proof] and J. Yelton [14, Th. 1.1 and Prop. 2.2] that the jacobian J of the generic

hyperelliptic curve

C : y2 =

2g+1
∏

i=1

(x − αi)

enjoys the following properties.
Let us choose odd integers (2n1 +1) and (2n2 +1) and nonnegative integers m1

and m2. Suppose that a, b ∈ J(K̄0) be points of finite order such that the order of

a is a power of 2 and the order of b is odd. Then there exist σ1, σ2 ∈ Gal(K0) such
that

σ1(a) = (2n1 + 1)a, σ1(b) = 2m1b; σ2(a) = (2n2 + 1)a, σ2(b) = 2m2b.

Choosing n1 = 1, we obtain that J enjoys the property (M3). Choosing m1 = 1,
we obtain that J enjoys the property (M2). Choosing

n1 = 1, n2 = 2, m1 = m2 = 1,

we obtain that J enjoys the property (M). It follows from Theorem 2.14 that torsion
points of J(C) enjoy the following properties.

(i) Any torsion point a ∈ J(C) that lies on Θ[g/2] and has order that is a power
of 2 actually has order 1 or 2.

(ii) If b ∈ J(C) is a torson point of odd order that lies on Θ[2g/3] then b = 0 ∈
J(C).

(iii) Let g ≥ 3. Then any torsion point c ∈ J(C) that lies on Θ[g/3] has order 1
or 2.

Notice that B. Poonen and M. Stoll [6, Th. 7.1] proved that the only complex
points of finite order in J(C) that lie on C = Θ1 are points of order 1 or 2. On
the other hand, it is well known that J is a simple complex abelian variety. Now a
theorem of Raynaud [8] implies that the set of torsion points on the theta divisor
Θ = Θg−1 (actually, on every proper closed subvariety) of J is finite.

3. Division by 2

If n and i are positive integers and r = {r1, . . . , rn} is a sequence of n elements
ri ∈ K then we write

si(r) = si(r1, . . . , rn) ∈ K

for the ith basic symmetric function in r1, . . . , rn. If we put rn+1 = 0 then
si(r1, . . . , rn) = si(r1, . . . , rn, rn+1).
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Suppose we are given a point

P = (a, b) ∈ C(K) ⊂ J(K).

Since dim(J) = g, there are exactly 22g points a ∈ J(K) such that

P = 2a ∈ J(K).

Let us choose such an a. Then there is exactly one effective divisor

D = D(a) (1)

of positive degree m on C such that supp(D) does not contain ∞, the divisor
D −m(∞) is reduced, and

m ≤ g, cl(D −m(∞)) = a.

It follows that the divisor 2D + (ι(P )) − (2m + 1)(∞) is principal and, thanks to
Corollary 2.4, m = g and supp(D) does not contains any of Wi. (In addition,
D − g(∞) is reduced.) Then degree g effective divisor

D = D(a) =

g
∑

j=1

(Qj) (2)

with Qi = (cj , dj) ∈ C(K). Since none of Qj coincides with any of Wi,

cj 6= αi ∀i, j.
By Corollary 2.4, there is a polynomial vD(x) of degree ≤ g such that the degree
zero divisor

2D + (ι(P )) − (2g + 1)(∞)

is the divisor of y− vD(x). Since ι(P ) = (a,−b) and all Qj ’s are zeros of y− vD(x),

b = −vD(a), dj = vD(cj) for all j = 1, . . . , g.

It follows from Proposition 13.2 on pp. 409–410 of [13] that

2g+1
∏

i=1

(x− αi)− vD(x)2 = f(x)− vD(x)2 = (x− a)

g
∏

j=1

(x − cj)
2. (3)

In particular, f(x)− vD(x)2 is divisible by

uD(x) :=

g
∏

j=1

(x − cj). (4)

Remark 3.1. Summing up:

D = D(a) =

g
∑

j=1

(Qj), Qj = (cj , vD(cj)) for all j = 1, . . . , g

and the degree g monic polynomial uD(x) =
∏g

j=1(x − cj) divides f(x) − vD(x)2.

Thus (see the beginning of Section 2), the pair (uD, vD) is the Mumford represen-
tation of a if

deg(vD) < g = deg(uD).

This is not always the case: it may happen that deg(vD) = g = deg(uD) (see
below). However, if we replace vD(x) by its remainder with respect to the division
by uD(x) then we get the Mumford representation of a (see below).
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If in (3) we put x = αi then we get

−vD(αi)
2 = (αi − a)





g
∏

j=1

(αi − cj)





2

,

i.e.,

vD(αi)
2 = (a− αi)





g
∏

j=1

(cj − αi)





2

for all i = 1, . . . , 2g, 2g + 1.

Since none of cj − αi vanishes, we may define

ri = ri,D :=
vD(αi)

∏g
j=1(cj − αi)

= (−1)g
vD(αi)

uD(αi)
(5)

with

r2i = a− αi for all i = 1, . . . , 2g + 1 (6)

and

αi = a− r2i , cj − αi = r2i − a+ cj for all i = 1, . . . , 2g, 2g + 1; j = 1, . . . , g.

Clearly, all ri’s are distinct elements of K, because their squares are obviously
distinct. (By the same token, rj1 6= ±rj2 if j1 6= j2.) Notice that

2g+1
∏

i=1

ri = ±b, (7)

because

b2 =

2g+1
∏

i=1

(a− αi) =

2g+1
∏

i=1

r2i . (8)

Now we get

ri =
vD(a− r2i )

∏g
j=1(r

2
i − a+ cj)

,

i.e.,

ri

g
∏

j=1

(r2i − a+ cj)− vD(a− r2i ) = 0 for all i = 1, . . . 2g, 2g + 1.

This means that the degree (2g + 1) monic polynomial (recall that deg(vD) ≤ g)

hr(t) := t

g
∏

j=1

(t2 − a+ cj)− vD(a− t2)

has (2g + 1) distinct roots r1, . . . , r2g+1. This means that

hr(t) =

2g+1
∏

i=1

(t− ri).

Clearly, t
∏g

j=1(t
2 − a+ cj) coincides with the odd part of hr(t) while −vD(a− t2)

coincides with the even part of hr(t). In particular, if we put t = 0 then we get

(−1)2g+1

2g+1
∏

i=1

ri = −vD(a) = b,
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i.e.,
2g+1
∏

i=1

ri = −b. (9)

Hereafter

r = rD := (r1, . . . , r2g+1) ∈ K2g+1.

Since

si(r) = si(r1, . . . , r2g+1)

is the ith basic symmetric function in r1, . . . , r2g+1,

hr(t) = t2g+1 +

2g+1
∑

i=1

(−1)isi(r)t
2g+1−i =

[

t2g+1 +

2g
∑

i=1

(−1)isi(r)t
2g+1−i

]

+ b.

(Since

s2g+1(r) =

2g+1
∏

i=1

ri = −b,

the constant term of hr(t) equals b.) Then

t

g
∏

j=1

(t2 − a+ cj) = t2g+1 +

g
∑

j=1

s2j(r)t
2g+1−2j ,

−vD(a− t2) =



−
g
∑

j=1

s2j−1(r)t
2g−2j+2



+ b.

It follows that
g
∏

j=1

(t− a+ cj) = tg +

g
∑

j=1

s2j(r)t
g−j ,

vD(a− t) =

g
∑

j=1

s2j−1(r)t
g−j+1 − b.

This implies that

vD(t) =





g
∑

j=1

s2j−1(r)(a − t)g−j+1



− b. (10)

It is also clear that if we consider the degree g monic polynomial

Ur(t) := uD(t) =

g
∏

j=1

(t− cj)

then

Ur(t) = (−1)g



(a− t)g +

g
∑

j=1

s2j(r)(a− t)g−j



 . (11)

Recall that deg(vD) ≤ g and notice that the coefficient of vD(x) at xg is (−1)gs1(r).
This implies that the polynomial

Vr(t) := vD(t)− (−1)gs1(r)Ur(t) =
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g
∑

j=1

s2j−1(r)(a− t)g−j+1



− b− s1(r)



(a− t)g +

g
∑

j=1

s2j(r)(a − t)g−j



 =

g
∑

j=1

(s2j+1(r) − s1(r)s2j(r)) (a− t)g−j (12)

has degree < g, i.e.,

deg(Vr) < deg(Ur) = g.

Clearly, f(x) − Vr(x)
2 is still divisible by Ur(x), because uD(x) = Ur(x) divides

both f(x)− vD(x)2 and vD(x)− Vr(x). On the other hand,

dj = vD(cj) = Vr(cj) for all j = 1, . . . g,

because Ur(x) divides vD(x) − Vr(x) and vanishes at all cj . Actually, {c1, . . . , cg}
is the list of all roots (with multiplicities) of Ur(x). So,

D = D(a) =

g
∑

j=1

(Qj), Qj = (cj , vD(cj)) = (cj , Vr(cj)) ∀j = 1, . . . , g.

This implies (again via the beginning of Section 2) that the pair (Ur(x), Vr(x)) is
the Mumford representation of cl(D − g(∞)) = a. So, the formulas (11) and (12)
give us an explicit construction of (D(a) and) a in terms of r = (r1, . . . , , r2g+1)
for each of 22g choices of a with 2a = P ∈ J(K). On the other hand, in light of
(6)-(8), there is exactly the same number 22g of choices of collections of square roots√
a− αi (1 ≤ i ≤ 2g) with product −b. Combining it with (9), we obtain that for

each choice of square roots
√
a− αi’s with

∏2g+1
i=1

√
a− αi = −b there is precisely

one a ∈ J(K) with 2a = P such that the corresponding ri defined by (5) coincides
with chosen

√
a− αi for all i = 1, . . . , 2g + 1, and the Mumford representation

(Ur(x), Vr(x)) for this a is given by formulas (11)-(12). This gives us the following
assertion.

Theorem 3.2. Let P = (a, b) ∈ C(K). Then the 22g-element set

M1/2,P := {a ∈ J(K) | 2a = P ∈ C(K) ⊂ J(K)}
can be described as follows. Let R1/2,P be the set of all (2g + 1)-tuples r =
(r1, . . . , r2g+1) of elements of K such that

r
2
i = a− αi for all i = 1, . . . , 2g, 2g + 1;

2g+1
∏

i=1

ri = −b.

Let si(r) be the ith basic symmetric function in r1, . . . , r2g+1. Let us put

Ur(x) = (−1)g



(a− x)g +

g
∑

j=1

s2j(r)(a − x)g−j



 ,

Vr(x) =

g
∑

j=1

(s2j+1(r)− s1(r)s2j(r)) (a− x)g−j .

Then there is a natural bijection between R1/2,P and M1/2,P such that r ∈ R1/2,P

corresponds to ar ∈ M1/2,P with Mumford representation (Ur, Vr). More explic-
itly, if {c1, . . . , cg} is the list of all g roots (with multiplicities) of Ur(x) then r
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corresponds to

ar = cl(D − g(∞)) ∈ J(K), 2ar = P

where the divisor

D = D(ar) =

g
∑

j=1

(Qj), Qj = (cj , Vr(cj)) ∈ C(K) for all j = 1, . . . , g.

In addition, none of αi is a root of Ur(x) (i.e., the polynomials Ur(x) and f(x) are
relatively prime) and

ri = s1(r) + (−1)g
Vr(αi)

Ur(αi)
for all i = 1, . . . , 2g, 2g + 1.

Proof. Actually we have already proven all the assertions of Theorem 3.2 except
the last formula for ri. It follows from (4) and (5) that

ri = (−1)g
vD(ar)(αi)

uD(ar)(αi)
= (−1)g

vD(ar)(αi)

Ur(αi)
.

It follows from (12) that

vD(ar)(x) = (−1)gs1(r)Ur(x) + Vr(x).

This implies that

ri = (−1)g
(−1)gs1(r)Ur(αi) + Vr(αi)

Ur(αi)
= s1(r) + (−1)g

Vr(αi)

Ur(αi)
.

�

Corollary 3.3. We keep the notation and assumptions of Theorem 3.2. Then

2g · s1(r) = (−1)g+1

2g+1
∑

i=1

Vr(αi)

Ur(αi)
.

In particular, if char(K) does not divide g then

s1(r) =
(−1)g+1

2g
·
2g+1
∑

i=1

Vr(αi)

Ur(αi)
.

On the other hand, if char(K) divides g then

2g+1
∑

i=1

Vr(αi)

Ur(αi)
= 0.

Proof. It follows from the last assertion of Theorem 3.2 that

s1(r) =

2g+1
∑

i=1

ri =

2g+1
∑

i=1

(

s1(r) + (−1)g
Vr(αi)

Ur(αi)

)

=

(2g + 1)s1(r) + (−1)g
2g+1
∑

i=1

Vr(αi)

Ur(αi)
.

This implies that

0 = 2g · s1(r) + (−1)g
2g+1
∑

i=1

Vr(αi)

Ur(αi)
,
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i.e.,

2g · s1(r) = (−1)g+1

2g+1
∑

i=1

Vr(αi)

Ur(αi)
.

�

Corollary 3.4. We keep the notation and assumptions of Theorem 3.2. Let i, l be
two distinct integers such that

1 ≤ i, l ≤ 2g + 1.

Then

s1(r) =
(−1)g

2
×

(

αl +
(

Vr(αl)
Ur(αl)

)2
)

−
(

αi +
(

Vr(αi)
Ur(αi)

)2
)

(

Vr(αi)
Ur(αi)

− Vr(αl)
Ur(αl)

) .

Proof. We have

ri = s1(r) + (−1)g
Vr(αi)

Ur(αi)
, rl = s1(r) + (−1)g

Vr(αl)

Ur(αl)
.

Recall that

r
2
i = a− αi 6= a− αl = r

2
l .

In particular,

ri 6= rl and therefore
Vr(αi)

Ur(αi)
6= Vr(αl)

Ur(αl)
.

We have

αl − αi = (a− αi)− (a− αl) = r
2
i − r

2
l =

(

s1(r) + (−1)g
Vr(αi)

Ur(αi)

)2

−
(

s1(r) + (−1)g
Vr(αl)

Ur(αl)

)2

=

(−1)g · 2 · s1(r) ·
(

Vr(αi)

Ur(αi)
− Vr(αl)

Ur(αl)

)

+

(

Vr(αi)

Ur(αi)

)2

−
(

Vr(αl)

Ur(αl)

)2

.

This implies that

(−1)g · 2 · s1(r) ·
(

Vr(αi)

Ur(αi)
− Vr(αl)

Ur(αl)

)

=

(

αl +

(

Vr(αl)

Ur(αl)

)2
)

−
(

αi +

(

Vr(αi)

Ur(αi)

)2
)

.

This means that

s1(r) =
(−1)g

2
×

(

αl +
(

Vr(αl)
Ur(αl)

)2
)

−
(

αi +
(

Vr(αi)
Ur(αi)

)2
)

(

Vr(αi)
Ur(αi)

− Vr(αl)
Ur(αl)

) .

�

Remark 3.5. Let r = (r1, . . . , r2g+1) ∈ R1/2,P with P = (a, b). Then for all
i = 1, . . . , 2g, 2g + 1

(−ri)
2 = r

2
i = a− αi

and
2g+1
∏

i=1

(−ri) = (−1)2g+1

2g+1
∏

i=1

ri = −(−b) = b.
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This means that
−r = (−r1, . . . ,−r2g+1) ∈ R1/2,ι(P )

(recall that ι(P ) = (a,−b)). It follows from Theorem 3.2 that

U−r(x) = Ur(x), V−r(x) = −Vr(x)

and therefore a−r = −ar.

Remark 3.6. The last assertion of Theorem 3.2 combined with Corollary 3.4 allow
us to reconstruct explicitly r = (r1, . . . , r2g+1) and P = (a, b) if we are given the
polynomials Ur(x), Vr(x) (and, of course, {α1, . . . , α2g+1}).
Example 3.7. Let us take as P = (a, b) the point W2g+1 = (α2g+1, 0). Then b = 0
and r2g+1 = 0. We have 22g arbitrary independent choices of (nonzero) square
roots ri =

√
α2g+1 − αi with 1 ≤ i ≤ 2g (and always get an element of R1/2,P ).

Now Theorem 3.2 gives us (if we put a = α2g+1, b = 0) all 22g points ar of order 4
in J(K) with 2ar = W2g+1. Namely, let si be the ith basic symmetric function in
(r1, . . . , r2g). Then the Mumford representation (Ur, Vr) of ar is given by

Ur(x) = (−1)g



(α2g+1 − x)g +

g
∑

j=1

s2j · (α2g+1 − x)g−j



 ,

Vr(x) =

g
∑

j=1

(s2j+1 − s1s2j) (α2g+1 − x)g−j .

In particular, if α2g+1 = 0 then

ri =
√
−αi for all i = 1, . . . , 2g,

Ur(x) = xg +

g
∑

j=1

(−1)js2jx
g−j ,

Vr(x) =

g
∑

j=1

(s2j+1 − s1s2j) (−x)g−j .
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