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JUMPS IN THE ARCHIMEDEAN HEIGHT

PATRICK BROSNAN AND GREGORY PEARLSTEIN

ABSTRACT. We introduce a pairing on local intersection cohomology groups of variations of pure
Hodge structure, which we call the asymptotic height pairing. Our original application of this pair-
ing was to answer a question on the Ceresa cycle posed by R. Hain and D. Reed. (This question
has since been answered independently by Hain.) Here we show that a certain analytic line bun-
dle, called the biextension line bundle, defined in terms of normal functions, always extends to any
smooth partial compactification of the base. We then show that the asymptotic height pairing on
intersection cohomology governs the extension of the natural metric on this line bundle studied by
Hain and Reed (as well as, more recently, by several other authors). We also prove a positivity prop-
erty of the asymptotic height pairing, which generalizes results of a recent preprint of J. Burgos Gill,
D. Holmes and R. de Jong, along with a continuity property of the pairing in the normal function
case. Moreover, we show that the asymptotic height pairing arises in a natural way from certain
Mumford-Grothendieck biextensions associated to normal functions.
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1. INTRODUCTION

Let H be a weight −1 polarizable variation of pure Hodge structure with integral coefficients
over a complex manifold S. Assume that the local system HZ associated to H is torsion-free. The
elements of the group NF(S,H) of normal functions into H can be thought of either as certain
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2 PATRICK BROSNAN AND GREGORY PEARLSTEIN

holomorphic sections of the Griffiths intermediate Jacobian J (H) → S, or as Yoneda extensions
of Z by H in the category VMHS(S) of variations of mixed Hodge structure over S, i.e., ele-

ments of Ext1
VMHS(S)(Z,H). Define NF(S,H)∨ = Ext1

VMHS(S)(H, Z(1)) and note that via duality

(cf. Proposition (111))

NF(S,H)∨ ∼= NF(S,H∨)

where H∨ = Hom(H, Z(1)).

A biextension variation of type H is a variation of mixed Hodge structure V over S equipped
with isomorphisms

GrW
0 (V) ∼= Z(0), GrW

−1(V) ∼= H, GrW
−2(V) ∼= Z(1). (1)

To any biextension variation V over S there is an associated C∞ function [cf. (41)]

h : S → R (2)

originally studied by Hain [19]. The function h can be defined by Deligne’s δ-splitting (Theorem
(2.20), [9]), which measures how far the fibers Vs are from being R-split mixed Hodge structures.

Given ν ∈ NF(S,H) and ω ∈ NF(S,H)∨, the set of biextension variations of type (ν, ω) consists
of all biextension variations over S such that

(W0/W−2)V ∼= ν; (3)

(W−1/W−3)V ∼= ω.

For any open subset U of S, B(ν, ω)(U) is defined to be the set of isomorphism classes of biexten-
sion variations of type (ν, ω) over U.

Hain and Reed noticed that B(ν, ω) is naturally an O×
S -torsor over S. Therefore the sections of

B(ν, ω) can be identified with the non-vanishing sections of an analytic line bundle L = L(ν, ω)
over S which Hain and Reed have called the biextension line bundle [21].

In [21], Hain and Reed further observed that L(ν, ω) comes with a natural metric defined by
the requirement that

|V| = exp(−h(V)) (4)

for any V ∈ B(ν, ω). In the case where ν and ω arise from a family of homologically trivial
algebraic cycles, the function (2) is the archimedean height pairing.

Suppose that j : S →֒ S is an inclusion of S as a Zariski open subset of a complex manifold S.
Let U be a weight −1 polarizable variation of pure Hodge structure with integral coefficients on
S. Assume that UZ is torsion free. Then, M. Saito [37] defined the group of admissible normal
functions ANF(S,U)S̄ to be set of extensions of Z(0) by U in the category of admissible variations
of mixed Hodge structure, i.e.

ANF(S,U)S̄ := Ext1
VMHS(S)ad

S̄

(Z(0),U)

Normal functions of geometric origin (e.g. arising from families of algebraic cycles) are admissible.

Remark 5. A choice of polarization Q of U determines a morphism aQ : U → U∨ given by β 7→
Q(β, ). This induces a map ANF(S,U)S̄ → ANF(S,U∨)S̄ which we denote by ν 7→ ν∨.

Let ν ∈ ANF(S,H)S̄ and ω ∈ ANF(S,H∨)S̄. Then, one can ask two questions.

Q 6. Does the line bundle L extend to a line bundle L on S? If fact, what we really seek is an extension L
satisfying the following property: For U an open subset of S, the restrictions of the non-vanishing sections

in L(U) to L(U) are biextension variations which are admissible as variations of mixed Hodge structure.

Q 7. Does the metric | | extend to L?
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Note that, in the (most interesting) case where S̄ is a smooth, projective variety, Q 6 can be
rephrased (via the GAGA principle [39]) as asking whether or not L is algebraic. In Theorem 233
we show that Q 6 has a positive answer. While there are, in general, many extensions of L to S̄,
we show in §13 that there is a canonical meromorphic extension. Moreover, there is a canonical

choice of extension Lcan ∈ Pic S̄ ⊗ Q. (See Remark 234.)

On the other hand, we will give a criterion in terms of the local intersection cohomology of ν
and ω for Q 7 to have a negative answer and, using this criterion, we will give an example where
the metric does not extend.

Remark 8. Note that there are many examples of analytic line bundles over smooth complex al-
gebraic varieties S which do not extend to S̄ with S̄ as in Q6. For example, in [40], Serre gives
uncountably many examples of analytic line bundles on C2 \ {(0, 0)} which do not extend to C2.
Consequently, it is not obvious that Q6 has a positive answer even in the case that the codimension
of S̄ \ S in S̄ is greater than 1.

D. Lear’s 1991 University of Washington (unpublished) PhD thesis treats special cases of Q6
and Q7. For Q6, Lear handles the case where S is a curve and the local monodromy is unipotent
with Jordan blocks of size at most 2. In this case, there are local monodromy invariant splittings
of the local systems underlying the variations of Hodge structure corresponding to the normal

functions ν and ω. While Lear does not show explicitly that the extension L satisfies the property
in Q6, we believe that his arguments could be used to establish this. However, we remark that in
this case, the monodromy invariant splitting makes the arguments that we use in §4 much simpler.

We now sketch our results concerning intersection cohomology and obstructions to Q7. Let
S̄ = ∆r be a polydisk with local coordinates (s1, . . . , sr) and S = ∆∗r be the complement of the
divisor s1 . . . sr = 0. Let H be a torsion free variation on S with unipotent monodromy and let

IH1(H) denote the local intersection cohomology group attached to H. If i : {0} → ∆r is the
inclusion of the origin, then, in terms of the intersection complex IC(H) on ∆r associated to H,

IH1(H) = H−r+1(i∗ IC(H)). The group IH1(H) is a subgroup of H1(∆∗r,H). Moreover, since H
is a variation of weight −1, the natural map (cf. Theorem (110))

sing : ANF(∆∗r,H)∆r → H1(∆∗r,H)

factors through IH1(∆r,H) [3]. We then define, for each t ∈ Qr
≥0, a pairing

h(t) : IH1(H)⊗ IH1(H∗) → Q, (9)

which we call the asymptotic height pairing.

Remark 10. It will be clear from context if h refers to the height h(V) of a variation of mixed Hodge
structure, or the asymptotoic height pairing h(t).

We will show that the pairing h has the following properties (cf. Theorem (135), Proposi-
tion (136) and Theorem 163).

(i) It is homogeneous of degree 1 in t: h(λt)(α, β) = λh(t)(α, β) for λ ∈ Q≥0.
(ii) If (ν, ω) ∈ ANF(∆∗r,H) × ANF(∆∗r,H∨), then h(ν, ω)(t) is a rational function which

extends continuously to the cone Rr
≥0.

(iii) For each fixed t, h(t) induces a morphism of Hodge structures with Q given the pure
Hodge structure of weight 0. Thus h(t) factors through a pairing

h̄(t) : GrW
0 IH1(H)⊗ GrW

0 IH1(H∗) → Q(0), (11)

which is a morphism of Hodge structures.

(iv) Suppose φ : H⊗H → Q(1) is a polarization. Then, for t ∈ Qr
+, the pairing on GrW

0 IH1(H)
induced by φ and (11) is a polarization.



4 PATRICK BROSNAN AND GREGORY PEARLSTEIN

Remark 12. In section 7 we show that h(t) can be generalized to a pairing (147) on the higher
intersection cohomology groups IHp(H) as well.

Returning to Q 7, it follows from Theorem (22) below that the metric | | on L does not extend
from S to S̄ if h(t) is not linear in t.

To illustrate the consequences of the results listed in (iii) and (iv) above, we give the following
corollary.

Corollary 13. h(t)(ν, ν∨) ≥ 0 for all ν, t. Moreover, h(t)(ν, ν∨) = 0 for all t if and only if sing(ν) = 0.

Proof. IH1(H) carries a mixed Hodge structure such that W0 IH1(H) = IH1(H). Furthermore,

the map sing : ANF(∆∗r,H)∆r → IH1(H) factors through the subgroup Hdg IH1(H) consisting

of classes in the image of morphisms in HomMHS(Z(0), IH1(H)). Therefore (cf. (11)), it follows
from (iii) and (iv) above that h(t)(ν, ν∨) ≥ 0. Moreover, h(t)(ν, ν∨) = 0 for all t if and only if
sing(ν) = 0. �

Singularities of normal functions can also be defined in the non-normal crossing case (see [3]
or (109) below). Let S is a complex manifold and j : S →֒ S̄ is an inclusion of S as a Zariski
open subset of a complex manifold S̄. We say that ν ∈ ANF(S,H)S̄ is singular at p ∈ S̄ − S if
singp(ν) 6= 0.

1.1. Applications.

Griffiths–Green Program. Let X be a complex projective manifold of dimension 2n and L → X
be a very ample line bundle. Let P̄ = |L| = P(H0(X, L)), and let X ⊂ X × P̄ be the incidence
variety consisting of pairs (x, σ) ∈ X × P̄ such that σ(x) = 0. Let π : X → P̄ denote the projection
map π(x, σ) = σ. For σ ∈ P̄ let Xσ = π−1(σ). Let P ⊂ P̄ denote the locus of points over which π

is smooth, and X̂ = P̄ − P.

Let ζ be a primitive integral, non-torsion Hodge class on X of type (n, n). Then, via Deligne
cohomology, ζ determines an admissible normal function

νζ : P → J(H)

where H is the variation of Hodge structure on the variable cohomology of the smooth hyperplane
sections of X.

Conjecture 14. For every triple (X, L, ζ) as above, there exists an integer d > 0 such that after replacing

L by Ld, the normal function νζ is singular at some point of X̂.

Theorem 15. [18, 3, 12] The Hodge conjecture is equivalent to Conjecture (14).

By Theorem (7.18) of [3], Conjecture (14) is equivalent to the following statement:

Conjecture 16. For every triple (X, L, ζ) as above, there exists d > 0 and a resolution of singularities

S̄ → P̄ of X̂ for P̄ = |Ld| such that f ∗νζ is singular at some point of S̄ − S.

So, using Corollary 13, the Hodge conjecture would imply that there exists a d > 0 and an S̄ as

above such that the biextension metric on L(νζ , ν∨ζ ) does not extend to L(νζ , ν∨ζ ).

Ceresa Cycle. Let C be a smooth projective curve of genus g > 2. Pick a point p ∈ C. Then, the
maps x 7→ x − p and x 7→ p − x give two embeddings of C into Jac(C). The difference, denoted
C − C−, is a homologically trivial algebraic 1-cycle on Jac(C) which has a well defined image in
the intermediate Jacobian of the primitive part of the cohomology of Jac(C), independent of p.
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Let Mg denote the moduli space of smooth projective curves of genus g > 2. Then, application
of the previous construction determines a normal function ν = νC−C− over Mg. In Theorem (8.3)
of [22], Richard Hain showed that is the “basic” normal function over Mg.

In [21], Hain and Reed showed explicitly that L(ν, ν∨) extended to a line bundle over Mg, and

asked if the metric also extends to Mg. Our calculations show that it does not. (Hain has since
given an independent proof of this result. See [20].)

1.2. Existence and Regularity.

Existence of L, Local Case. In the case where H is a torsion free variation of pure Hodge structure
of weight −1 over a punctured disk ∆∗r, it follows from the results of §4 that L has an analytic
extension over ∆r. (As mentioned above, this is proved in greater generality in Theorem 233.)

Moreover, assuming the monodromy of H is unipotent, the biextension metric has a continu-
ous extension on the complement of a codimension 2 subset after a suitable renormalization. In
the case where ω = ν∨ the biextension metric has a plurisubharmonic extension as described
below. More precisely, given a biextension variation V such that GrW

−1(V) = H has unipotent
monodromy, it follows from (Theorem (5.37) [34]) that there exists a unique element

µ(V) ∈ Vr (17)

with the following property:

Property 18. Let φ : ∆ → ∆r be a holomorphic map such that φ(0) = 0 and φ(∆∗) ⊂ ∆∗r. Suppose that
φ(s) = (φ1(s), . . . , φr(s)) with φi(s) = ais

mi + higher order terms and mj > 0. Then

h(Vφ(s)) ∼ −µ(V)(m1, . . . , mr) log |s| (19)

for s close to 0. (In other words, the difference between the left side and the right is bounded near 0.)

Remark 20. The value of µ(m) depends only on the local monodromy logarithm N(m) = ∑j mjNj,

the weight filtration W(VQ) and the choice of positive generators 1 ∈ GrW
0 (VQ) and 1∨ ∈ GrW

−2(VQ).
More precisely, as long as m1, . . . , mr ≥ 0, the admissibility of V implies the existence of a rational
direct sum decomposition

VQ = Qv0 ⊕ UQ ⊕ Qv−2 (21)

such that

— v0 projects to 1 ∈ GrW
0 and N(m)(v0) ∈ W−2;

— UQ is an N(m)-invariant subspace of W−1;
— v−2 ∈ W−2 projects to 1∨.

Then, by Theorem (5.19) of [34], for any such decomposition (21) we have N(m)v0 = µ(m)v−2.
Indeed, in the language of [34], such a decomposition of VQ defines a grading Y′ of W (cf. §2) such
that [Y′, N] lowers W by 2. For future use, we define µj = µ(ǫj) where ǫj is the j’th unit vector.

Theorem 22. If V is a biextension variation of type (ν, ω) over ∆∗r with unipotent monodromy then
h(m)(ν, ω) = ∑j mjµj − µ(V).

Proof. See Theorem (155) �

Regularity of the Biextension Metric. Let V be a biextension variation with unipotent mon-
odromy defined on the complement of the divisor D = {s1 · · · sk = 0} in a polydisk ∆r with
local coordinates (s1, . . . , sr). In this case, it follows by Theorem (5.8) of [25] that log |V| is locally
L1.
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Let E denote the singular locus of D and Dj ⊂ D denote the divisor defined by sj = 0. Given a
point p ∈ (D − E) ∩ Dj let ∆(p) ⊂ ∆r denote the disk defined by si = si(p) for i 6= j. Then, V re-
stricts to an admissible biextension variation on ∆∗(p) = ∆(p)− {p} with unipotent monodromy,
and hence

h(V|∆∗(p)) ∼ −µj log |sj|
in the notation of Remark (20).

Define

h̄(V) = h(V) +
k

∑
j=1

µj log |sj| : ∆r − D → [−∞, ∞) (23)

Then, for any point p ∈ D − E, by restriction to a small polydisk containing p, we can reduce the
study of the regularity of h(V) at p to the case k = 1.

Assume therefore that k = 1 and V has unipotent monodromy about s1 = 0.

Theorem 24. Let V be a biextension variation with unipotent monodromy defined on the complement of
the divisor s1 = 0 in ∆r . Then, h̄(V) extends continuously to ∆r.

Proof. See Theorem (79). �

Remark 25. The proof of Theorem (24) involves showing that in the case of a biextension over ∆∗

lim
s→0

h(V) + µ log(s) = ht(N, F, W)

where (ezN F, W) is the associated nilpotent orbit. See Theorem (76) for details.

Returning now to the general case ∆r − D where D is given by the vanishing of s1 · · · sk = 0 we
first recall the following result in the case where ω = ν∨:

Theorem 26. [33] If V is a biextension variation of type (ν, ν∨) on a complex manifold S then h(V) is
plurisubharmonic function on S.

To continue, we recall the following [See (7.1) and (7.2) [31]]: Let { f j} be a sequence of plurisub-
harmonic functions on a domain Ω ⊆ Cr which are locally bounded from above. Given z ∈ Ω

let
f (z) = lim sup

j→∞

f j(z)

and define f ∗(z) = lim supw→z f (w). Then, f ∗ is plurisubharmonic.

Theorem 27. Let V be a biextension of type (ν, ν∨) with unipotent monodromy on the complement of
D = {s1 · · · sk = 0} in the polydisk ∆r . Suppose that µ1, . . . , µk ≥ 0. Then, h̄(V) has a unique plurisub-
harmonic extension to ∆r .

Proof. By Theorem (24) it follows that g = h̄(V) ∈ C0(∆r − D) extends to ḡ ∈ C0(∆r − E). More-
over, since h(V) is plurisubharmonic on ∆r − D and all µj ≥ 0 by assumption, it follows that g is
plurisubharmonic on ∆r − D. In the paragraphs below, we shall prove that ḡ is plurisubharmonic
on ∆r − E. Since E has codimension 2, it then follows from a theorem of Grauert and Remmert[17]
that ḡ has a unique plurisubharmonic extension to ∆r .

To prove that ḡ is plurisubharmonic on ∆r − E, consider the sequence of functions

f j = ḡ +
1

j
log |s1 . . . sk| : ∆r − E → [−∞, ∞)

where f j = −∞ on D − E. Clearly, each f j is plurisubharmonic on ∆r − E since

— g and log |s1 . . . sk| are plurisubharmonic on ∆r − D;



JUMPS IN THE ARCHIMEDEAN HEIGHT 7

— f j is upper semicontinuous on ∆r − E as the sum of the continuous function ḡ and the

upper semicontinuous function 1
j log |s1 . . . sk|.

— f j has the subaveraging property at any point of D − E;

Moreover, since ḡ is continuous and all µj ≥ 0 it follows that each f j is locally bounded above.
Accordingly, f ∗ is plurisubharmonic. Finally, since ḡ is continuous on ∆r − E it follows form the
definition of the sequence f j that f ∗ = ḡ. �

Having constructed an extension of h̄(V) to ∆r , we can inquire as to its value at (0, . . . , 0) ∈ ∆r.
To this end, let m = (m1, . . . , mr) ∈ Zr

>0 and φ : ∆ → ∆r be the test curve defined by sj = sm j ,
j = 1, . . . , r. Then, by Theorem 22

φ∗(h̄(V)) = φ∗(h(V)) + (∑
j

mjµj) log |s| ∼ (−µ(V)(m) + ∑
j

mjµj) log |s|

∼ h(m)(ν, ν∨) log |s|
By Corollary (13), we have the following two cases:

(a) If sing0(ν) 6= 0 then h(m) > 0 and hence lims→0 φ∗(h̄(V)) = −∞.

(b) If sing0(ν) = 0 then h(m) = 0 and hence φ∗(h̄(V)) is bounded near zero. Since h̄(V)
plurisubharmonic it follows from upper semicontinuity that h̄(V) is bounded near zero.

1.3. Mumford-Grothendieck Biextensions. There is a close relationship between the concept of
biextension variation from (1) and the concept of a biextension introduced by Mumford and stud-
ied extensively by Grothendieck in [41]. Essentially, as we vary the normal functions ν and ω,
the set of all biextension variations V forms a biextension (in the Mumford-Grothendieck sense)
of NF(S,H) × NF(S,H∨) by the sheaf O×

S . (See Corollary 177.) Starting in §10 we exploit this
connection, and we use it in §12 to define another pairing on intersection cohomology with values
in Q/Z which we use to answer Question 6.

Unfortunately, the two terminologies clash. We think that we have solved the problems by
writing the sections involving Mumford-Grothendieck biextensions in such a way that it is always
clear which type of biextension we mean. But we would like to warn the reader (and apologize
for the fact) that it will sometimes be necessary to decide this based on context.

The Mumford-Grothendieck biextensions we deal with come out of another notion studied by
Grothendieck in [41], the notion of extensions panachées. These are objects X in an abelian category
equipped with a two step filtration. For example, biextension variations are extensions panachèes
of Z by H by Z(1). In §10, we work out the (slightly subtle) conditions under which the set
of isomorphism classes of extension panachées give rise to a Mumford-Grothendieck biextension.
Then we apply these to certain Mumford-Grothendieck biextensions, mainly of topological type,
which arise in connection with the asymptotic height pairing. In §16, we use these results, to
generalize the asymptotic height pairing from the case of variations with unipotent monodromy
in the normal crossing case to arbitrary pure variations on S in a neighborhood of some s ∈ S̄
(where S is a Zariski open subset of a complex manifold S̄).

In this paper, we translate the term extensions panachées as “mixed extensions.” The (probably
better) term “blended extensions” is used by D. Bertrand in the abstract to [2].

1.4. Related Work. The thesis [11] of D. Lear contains the initial results of the asymptotics of the
height over a punctured disk. An explicit example of the non-linearity of µ appears in Example
(5.44) of [34]. The asymptotics of the biextension bundle also appear in the recent work of J.
Burgos Gill, D. Holmes and R. de Jong [7] and [6]. Another approach to limits of heights having
to do with Feynman amplitudes is given in [1]. A preliminary discussion of heights from the
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viewpoint of log geometry and compactification of mixed period domains may be found at the
end of [30], with additional results appearing in [29].
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2. VARIATIONS OF MIXED HODGE STRUCTURE

Weights. Suppose M is any object with a weight filtration W. For example, M could be a mixed
Hodge structure, a variation of mixed Hodge structure or a mixed Hodge module. We say that M

has weights in an interval [a, b] if GrW
k M = 0 for k 6∈ [a, b].

Mixed Hodge Structures. In this paper, all mixed Hodge structure are defined over A = Z, Q

or R. We let F = Q or R. For an integer n, we let A(n) denote the pure A-Hodge structure of
weight −2n with underlying A-module A [not (2πi)n A]. If H and K are mixed Hodge structures
and n ∈ Z, an element f ∈ HomMHS(H, K(−n)) is called a (n, n) morphism of Hodge structures.
A morphism of mixed Hodge structures is a (0, 0) morphism.

A mixed Hodge structure (F, W) induces a unique, functorial bigrading [Theorem (2.13), [9]]

VC =
⊕

p,q

Ip,q (28)

on the underlying complex vector space VC such that

(a) Fp = ⊕a≥p Ia,b;

(b) Wk = ⊕a+b≤k Ia,b;

(c) ¯Ip,q = Iq,p mod ⊕a<q,b<p Ia,b.

A mixed Hodge structure is said to be split over R if Īp,q = Iq,p. In this case

Ip,q = Fp ∩ F̄q ∩ Wp+q (29)

If K is a field of characteristic zero and W is an increasing filtration of a finite dimensional
K-vector space V then a grading of W is a semisimple endomorphism Y of V with integral eigen-
values such that

Wk = Ek(Y)
⊕

Wk−1

for each index k, where Ek(Y) denotes the k-eigenspace of Y. In particular, a mixed Hodge struc-
ture (F, W) determines a C-grading Y = Y(F,W) of W by the rule

Ek(Y) =
⊕

p+q=k

Ip,q (30)

In what follows, the grading Y(F,W) will be called the Deligne grading of (F, W).
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The set of all gradings of W will be denoted Y(W). The subalgebra of gl(V) consisting of all
elements α such that

α(Wk) ⊆ Wk−ℓ

for all k will be denoted W−ℓgl(V).

Proposition 31 (Prop. (2.2) [9]). exp(W−1gl(V)) acts simply transitively on Y(W) by the adjoint
action.

Proposition 32. A mixed Hodge structure (F, W) is split over R if and only if Y = Ȳ where Y is the
Deligne grading of (F, W).

Proof. If (F, W) is R-split then Y = Ȳ since Īp,q = Iq,p. Conversely, suppose that Y = Ȳ and let
⊕p+q=k Hp,q be the Hodge decomposition of GrW

k . Define

Jp,q = {v ∈ Ep+q(Y) | [v] ∈ Hp,q ⊆ GrW
p+q}

Then, VC = ⊕p,q Jp,q satisfies conditions (a)–(c) of (28): Condition (a) follows from the fact that
Y is a grading of W which preserves F. Condition (b) follows from the fact that Y is a grading of
W. Finally, condition (c) follows from the fact that J̄p,q = Jq,p. Thus, Ip,q = Jp,q by the uniqueness
of (28), and hence (F, W) is split over R. �

If (F, W) is a mixed Hodge structure with underlying complex vector space VC then

Λ
−1,−1
(F,W)

=
⊕

p,q<0

gl(VC)
p,q (33)

Note that by property (c) of (28), Λ−1,−1 is closed under complex conjugation. It follows from the
defining properties (a)–(c) of (28) that

eλ I
p,q

(F,W)
= I

p,q

(eλF,W)
(34)

Theorem 35 (Theorem (2.20) [9]). Given a mixed Hodge structure (F, W) with underlying real vector
space VR there exists a unique real element

δ ∈ Λ
−1,−1
(F,W)

∩ gl(VR) (36)

such that (e−iδF, W) is a mixed Hodge structure which is split over R. Moreover, δ commutes with all
(r, r)-morphisms of (F, W).

The splitting (36) is henceforth called the Deligne splitting or δ-splitting of (F, W). The defining
equation (ibid) for δ is

Y(F,W) = e−2iad δY(F,W) (37)

Definition 38. An unoriented biextension in the category of A-mixed Hodge structures is an A-
mixed Hodge structure (F, W) with weights in [−2, 0] such that GrW

0 , GrW
−2 have rank 1. A biexten-

sion mixed Hodge structure is an unoriented biextension equipped with a choice of isomorphisms
GrW

0
∼= A(0) and GrW

−2
∼= A(1). The positive generators of A(0) and A(1) will be denoted 1 and

1∨ respectively.

If (F, W) is a biextension mixed Hodge structure then η is the unique (−1,−1)-morphism of
(F, W) such that the induced map GrW

0 → GrW
−2 sends 1 to 1∨. The group (C,+) acts additively

on the set of biextension mixed Hodge structures by the rule

t + (F, W) = (etη F, W) (39)

Since η is a (−1,−1)-morphism, t + (F, W) = (F, W) if and only if t = 0.
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Definition 40. The height of a biextension mixed Hodge structure (F, W) is the unique real num-
ber h(F, W) such that

2πδ(F,W) = h(F, W)η (41)

Lemma 42. Let (F, W) be a biextension mixed Hodge structure. Then,

(a) For any complex number t,

h(etη F, W) = h(F, W) + 2πIm(t)η (43)

(b) h(F, W) depends only the underlying isomorphism class of (F, W) as an R-biextension, i.e. h(F, W)
is invariant under isomorphisms of R-mixed Hodge structures such that the induced maps

GrW
0 → GrW

0 , GrW
−2 → GrW

−2

are the identity.
(c) h(F, W) = 0 if and only if (F, W) is R-split.

Proof. Item (a) follows by direct computation from equations (37) and (39). Item (b) follows from
the fact that δ is an isomorphism invariant of R-mixed Hodge structures, i.e. an isomorphism of
R-mixed Hodge structures induces an isomorphism of Deligne bigradings, and hence intertwines
δ-invariants. Regarding item (c), observe that by construction δ(F,W) vanishes if and only if (F, W)
is split over R. �

In the case where X is a smooth complex projective variety of dimension n and Z and W are
null homologous cycles of dimensions d and e such that |Z| ∩ |W| is empty and d+ e = n− 1 there
exists a canonical subquotient (F, W) of the mixed Hodge structure on H2d+1(X − |W|, |Z|) such
that h(F, W) is the archimedean height of the pair (Z, W). See [19] and equation equation (5.4)
of [34] for details.

If (F, W) is a biextension mixed Hodge structure let B̃ = B̃(F, W) denote the (C,+)-orbit of
(F, W) under (39). Since η is a (−1,−1)-morphism of (F, W), any two elements of B̃(F, W) induce
the same mixed Hodge structures on GrW

k as well as W0/W−2 and W−1. Let B be the quotient of B̃
by (A,+) ⊂ (C,+). By (43), the height function (41) descends to a function h : B → R. For b ∈ B
we define

|b| = exp(−h(b)) (44)

In the case A = Z, the set B has a simply transitive C∗ action given by

t.[(F̃, W)] = [(e
1

2πi log(t)η F̃, W)] (45)

since 1
2πi log(t) is well defined modulo Z.

Proposition 46. Let (F, W) be a Z-biextension mixed Hodge structure and t ∈ C∗. Then, |t.b| = |t||b|.

Proof. By (43), h(t.b) = h(b) − log |t|η. �

Classifying Spaces. A polarization of a pure A-Hodge structure H of weight k is a (−1)k-symmetric,
non-degenerate bilinear form

Q : H ⊗ H → A(−k)

which is a morphism of Hodge structure such that if C is the Weil operator which acts on Hp,q as
ip−q then < u, v >= Q(Cu, v̄) is a positive definite hermitian inner product on HC.

A graded-polarization of an A-mixed Hodge structure (F, W) is a collection of non-degenerate
bilinear forms

Qk : GrW
k ⊗ GrW

k → A(−k)

which polarize the pure Hodge structure FGrW
k for each index k.
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Given a graded-polarized mixed Hodge structure {(F, W), Q•} with underlying A-module VA

let X denote the generalized flag variety consisting of all decreasing filtrations F̃ of VC such that
dim F̃p = dimFp for each index p. Let M ⊂ X denote the classifying space of all F̃ ∈ X such that

— (F̃, W) is a mixed Hodge structure with the same graded Hodge numbers as (F, W);
— Q• is a graded-polarization of (F̃, W).

Let GL(VC)
W denote the subgroup of GL(VC) consisting of elements which preserve W. Define

GC to be the complex subgroup of GL(VC)
W consisting of elements which act by isometries of Q•

on GrW . Let GR = GC ∩ GL(VR) and G ⊂ GC be the set consisting of elements of GC which act
by real isometries of Q• on GrW . Then, G is a real Lie group which acts transitively on M by

biholomorphisms [35]. The ”compact dual” M̌ is defined to be the GC orbit of F in X. In general,

M̌ is not compact due to the fact that GC contains the complex subgroup G−1 consisting of element
of GL(VC)

W which act trivially on GrW . Since G also contains G−1, viewed as a real Lie group, it
follows that GC is not the complexification of G unless G−1 = 1.

See [35] and the references therein for further details on classifying spaces of mixed Hodge
structures. In general, variations of mixed Hodge structure do not have good asymptotic behavior
in the absence of the existence of a graded-polarization.

Period Maps. The axioms of an admissible variation of mixed Hodge structure are given in [44,
27]. As described in [35], given a variation of (graded-polarized) mixed Hodge structure V → S
we let

ϕ : S → Γ\M (47)

denote the corresponding period map, determined by a choice of point s0 ∈ S and Γ is the mon-
odromy group of V .

For the remainder of this section, we fix a polydisk ∆r with local coordinates (s1, . . . , sr) and
let ∆∗r denote the complement of s1 · · · sr = 0. Let (z1, . . . , zr) denote the standard Euclidean
coordinates on Cr and hr be the product of upper half-planes defined by Im(z1), . . . , Im(zr) > 0.

Let hr → ∆∗r be the universal covering defined by sj = e2πizj .

An admissible period map [44, 27] ϕ : ∆∗r → Γ\M with unipotent monodromy then has a local
normal form [35]

F(z1, . . . , zr) = e∑ j zjNjeΓ(s)F∞ (48)

where Tj = eNj , F∞ is the limit Hodge filtration and Γ(s) is a holomorphic function on ∆r which
vanishes at the origin and takes values in a vector space complement to the stabilizer of F∞ in
Lie(GC). See [35] for details.

The local normal form (48) for variations of pure Hodge structure appears in [8], and works in
the setting of admissible R-VMHS with unipotent monodromy. Indeed, the special case Γ(s) = 0
is an admissible nilpotent orbit (or an infinitesimal mixed Hodge module).

Passage from the period map ϕ : ∆∗r → Γ\M to the local normal form (48) may involve
replacing ∆∗r by a polydisk of smaller radius. Since we are only interested in the asymptotic
behavior of the period map in our discussions involving the local normal form, we generally omit
this step. However, when it becomes necessary to explicitly restrict to a smaller disk we write

∆r
a = { s ∈ ∆r | |s1|, . . . , |sr| < a }. (49)

Remark 50. Variations of pure, polarized Hodge structure with unipotent monodromy are admis-
sible by the results of Schmid [38] and Cattani, Kaplan and Schmid [9]. If V is a variation of pure

Hodge structure, we write Ď and D in place of M̌ and M.
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2.1. Nilpotent Orbits. The nilpotent orbit attached to an admissible variation V → ∆∗r is the

map θ(z) = exp(∑j zjNj)F∞ from Cr → M̌ obtained by setting Γ = 0 in (48). In language of [27],

the data (N1, . . . , Nr; F, W) determines an infinitesimal mixed Hodge module (IMHM) We shall
often use the alternative term admissible nilpotent orbit instead of IMHM. In the case where M
is a classifying space of pure Hodge structures, an IMHM is just a nilpotent orbit in the sense of
Schmid [38]. If V → ∆∗r is an admissible variation of mixed Hodge structure, we also use the
notation Vnilp to denote the associated nilpotent orbit.

Definition 51. Let D be a classifying space of pure Hodge structures of weight k polarized by
Q and gR denote the Lie algebra consisting of infinitesimal, real automorphisms of Q. Then, an

r-variable nilpotent orbit θ with values in D is a map θ : Cr → Ď of the form

θ(z) = exp(∑
j

zjNj)F (52)

where N1, . . . , Nr ∈ gR are commuting nilpotent endomorphisms and F ∈ Ď such that

(i) Nj(Fp) ⊆ Fp−1;
(ii) There exists a constant a such that if Im(z1), . . . , Im(zr) > a then θ(z) ∈ D.

In particular, since D encodes the weight of the Hodge structures it parametrizes, the data of
a nilpotent orbit with values in D reduces to (N1, . . . , Nr; F). If the data of D is defined over a
subfield K of R, one can define the notion of an K-nilpotent orbit by requiring that N1, . . . , Nr ∈
gK = Lie(AutK(Q)).

Lemma 53. If (N1, . . . , Nr; F) generate a K-nilpotent orbit of pure Hodge structure then so does

(t1N1, . . . , tr Nr; F)

for any choice of positive scalars t1, . . . , tr ∈ K+.

Proof. Conditions (i) and (ii) remain true upon replacing Nj by tjNj. �

To continue, we recall that if N is a nilpotent endomorphism of a finite dimensional vector
space V defined over a field of characteristic zero then there exists a unique, increasing filtration
W = W(N) of V such that [cf. [9]]

(a) N(Wj) ⊆ Wj−2;

(b) Nℓ : GrW
ℓ

→ GrW
−ℓ

is an isomorphism;

for all j and ℓ.

Theorem 54. (See [9]) Let θ be a nilpotent orbit of pure Hodge structure of weight k and

C = {∑
j

aj Nj | a1, . . . , ar > 0 }

Then, the map N 7→ W(N) is constant on C. Pick N ∈ C and define W(N)[−k]j = Wj−k(N). Then,

(F, W(N)[−k]) (55)

is a mixed Hodge structure with respect to which each Nj is a (−1,−1)-morphism.

The pair (55) is called the limit mixed Hodge structure of θ. Analysis of the possible nilpotent
orbits which can arise can then be reduced to the study of nilpotent orbits with limit mixed Hodge
structure which are split over R by the following results of Cattani, Kaplan and Schmid [9].

Theorem 56. [9] If θ(z1, . . . , zr) is a nilpotent orbit of pure Hodge structure such that (55) is split
over R then θ(z) takes values in the appropriate classifying space of pure Hodge structure as soon as
Im(z1), . . . , Im(zr) > 0.



JUMPS IN THE ARCHIMEDEAN HEIGHT 13

Theorem 57. [9] If θ(z1, . . . , zr) is a nilpotent orbit of pure Hodge structure and (F̃, W) = (e−iδF, W) is

the δ-splitting of the limit mixed Hodge structure (55) then θ̃(z1, . . . , zr) = e∑j zjNj F̃ is a nilpotent orbit of
pure Hodge structure.

The SL2-orbit theorem of [38, 9] involves the sl2 or canonical splitting

(F, W) 7→ (e−ξ F, W) (58)

where ξ is given by universal Lie polynomials in the Hodge components of δ. In particular, the
mixed Hodge structures (F, W), (e−iδF, W) and (e−ξ F, W) all induce the same pure Hodge struc-

tures on GrW since δ, ξ ∈ Λ
−1,−1
(F,W)

.

Definition 59. Let θ(z) = e∑j zj Nj F be a nilpotent orbit with values in D and limit mixed Hodge

structure (F, W). Let (F̃, W) be the Deligne δ-splitting of (F, W). Then, θ̃(z) = e∑j zjNj F̃ is called

the δ-splitting of θ. Likewise, if (F̂, W) is the sl2-splitting of (F, W) then θ̂(z) = e∑j zjNj F̂ is called
the sl2-splitting of θ.

Remark 60. Theorem (57) holds mutatis mutandis for θ̂. Since the property of being a K-nilpotent
orbit does not involve the limit Hodge filtration, passage to the δ or sl2-splitting does not effect
the property of being a K-nilpotent orbit.

For later use, we record that if (F, W) is a biextension mixed Hodge structure then

W−2gl(V) = gl(V)−1,−1
(F,W)

(61)

for every point F ∈ M. Moreover, in the graded-polarized case,

η ∈ Z(gC) (62)

i.e. η commutes with every element of gC. Indeed, any element of gC must act trivially on GrW
0

and GrW
−2 and η maps GrW

0 to GrW
−2 and annihilates W−1(V).

2.2. Heights of Nilpotent Orbits. Let V be a finite dimensional vector space over a field of char-
acteristic zero equipped with a nilpotent endomorphism N and increasing filtration W such that
N(Wk) ⊆ Wk for each index k. Then, there exists at most one increasing filtration M = M(N, W),
called the relative weight filtration of W with respect to N (see [44]), such that

(a) N(Mk) ⊆ Mk−2 for all k;
(b) For any k and ℓ, the induced map Nℓ : GrM

ℓ+kGrW
k → GrM

k−ℓ
GrW

k is an isomorphism.

Definition 63. [44] The data (N, F, W) defines an admissible nilpotent orbit θ(z) = (ezN F, W)
with values in the classifying space M of graded-polarized mixed Hodge structure provided that

— N is nilpotent, preserves W and acts by infinitesimal isometries on GrW ;
— M = M(N, W) exists;

— F ∈ M̌ and N(Fp) ⊆ Fp−1;
— ezN F induces nilpotent orbits of pure, polarized Hodge structure on GrW .

Theorem 64. [44] If (F, N, W) defines an admissible nilpotent orbit and M = M(N, W) then (F, M) is
a mixed Hodge structure for which N is a (−1,−1)-morphism.

As in the pure case, (F, M) is called the limit mixed Hodge structure of the nilpotent orbit
generated by (N, F, W). An admissible nilpotent orbit θ induces nilpotent orbits of pure Hodge
structure on GrW such that the limit mixed Hodge structure of θ induces the limit mixed Hodge
structure of the graded orbits. The analogs of Theorems (56) and (57) hold mutatis mutandis in
the mixed case.



14 PATRICK BROSNAN AND GREGORY PEARLSTEIN

As in Definition (59), one defines the δ-splitting and the sl2-splitting of an admissible nilpotent
orbit θ by replacing by replacing the limit mixed Hodge structure of θ with the corresponding
Deligne or sl2-splitting.

Lemma 65 (Deligne [14, 4]). Let (N, F, W) generate an admissible nilpotent orbit θ with δ-splitting
generated by (N, F̃, W). Define,

Y(N, F, W) = Ad(e−iN)Y(eiN F̃,W), Ỹ(N, F, W) = Y(F̃,M) (66)

Then, writing Y = Y(N, F, W) and Ỹ = Ỹ(N, F, W),

(i) Y = Ȳ;
(ii) Y preserves F̃;
(ii) Y commutes with Ỹ ( =⇒ Y preserves M);

(iii) If N = ∑j≥0 N−j relative to ad Y then N0 and H = Ỹ − Y form an sl2-pair, with associated

sl2-triple (N0, H, N+
0 ).

(iv) [N − N0, N+
0 ] = 0.

Remark 67.

— In the language of Deligne systems, Y is the grading attached to N and Ỹ (cf. [4]).
— For j > 0 it follows that N−j is highest weight j − 2 for (N0, H, N+

0 ). This forces N−1 = 0
and [N0, N−2] = 0.

— In the case where (ezN F̃, W) is a biextension mixed Hodge structure then N = N0 + N−2.

Theorem 68 (Theorem (5.19) [34]). For an admissible biextension variation V → ∆∗ with nilpotent orbit
generated by (N, F, W),

µ(V) = N−2η (69)

where N = N0 + N−2 defined as in Lemma (65).

Proof. Theorem (5.19) of [34] asserts that any grading Y of W such that [Y, N] ∈ W−2gl(V) can be
used to compute µ(V) using (69). �

Definition 70. Let (N, F, W) generate an admissible nilpotent orbit of biextension type with Deligne
splitting δ of the limit mixed Hodge structure and Y = Y(N, F, W) defined as in (66). Let δ =

∑k≤0 δk with [Y, δk] = kδk. Then, the limit height ht(N, F, W) of the nilpotent orbit (ezN F, W) is
given by the formula

2πδ−2 = ht(N, F, W)η (71)

Remark 72. A biextension mixed Hodge structure (F, W) on V determines an admissible nilpotent
orbit by setting N = 0. In this case M = W, δ is the Deligne splitting of (F, W) and Y(N, F, W) is a
grading of W. Since δ ∈ W−2gl(V) it then follows from the short length of W that δ = δ−2 relative
to Y(N, F, W) and hence ht(N, F, W) = h(F, W).

3. REGULARITY RESULTS

The following result justifies the name limit height (Theorem (76)): Let V → ∆∗ be an admissi-
ble biextension VMHS with nilpotent orbit (ezN F∞, W) and asymptotic height h(V) ∼= −µ log |s|.
Then,

h̄(s) = h(V) + µ log |s|
has a continuous extension to ∆ with h̄(0) = ht(N, F∞ , W).
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SL2-orbits. In this section we review the theory of SL2 orbits for nilpotent orbits of biextension
type following [34]. Let M be the ambient classifying space with associated Lie group G and G̃ be
the subgroup of G which acts as real transformations on Wk/Wk−2 for all k.

Let (ezN F, W) be an admissible nilpotent orbit of biextension type with limit mixed Hodge struc-

ture (F, M), let (F̃, M) = (e−iδF, M) denote the Deligne splitting of (F, M) and Ỹ = Y(N, F, W),
Y = Y(N, F, W), and N = N0 + N−2, N+

0 etc. as in Lemma (65).

To continue, we recall the SL2-orbit Theorem of [34]:

Theorem 73 (Theorem 4.2 [34]). Let (ezN F, W) be an admissible nilpotent orbit of biextension type.
Then, there exists

χ ∈ Lie(G̃) ∩ ker(N) ∩ Λ
−1,−1
(F̃,M)

and distinguished real analytic function g : (a, ∞) → G̃ such that

(a) eiyN .F = g(y)eiyN .F̃;
(b) g(y) and g−1(y) have convergent series expansions about ∞ of the form

g(y) = eχ(1 + g1y−1 + g2y−2 + · · · )
g−1(y) = (1 + f1y−1 + f2y−2 + · · · )e−χ

with gk, fk ∈ ker(ad N0)k+1 ∩ ker(ad N−2);
(c) δ, χ and the coefficients gk are related by the formula

eiδ = eχ

(
1 + ∑

k>0

1

k!
(−i)k(ad N0)

k gk

)

Moreover, χ can expressed as a universal Lie polynomial over Q(
√
−1) in the Hodge components δr,s of δ

with respect to (F̃, W). Likewise, the coefficients gk and fk can be expressed as universal, non-commuting

polynomials over Q(
√
−1) in δr,s and ad N+

0 .

Corollary 74 (Corollary (4.3) [34]). Let V → ∆∗ be an admissible biextension variation, with period

map F(z) : h → M and nilpotent orbit ezN F. Let F0 = eiN0 F̃. Then, (cf. Theorem (73)), there exists a
distinguished, real–analytic function γ(z) with values in Lie(G̃) such that, for Im(z) sufficiently large,

(i) F(z) = exN g(y)eiyN−2 y−H/2eγ(z).F0;

(ii) |γ(z)| = O(Im(z)βe−2πIm(z)) as y → ∞ and x restricted to a finite subinterval of R, for some
constant β ∈ R.

Punctured Disk. Let V → ∆∗ be an admissible biextension with nilpotent orbit (ezN F, W) and
define δ, Y, Ỹ etc. as in the previous subsection. Observe that since Ỹ and Y commute, we can
write

δ = ∑
a,b

δa,b, [Ỹ, δa,b] = aδa,b, [Y, δa,b] = bδa,b

Define χ = ∑a,b χa,b similarly. Let

δ(j) = ∑
a−b=j

δa,b, χ(j) = ∑
a−b=j

χa,b

and note that δ(j) and χ(j) are the respective projections of δ and χ onto the j-eignespace of H.
In particular, since N = N0 + N−2 and N−2 is central in gC it follows that [N0, δ(j)] = 0 and
[N0, χ(j)] = 0. Consequently, δ(j) and χ(j) vanish for j > 0.

Lemma 75. g‡(y) = Ad(yH/2)g(y) is given by a convergent power series in powers of y−1/2 with

lim
y→∞

g‡(y) = eiδ−2
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where δ = δ0 + δ−1 + δ−2 relative to ad Y.

Proof. To compute the limiting value, it is sufficient to show that

(a) limy→∞ Ad(yH/2)(e−χg(y)) = 1;

(b) limy→∞ Ad(yH/2)eχ = eiδ−2 ;

The intermediate computations will show that g‡(y) has a power series expansion of the stated
form.

To verify (a), recall that

g(y) = eχ(1 + g1y−1 + g2y−2 + · · · )
with gk ∈ ker(ad(N0)k+1). Let g(y)(j) denote the projection of e−χg(y) to the j-eigenspace of
ad(H). (Note the slight conflict with the notation used above for δ and χ.) Define

g−(y) = ∑
j<0

g(y)(j), g0(y) = g(y)(0), g+(y) = ∑
j>0

g(y)(j)

Then,
e−χg(y) = g−(y) + g0(y) + g+(y).

By construction, Ad(yH/2)g−(y) is a convergent power series in y−1/2 with constant term zero.

Likewise, Ad(yH/2)g0(y) = g(y)(0) is a convergent series in y−1/2 with constant term 1.

To continue, observe that gk(j) = 0 unless k ≥ j since ad(N0)k+1gk = 0. Consequently, for j > 0
we have

g(y)(j) = ∑
k≥j

gk(j)y−k = y−j ∑
k≥j

gk(j)yj−k

As such, for j > 0, Ad(yH/2)g(y)(j) is a convergent power series in y−1/2 with constant term zero.
Combining this with the previously computations, this shows that g‡(y) has a convergent series

expansion in y−1/2 with constant term 1. This establishes (a).

To verify (b), we note that

eiyNeiδ F̃ = eχe−χg(y)eiyN F̃.

Since N−2 is central in gC, it follows that

eiyN0 eiδ F̃ = eχe−χg(y)eiyN0 F̃.

Applying yH/2 to each side of this equation, and using the fact that H preserves F̃ it follows that

eiN0 ei ∑j≤0 yj/2δ(j)F̃ = e∑j≤0 yj/2χ(j)Ad(yH/2)(e−χg(y))eiN0 F̃

Using part (a), and taking the limit at y → ∞ yields

eiN0 eiδ(0) F̃ = eχ(0)eiN0 F̃

In particular, since [N0, χ] = 0 it follows that [N0, χ(j)] = 0 for each j. Applying e−iN0 to the
previous equation therefore implies

eiδ(0) F̃ = eχ(0) F̃

Finally, δ(0) and χ(0) take values in Λ
−1,−1
(F̃,M)

and the map λ ∈ Λ
−1,−1
(F̃,M)

→ eλ F̃ is injective. Thus,

iδ(0) = χ(0).

To finish the proof of part (b), observe that δ is real and χ is required to act by real transforma-
tions on Wk/Wk−2. Therefore iδ(0) = χ(0) implies that χ(0) = χ−2,−2 = iδ−2,−2. Indeed,

iδ(0) = χ(0) ⇐⇒ iδp,p = χp,p

for each p. In order for χ to act by real transformations on Wk/Wk−2 we must have p = −2. Since
W−2Lie(GC) is central,

[Ỹ, δ−2] = [H +Y, δ−2] = [Y, δ−2] = −2δ−2
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Consequently, χ(0) = iδ−2,−2 = iδ−2. Using the fact that χ(j) = 0 for j > 0, the computation of
the limit in (b) then follows directly. �

Theorem 76. Let V → ∆∗ be an admissible biextension with unipotent monodromy T = eN and limit
mixed Hodge structure (F, M). Then

lim
s→0

h(s) = lim
s→0

h(V) + µ log |s| = ht(N, F, W).

Proof. Let (F̃, M) = (e−iδF, M) be Deligne’s δ-splitting of the limit mixed Hodge structure (F, M)
of V . Let F(z) be the lifting of the period map of V to the upper half-plane. By Corollary (74), we
have

δ(F(z),W) = δ(exNg(y)eiyN−2y−H/2eγ(z).F0,W)

where F0 = eiN0 F̃, and we use g.F0 instead of gF to break up long computations. Moreover,

|γ(z)| = O(Im(z)βe−2πIm(z)) as y → ∞ and x restricted to a finite subinterval of R. Since xN
is real, it follows from that

δ(F(z),W) = Ad(exN)δ(g(y)eiyN−2y−H/2eγ(z).F0,W)

= δ(g(y)eiyN−2y−H/2eγ(z).F0,W).

Likewise, since N−2 ∈ W−2gC is central, it follows (using (41) and (43)) that

δ(F(z),W) = δ(g(y)eiyN−2y−H/2eγ(z).F0,W)

= δ(g(y)y−H/2eγ(z).F0,W) + yN−2.

Consequently,
δ(F(z),W)− yN−2 = δ(g(y)y−H/2eγ(z).F0,W)

= δ(y−H/2yH/2g(y)y−H/2eγ(z).F0,W)

= Ad(y−H/2)δ(yH/2g(y)y−H/2eγ(z).F0,W)

= δ(yH/2g(y)y−H/2eγ(z).F0,W)

since W−2gl(V) ⊂ Z(gC) and hence Ad(y−H/2) acts trivially on W−2gl(V). Therefore,

lim
Im(z)→∞

δ(F(z),W)− yN−2 = δ(eiδ−2eiN0 .F̃,W) (77)

for Re(z) restricted to an interval of finite length.

To finish the proof, we note that (eiN0 .F̃, W) is a mixed Hodge structure which is split over R

with Y(eiN0 .F̃,W) = Y. Consequently,

δ(eiδ−2eiN0 .F̃,W) = δ−2 + δ(eiN0 .F̃,W) = δ−2.

Therefore, using equations (71), (69) and (41), equation (77) becomes

lim
Im(z)→∞

h(F(z), W) + µ log |s| = ht(N, F, W).

�

Smooth Divisor. Consider now the case where V is a biextension variation over the complement
of s1 = 0 in a polydisk ∆r with coordinates (s1, . . . , sr). Let

F(z1, s2, . . . , sr) = ez1 N1eΓ(s).F∞ (78)

denote the local normal form of the period map of V after lifting to U × ∆r−1 where U is the upper
half-plane with coordinate z1 and s1 = e2πiz1 . To simplify notation, we shall write N in place of N1

and z = x + iy in place of z1 where convenient.
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To continue, we recall [25] that

[N1, Γ(0, s2, . . . , sr)] = 0

Accordingly, we let

Γ1 = Γ(0, s2, . . . , sr), eΓ(s) = eΓ1
eΓ1

and note that Γ1(0, s2, . . . , sr) = 0 by construction, and hence s1|Γ1.

Let (F̃∞, M) = (e−iδ.F∞, M) be the Deligne splitting of the limit mixed Hodge structure of V .
Define N = N0 + N−2 and H = Ỹ − Y etc. as in Theorem (73) for the nilpotent orbit (ezN .F∞, W).
Then, since N−2 is central in gC and [N, Γ1] = 0 it follows that [N0, Γ1] = 0. This forces

Γ1 = ∑
k≤0

Γ1,k, [H, Γ1,k] = kΓ1,k.

Let Γ1 = ∑k Γ1
k where [H, Γ1

k] = kΓ1
k .

Theorem 79. Let V be a biextension variation with unipotent monodromy defined on the complement of
the divisor s1 = 0 in ∆r . Then,

h̄(V) = h(V) + µ log |s1|
extends continuously to ∆r .

Proof. By the above remarks, we can write

F(z, s2, . . . , sr) = exNeiyNeΓ(s)e−iyNeiyN .F∞

= exNeiyNeΓ1(s)eΓ1(s)e−iyNeiyN .F∞

= exNeiyNeΓ1(s)e−iyNeΓ1(s)eiyN .F∞

= exNeiyN0 eiyN−2 eΓ1(s)e−iyN−2e−iyN0 eΓ1(s)eiyN .F∞

= exNeiyN0 eΓ1(s)e−iyN0 eΓ1(s)eiyN .F∞.

By theorem (73), we can then write

eiyN F∞ = g(y)eiyN .F̃∞

= g(y)eiyN−2 eiyN0 F̃∞

= eiyN−2 g(y)eiyN0 F̃∞

= eiyN−2 g(y)y−H/2eiN0 F̃∞

= eiyN−2 y−H/2g‡(y)eiN0 F̃∞

where g‡(y) = Ad(yH/2)g(y) as in Lemma (75).

Combining the previous two paragraphs yields

δ(F(z,s2,...,sr),W) = δ
(exNeiyN0eΓ1(s)e−iyN0eΓ1(s)eiyN.F∞,W)

= δ
(eiyN0eΓ1(s)e−iyN0eΓ1(s)eiyN.F∞,W)

= δ
(eiyN0eΓ1(s)e−iyN0eΓ1(s)eiyN−2y−H/2g‡(y)eiN0 F̃∞,W)

= δ
(eiyN−2eiyN0 eΓ1(s)e−iyN0eΓ1(s)y−H/2g‡(y)eiN0 F̃∞,W)

= δ
(eiyN0eΓ1(s)e−iyN0eΓ1(s)y−H/2g‡(y)eiN0 F̃∞,W)

+ yN−2.
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To complete the proof, let Γ1
‡ = Ad(yH/2)Γ1, and observe that Γ1

‡ is a finite sum of functions

(log |s1|)k/2 s1 f where f is a holomorphic function on ∆r with values in q, and hence has a contin-
uous extension to ∆r . Likewise,

Γ
‡
1 = Ad(yH/2)Γ1

is a finite sum of functions of the form (log |s1|)−k/2 f for k ≥ 0 and f a holomorphic function on
∆r with values in q which is independent of s1, and hence also has a continuous extension to ∆r.
Finally, g‡(y) is independent of (s2, . . . , sr) and has a convergent series expansion in powers of

(log |s1|)−1/2 by Lemma (75).

Combining the above, it follows that

δ(F(z,s2,...,sr),W) − yN−2 = δ
(eiyN0eΓ1(s)e−iyN0eΓ1(s)y−H/2g‡(y)eiN0 F̃∞,W)

= δ
(y−H/2eiN0 e

Γ1
‡(s)e−iN0 eΓ

‡
1
(s)g‡(y)eiN0 .F̃∞,W)

= Ad(y−H/2)δ
(eiN0e

Γ1
‡(s)e−iN0eΓ

‡
1
(s)g‡(y)eiN0 .F̃∞,W)

= δ
(eiN0e

Γ1
‡
(s)

e−iN0 e
Γ

‡
1
(s)

g‡(y)eiN0 .F̃∞,W)

since Ad(y−H/2) acts trivially on W−2gC. By the remarks of the previous paragraph

eiN0 eΓ1
‡(s)e−iN0 eΓ

‡
1(s)g‡(y)eiN0

has a continuous extension to ∆r, and hence so does δ(F(z,s2,...,sr),W) − yN−2. Using equations (71),

(69) and (41), it follows as in the last paragraph of the proof of Theorem (76) that h̄(V) has a
continuous extension to ∆r . �

Remark 80. Since h̄(V) extends continuously to ∆r its value at any point (0, s2, . . . , sr) can be com-
puted by taking the limit along s → (s, s2, . . . , sr). Since this corresponds to a 1 parameter de-
generation, it follows from Theorem (76) that h̄(V)(0, s2, . . . , sr) depends only on the limit mixed
Hodge structure of V at (0, s2, . . . , sr).

4. EXISTENCE OF BIEXTENSIONS

In this section we prove the following result, which shows that over ∆∗r a pair of admissible
normal functions can be glued together to give an admissible biextension. For the remainder of
this section, A is either Z, Q or R, and

— ∆r is a polydisk with coordinates (s1, . . . , sr);
— D is the divisor defined by s1 · · · sk = 0;
— H is a torsion free, polarized variation of pure A-Hodge structure of weight −1 on ∆r − D

with quasi-unipotent monodromy;
— ν is an admissible extension of A − VMHS

0 → H → Vν → A(0) → 0

with respect to inclusion of ∆r − D into ∆r;
— ωis an admissible extension of A − VMHS

0 → A(1) → V∨
ω → H → 0

with respect to inclusion of ∆r − D into ∆r.

Theorem 81. The set B(ν, ω) of admissible biextension variations of type (ν, ω) over ∆r − D →֒ ∆r is
non-empty.
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We prove Theorem (81) in the case of unipotent monodromy first, and hence assume that
all VMHS have unipotent monodromy unless otherwise noted. By formally allowing the mon-
odromy about sj = 0 to be trivial, we can reduce the proof of Theorem (81) to the case where D is
the divisor s1 . . . sr = 0. The outline of the proof is as follows: The normal functions ν and ω have
local normal forms (48). Likewise, as a consequence of the SL2-orbit theorem if F : h → M is the
period map of an admissible nilpotent orbit then

lim
Im(z)→∞

Y(F(z),W)

exists as a grading of W. Moreover, this grading will preserve the Ip,q’s of the sl2-splitting of the
limit mixed Hodge structure of (F(z), W). This produces a trigrading of the underlying vector
space. For ν and ω, we must then glue these two trigradings together, and use the resulting
new vector space as the model for the biextension variation. It remains then to add an integral
structure, local monodromy logarithms et. cetera.

A sketch of the proof of Theorem (81) in the quasi-unipotent case is a follows: A quasi-unipotent
VMHS can be viewed as a VMHS on the pullback to the unipotent setting which has the extra
property that when the i’th coordinate is multiplied by a suitable root of unity, the Hodge filtration
changes by the appropriate semisimple factor. Gluing ν and ω together in the quasi-unipotent case
therefore reduces to the unipotent case, together with the fact that the semisimple parts of the local
monodromy are morphisms of Hodge structure in the limit, and are therefore compatible with the
gluing procedure.

Trigraded Vector Spaces. The weight filtration of a trigraded vector space

L =
⊕

p,q,i

L
p,q
i (82)

is the increasing filtration Wk(L) =
⊕

i≤k,p,q L
p,q
i . The subspaces Li =

⊕
p,q L

p,q
i define a grading of

W•(L). Likewise, we set Lp,q = ⊕i L
p,q
i and call

L =
⊕

p,q

Lp,q

is the associated bigrading of L. We define the relative weight filtration of L to be the increasing filtra-

tion Mk(L) = ⊕p+q≤k,i L
p,q
i . If L is a complex vector space with real form LR then a trigrading of L

is said to split over R if L̄
p,q
i = L

q,p
i . In this case, the decreasing filtration Fp(L) = ⊕a≥p,b La,b pairs

with M to define an R-split mixed Hodge structure (F, M) which induces pure Hodge structures
on GrW and has Deligne bigrading Ip,q = Lp,q.

If U and V are vector spaces equipped with linear maps f : U → Z and g : V → Z then the
fiber product

U ×Z V = {(u, v) ∈ U × V | f (u) = g(v)}
is called the gluing of U and V along Z. We let πU : U ×Z V → U and πV : U ×Z V → V denote
the natural projection maps.

Let U and V be trigraded vector spaces. Then U abuts V if there exists an index ℓ such that

(a) Ui = 0 for i > ℓ and Vi = 0 for i < ℓ;
(b) There exists an isomorphism GrW

ℓ
(U) ∼= GrW

ℓ
(V) for which the composite map

σ : Uℓ → GrW
ℓ
(U) ∼= GrW

ℓ
(V) → Vℓ

induces an isomorphism U
p,q
ℓ

→ V
p,q
ℓ

for each bi-index (p, q).



JUMPS IN THE ARCHIMEDEAN HEIGHT 21

If U abuts V (at ℓ) we define GrW
ℓ

⊂ GrW
ℓ
(U)× GrW

ℓ
(V) to be the subspace consisting of points

([u], [v]) which are identified under the isomorphism (b). We then define

U ⋆ V = U ×GrW
ℓ

V

relative to the linear maps f : U → Uℓ → GrW
ℓ

and g : V → Vℓ → GrW
ℓ

.

Let ιU from U → U ⋆ V denote the linear map which sends u ∈ Ui to (u, 0) ∈ U ⋆ V for i < ℓ

and maps u ∈ Uℓ to (u, σ(u)) ∈ U ⋆ V. Let ιV from V → U ⋆ V be the map that send v ∈ Vi to
(0, v) ∈ U ⋆ V for i > ℓ and maps v ∈ Vℓ to (σ−1(v), v) ∈ U ⋆ V. Accordingly, we can introduce a
trigrading on U ⋆ V by setting

(U ⋆ V)
p,q
i =

{
ιU(U

p,q
i ), i ≤ ℓ

ιV(V
p,q

i ), i > ℓ
(83)

If the trigradings of U and V are split over R and the isomorphism GrW
ℓ
(U) → GrW

ℓ
(V) intertwines

complex conjugation then the trigrading (83) is split over R.

Endomorphisms. Let U and V be trigraded vector spaces which abut (at ℓ). Let αU and αV be en-
domorphisms of U and V respectively which preserve the corresponding weight filtrations W(U)
and W(V). Assume that αU and αV induce the same map on GrW

ℓ
. For η ∈ (U ⋆ V)i define

(αU ⋆ αV)(η) =

{
ιU ◦ αU ◦ πU(η), i ≤ ℓ

ιV ◦ αV ◦ πV(η), i > ℓ.
(84)

Then, α = αU ⋆ αV is an endomorphism of U ⋆ V which preserves W(U ⋆ V) such that

πU ◦ α ◦ ιU = αU , πV ◦ α ◦ ιV = αV .

.

Lemma 85. The construction (84) is compatible with the bigrading (83), i.e. if αU(U
a,b) ⊆ Up+a,q+b and

αV(V
a,b) ⊆ V p+a,q+b then

α(U ⋆ V)a,b ⊆ (U ⋆ V)p+a,q+b (86)

Proof. This follows from that fact that πU ◦ ιU is the identity on U, πV ◦ ιV is the identity on V and
both the maps πU, πV , ιU, ιV all preserve the relevant bigradings by construction. �

Limiting Splitting. Let ψ : ∆∗ → Γ\M be the period map of an admissible extension of R(0) by a
variation of pure, polarized R-Hodge structure of weight −1. Let V denote the underlying vector
space of ψ, let W denote the weight filtration, and assume the monodromy is unipotent and given
by T = eN . Let

F(z) : h → M, F(z + 1) = TF(z)

be a lifting of ψ to a map from the upper half-plane h into M. Then, by [5, Theorem 3.9], it follows
that

Y‡ = lim
Im(z)→∞

Y(F(z),W) (87)

exists, where the limit is taken with Re(z) restricted to a finite interval. More precisely,

Y‡ = Ad(e−iN)Y(eiNF̂,W)

where (F̂, M) = (e−ξ F, M) is sl2-splitting of the limit mixed Hodge structure (F, M) of F : h → M.

Corollary 88. The subspaces

L
p,q
k = { v ∈ I

p,q

(F̂,M)
| Y‡(v) = kv }

form a trigrading of V which is split over R such that W(L) = W, F(L) = F̂ and M(L) = M as in (82).
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For future use, we record that in this setting, the element ξ appearing (58) in the sl2-splitting
of (F, M) also preserves the weight filtration W [4]. The next result is only used in the quasi-
unipotent case:

Proposition 89. If γ is a morphism of (F, M) which preserves W such that [γ, N] = 0 then [γ, Y‡] = 0.

Proof. Since γ is a morphism of (F, M) it follows that γ commutes with the Hodge components
{δp,q} of the Deligne splitting of (F, M). As ξ is given by universal Lie polynomials in the Hodge

components of δ, it follows that γ commutes with ξ. Therefore, γ is a morphism of (F̂, M) =
(e−ξ F, M). By [5],

Y‡ = Ad(e−iN)Y(eiN F̂,W).

As γ commutes with N and preserves W, it follows that γ is of type (0, 0) with respect to (eiN F̂, W)
as well. Thus, [γ, Y‡] = 0. �

Limit Mixed Hodge Structure. We now return to the notation from the beginning of this section.
In particular, Vν and Vω are as in the paragraph before Theorem 81.

Let ∆∗ ⊂ ∆∗r be the punctured disk defined by the equation s1 = · · · = sr, and fix a point
s0 ∈ ∆∗. Let V be the fiber of Vν over s0. Then, applying Corollary 88 to the restriction of Vν to

∆∗ ⊂ ∆∗r produces a trigrading V
p,q

k of V which is split over R. Likewise, let U be the fiber of V∨
ω

over s0. Then, using duality, restriction of V∨
ω to ∆∗ ⊂ ∆∗r produces a trigrading U

p,q
k of U which

is also split over R.

Since U and V abut at ℓ = −1, we can form the trigraded vector space

B = U ⋆ V

with associated trigrading which is split over R. The associated bigrading determines an R-split

mixed Hodge structure (F̂∞, M) = (F̂∞(B), M(B)) as in (82).

Let (Fν, Mν) be the limit mixed Hodge structure of Vν and (Fω, Mω) be the limit mixed Hodge
structure V∨

ω . Let ξν ∈ gl(V) and ξω ∈ gl(U) be the corresponding endomorphisms (58) of V and
U. Recall that ξν and ξω preserve the weight filtrations W(V) and W(U) respectively. Moreover,
they induce the same action on GrW

−1 since Vν and V∨
ω induce the same limit mixed Hodge structure

on GrW
−1. Define

F∞ = eξ F̂∞ (90)

where ξ = ξU ⋆ ξV . Since ξν and ξω act trivially on GrM(V) and GrM(U) it follows that ξ acts
trivially on GrM by (86).

Remark 91. The mixed Hodge structure (F̂∞, M) projects to (F̂ν, Mν) and (F̂ω, Mω) on V and U
respectively. The monodromy logarithms NV

j and NU
j of Vν and V∨

ω are (−1,−1)-morphisms

of (F̂ν, Mν) and (F̂ω, Mω). For future use, we also note that W−2 End(B) consists of (−1,−1)-

morphisms of (F̂∞, M) and (F∞, M). This follows from the fact that B0 = B0,0
0 while B−2 = B−1,−1

−2 .

Local System. The monodromy logarithms NV
j and NU

j induce the same action on GrW
−1 and hence

glue together to define an endomorphism Ñj of BR. By the previous remark, Ñj is a (−1,−1)-

morphism of (F̂∞, M). To show that the endomorphisms {Ñj} define a local system over ∆∗r with

fiber BR, it is sufficient to show that [Ñj, Ñk] = 0 for all j and k.

Let {V
p,q

i } be the trigrading of V of Corollary (88), and let v0 ∈ V0 be a lifting of 1 ∈ GrW
0 . Set

b0 = ιV(v0). Then, since v0 is type (0, 0) with respect to the bigrading of V, the same is true of b0

with respect to the bigrading of B. Moreover, tracing through the above definitions, one sees that

πV [Ñj, Ñk]b0 = [NV
j , NV

k ]v0 = 0
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Therefore, [Ñj, Ñk]b0 is an element of W−2(B) which is of type (−2,−2) with respect to the bigrad-

ing of B. But W−2(B) is pure of type (−1,−1), and hence [Ñj, Ñk]b0 = 0. Likewise, πU [Ñj, Ñk]ιU(u) =

[NU
j , NU

k ]u = 0. Consequently, [Ñj, Ñk] = 0.

A-Structure. Pick an element vA ∈ VA which projects to 1 ∈ GrW
0 (V) and let bA = ιV(vA). Define

BA = AbA ⊕ ιU(UA)

Then, BA ⊗ R = BR since vA = v0 + v−1 with v0, v−1 real and v0 as above in V0,0
0 .

Let u−2 be the generator of W−2(UA) ∼= A(1) corresponding to 1∨ (with 1∨ a generator of A(1)

as in Definition 38). Set b−2 = ιU(u−2). Note that b−2 ∈ B−1,−1
−2 . Let η be the endomorphism of BR

which annihilates W−1(B) and maps bA to b−2 (or, equivalently, b0 to b−2). We are going to set

Nj = Ñj + cjη (92)

for some scalar cj to be determined below.

Since W−2(B) has rank 1 and Ñj is nilpotent and preserves W(B), it follows that Ñj acts trivially

on W−2(B). Consequently, [Ñj, η] = 0 and hence [Nj, Nk] = 0. Likewise, [Nj, η] = 0 and hence

Tj = eNj = eÑj+cjη = (T̃j)(1 + cjη). Therefore,

Tj(bA) = T̃j(bA) + cju−2 = bA + (T̃j − 1)bA + cju−2

In particular, because (TV
j − 1)v maps to an integral class in GrW

−1, it follows that for suitable choice

of real scalar cj, Tj(b) ∈ BA. Likewise, Tj acts as TU
j on U, and hence Tj preserves BA.

Hodge filtration. By rescaling s if necessary, we can assume that Vν and V∨
ω have local normal

forms ΓV and ΓU on ∆r as in (48). Then, ΓV preserves W(V), ΓU preserves W(U) and the induced
actions on GrW

−1 agree since the induced VHS on GrW
−1 coincide. Therefore, we can glue ΓV to ΓU

to define a function Γ on ∆r which preserves W(U ⋆ V) and acts by infinitesimal isometries on

GrW B. Define

F(z) = e∑ j zjNjeΓ(s)F∞ (93)

where F∞ is the filtration (90), and Nj is the endomorphism (92). Then, F(z) induces the corre-

sponding Hodge filtrations of Vν on GrW
j (V) for j = 0, j = −1, and V∨

ω for j = −1, −2. Clearly,

F(z) is holomorphic and descends to a period map over ∆∗r with monodromy {Tj}.

Horizontality. We need to show that ∂
∂zj

Fp(z) ⊆ Fp−1(z). By manipulation of (93), this is equiva-

lent to (
e−adΓNj + 2πisje

−Γ ∂

∂sj
eΓ

)
(F

p
∞) ⊆ F

p−1
∞

By construction, this holds modulo W−2 End(B), which is sufficient to prove horizontality for
p > 0. For the case p = 0, observe that W−2 End(B) consists of (−1,−1)-morphisms of (F∞, M).
For p < 0, horizontality follows from horizontality modulo W−2B and the case p = 0.

Admissibility. To show that (93) defines an admissible normal function, it remains to show that
(i) the Hodge bundles extend holomorphically over ∆r and induces the limit filtration of Schmid
on each GrW , and (ii) the required relative weight filtrations exist.

The first condition follows from that fact that exp(−∑j zjNj)F(z) = eΓ(s)F∞ which obviously

extends to a holomorphic filtration on ∆r , and F∞ induces Schmid’s filtration on GrW by construc-
tion.
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To prove the existence of the required relative weight filtrations, we recall the following result
from [44, Theorem 2.20]: Let (i)M denote the relative weight filtration of NWi

and W. Suppose that

(k−1)M exists. Then, (k)M exists if and only if for all j > 0,

(N jWj) ∩ Wk−1 ⊂ N jWk−1 + (k−1)Mk−j−1

Set N = Nj and W = W(B). Then, the relative weight filtration of N restricted to W−1 exists and

equals the image of M(NU
j , W(U)) under ιU. Therefore, we need only check the above for k = 0.

Since N = Ñj + cjη,

(N jWj) ∩ W−1 = N jW−1 + Im(cjη) ⊂ N jW−1 + (−1)M−2

because W−2 ⊂ (−1)M−2 since W−2 is pure of type (−1,−1) for the limit mixed Hodge structure.

This completes the proof of Theorem 81.

Quasi-Unipotent Monodromy. In this section, we extend Theorem 81 to the case of admissi-
ble normal functions with quasi-unipotent monodromy, and give an analog of the local normal
form (48) for admissible variations with quasi-unipotent monodromy.

Let T be an automorphism of a finite dimensional complex vector space. Then, by the Jordan
decomposition theorem, T = Ts + Tn where Ts is semisimple, Tn is nilpotent and [Ts, Tn] = 0.
Moreover, there exists polynomials p and q without constant term such that Ts = p(T) and Tn =
q(T). In particular, since T is an automorphism, Ts is invertible. Let Tu = 1 + T−1

s Tn. Then, Tu is
unipotent and T = TsTu = TuTs is called the multiplicative Jordan decomposition of T.

Remark 94. If T is a automorphism of a finite dimensional rational vector space, and Ts has finite
order m, then both Ts and Tu are rational. To see this, note that Tu = eα and hence Tm = Tm

u = emα

is rational. Therefore, α is rational, and hence so is Tu and Ts = TT−1
u .

Proposition 95. Let T and T′ be commuting automorphisms of a finite dimensional complex vector space,
and let T = Ts + Tn and T′ = T′

s + T′
n be the Jordan decomposition of T and T′. Then, {Ts, Tn, T′

s , T′
n} is

a set of mutually commuting endomorphisms.

Proof. Each of the elements listed is a polynomial in T or T′. �

Corollary 96. Let T and T′ be commuting automorphisms of a finite dimensional complex vector space, and
let T = TsTu and T′ = T′

s T′
u be the multiplicative Jordan decompositions of T and T′. Then, {Ts, Tu, T′

s , T′
u}

is a set of mutually commuting automorphisms.

Let (∆r, s) be a polydisk with holomorphic coordinates (s1, . . . , sr) and V → ∆∗r be a variation
of mixed Hodge structure defined on the complement of the divisor s1 · · · sr = 0. Assume that V
has quasi-unipotent monodromy γi about si = 0, and let γi = γi,sγi,u be the multiplicative Jordan
decomposition of γi. Then, by the previous Corollary, {γj,s, γj,u, γk,s, γk,u} is a set of mutually
commuting automorphisms of the reference fiber of V for any pair of indices j and k. Let mi > 0
denote the order of γi,s and Ni = log γi,u.

Assume that V → (∆∗r, s) is admissible. Let (∆∗r, t) be a polydisk with coordinates (t1, . . . , tr)

and f : (∆∗r, t) → (∆∗r, s) denote the covering map tj = s
m j

j . Then, f ∗(V) is an admissible variation

of mixed Hodge structure over (∆∗r, t) with unipotent monodromy em jNj about tj = 0. Let

F̃ : (hr, w) → M
denote the lifting of the period map of f ∗(V) to the product of upper half-planes hr ⊂ Cr with

Cartesian coordinates (w1, . . . , wr) relative to the covering map tj = e2πiwj .
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For w ∈ Cr let N(w) = ∑k wkmkNk, and

ψ̃(w) = e−N(w)F̃(w). (97)

Let {e1, . . . , er} denote the standard Cartesian basis of Cr. Then, ψ̃(w + ej) = ψ̃(w), and hence ψ̃
descends to a map

ψ : ∆∗r → M̌.

By admissibility, ψ extends to a holomorphic map ∆r → M̌, such that

(m1N1, . . . , mrNr; F∞, W) (98)

is an admissible nilpotent orbit, where F∞ = ψ(0).

Let gC = ⊕p,q<0 g
p,q relative to the limit mixed Hodge structure (F∞, M) of (98). Then,

q = ⊕a<0,bg
a,b

is a vector space complement to the stabilizer of F∞ in gC. Therefore, there exists a unique holo-
morphic function

Γ : ∆r → q

such that eΓ(t)F∞ = ψ(t), after shrinking ∆r as necessary. This gives the local normal form

F̃(w) = eN(w)eΓ(t)F∞. (99)

The next result asserts that each γj,s is a morphism of the limit mixed Hodge structure. In the
geometric case this is due to J. Steenbrink [43].

Proposition 100. Each γj,s is morphism of (F∞, M). Moreover,

Γ ◦ ρj(t) = Ad(γj,s)Γ(t) (101)

where ρj(t1, . . . , tr) = (t1, . . . , e2πi/m jtj, . . . , tr).

Proof. To prove that γj,s is a morphism of the limit mixed Hodge structure we begin with the
observation that

ψ ◦ ρj(t) = γj,sψ(t) (102)

To see this we note that we have a commutative diagram

(hr, w)
zk=mkwk−−−−−→ (hr , z)

F(z)−−−→ M
tk=e2πiwk

y
ysk=e2πizk

y

(∆∗r, t)
sk=t

mk
j−−−→ (∆∗r, s)

ϕ−−−→ Γ\M
where F : (hr, z) → M is the local lifting of the period map of V → (∆∗r, s) relative to the
covering map sk = e2πizk where (z1, . . . , zr) are Cartesian coordinates on the product of upper half-
planes hr ⊂ Cr. In particular, since F(z + ej) = γjF(z) it follows that F̃(w + (1/mj)ej) = γjF̃(w).
Therefore,

ψ ◦ ρj(t) = e−N(w+(1/m j)e j)F̃(w + (1/mj)ej) = e−N(w+(1/m j)e j)γjF̃(w) = γj,sψ(t).

Taking the limit as t → 0 yields F∞ = γj,sF∞.

By the remark at the beginning of this section, in the case where A = Z or A = Q, γj,s is rational
since γj,s is finite order and γj is rational. To prove that γj,s is a morphism of (F, M) it remains
to check that γj,s preserves M. This follows from the defining properties of the relative weight
filtration and the fact that:

— Since γj preserves W so does γj,s = p(γj);
— γj,s commutes with N1, . . . , Nr and M = M(N1 + · · ·+ Nr, W).
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To verify (101), note that by the derivation of (99) and equation (102), we have

ψ ◦ ρj(t) = eΓ◦ρj(t)F∞ = γj,sψ(t) = γj,se
Γ(t)F∞.

Since γj,s preserves F∞ by the previous paragraphs, it follows that

eΓ◦ρj(t)F∞ = γj,se
Γ(t)γ−1

j,s F∞.

In particular, since γj,s is a morphism of (F∞, M) the adjoint action of γj,s preserves q. Because q is a
vector space complement to the stabilizer of F∞ in gC, it then follows that Γ ◦ ρj(t) = Ad(γj,s)Γ(t).

�

To continue, we note that by commutative diagram of Proposition (100), we have F̃(w1, . . . , wr) =
F(m1w1, . . . , mrwr). Setting wj = zj/mj it then follows from (99) that

F(z1, . . . , zr) = F̃(z1/m1, . . . , zr/mr) = e∑k zkNk eΓ(v1,...,vr)F∞ (103)

where vj = e2πizj/m j .

Theorem 104. Let
(1) θ(z1, . . . , zr) = (e∑k zk Nk F∞, W) be an admissible nilpotent orbit with limit mixed Hodge structure

(F∞, M) and values in the a classifying space M of graded-polarized mixed Hodge structure for
Im(z1), . . . , Im(zr) ≫ 0;

(2) {γ1,s, . . . , γr,s} be a set of semisimple automorphisms of (F∞, M) which act by finite order isome-

tries on GrW . Let mj be the order of γj,s and γj,u = eNj . Assume that {γ1,s, γ1,u, . . . , γr,s, γr,u} is
a set of mutually commuting automorphisms;

(3) Γ : ∆r → q be a holomorphic function which vanishes at the origin and satisfies (101).

Suppose that

F̃(w1, . . . , wr) = e∑k wkmkNk eΓ(t)F∞ (105)

satisfies Griffiths infinitesimal period relation on the upper half-plane (hr, w) where tj = e2πiwj . Define

F(z) from F̃(w) via equation (103). Then,

(i) F(z1, . . . , zj + 1, . . . , zr) = γiF(z1, . . . , zr) where γi = γi,sγi,u;
(ii) There exists a positive real number A such that

F(z1, . . . , zr) = e∑ j zjNjeΓ(v1,...,vr)F∞

descends to an admissible period map on the set of points in (∆∗r, s) such that |sj| = |e2πizj | < A.

Proof. Since vj = e2πizj/m j it follows that changing zj to zj + 1 changes vj to e2πi/m j vj. Therefore, by
equation (101),

F(z1, . . . , zj + 1, . . . , zr) = eNj e∑k zkNk γj,se
Γ(v1,...,vr)γ−1

,s F∞

= γj,uγj,se
∑k zk Nk eΓ(v1,...,vr)F∞

using hypothesis (2) and (3). This proves part (i).

To prove part (ii), we need to show that

(a) F(z) satisfies Griffiths infinitesimal period relation;
(b) F(z) takes values in M for Im(z1), . . . , Imzr ≫ 0;
(c) Verify the existence of the requisite relative weight filtrations.

Condition (c) follows from the fact that θ is an admissible nilpotent orbit. On the other hand,
since (∆∗r, t) → (∆∗r, s) is a covering map, it is sufficient to verify conditions (a) and (b) for the
map (105). Condition (a) holds for F̃(w) by assumption. To verify condition (b), we need only
show that F̃(w) induces pure, polarized Hodge structures on GrW for Im(w1), . . . , Imwr ≫ 0. This
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follows immediately from the fact that θ is an admissible nilpotent orbit, F̃(w) is horizontal and
Theorem (2.8) [8]. �

Remark 106. In order to produce a variation with an integral (or rational structure) via Theo-
rem (104), each γj,s and γj,u must be integral (or rational).

Theorem 107. Theorem (81) remains valid in the setting where H has quasi-unipotent monodromy.

Proof. By Theorem (104), it is sufficient to work on the pullback to the unipotent case and ensure
that the resulting function Γ satisfies (101). Each of the functions ΓV and ΓU attached to the normal
functions satisfy an appropriate version of (101) relative to the semisimple automorphisms γV

j,s and

γU
j,s respectively. It follows from Proposition (89) that γV

j,s and γU
j,s preserve the the trigradings of

V and U. Since they agree on GrW
−1 it follows that they glue together to an automorphism γj,s of B

which preserves the trigrading of B. Therefore, the function Γ produced by gluing ΓU and ΓV also
satisfies (101).

In the case where A = Z or Q, we add the underlying A structure as follows: The element η

appearing (92) commutes with each γj,s since γj,s ∈ gl(B)0,0
0 with respect to the induced trigrading

on gl(B), and Gr(γj,s) acts trivially on the 1-dimensional factors GrW
0 and GrW

−2 by hypothesis (i.e.
these factors are assumed to have trivial global monodromy). The construction of the A-structure
therefore follows exactly as in the unipotent case. �

5. SINGULARITIES OF NORMAL FUNCTIONS

In this section, we review the notion of the singularities of normal functions, in the setting where
H is an admissible variation of mixed Hodge structure such that W−1H = H.

5.1. Admissible Normal Functions. Suppose S̄ is a complex manifold and S is a Zariski open

subset. Suppose H is an object in VMHS(S)ad
S̄

with W−1H = H and underlying Z-local structure
HZ. Following M. Saito, we define

ANF(S,H)S̄ := Ext1
VMHS(S)ad

S̄

(Z,H)

to be the group of admissible normal functions on S relative to S̄ with underlying variation of
mixed Hodge structure H.

5.2. Singularities of admissible normal functions. Let S, S̄ and H be as in §5.1, and let s ∈ S̄ \ S.
Write j : S → S̄ and i : {s} → S̄ for the inclusions. Suppose ν ∈ ANF(S,H)S̄ is an admissible
normal function. Let

0 → H → V → Z → 0 (108)

by the extension class corresponding to ν. By applying the forgetful functor from VMHS(S)ad
S̄

to

the category Loc(S) of local systems on S, we wind up with an extension in the category of local
systems on S. Thus we can associate to ν a class cl(ν) ∈ H1(S,H). Tensoring with Q, we get a
class clQ ∈ H1(S,HQ) = H1(S̄, Rj∗HQ). Finally, by pull-back via i, we get a class

sings(ν) ∈ H1
s (HQ) := H1(i∗Rj∗HQ). (109)

This class is called the singularity of ν. We write cls(ν) for the image of cl(ν) in H1(i∗Rj∗H).
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5.3. Singularities. Suppose F = Q or R. Let L denote a F-local system on S and d = dimC S. The
intersection complex of L is

IC(L) := j!∗(L[d])
The intersection and local intersection cohomology spaces are defined by

IHk(S̄,L) := Hk−d(S̄, IC(L))
IHk

s(L) := Hk−d(i∗ IC(L)).

There is a morphism IC(L) → Rj∗L which induces maps IHk(S̄,L) → Hk(S,L) and IHk
s(L) →

Hk
s(L) := Hk(i∗Rj∗HQ). For k = 0, these maps are isomorphisms, and for k = 1 they are injections.

Note that, by M. Saito’s theory of mixed Hodge modules, if H is a Q variation of mixed Hodge

structure, then H
p
s (H) and IH

p
s (H) both carry canonical mixed Hodge structures.

Theorem 110. [3] Suppose H is a weight −1 variation of Hodge structure on S. The map

clQ : ANF(S,H)S̄ → H1(S,HQ)

factors through IH1(S,HQ). Similarly, the map

sings : ANF(S,H)S̄ → H1
s (HQ)

factors through IH1
s (HQ).

5.4. Duality in the Weight −1 case. If H is variation of pure Hodge structure of weight −1 on S,
as in the introduction, we write H∨ := H∗(1). This is another variation of pure Hodge structure
of weight −1 on S. There is a canonical morphism H → (H∨)∨ which is an isomorphism if H is
torsion-free.

Proposition 111. Suppose H is torsion free. Then duality gives a canonical isomorphism

ANF(S,H)S̄
∼= Ext1

VMHS(S)ad
S̄

(H∨, Z(1))

Proof. We have

ANF(S,H)S̄ = Ext1
VMHS(S)ad

S̄

(Z,H)
D→ Ext1

VMHS(S)ad
S̄

(H∗, Z) = Ext1
VMHS(S)ad

S̄

(H∨, Z(1)).

The map D, which is given by duality, is an isomorphism because H is torsion-free. �

5.5. Admissible classes.

Definition 112. Let j : S → S̄ and i : {s} → S̄ be as in 5.1. We call a holomorphic map ϕ̄ : ∆ → S̄ a
test curve at s if ϕ̄(0) = s and ϕ̄(∆∗) ⊂ S. Write ϕ : ∆∗ → S for the restriction of ϕ̄ to ∆∗. Suppose
L is a F-local system on S for F = Q or R (as in §5.2). We call a class α ∈ H1

s (L) admissible if
the pull-back ϕ∗α in H1

0(ϕ∗L) vanishes for every test curve through s. Similarly, we call a class

α ∈ H1(S,L) admissible if ϕ∗α vanishes in H1(∆∗, ϕ∗L) for all test curves through all points of S̄.

We write H1
s (L)ad (resp. H1(S,L)ad ) for the set of admissible classes in H1

s (L) (resp. H1(S,L)).
Similarly, we write IH1

s (L)ad := IH1
s (L) ∩ H1

s (L)ad and IH1(S̄,L)ad := IH1(S̄,L) ∩ H1(S,L)ad .

Theorem 113. Let L be an variation of pure Hodge structure on S. Then for s ∈ S̄, we have IH1
s (L) =

IH1
s (L)ad . In other words, every class is admissible.

We will prove the theorem after the following lemma.

Lemma 114. Suppose L is a variation of pure Hodge structure of weight w on ∆∗. Then GrW
k H1

0(L) = 0

for k < w + 2. In other words, H1
0L has weights in the interval [w + 2, ∞).
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Proof of Lemma 114. We have an exact sequence

0 → H0
0(L) → ψz,1L N→ ψz,1L(−1) → H1

0(L) → 0 (115)

where ψz,1 denotes the unipotent nearby cycles functor and N denotes the logarithm of unipo-
tent part of the monodromy (of L around 0). The weight filtration on ψz,1L is induced from the
monodromy filtration of N so that

Nk : GrW
w−k(ψz,1L(k)) → GrW

w−k ψz,1L

is an isomorphism for k ≥ 0. So coker(N : ψz,1L(1) → ψz,1L) has weights in the interval [w, ∞).
The result follows immediately. �

Proof of Theorem 113. Suppose ϕ̄ : ∆ → S̄ is a test curve through s. Write f for the composition

IH1
s (L) → H1

s (L) → H1
0(ϕ∗L).

Then f is a morphism of mixed Hodge structures. By the purity theorem of Cattani-Kaplan-
Schmid and Kashiwara-Kawai, the source of f has weights in the interval (−∞, w + 1]. But by
Lemma 114, the target has weights in the interval [w + 2, ∞). It follows that f = 0. �

6. THE ASYMPTOTIC HEIGHT PAIRING IN THE NORMAL CROSSING CASE

The goal of this section is to define the asymptotic height pairing on local intersection coho-
mology in the normal crossing case using a complex B∗ which computes the local intersection
cohomology in this case. (See Theorem 135.)

6.1. Normal crossing setup. In this section, we write F for a field which is either Q or R and r for
a fixed non-negative integer. Let ∆r denote a polydisk with local coordinates (s1, . . . , sr) and ∆∗r be
the complement of the divisor s1 · · · sr = 0. Let L be a local system of F-vector spaces on ∆∗r with
unipotent monodromy, and we write L for a fixed fiber of L. We let T1, . . . , Tr ∈ AutFL denote the
monodromy operators. Then, for each i, the monodromy logarithm Ni = log Ti is nilpotent.

Note that , if L∗ denotes the local system dual to L, then the monodromy operators on the fiber
L∗ are given by (T∗

i )
−1 and the logarithms are given by −N∗

i .

6.2. Some linear algebra. Suppose T is an endomorphism of a finite dimensional vector space
V over a field F. Write T∗ ∈ End V∗ for the adjoint of T and let ( , ) : V ⊗ V∗ → F denote the
canonical pairing. There is a natural perfect bilinear pairing

( , )T : TV ⊗ T∗V∗ → F, given by

Tv ⊗ T∗λ 7→ (v, T∗λ) = (Tv, λ).

To see that ( , )T is well-defined, note that Tv = 0 ⇒ (v, T∗λ) = (Tv, λ) = 0. Similarly, T∗λ =
0 ⇒ (Tv, λ) = (v, T∗λ) = 0. To see that the pairing is perfect, suppose (Tv, T∗λ)T = 0 for all λ.
Then (Tv, λ) = 0 for all λ. So Tv = 0. Similarly, (Tv, T∗λ)T = 0 for all v implies that T∗λ = 0.

6.3. Koszul and partial Koszul complexes. The Koszul and partial Koszul complexes are com-
plexes of vector spaces which compute the cohomology groups Hp(L) = Hp(∆∗r,L) and the
intersection cohomology groups IHp(L) = IHp(∆r ,L) when L is as in §6.1. We follow the nota-
tion of Kashiwara and Kawai and Cattani, Kaplan and Schmid for these complexes. (See [28, §3.4]
and [10].)
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Let E denote an r dimensional F-vector space with basis {e1, . . . , er}. As a F-vector space, the
Koszul complex is K(L) = L ⊗ ∧∗ E. It is graded by the usual grading of

∧∗ E, and it has differ-
ential given by

d(l ⊗ ω) =
r

∑
i=1

Nil ⊗ (ei ∧ ω). (116)

There is a canonical isomorphism Hp(L) = HpK(L).
Suppose J = (j1, . . . , jp) is a multi-index in {1, . . . , r}. Let NJ denote the product Nj1 · · · Njp

, and

write eJ = ej1 ∧ · · · ∧ ejp
. The partial Koszul complex is the subcomplex B(L) of K(L) given by

∑J NJ(L) ⊗ eJ . By the results of Kashiwara, Kawai [28] and Cattani, Kaplan, Schmid [10], there

is a canonical isomorphism IHp(L) = Hp(B(L)). In particular, the canonical map IHp(∆r ,L) →
Hp(∆∗r,L) is precisely the map induced by the inclusion of complexes B(L) → K(L).

Note that a morphism f : L → M of local systems on ∆∗r induces morphisms f : K∗(L) →
K∗(M) and f : B∗(L) → B∗(M) in the obvious way: l ⊗ ω 7→ f (l) ⊗ ω. These induce the
corresponding homomorphisms H∗(L) → H∗(M) and IH∗(L) → IH∗(M).

Note also that the complexes K(L) and B(L) depend on only on the data (L, N1, . . . , Nr).

6.4. If (C, d) is a complex and p is a an integer, we write Zp(C) = {α ∈ Cp : dα = 0}.

6.5. Suppose t ∈ Fr. Write N(t) := ∑
r
i=1 tiNi, and write Lt for the local system on ∆∗ with mon-

odromy logarithm N(t) ∈ End L. Then, if F{e} denotes the free F-vector space on one generator
e, we have K(Lt) = L ⊗ ∧∗ F{e}. As a complex, K(Lt) is just the map N(t) : L → L placed in
degrees 0 and 1.

The map of vector spaces E → F{e} given by ei 7→ tie induces a map λt : ∧∗E → ∧∗C{e}. Write
φ†

t for the map idL ⊗ λt : K(L) → K(Lt).

If α = ∑
r
i=1 αi ⊗ ei ∈ K1(L), write α(t) := ∑

r
i=1 tiαi. Then note that φ†

t α = α(t)⊗ e.

Lemma 117. The map φ†
t : K(L) → K(Lt) is a morphism of complexes.

Proof. Since K(Lt) is concentrated in degrees 0 and 1, we just need to check that dφ†
t (l) = φ†

t (dl)
for l ∈ K0(L). We compute φ†

t dl = φ†
t ∑ Nil ⊗ ei = ∑ tiNil ⊗ e = N(t)l ⊗ e as desired. �

6.6. Suppose t ∈ Zr
≥0 and pick a a ∈ ∆∗. Define a test curve φt : ∆∗ → ∆∗r by setting φt(s) =

a(st1 , . . . , str). Then φt induces a map

φ∗
t : Hp(∆∗r,L) → Hp(∆∗,L). (118)

We leave it to the reader to check that, under the isomorphism of §6.3, φ∗
t = φ†

t .

6.7. In the rest of this section, H will denote a variation of pure, polarized F-Hodge structure of
weight k with unipotent monodromy on the poly-punctured disk ∆∗r. Write H for the limit mixed
Hodge structure of H. In the language of nearby cycles, H = ψs1

· · · ψsrH. As a vector space, H
is isomorphic to the fiber of H over any chosen point s ∈ ∆∗r. For i = 1, . . . , r, we write Ti for
the monodromy operator and Ni = log Ti. The Ni then induce morphisms Ni : H → H(−1) of
the mixed Hodge structure H. We write Hp(H) = Hp(∆∗r,H) and IHp(H) = IHp(∆r ,H) for the
cohomologies of the local system underlying the variation H. By [10, 28], these are computed in
terms of complexes K(H) = H ⊗∧∗E and B(H) as in §6.3. But here the vector space E is viewed
as the pure, weight 2, Hodge structure F(−1)r. The map

d : Kp(H) = H ⊗∧pE → Kp+1(H) = H ⊗∧p+1E

is then a morphism of mixed Hodge structures.
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Write 0 ∈ ∆r for the origin. Then we have equalities of Hodge structures Hp(H) = H
p
0(H) and

IHp(H) = IH
p
0(H) where the groups H

p
0(H) and IHP

0 (H) groups defined in 5.2 and 5.3 respec-
tively.

6.8. Write F for the Hodge filtration on H. Then the data (N1, . . . , Nr ; F) defines a nilpotent
orbit. This data in turn defines a variation of Hodge structure Hnilp of weight k on ∆∗r

b for some

b > 0 (see (49)). Explicitly, Hnilp is the variation with local normal form e∑
r
i=1 ziNi F where the zi are

points in C such that |e2πizi | < b. We then have equalities of complexes of mixed Hodge structure:

K(H) = K(Hnilp), B(H) = B(Hnilp). In particular, Hp(H) and IHP(H)) depend only on the
nilpotent orbit associated to H. More precisely: H and Hnilp restrict to the same local system over

∆∗r
b , and hence the complexes B•(H) and B•(Hnilp) are equal. Likewise, all Hodge theoretic data

attached to these complexes depends only the limit mixed Hodge structure, which agrees for H
and Hnilp by construction.

We now prove versions of Lemma 114 and Theorem 113 for the normal crossing case.

Lemma 119. Suppose r = 1. Then Wk+1H1(H) = 0.

Proof. The proof is essentially the same as the proof of Lemma 114. Set N = N1. As in the proof of
Lemma 114, we get an exact sequence of mixed Hodge structures

0 → ker N → H
N→ H(−1) → (coker N)(−1) → 0.

Then we use the same reasoning as in Lemma 114 to show that Wk+1H1(H) = 0. �

Proposition 120. Let α = ∑
r
i=1 αi ⊗ ei ∈ Z1(B(H)) be a representative of an intersection cohomology

class ᾱ ∈ IH1 H. Then, for every t ∈ Fr
≥0, there is an element l(t) ∈ H such that

α(t) = N(t)l(t). (121)

Proof. Suppose t ∈ Fr
≥0. Then, if F denotes the Hodge filtration of H, the triple (H, F, N(t)) defines

a nilpotent orbit in one variable, and, thus, a F-variation of Hodge structure on the disk ∆∗. Write
Ht for this variation. Then, by 119, Wk+1H1(Ht) = 0.

As in 117, we get a morphism of complexes φ†
t : K(H) → K(Ht). Moreover, it is easy to see

that φ†
t is, in fact, a morphism of complexes of mixed Hodge structures. By §6.5, the composition

B1(H) → K(H) → K(Ht) takes a class α ∈ B1(H) to α(t)⊗ e.

By the purity theorem of [10], Wk+1 IH1(H) = IH1(H). So, it follows from Lemma 119 that the

composition IH1(H) → H1(H) → H1(Ht) is zero.

So suppose α ∈ B1(H) represents a class in IH1(H). Then φ†
t α = α(t)⊗ e = dl(t) = N(t)l(t) for

some l(t) ∈ H. The result follows. �

6.9. Suppose X ∈ E∗. Then contraction (or interior product) with X gives a map ιX : ∧pE →
∧p−1E. We then get a (−1,−1) morphism of mixed Hodge structures δX : Kp(H) → Kp−1(H)
by setting δX(h ⊗ ω) = h ⊗ ιX(ω). Note that δX preserves the restricted Koszul complex B(H) ⊂
K(H). It is also easy to see that δ2

X = 0.

Suppose t = (t1, . . . , tr) ∈ Fr. Then we write X(t) = ∑ tie
∗
i ∈ E∗ and δt = δX(t). We write

△t := dδt + δtd. (122)

Note that, for α = ∑ αi ⊗ ei ∈ K1(H), we have

δtα = ∑ tiαi = α(t). (123)

The following lemma is a variant of [10, Lemma 3.7]. (Indeed, it can easily be deduced from [10,
Lemma 3.7], but it is also easy enough to give a direct proof.)
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Lemma 124. For t ∈ Fr, write N(t) : Kp(H) → Kp(H) for the operator given by N(t)(h ⊗ ω) =
(N(t)h) ⊗ ω. Then △t = N(t).

Proof. Suppose α = h ⊗ ω ∈ Kp(H) with h ∈ H and ω ∈ ∧pE. Then

△tα = dδtα + δtdα

= d(h ⊗ ιX(t)ω) + δt(
r

∑
i=1

Nih ⊗ ei ∧ ω)

=
r

∑
i=1

Nih ⊗ ei ∧ ιX(t)ω +
r

∑
i=1

Nih ⊗ ιX(t)(ei ∧ ω)

=
r

∑
i=1

Nih ⊗ ei ∧ ιX(t)ω +
r

∑
i=1

Nih ⊗ tiω −
r

∑
i=1

Nih ⊗ ei ∧ ιX(t)ω

=
r

∑
i=1

tiNih ⊗ ω = N(t)α.

�

6.10. A pairing on the B complex. Suppose I = (i1, . . . , ik) is a multi-index in {1, . . . , r}. For
t ∈ Fr , set tI = ti1 ti2 · · · tik

. Using §6.2, we get a pairing

qt : Bp(H)⊗ Bp(H∗) → F(−p) given by (125)

qt(NI h ⊗ eI , N∗
J λ ⊗ eJ) =

{
tI(h, N∗

J λ), I = J;

0, else.

Here h ∈ H and λ ∈ H∗, and I = (i1, . . . , ik) and J = (j1, . . . , jl) are multi-indices with i1 < . . . < ik

and j1 < . . . < jl.

Remark 126. Note that, for h ∈ H and µ ∈ H∗, (NIh, µ) = (h, N∗
I µ). It follows that

qt(NI h ⊗ eI , N∗
I λ ⊗ eI) = tI(NI h, λ).

As we mentioned in §6.1, the monodromy logarithms on H∗ are give by −N∗
i . So let sw : BpH⊗

BpH∗ → BpH∗ ⊗ BpH be the map switching the factors. From this it follows that qt ◦ sw =
(−1)pqt.

Proposition 127. For each t ∈ Fr, the pairing qt in (125) is a morphism of mixed Hodge structure. If
t ∈ (F×)r, then qt is a non-degenerate pairing.

Proof. The fact that the pairing is a morphism of Hodge structures follows from the fact that each
Ni induces a morphism Ni : H → H(−1) of mixed Hodge structures (plus a little bit of bookkeep-
ing about the number of Tate twists). The fact that the pairing is non-degenerate for t ∈ (F×)r

follows from 6.2. �

Proposition 128. For α ∈ B(H), β ∈ B(H∗) and t ∈ Fr, we have

qt(dα, β) = qt(α, δtβ); (129)

qt(δtα, β) = qt(α, dβ). (130)

Proof. By the symmetry in the definition (or Remark 126), it suffices to prove (129). For this, sup-
pose h ∈ H and λ ∈ H∗, and set α = NJh ⊗ eJ , β = N∗

Kλ ⊗ eK for multi-indices J, K ⊂ {1, . . . , r}.
Then both sides of (129) are 0 unless there is an element i ∈ K \ J and an ǫ ∈ {±1} such that
ei ∧ eJ = ǫeK.
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Now, we compute

qt(dα, β) = qt(NiNJh ⊗ ei ∧ eJ , N∗
Kλ ⊗ eK)

= ǫqt(NKh ⊗ eK, N∗
Kλ ⊗ eK)

= ǫtK(h, N∗
Kλ).

On the other hand,

qt(α, δtβ) = qt(NJh ⊗ eJ , δtN
∗
Kλ ⊗ eK)

= qt(NJh ⊗ eJ , δtN
∗
Kλ ⊗ (ǫei ∧ eJ))

= qt(NJh ⊗ eJ , tiN
∗
Kλ ⊗ (ǫeJ))

= ǫtiqt(NJh ⊗ eJ , N∗
Kλ ⊗ eJ)

= ǫtitJ(h, N∗
Kλ)

= ǫtK(h, N∗
Kλ).

�

Lemma 131. Suppose t ∈ Fr
≥0. Then, every class in IH1 H has a representative α ∈ Z1(BH) with

δtα = 0.

Proof. Suppose α′ ∈ Z1(BH). Using Proposition 120, find l = l(t) ∈ H such that N(t)l = α′(t).
Then set α = α′ − dl. We have δt(α) = δtα

′ − δtdl = α′(t)−△tl = α′(t)− N(t)l = 0. �

Corollary 132. Set L
p
t H = ker δt ∩ ker d ⊂ BP(H). For each p, the canonical map L

p
t H → IHp H is a

morphism of mixed Hodge structure. The map L1
tH → IH1 H is surjective. In fact, the map Wk+1L1

tH →
IH1 H is surjective as well.

Proof. Since IHp H = Hp(BH) as a mixed Hodge structure, the map L
p
t H → IHp H is a morphism

of mixed Hodge structure. The second assertion follows from Lemma 131. The last assertion
follows from the purity theorem [10, 28] and the strictness of morphisms of mixed Hodge structure
with respect to the weight filtration. �

6.11. The restriction of qt to L1
t gives a pairing

qt : L1
t (H)⊗ L1

t (H∗) → F(−1). (133)

Since L1
t is a sub-mixed Hodge structure of B1(H), this is a morphism of mixed Hodge structures.

Using the notation that H∨ = H∗(1), we get a pairing qt : L1
tH⊗ L1

tH∨ → F.

Lemma 134. Suppose α ∈ L1
t (H), λ ∈ B0(H∗) = H∗. Then qt(α, dλ) = 0. Similarly, if h ∈ B0H and

β ∈ L1
t (H∗), then qt(dh, β) = 0.

Proof. For the first assertion, we have qt(α, dλ) = qt(δtα, λ) = 0. The second assertion has the
same proof (or follows by symmetry). �

Theorem 135. Suppose t ∈ Fr
≥0. The pairing qt : L1

tH⊗ L1
tH∨ → F descends to a pairing

h(t) : IH1 H⊗ IH1 H∨ → F.

This pairing, which we call the asymptotic height pairing is a morphism of mixed Hodge structures.
Therefore if H has weight k, the pairing factors through a pairing

h̄(t) : GrW
k+1 IH1 H⊗ GrW

−k−1 IH1 H∨ → F.

If c ∈ F≥0, then h(ct) = ch(t).
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Proof. The first assertion follows from Corollary 132 and Lemma 134. The fact that h(t) is a mor-
phism of Hodge structures follows from the fact that (133) is a morphism of mixed Hodge struc-

tures. If H is pure of weight k, then IH1 H has weights in the interval (−∞, k + 1]. Similarly,

IH1 H∨ has weighs in the interval (−∞,−k − 1]. So h(t) factors through through a pairing h̄(t) by
weight considerations.

To prove the last assertion, note that qct = cqt as a pairing on from B1(H)⊗ B1(H∨) to F. And
δct = cδt on B1(H). It follows that L1

ct(H) = L1
t (H) and similarly L1

ct(H∨) = L1
c(H∨). Therefore

h(ct) = c(t). �

Proposition 136. The pairing

h(t) : IH1 H⊗ IH1 H∨ → F (137)

can be computed as follows. Suppose α = ∑
r
i=1 αi ⊗ ei ∈ B1(H) and β = ∑

r
i=1 βi ⊗ ei ∈ B1(H∨) represent

intersection cohomology classes ᾱ and β̄ respectively. Fix t as above and l(t) such that N(t)l(t) = α(t).
Then

h(t)(α, β) =
r

∑
i=1

ti(αi − Nil(t), βi)Ni
. (138)

Proof. Given l(t) as above, set α′ = α − dl(t). Then δtα
′ = α(t)−△tl(t) = 0. If we have αi = Nihi

for hi ∈ H, then

h(t)(ᾱ, β̄) = qt(α
′, β) = qt(α − dl(t), β)

=
r

∑
i=1

ti(hi − l(t), β) =
r

∑
i=1

ti(αi − Nil(t), βi)Ni

as desired. �

Example 139. Let L = Q2 with basis u = (1, 0) and v = (0, 1), and write u∗, v∗ for the dual basis.
Set

N =

(
0 0
1 0

)
.

Pick a positive integer r and let Ni = N for 1 ≤ i ≤ r. Let L denote the local system on ∆∗r with

monodromy logarithms Ni. Then IH1(L) = Qr/Q with the copy of Q embedded diagonally. An

element of IH1(L) is represented by a sum α = ∑
r
i=1 aiv ⊗ ei with ai ∈ Q. Similarly, and element

of IH1(L∗) is given by a sum β = ∑
r
i=1 biu

∗ ⊗ ei. Since L underlies a pure variation of Hodge
structure of weight −1, α is admissible. We can take

l(t) =
∑

r
i=1 aiti

∑
r
i=1 ti

u.

Then N(t)l(t) = α(t). We claim that

h(t)(α, β) =
∑i<j(ai − aj)(bi − bj)titj

∑ ti
. (140)
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To see this, we compute

h(t)(α, β) = ∑
i

ti(αi − Nil(t), βi)Ni

= ∑
i

ti(aiv − ∑j ajtj

∑j tj
Niu, biu

∗)Ni

= ∑
i

ti((ai −
∑j ajtj

∑j tj
)v, biv

∗)

= ∑
i

ti(ai −
∑j ajtj

∑j tj
)bi

=
∑i,j aibititj − ajbititj

∑j tj

=
∑i,j(ai − aj)bititj

∑j tj

This is easily manipulated into the form in (140).

7. HIGHER DIMENSIONAL PAIRING AND POLARIZATIONS

In this section H is a pure variation of F-Hodge structure of weight k with unipotent mon-
odromy on ∆∗r as in §6.7. We fix a polarization

Q : H⊗H → F(−k).

This induces a morphism aQ : H → H∗(−k) by aQ(h1)(h2) = Q(h1, h2). By composing h(t) with

aQ we get a pairing on IH1 H with values in F(−k − 1). In fact, we will show that for t ∈ Fr
+ and

any p ∈ Z, we get a pairing on IHp H. The goal of this section is to show that these pairings are,
in fact, polarizations. We remark that, for t = (1, . . . , 1), this is essentially contained in the paper
by Cattani, Kaplan and Schmid on Intersection Cohomology [10].

Definition 141. For each t ∈ Fr and each p ∈ Z, write

R
p
t (H) = ker d ∩ ker△t ∩ BpH.

Note that, for each t ∈ Fr, R
p
t H is a mixed Hodge substructure of BpH containing the Hodge

substructure L
p
t H.

7.1. Real splittings. Let D be a classifying space of pure Hodge structures of k which are polar-
ized by a morphism Q : V ⊗ V → R(−k). Let θ be a nilpotent orbit with values in D gener-
ated by (N1, . . . , Nr; F). Recall by Theorem (54), the monodromy weight filtration W(N) is con-
stant on the monodromy cone C of positive R-linear combinations of N1, . . . , Nr. Moreover, if
W = W(N)[−k] then (F, W) is a mixed Hodge structure for which each element of C is a (−1,−1)-
morphism. The associated δ-splitting of θ is the nilpotent orbit θ̃ generated by (N1, . . . , Nr; F̃)
where (F̃, W) = (e−iδF, W) is the Deligne δ-splitting of (F, W).

In particular, since θ and θ̃ have the same monodromy logarithms N1, . . . , Nr they determine
the same underlying complex B = B(N1, . . . , Nr). Likewise, since δ acts trivially on GrW it follows
that (F, W) and (F̃, W) induce the same Hodge structure on GrW(B). In [10], Cattani, Kaplan
and Schmid use this method to reduce questions about the intersection cohomology groups of a
general nilpotent orbit to the case where the nilpotent orbit has limit split over R.

Theorem 142. For each p ∈ Z and each t ∈ Fr
+, the map R

p
t H → IHp H is onto. Moreover, R

p
t H has

weights in the interval (−∞, p + k].



36 PATRICK BROSNAN AND GREGORY PEARLSTEIN

Proof. It suffices to prove this for real nilpotent orbits. When t = (1, 1, . . . , 1) and the limit is split
over R, the first assertion is [10, (3.8)]. We can reduce to the case where the limit is split over R as
in §7.1. Then we can reduce to the case to t = (1, 1, . . . , 1) by scaling the Ni using Lemma (53). The
second assertion follows from the definition of the weight filtration W in terms of N(t). �

Definition 143. For each t ∈ Fr, define a pairing Qt on BpH by setting

Qt(NIu ⊗ eI , NJv ⊗ eJ) =

{
tI Q(u, NJv), I = J;

0, else.

When t = (1, . . . , 1), this pairing is used in [10, (3.4)]. (They write S instead of Q for the polar-
ization.)

Proposition 144. For each t ∈ (F×)r, Qt defines a pairing

Qt : BpH⊗ BpH → F(−p − k)

which is a non-degenerate morphism of mixed Hodge structure. For t ∈ Fr
+, Qt restricts to a polarization

on GrW
p+k R

p
t H.

Proof. Again it suffices to check this for real nilpotent orbits. The non-degeneracy follows from

§6.2. The restriction of the pairing to R
p
t H then gives a pairing

R
p
t H⊗ R

p
t H → F(−p − k). (145)

Since R
p
t H ⊂ Wp+kBpH, the pairing (145) vanishes on Wp+k−1R

p
t H for weight reasons. In the case

that t = (1, . . . , 1) and the limit is split over R this pairing is a polarization by [10]. We reduce to
that case by applying the δ-splitting of §7.1 and rescaling. �

Note that a polarization on a pure Hodge structure induces a canonical polarization on any
sub Hodge structure (by restriction), and it also induces a canonical polarization on any quotient
Hodge structure (by orthogonal projection). Proposition 144 therefore gives a canonical polariza-
tion

Qt : GrW
p+k IHp H⊗ GrW

p+k IHp H → F(−p − k) (146)

for t ∈ Fr
+. Since IHp H is concentrated in weights (−∞, p + k], the pairing (146) gives a pairing

IHp H⊗ IHp H → F(−p − k) (147)

also denoted by Qt (with kernel Wp+k−1 IHp H).

Lemma 148. For α, β ∈ B(H) we have Qt(dα, β) = Qt(α, δtβ).

Proof. The proof is essentially the same as the proof of Proposition 128. �

Corollary 149. Suppose α ∈ L
p
t H and β ∈ ker(R

p
t H → GrW

p+k IHp H). Then Qt(α, β) = 0.

Proof. Since β ∈ RP
t H, we have β ∈ Wp+kBPH. Then, the hypothesis implies that β = dγ +

η where γ ∈ Wp+kBp−1H and η ∈ Wp+k−1BPH. So Qt(α, β) = Qt(α, dγ + η) = Qt(δtα, γ) +
Qt(α, η) = Qt(α, η) = 0 for weight reasons. �
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7.2. Suppose H is pure of weight −1. Then the map aQ : H → H∗(1) = H∨ induces maps

BPH → Bp(H∨) and IHp H → IHp(H∨), which we also denote by aQ. Write hQ(t) : IH1 H ⊗
IH1 H → Q for the pairing

([α], [β]) 7→ h(t)(aQ [α], [β]). (150)

Theorem 151. Suppose [α], [β] ∈ IH1 H with H pure of weight −1.

hQ(t)([α], [β]) = Qt([α], [β]).

Proof. We can find α, β ∈ L1
tH representing [α] and [β] respectively. Then, by Corollary 149 and

the definition of Qt, we have h(t)(aQ [α], [β]) = qt(aQα, β) = Qt([α], [β]). �

The remainder of this section concerns the pairing h(t) in a special case which will be useful for
studying the Ceresa cycle.

Lemma 152. Suppose L is a local system with unipotent monodromy on ∆∗2. Write γi, i = 1, 2 for the
counterclockwise loops around si = 0. (So that π1(∆

∗2) is the free abelian group generated by γ1 and γ2.)
Suppose that the monodromy logarithms N1 and N2 are equal. Write N = N1 and suppose further that
N2 = 0. Let i : Z → π1(∆

∗2) be given by 1 7→ γ2 − γ1. Then

(i) The map NL → B1(L) given by Nv 7→ (0, Nv) induces an isomorphism NL → IH1(L).
(ii) The composition

NL → IH1(L) → H1(∆∗2, L)
i∗→ H1(Z, L) = L

is the inclusion.

Proof. Let C(L) denote the complex ker N → NL where the differential is 0. Then under the hy-
potheses, there is a morphism C(L) → B(L) which is the obvious inclusion on C0 and where
C1(L) → B1(L) is given by Nv 7→ (0, Nv). It is easy to see that this morphism is a quasi isomor-
phism of complexes. This proves (i).

To prove (ii), we note that H1(Z, L) is computed by the Koszul complex K(L) given by L → L
with the 0 differential. Then the composition in (ii) is the map induced on the first cohomology by
the following composition of complexes:

ker N
0 //

��

0 ⊕ NL

��
L

d //

��

L ⊕ L

(− id,id)
��

L
0 // L.

(Here d denotes the morphism in the Koszul complex.) �

Proposition 153. Suppose H is a variation of Hodge structure of weight −1 on ∆∗2 with unipotent mon-
odromy logarithms. Suppose N1 = N2 = N and N2 = 0. Let Q be a polarization of H. Identify NH with

IH1(H) using Lemma 152. Then, for each t ∈ Q2
≥0, the pairing

hQ(t) : IH1 H⊗ IH1 H → Q

amounts to a paring

hQ(t) : NH ⊗ NH → Q.
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This pairing is given, for (t1, t2) 6= (0, 0) by

hQ(t)(Nh, Nk) =
t1t2

t1 + t2
Q(h, Nk),

and vanishes for (t1, t2) = (0, 0).

Proof. Under the isomorphism NH → IH1 H of Lemma 152, the element Nh (resp. Nk) corre-
sponds to the class α = Nh ⊗ e2 (resp. β = Nk ⊗ e2) in B1H. For, t ∈ Q2

≥0 \ {(0, 0)}, set

β(t) = Nk ⊗ e2 − d

(
t2

t1 + t2
k

)

= − t2

t1 + t2
Nk ⊗ e1 +

t1

t1 + t2
Nk ⊗ e2.

And set β(t) = Nk ⊗ e2 for t = (0, 0). Then δtβ = 0. So β(t) ∈ L1
tH. Therefore, the pairing

vanishes when t = (0, 0), and, when t is non-zero, hQ(t)(α, β) = h(t)(aQα, β) = qt(aQα, β(t)) =

t2Q(h,
t1

t1 + t2
Nk) =

t1t2

t1 + t2
Q(h, Nk). �

8. COMPARISON THEOREM

In this section we relate the asymptotic height pairing (135) and the asymptotics of the height
of the biextension line bundle. We begin with a minor modification of Remark 20.

Lemma 154. Let VQ = Qv0 ⊕ UQ ⊕ Qv−2 be a finite dimensional vector space. Suppose that N is a
nilpotent endomorphism of VQ such that

N(v0) = µv−2, N(UQ) ⊆ UQ, N(v−2) = 0.

Let e0 = v0 + u + cv−2 be another element of VQ such that N(e0) = µ′v−2 where u ∈ UQ. Then, µ = µ′.

Proof. By definition,

(µ′ − µ)v−2 = N(e0 − v0) = N(u + cv−2) = N(u).

Since N(u) ∈ UQ and UQ ∩ Qv−2 = 0 it follows that both the right and left hand sides of the
previous equation vanish. �

Theorem 155. Let V be an admissible biextension variation with unipotent monodromy over ∆∗r with
underlying normal functions ν ∈ ANF(∆∗r,H) and ω ∈ ANF(∆∗r,H∨). Let sing(ν) = α and
sing(ω) = β. Define µ(V) as in equation (19). Define µ1, . . . , µr as in Remark (20). Then, for any
t ∈ Zr

≥0,

h(t)(α, β) = −µ(V)(t) + ∑
j

tjµj. (156)

In particular, h(t)(α, β) ≡ −µ(V)(t) modulo a linear function of t.

Proof. Let V be the Q-vector space corresponding to a reference fiber of V . Pick a splitting of the
weight filtration W of V so that V = Qe0 ⊕ H ⊕ Qe−2 where:

(i) the image of e0 is the canonical generator of GrW
0 V = Q;

(ii) H maps isomorphically to GrW
−1;

(iii) e−2 is the canonical generator of W−2V = Q(1).
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Write N̄i for the i-th monodromy operator on H and write Ni for the i-th monodromy operator on
V. Then, in terms of the splitting of W chosen above, we have

Ni =




0 0 0
αi N̄i 0
γi −βi 0




where γi ∈ Q(1) and (α1, . . . , αr) (resp. (β1, . . . , βr)) is a representative of the class α (resp. β) in
Z1(B(H)) (resp. Z1(B(H∨)). (§6.1 explains why βi appears with a minus sign in the matrix of Ni.)

Set N̄(t) = ∑ tiN̄i, γ(t) = ∑ tiγi, etc. Let l(t) ∈ H be an element such that N̄(t)l(t) = α(t). Set
e0(t) = e0 − l(t). Then,

N(t)e0(t) = α(t) + γ(t)e−2 − N̄(t)l(t) + (l(t), β(t))e−2

= (γ(t) + (l(t), β(t)))e−2.

Therefore, by Remark (20) and Lemma (154), µ(V)(t) = γ(t) + (l(t), β(t)). Likewise, we have
µi = γi + (li, βi) where N̄i(li) = αi.

On the other hand, by (138)

h(t)(α, β) =
r

∑
i=1

ti(αi − Nil(t), βi)Ni
.

Consequently,

µ(V)(t) + h(t)(α, β) = γ(t) + (l(t), β(t)) +
r

∑
i=1

ti(αi − Nil(t), βi)Ni

= γ(t) + (l(t), β(t)) +
r

∑
i=1

ti(αi, βi)Ni
−

r

∑
i=1

ti(Nil(t), βi)Ni

= γ(t) + (l(t), β(t)) +
r

∑
i=1

ti(αi, βi)Ni
−

r

∑
i=1

ti(l(t), βi)

= γ(t) + (l(t), β(t)) +
r

∑
i=1

ti(αi, βi)Ni
− (l(t), β(t))

= γ(t) +
r

∑
i=1

ti(αi, βi)Ni

= γ(t) +
r

∑
i=1

ti(li, βi)

=
r

∑
i=1

tiµi

�

9. BOUNDARY VALUES

Let V → ∆∗r be an admissible biextension variation with unipotent monodromy, and C = Rr
>0.

Then, as noted in Remark (20), the function µ(V)(m) is defined on the closure C̄ of C.

Lemma 157. Let J ⊂ {1, . . . , r}. Then µ(V)(m1, . . . , mr) is given by a rational function on the subset
C̄J ⊂ C̄ on which mj > 0 if j ∈ J and mj = 0 if j /∈ J.
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Proof. The proof Theorem (155) shows that µ(V)(m) = γ(m) + (ℓ(m), β(m)). Accordingly, the
content of the lemma boils down to showing we can find a solution to the equation

N(m)ℓ(m) = α(m)

using rational functions of m. Without loss of generality, we assume that J = {1, . . . , a}. Let
H = GrW

−1V with reference fiber H. Then, the nilpotent orbit of H determines an associated
nilpotent orbit

θ̃(z) = e∑k zk Nk F̃

with limit mixed Hodge structure split over R as in §2. Moreover, θ̃(z) takes values in the appro-
priate classifying space of pure Hodge structure as soon as Im(z1), . . . , Im(zr) > 0. Therefore,

θ̃a(z1, . . . , za) = θ̃(z1, . . . , za, i, . . . , i)

is a nilpotent orbit. By [9], we therefore obtain an sl2-triple (N(m), H, N+(m)) for each m ∈ C̄J

where H is a fixed semisimple element.

To continue, we note that the fact that H is constant reflects the fact that the monodromy weight
filtration WJ := W(N(m)) is constant on C̄J. Moreover, α(m) and β(m) ∈ W−1(J). Let α−1(m)

denote the projection of α(m) to the −1-eigenspace of H. Then, since N(m) : Gr
WJ

1 → Gr
WJ

−1

is an isomorphism, there exists a unique element ℓ1(m) in the +1 eigenspace of H such that
N(m)ℓ1(m) = α−1(m). For weight reasons,

(ℓ(m), β(m)) = (ℓ1(m), β(m))

Accordingly, the rationality of µ(m) boils down to the rationality of the inverse map N(m)−1 :

Gr
WJ

−1 → Gr
WJ

1 . �

Given this lemma, it is natural to ask of if µ(V) has a continuous extension from C to C̄. To
establish this, let G be a class of sequences of points in C with the property that any sequence of
points {m(p)} in C which converges to mo ∈ C̄ − C contains a subsequence which belongs to G.

Lemma 158. Let f : C → R be a function which has limit L along every G-sequence which converges to
mo ∈ C̄ − C. Then, f has limit L along every sequence in C converging to mo.

Proof. Let m(p) be a sequence in C which converges to mo. Then, there exists a real number B
and an index p′ such that | f (m(p))| < B for all p > p′. Indeed, if this not true we can find a
subsequence m(pi) such that | f (m(pi)| > i for all i sufficiently large. By the defining property of
G, we can find a G-subsequence of m(pi) which converge to mo. By hypothesis, f has limit L along
G-sequences through mo.

Suppose now that limp→∞ f (m(p)) 6= L. Then, there exists an ǫ > 0 and a subsequence m(pi)
such that | f (m(pi)) − L| ≥ ǫ for all i. Passage to a G-subsequence of m(pi) again produces a
contradiction. �

To apply this lemma, we recall that in [4] the authors defined a notion of sl2-sequences on

I = {(z1, . . . , zr) | Re(z) ∈ [0, 1], Im(z) ∈ [1, ∞) }
which has the property that every sequence in I contains an sl2-sequence. Given a point mo ∈
C̄ − C and a sequence of points m(p) in C which converges to m0, define

m̃(p) = m(p)/ min(m1(p), . . . , mr(p)) (159)

keeping in mind that each mj(p) > 0. Then,
√
−1m̃(p) is a sequence of points in I. We say that

m(p) is a G-sequence if im̃(p) is a sl2-sequence.
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As our next preliminary, given a mixed Hodge structure (F, W) let Ŷ(F,W) denote the Deligne

grading of the sl2-splitting of (F, W). Next we note (cf. [4]) that if (N1, . . . , Nr; F, W) generate an
admissible nilpotent orbit θ with limit mixed Hodge structure split over R then

Ŷ(eicNF,W) = Ŷ(eiNF,W) (160)

for any positive real number c and any N ∈ C = {∑j yjNj | y1, . . . , yr > 0}.

Finally, suppose that θ is a nilpotent orbit of biextension type with reference fiber V and let
e0 ∈ V project to 1 ∈ GrW

0 and e−2 be the generator of GrW
−2. Then, for any m ∈ C

µ(θ)(m)e−2 =
1

2
[N(m), Ŷ(eiN(m)F,W)]e0. (161)

Indeed, by the properties of Deligne systems and the short length of W, the grading Ŷ(eiNF,W)

produces a lift v0 of 1 ∈ GrW
0 such that N(v0) belongs to W−2, so we can apply Lemma (154) to

conclude the stated formula.

Lemma 162. Suppose f : C̄ → R is a function, and suppose that, for every sequence m(p) in C converging
to m0 ∈ C̄, lim f (m(p)) = f (m0). Then f is continuous on C̄.

Proof. By the definition of continuity, f is continuous on C. Suppose that m(p) is a sequence in
C̄ converging to m0. For each p, we can find a sequence {n(p, q)}∞

q=1 of points in C converging

to m(p). By our hypothesis, for each p, we have limq→∞ f (n(p, q)) = f (m(p)). So we can find a
q ∈ Z>0 such that

max(|n(p, q)− m(p)|, | f (n(p, q)) − f (m(p))|) < 2−p

where we write |n(p, q) − m(p)| for the usual Euclidean norm. Set n(p) := n(p, q). Then n(p) →
m0, so, by our hypotheses, f (n(p)) → f (m0). Moreover, limp→∞ f (n(p)) = limp→∞ f (m(p)). So,

since m(p) was an arbitrary sequence in C̄ converging to m0, this proves that f is continuous. �

Theorem 163. µ(V) has a continuous extension from C to C̄.

Proof. The first step is to observe that µ(V) = µ(θ) where θ is the nilpotent orbit generated by

(N1, . . . , Nr; F̂, M) where (F, M) is sl2-splitting of the limit mixed Hodge structure of V . Indeed,
by Remark 20, the value of µ depends only on structure of the local monodromy logarithm.

To continue, let m(p) be a sequence in C which converges to mo ∈ C̄ − C and m̃(p) be the
corresponding sequence (159) in I. Then, by property (160) we can rewrite (161) as

µ(θ)(m(p))e−2 =
1

2
[N(m(p)), Ŷ(eiN(m̃(p))F,W)]e0

By Theorem (2.30) of [4], the grading Ŷ(eiN(m̃(p))F,W) has limits of the form

Y(N(θ1), Y(N(θ2), . . . , Y(F,M)))

along sl2-sequences (see [4] for notation). The first key thing to know about this limit is that
N(θ1) = N(mo) since N(m0)/ min(mj(p)) is the dominant term of N(m̃(p)). The second key
thing to know is that

[N(mo), Y(N(mo), Y(N(θ2), . . . , Y(F,M)))]

belongs to W−2End(V). Therefore,

µ(θ)(mo)e−2 =
1

2
[N(mo), Y(N(mo), Y(N(θ2), . . . , Y(F,M)))]e0

which proves that limm→mo µ(θ)(m) = µ(θ)(mo) for sequences m(p) ∈ C tending to mo ∈ C̄ − C.
Now apply Lemma 162. �
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10. MIXED EXTENSIONS AND BIEXTENSIONS

In [41, IX.9.3, pp. 421–426], Grothendieck develops the theory of mixed extensions (extensions
panachées) in an abelian category. This turns out to be a convenient way to think about mixed
extensions of normal functions and the variations of Hodge structure which we have been call-
ing biextension variations. In this section, we briefly review this notion and its relation to the
Mumford-Grothendieck’s concept of a biextension.

10.1. Suppose G is a group acting on a set X. If X is isomorphic to G regarded as a G-set with the
action of left multiplication, then X is called a torsor for G. If X is either empty or isomorphic to
G, then X is called an pseudo-torsor for G.

Similarly a sheaf F is a called a pseudo-torsor for a sheaf of groups G if there is an action of G on
F and, for each open U, either F(U) is empty or G(U) acts simply transitively on F(U). (See the
Stacks Project [42, Tag 03AH].)

10.2. Suppose Q0, Q1 and Q2 are three objects in an abelian category C. A mixed extension of Q0 by
Q1 by Q2 is an object X of C with an increasing filtration WiX such that W−3X = 0 and W0X = X

together with isomorphisms pi : GrW
−i X

∼→ Qi.

Write EXTPAN(Q0, Q1, Q2) for the category of mixed extensions of Q0 by Q1 by Q2. Here
a morphism in EXTPAN(Q0, Q1, Q2) from X to X′ is a morphism of objects in C commuting
with the isomorphisms from pi. Let Extpan(Q0, Q1, Q2) denote the set of isomorphism classes
in EXTPAN(Q0, Q1, Q2).

From a mixed extension X of Q0 by Q1 by Q2, we get an extension W0X/W−2X of Q0 by Q1 and
an extension W−1X of Q1 by Q2. In fact, we get a functor

EXTPAN(Q0, Q1, Q2) → EXT(Q0, Q1)× EXT(Q1, Q2). (164)

Here EXT(Q0, Q1) denotes the usual category of extensions of Q0 by Q1. Given extensions E0

of Q0 by Q1 and E1 of Q1 by Q2, Grothendieck lets EXTPAN(E0, E1) denote the category of all

mixed extensions of Q0 by Q1 by Q2 together with isomorphisms πi : W−iX/W−i−2X
∼→ Ei for

i = 0, 1. The morphisms in EXTPAN(E0, E1) are morphisms X → X′ in C commuting with the
isomorphism πi for i = 0, 1.

10.3. Action of Ext(Q0, Q2). Given an extension G of Q0 by Q2 and an object X of EXTPAN(E0, E1),
Grothendieck defines a mixed extension G ∧ X as follows. First, regard X as an object of the cate-
gory EXT(Q0, E1) of extensions of Q0 by E1. The sequence

0 → Q2
i→ E1 → Q1 → 0

gives a functor i∗ from the category EXT(Q0, Q2) of extensions of Q0 by Q2 to EXT(Q0, E1). Then
using Baer sum in EXT(Q0, E1) we can define G∧X as i∗G+E1. This gives an action of EXT(Q0, Q2)
on EXTPAN(E0, E1).

Alternatively we can define G ∧ X as follows. Suppose G is given by

0→Q2
ι→ G

π→ Q0 → 0.

Then G ∧ X is the cohomology of the complex

Q2 → G ⊕ X → Q0 (165)

where the first map is the one sending q to (ιq,−p−1
2 (q)) and the second map sends (g, x) to

π(g)− p0(x).

If we give G the filtration WiG where W−3G = 0, W−2G = W−1G = Q2 and W0G = G,
then this induces a filtration on G ⊕ X making the morphisms in the complex (165) strict (for
the obvious filtrations on Q0 and Q2). We then get a filtration on G ∧ X making G ∧ X into an
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object in EXTPAN(E0, E1). The isomorphism π0 : G ∧ X/W−2(G ∧ X)
∼→ E0 is induced from

π0 : X/W−2X
∼→ E0. It sends a pair (g, x) to π0x.

A class in W−1(G ∧ X) can be represented by an element (g, x) ∈ W−1G ⊕ W−1X. Since g ∈
W−1G, we can consider g as an element in Q2 ⊂ E1. Then π1 : W−1(G ∧ X)

∼→ E1 sends (g, x) to
g + π1(x).

It is easy to check that the action (G, X) 7→ G ∧ X described above gives a functorial action; that
is, a functor EXT(Q0, Q2)× EXTPAN(E0, E1) → EXTPAN(E0, E1). The same prescription gives a
functor EXT(Q0, Q2)× EXTPAN(Q0, Q1, Q2) → EXTPAN(Q0, Q1, Q2).

Proposition 166 (Grothendieck). Suppose Qi are as above for i = 0, 1, 2 and Ei are as above for i = 0, 1.

(i) EXTPAN(E0, E1) is a groupoid; that is, every morphism in EXTPAN(E0, E1) is an isomorphism.
(ii) The set Extpan(E0, E1) of isomorphism classes of objects in EXTPAN(E0, E1) is a pseudo-torsor

for Ext(Q0, Q2). In other words, Extpan(E0, E1) is either empty or a torsor for Ext(Q0, Q2)
under the action (G, X) 7→ G ∧ X.

(iii) For E ∈ EXT(Q0, Q1) and F ∈ EXT(Q1, Q2) as above. Consider the long exact sequence

Ext1(Q0, Q2) → Ext1(E, Q2) → Ext1(Q1, Q2)
∂→ Ext2(Q0, Q2)

arising from the short exact sequence

0 → Q1 → E → Q0 → 0.

Write ξ ∈ Ext1(Q1, Q2) for the class of F and define c(E, F) = ∂(ξ). Then c(E, F) = 0 if and
only if Extpan(E, F) is non-empty.

10.4. There is an obvious map Extpan(Q0, Q1, Q2) → Ext1(Q0, Q1)×Ext1(Q1, Q2) and if (E0, E1) ∈
Ext1(Q0, Q1)× Ext1(Q1, Q2) we get a commutative diagram

Extpan(E0, E1) //

φ

��

{(E0, E1)}

��

Extpan(Q0, Q1, Q2)
π // Ext1(Q0, Q1)× Ext1(Q1, Q2).

We also get an action of Hom(Q0, Q1) × Hom(Q1, Q2) on the Extpan(E0, E1) as follows. Take
X ∈ Extpan(E0, E1) and ( f0, f1) ∈ Hom(Q0, Q1)× Hom(Q1, Q2). Then

G( f0, f1) := f1 ∪ [E0] + [E1] ∪ f0 ∈ Ext1(Q0, Q2). (167)

Since Extpan(E0, E1) is a Ext1(Q0, Q2)-torsor, G( f0, f1) ∧ X is and element of Extpan(E0, E1).

Proposition 168. The map φ surjects onto π−1(E0, E1). Moreover, if X, Y ∈ Extpan(E0, E1), then
φ(X) = φ(Y) if and only if Y = G( f0, f1) ∧ X for some ( f0, f1) ∈ Hom(Q0, Q1)× Hom(Q1, Q2).

Proof. The first statement is obvious. For the second, suppose X ∈ EXTPAN(E0, E1) and Y =
G( f0, 0) ∧ X. The extension G := G( f0, 0) is given by the following pullback diagram

0 // Q2
// E1

// Q1
// 0

0 // Q2
// G //

h

OO

Q0
//

f0

OO

0

of the extension E1 by the map f0. We get a map ψ : G ∧ X → X sending a class represented by
(g, x) to x − h(g). This map is well-defined on G ∧ X because, for q ∈ Q2, ψ(q,−q) = q − h(q) =
0. The map ψ does not, in general commute with the maps π0 to E0: we have π0(ψ(g, x)) =
π0(x − h(g)) while π0(g, x) = π0(x). However, using the fact that h(g) ∈ W−1X, we see that ψ
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does commute with p0. Then it is easy to see that ψ commutes with p1 and p2. Thus ψ induces
a morphism in EXTPAN(Q0, Q1, Q2) which is easily seen to be an isomorphism. So G ∧ X is
isomorphic to X in EXTPAN(Q0, Q1, Q2).

The proof that G(0, f1) ∧ X is isomorphic to X in EXTPAN(Q0, Q1, Q2) is similar. This proves
the “if” part of the proposition.

For the “only if” part, suppose that X and Y are objects in EXTPAN(E0, E1) and ψ : Y → X is an
isomorphism between them as objects in EXTPAN(Q0, Q1, Q2). Using πi, identify W−iX/W−i−2X
and W−iY/W−i−2Y with Ei for i = 0, 1. Then there exist morphisms f0 : Q0 → Q1 and f1 : Q1 →
Q2 such that (W−i/W−i−2)( f ) = idEi

+ fi. From this it is not hard to see that Y ∼= G( f0, f1)∧ X. �

Corollary 169. Suppose that Hom(Q0, Q1) = Hom(Q1, Q2) = 0. Then the fiber of the map

Extpan(Q0, Q1, Q2) → Ext1(Q0, Q1)× Ext1(Q1, Q2)

over (E0, E1) is Extpan(E0, E1).

Proof. Obvious. �

10.5. Pseudo-biextensions. Grothendieck’s concept of mixed extension interacts in a rather inter-
esting way with the Mumford-Grothendieck concept of a biextension [41, pp. 156–159]. To explain
this fix objects Q0, Q1 and Q2 as above.

Suppose E1, E2 ∈ Ext1(Q0, Q1) and F1, F2 ∈ Ext1(Q1, Q2). There are natural composition laws

+1 : Extpan(E1, F1)× Extpan(E2, F1) → Extpan(E1 + E2, F1)

+2 : Extpan(E1, F1)× Extpan(E1, F2) → Extpan(E1, F1 + F2)

satisfying various compatibilities. This is explained in C. Hardouin’s 2005 thesis [23, Theorem
4.4.1]. For the convenience of the reader we explain the operations +1 and +2.

10.6. Suppose Xi ∈ Extpan(Ei, F) for i = 1, 2. Write ρi : Xi → Q0 for the composition

Xi → GrW
0 Xi

p0→ Q0

and write ji : F → Xi for the canonical injection induced by π−1
1 . Then Hardouin defines X1 +1 X2

to be the middle homology group of the complex

F

(
j1
−j2

)

// X1 ⊕ X2

(
ρ1 −ρ2

)

// Q0

where we write the arrows in matrix notation. We then get maps
(

j1 0
)

:F → X1 +1 X2,
(

ρ1

0

)
:X1 +1 X2 → Q0.

Combining these maps, we obtain an exact sequence

0 → F → X1 +1 X2 → Q0 → 0.

And it is not hard to see that this sequence makes X1 +1 X2 into an element of Extpan(E1 + E2, F)
in a canonical way.
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10.7. Here is another way to think about the composition +1. An object Xi ∈ EXTPAN(Ei, F) can

be thought of as an object of EXT1(Q0, F) whose image in EXT1(Q0, Q1) is Ei. In other words, if

we let π : EXT1(Q0, F) → EXT1(Q0, Q1) denote the functor induced by pushforward along the
canonical map F → Q1, then EXTPAN(Ei, F) is the fiber category π−1(Ei). If we take the Baer sum

of X1 and X2 regarded as objects in Ext1(Q0, F), then we clearly get an element of π−1(E1 + E2). It
is easy to check that this element is, in fact, X1 +1 X2 as defined above.

10.8. The construction of +2 is similar, and we explain it in the language of §10.7. Suppose Xi

are objects in EXTPAN(E, Fi) for i = 1, 2. Write ι : EXT1(E, Q2) → EXT1(Q1, Q2) for the canonical
functor (induced by the inclusion Q1 → E). Then we can regard Xi as object in the fiber category

ι−1(Fi). We then define the sum X1 +2 X2 to be the Baer sum of the two Xi in EXT1(E, Q2). It is
easy to see that X1 +2 X2 lies in the fiber category ι−1(F1 + F2) = EXTPAN(E, F1 + F2).

Definition 170. Suppose B, C and A are three abelian groups. A pseudo-biextension of B × C by A
is a set E equipped with

(i) an A-action and a map π : E → B × C giving E the structure of an A pseudo-torsor over
B × C;

(ii) commutative operations +1 : E ×B E → E and +2 : E ×C E → E.

Write pB = pr1 ◦π and pC = pr2 ◦π. For each b ∈ B, write Eb = p−1
B (b) and, for each C, write

Ec = p−1
C (c). Then the above data is assumed to satisfy the following properties

(iii) For each b ∈ B, the operation +1 makes Eb into an abelian group and the canonical map
Eb → C into a group homomorphism. Moreover, the action of A on ker(Eb → C) coming
from the structure of E as an A pseudo-torsor induces a group isomorphism between A
and ker(Eb → C).

(iv) For each c ∈ C, the operation +2 makes Ec into an abelian group and the canonical map
Ec → B into a group homomorphism with kernel equal to A as in (iii).

(v) Suppose π(Xij) = (Ei, Fj) for i = 1, 2. Then

(X11 +1 X12) +2 (X21 +1 X22) = (X11 +2 X21) +1 (X12 +1 X22).

10.9. A surjective pseudo-biextension π : E → B×C is called a biextension. Grothendieck studied
the notion of biextensions in the category of sheaves of abelian groups in a topos T in [41]. Suppose
B, C and A are three sheaves of abelian groups in T. We define a pseudo-biextension of B × C by A
to be a sheaf E in T equipped with a morphism π : E → B × C along with an A-action making E
into an A-torsor over B × C and operations +1,+2 satisfying the same axioms as in Definition 170
above. A pseudo-biextension π : E → B × C is a biextension if π is surjective as a morphism of
sheaves.

Remark 171. Suppose A, B and C are abelian groups, and U is an extension of B ⊗ C by A. Write
E for the pull-back of U to B × C via the natural map B × C → B ⊗ C given by (b, c) 7→ b ⊗ c.
The group A acts on U via right translation in such a way that U becomes an A-torsor over B ⊗ C.
Therefore, the pull-back E of U becomes an A-torsor over B × C. Write p for the map U → B ⊗ C
and π for the map E → B × C. Suppose bi ∈ B, ci ∈ C for i = 1, 2 and uij ∈ p−1(bi ⊗ cj). Then

u11 + u12 ∈ p−1(b1 × C). So we can use the addition in U to define a map

+1 : E ×B E → E.

We can similarly define +2 : E ×C E → E. And it is slightly tedious but not hard to show that E
becomes a biextension of B × C by A.
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In fact, Grothendieck showed that all biextensions arise in this way provided that Tor1(B, C) =
0. More generally we have an exact sequence

0 → Ext1(B ⊗ C, A) → Biext(B × C, A) → Hom(Tor1(B ⊗ C), A)

where Biext(B × C, A) denotes the set of isomorphisms of biextensions of B × C by A. [41, p.220].

Theorem 172 (Hardouin). Suppose C is an abelian category and Q, R, P are objects satisfying Hom(Q, R) =
Hom(R, P) = 0. Then the map

Extpan(Q, R, P) → Ext1(Q, R)× Ext1(R, P)

together with the action of Ext1(Q, P) and the operations +1 and +2 described above makes Extpan(Q, R, P)
into a pseudo-biextension of Ext1(Q, R)× Ext1(R, P) by Ext1(Q, P).

Explanation. The main point is to check that the Ext1(Q, P) action gives Extpan(Q, R, P) the struc-
ture of a pseudo-torsor. This follows from the condition that Hom(Q, R) = Hom(R, P) = 0 and
Corollary 169. The rest of the verification is straightforward. �

10.10. Sheaf theoretic version. Suppose now that T is a topological space and C is a stack of
abelian categories over T. So for each open subset U of T we have an abelian category C(U) and
for each inclusion i : V → U we have restriction functor i∗ : C(U) → C(V), which we also write
as X  X|V . As in [45, p. 5396], we assume that i∗ is exact. The main example we have in mind is

when T is a complex manifold and C(U) is the category of mixed Hodge modules on T.

For any objects A, B ∈ C(T), we get a sheaf Hom(A, B) sending on open U to Hom(A|U, B|U).

Lemma 173. Suppose that A, B are objects in C(T) satisfying Hom(A, B) = 0.

(i) If E is an extension of A by B in C(T), then the identity is the only automorphism of E as an
extension.

(ii) The assignment U  Ext1(A|U, B|U), which is naturally a presheaf by the exactness of the restric-
tion functors, is a sheaf.

Proof. (i) If φ is an automorphism then φ − id induces an element of Hom(A, B) which must be 0.

(ii) Suppose {Vi} is an open cover of U and, for each i, Ei ∈ Ext1(A|Vi
, B|Vi

) such that, for all

i, j, (Ei)|Vi∩Vj
∼= (Ej)|Vi∩Vj

. It follows from (i) that there is a unique isomorphism ϕij : (Ei)|Vi∩Vj
∼=

(Ej)|Vi∩Vj
. In particular, ϕjk ◦ ϕij = ϕik for all i, j, k. Therefore the Ei glue together to form an object

E ∈ Ext1(A|U, B|U). �

We write Ext1(A, B) for the resulting sheaf when Hom(A, B) = 0.

Definition 174. We call a triple Q• = (Q0, Q1, Q2) disjoint if Hom(Q0, Q1) = Hom(Q0, Q2) =
Hom(Q1, Q2) = 0.

The main example we have in mind here is a sequence Qi of torsion-free variations of pure
Hodge structure of weight −i.

If Q• is disjoint then the same argument as above shows that the presheaf

U Extpan(Q0|U, Q1|U, Q2|U)

is a sheaf. Similarly, for E ∈ Ext1(Q0, Q1) and F ∈ Ext1(Q1, Q2), the presheaf U Extpan(E|U, F|U)
is a sheaf. We write Extpan(Q0, Q1, Q2) for the first sheaf and Extpan(E, F) for the second. By

Grothendieck’s result, Extpan(E, F) is a Ext1(Q0, Q2) pseudo-torsor. Moreover, Extpan(E, F) is a

Ext1(Q0, Q2) torsor if the stalks of Extpan(E, F) are non-empty.
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Using Theorem 172 we see that

Extpan(Q0, Q1, Q2) → Ext1(Q0, Q1)× Ext1(Q1, Q2)

together with the action of Ext1(Q0, Q2) and the operations +1 and +2 (which become sheaf mor-

phisms) is a pseudo-biextension of the sheaf Ext1(Q0, Q1)× Ext1(Q1, Q2) by Ext1(Q0, Q2). It is a
biextension if the stalks of Extpan(Q0, Q1, Q2) are non-empty.

11. MIXED EXTENSIONS OF NORMAL FUNCTIONS

11.1. The sheaf of mixed extensions. Suppose j : S → S̄ is the inclusion of one complex man-
ifold in another as a Zariski open set. By analogy with §5.1, for an A-variation of mixed Hodge

structure H on S with W−1H = H, write NF(S,H) for Ext1
VMHS(S)(A,H) and ANF(S,H)S̄ for

Ext1
VMHS(S)ad

S̄

(A,H). If H is torsion free and pure of weight −1, duality gives an isomorphism

NF(S,H∗(1)) = Ext1
VMHS(S)(H, A) and sending ANF(S,H∗(1)) to Ext1

VMHS(S)ad
S̄

(H, A).

Suppose now that H is pure of weight −1 and torsion-free. Since the triple (A,H, A(1)) is
disjoint, we get sheaves on S: U  NF(U,H|U), U  NF(U,H∨

|U) and U  NF(U, A(1)). We

also get a sheaf U  Extpan(A,H|U, A(1)). Write NF(H) and NF(A(1)) for these sheaves on S.

We also get sheaves ANF(H) and ANF(A(1)) on S̄ given by admissible normal functions.

Fix ν ∈ ANF(S,H)S̄ and ω ∈ ANF(S,H∨)S̄. Then, for any open set U ⊂ S, we write BA(U)
for the set of isomorphism classes of mixed extensions of A by HA by A(1) in A − VMHS(U).
Similarly, if U ⊂ S̄, we write Bad

A (U) for the set of isomorphism classes of mixed extensions of A

by HA by A(1) in A−VMHS(U ∩ S)ad
U . The normal functions ν and ω give rise to extensions νA ∈

Ext1
A−VMHS(U∩S)ad

U
(A,HA) and ωA ∈ Ext1

A−VMHS(U∩S)ad
U
(H∨

A, A(1)). We write BA(ν, ω)(U) (resp.

Bad
A (ν, ω)(U)) for set of isomorphism classes of mixed extensions of νA by ωA in A − VMHS(U)

(resp. A −VMHS(U ∩ S)ad
U ). When A = Z we drop the subscript A from the notation and simply

write B (resp. Bad ).

By pullback of variations, BA (resp. Bad
A ) is presheaf on S (resp. S̄).

Lemma 175. The presheaf BA (resp. Bad
A ) is a sheaf on S (resp. S̄).

Proof. This follows from the fact that A,H and A(1) are disjoint in the category of A variations. �

Lemma 176. Write jmer
∗ O×

S for the sheaf of meromorphic functions on S̄ which are regular and non-
vanishing on S. Then

(i) The functor

U  Ext1
VMHS(U)(Z, Z(1)) = NF(U, Z(1))

defines a sheaf on S which is canonically isomorphic to O×
S .

(ii) The functor

U  Ext1
VMHS(U∩S)ad

U
(Z, Z(1)) = ANF(U ∩ S, Z(1))U

defines a sheaf on S̄ which is canonically isomorphic to jmer
∗ O×

S .

Proof. Both of these statements are local. The first is well known and follows essentially from the

canonical isomorphism Ext1
MHS(Z, Z(1)) = C×.

In the case that S̄ = ∆a+b and S = ∆∗a × ∆b for non-negative integers a and b, the second state-
ment follows from the local normal form of an admissible normal function. Since the statement is
local on S̄, this proves that (ii) holds when Y := S̄ \ S is a normal crossing divisor.
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For the general case, by using Hironaka, we can find a proper morphism p : S̄′ → S̄ such that p
is an isomorphism over S and D = p−1Y is a normal crossing divisor (with Y = S̄ \ S as above).
Write S′ = p−1S, and j′ : S′ → S̄′ for the inclusion. Then, if U is open in S̄, by M. Saito we have

ANF(U ∩ S, Z(1))U = ANF(p−1U ∩ S′, Z(1))p−1U. Since jmer
∗ O×

S = p∗ j
′mer
∗ O×

S′ , this proves that (ii)

holds in general. �

Corollary 177. The sheaf B (resp. Bad ) is a biextension (resp. pseudo-biextension) of NF(S,H) ×
NF(S,H∨) by O×

S (resp. of ANF(S,H)S̄ × ANF(S,H∨)S̄ by jmer
∗ O×

S ).

Proof. The fact that B and Bad are pseudo-biextensions follows directly from Lemma 176 and
Theorem 172. The fact that B is a biextension follows from Theorem 81 (applied to the case where
D = ∅). �

Remark 178. If S̄ \ S is a normal crossing divisor, then Theorem 81 implies that Bad in Corollary 177
is a biextension. We will prove a stronger result in Theorem 233.

Corollary 179. The sheaf B(ν, ω) (resp. Bad (ν, ω)) is a torsor (resp. pseudo-torsor) for O×
S (resp.

jmer
∗ O×

S ).

12. THE TORSION PAIRING

Suppose L is a torsion-free local system of Z modules on ∆∗. Write H1(L)tors for the torsion

elements of H1(L) := H1(∆∗,L). Note that H1(L∗) is canonically isomorphic to Ext1
∆∗(L, Z) via

the map taking an extension to its dual. Let M denote the category of mixed extensions of Z by
L by Z (in the category of sheaves of abelian groups over ∆∗). We call a mixed extension X in
M restricted if X/W−2X ∈ H1(L)tors and W−1X ∈ H1(L∗)tors. Write R for the set of isomorphism
classes of such mixed extensions. It comes equipped with an obvious map R → H1(L)tors ×
H1(L∗)tors.

Proposition 180. We have an action of Z = Ext1
∆∗(Z, Z) on R along with operations +1 and +2 on R.

These make R into a biextension of H1(L)tors × H1(L∗)tors by Z.

Proof. Suppose E0 is an extension of Z by L and E1 is an extension of L by Z. If E0 and E1 have
torsion cohomology classes, then, for ( f0, f1) ∈ Hom(Z,L) × Hom(L, Z), the class G( f0, f1) ∈
Ext1

∆∗(Z, Z) = H1(∆∗, Z) (given by (167)) is trivial. It follows by Proposition 168 that Extpan(E0, E1)
injects into Extpan(Z,L, Z) (where the Extpan sets are taken with respect to the category of

sheaves of abelian groups on ∆∗). The set Extpan(E0, E1) is an Ext1
∆∗(Z, Z)-torsor. In other

words, it is a Z-torsor. Consequently, R has an action of Z making it into a Z-torsor over
H1(L)tors × H1(L∗)tors.

The operations +1 and +2 are defined as in §10.5. The rest of the verification is left to the
reader. �

By the results in [41] summarized in Remark 171, biextensions of H1(L)tors ⊗ H1(L∗)tors by Z

are classified by the group Ext1(H1(L)tors ⊗ H1(L∗)tors, Z). This group sits in an exact sequence

Hom(H1(L)tors ⊗ H1(L∗)tors, Q) → Hom(H1(L)tors ⊗ H1(L∗)tors, Q/Z)

→ Ext1(H1(L)tors ⊗ H1(L∗)tors, Z) → Ext(H1(L)tors ⊗ H1(L∗)tors, Q).

Since the first and last groups are 0, we have an isomorphism between the second and third
groups. Thus, the biextension gives rise to a bilinear pairing

τ : H1(L)tors ⊗ H1(L∗)tors → Q/Z

which we call the Grothendieck torsion pairing or just the torsion pairing.
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We want to compute the torsion pairing in an explicit way. To do this, write RQ for the set of
isomorphism classes of mixed extensions X of Q by LQ by Q which are restricted in the sense that

X/W−2 and W−1X are both 0 (in H1(LQ) and H1(L∗
Q) respectively). The same argument as above

shows that RQ has the structure of a biextension, but this time it is a biextension over the trivial
group 0. Therefore, there is a canonical isomorphism

RQ = Ext1
∆∗(Q, Q) = Q. (181)

Moreover, tensoring with Q gives a morphism of biextensions X  XQ from R to RQ. (See [41,
p. 162] for the notion of a morphism of biextensions.) So, for X ∈ R, we get a rational number τ̃X
given by the image of XQ under (181).

Definition 182. Write R′ for the set of triples (α, β, γ) ∈ H1(Ltors)×H1(L∗)tors ×Q such that there
exists X ∈ R with πX = (α, β), τ̃X = γ.

Since X → XQ is a morphism of biextensions from R to RQ, we have, for i = 1, 2,

τ̃(X +i X′) = τ̃(X) + τ̃(X′)

whenever +i is defined. Moreover, for n ∈ Z, τ̃(n + X) = n + τ̃X.

From this, it is not hard to see that the group Z acts on R′ by the rule n+(α, β, γ) = (α, β, n+γ).
Moreover, by setting

(α, β, γ) +1 (α
′, β, γ′) = (α + α′, β, γ + γ′)

(α, β, γ) +2 (α, β′, γ′) = (α, β + β′, γ + γ′)

we get the structure of a biextension on R′. In fact, we get an isomorphism of biextensions

φ : R → R′ (183)

given by X 7→ (X/W−2X, W−1X, τ̃X). All this leads to the following proposition.

Proposition 184. Suppose (α, β) = πX for X ∈ R. Then τ(α ⊗ β) = τ̃X (mod Z).

Proof. Write t for the reduction of τ̃ modulo Z. Then t gives a map

t : H1(L)tors ⊗ H1(L∗)tors → Q/Z, (185)

and what we have to prove is that τ = t. Using t and the isomorphism

Hom(H1(L)tors ⊗ H1(L∗)tors, Q/Z) → Ext1(H1(L)tors ⊗ H1(L∗)tors, Z), (186)

we see that t corresponds to the extension of H1(L)tors ⊗H1(L∗)tors by Z whose fiber over α⊗ β is
the set of triples (α, β, γ) with γ ∈ t(α ⊗ β) (where we view t(α ⊗ β) as a coset of Z in Q). But this
is exactly the fiber of R′ over α × β. And this shows that the R′ is the image of t under the map

Ext1(H1(L)tors ⊗ H1(L∗)tors, Z) → Biext(H1(L)tors × H1(L∗)tors, Z). (187)

Since R is isomorphic to R′, this shows that τ = t. �

To write the torsion pairing explicitly, let L denote the fiber of L at a chosen point s0 ∈ ∆∗ and
write T ∈ Aut L for the monodromy operator. Then H1(L) is computed by the Koszul complex
KZ(L) given by

L
T−1→ L

in degrees 0 and 1. So that H0L = LT and H1L = L/(T − 1)L. We can make the computation of
H1L explicit if we view and element of H1L as an extension

0 → L → E
p→ Z → 0 (188)
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in the category of abelian groups equipped with a Z-action (where the action on Z on itself is
taken to be trivial).

If we pick an element e ∈ E such that p(e) = 1, then (T − 1)e ∈ L. We can change e to e′ := e + l
for some l ∈ L. Then (T − 1)e′ = (T − 1)e + (T − 1)l. Therefore the class [(T − 1)e] ∈ L/(T − 1)L
is well defined. And it is easy to see that this identifies H1(∆∗,L) with L/(T − 1)L.

Corollary 189. Under the above identification, we have

H1(L)tors =
L ∩ (T − 1)LQ

(T − 1)L
.

Proof. Obvious. �

Suppose X ∈ R with π(X) = (α, β) ∈ H1(L)tors × H1(L∗)tors. Write V for the fiber of X at s0,
and write T̃ ∈ Aut V for the monodromy action. This action preserves the filtration W on V.

Proposition 190. Suppose X ∈ R has monodromy matrix T̃. There exists an e0 ∈ VQ with the following
properties

(i) the projection of e0 to GrW VQ is equal to 1 under the identification p0 : GrW
Q

∼→ Q;

(ii) (T̃ − 1)e0 ∈ W−2VQ.

For any such element e0, we have τ̃(X) = p−2((T̃ − 1)(e0)).

Proof. When tensored with Q, the extensions X/W−2X and W−1X in H1(L) respectively H1(L∗)
become trivial. The existence of e0 ∈ VQ follows from the triviality of XQ/W−2XQ. Then the equal-

ity τ̃X = p−2((T̃ − 1)(e0)) follows from the definition of τ̃ as the image of XQ in Ext1
∆∗(Q, Q) =

Q. �

Proposition 191. Suppose α ∈ L ∩ (T − 1)LQ represents a class in H1(L)tors and β ∈ L∗ represents a

class in H1(L∗)tors. Pick ℓ ∈ LQ such that α = (T − 1)l. Then

τ([α], [β]) = −(ℓ, β) mod Z.

Proof. We can represent a mixed extension X ∈ p−1(α, β) by giving the monodromy with respect
to a basis consisting of

(i) an element e0 ∈ X projecting to 1 under the isomorphism GrW
0 X = Z,

(ii) elements in W−1X lifting a basis of L under the map GrW
−1 X = L,

(iii) the generator e−2 of W−2X = Z.

In matrix form, we then have

T̃ =




1 0 0
α T 0
m β 1




for some m ∈ Z. Over Q we can change e0 to e′0 = e0 − ℓ. Then T̃e′0 = e0 + α + me−2 − Tℓ −
(ℓ, β)e−2 = e′0 + α + me−2 − (T − 1)ℓ− (ℓ, β)e−2 = e′0 + (m − (ℓ, β))e−2. So if we change the basis

by changing e0 to e′0 the matrix for T̃ becomes



1 0 0
0 T 0

m − (ℓ, β) β 1


 .

So τ̃(X) = m − (ℓ, β), and τ(X) = −(ℓ, β) as desired. �
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Suppose now that H is a torsion free weight −1 variation of Hodge structure on ∆∗. Fix ad-
missible normal functions ν ∈ ANF(∆∗,H)∆ and ω ∈ ANF(∆∗,H∨)∆. A biextension variation
of Hodge structure V ∈ Bad (ν, ω) then gives a mixed extension in the category of admissible
variations. The underlying local system VZ is then a restricted mixed extension in R.

Corollary 192. Suppose H has unipotent monodromy. Then µ(V) = τ̃VZ.

Proof. This follows from Proposition 190. �

13. MEROMORPHIC EXTENSIONS

The goal of this section is to show that the biextension line bundle L(ν, µ) on S has a canonical
extension to a meromorphic line bundle on S̄. Essentially this is a consequence of Corollary 179
above, which shows that the sheaf of biextensions is a jmer

∗ O×
S -torsor. (We remind the reader that

the main work going into that Corollary was done in §4.) What remains to do is to recall the defini-
tion of a meromorphic extension, which we take from Deligne’s book on differential equations [13,
p. 65], and to show that jmer

∗ O×
S -torsors are in one-one correspondence with meromorphic line

bundles. Deligne considers meromorphic extensions of coherent sheaves, and we have followed
this but, in order to understand the category of meromorphic sheaves better, we have rephrased
his definition in the language of stacks. (This gives us a category of meromorphic sheaves, and
we use the category in the case of meromorphic line bundles to recover the jmer

∗ O×
S -torsor.) We

also give a bit of background on the notion of meromorphic extensions and the (very significant)
differences between the analytic and algebraic cases.

In the next section, §14, we prove that L(ν, µ) extends as a holomorphic line bundle. (In
Deligne’s language, we prove that the meromorphic extension is effective.) We felt that this sec-
tion should go before §14 because the meromorphic extension is unique, while the holomorphic
extension depends on some choices. However, §14 does not logically depend on this section. So,
the reader may want to skip this section starting from subsection 13.3 (where we begin the study
of meromorphic sheaves) at first reading.

13.1. Notation. Following [13, p. 61], we take X to be an analytic space with Y a closed analytic
subset and X∗ = X \ Y. We write j : X∗ → X and i : Y → X for the inclusions.

13.2. Extensions of line bundles. Before bringing up the subject of extensions of coherent sheaves,
we want to consider extensions of holomorphic line bundles from X∗ to X to illustrate some of the
differences between the analytic and algebraic settings.

Definition 193. Suppose L∗ is a holomorphic line bundle on X∗, an extension of L∗ to a line bundle
on X is a pair (L, r) where L is a line bundle on X and r : L|X∗ → L∗ is an isomorphism of line

bundles on X∗. If (Li, ri) (i = 1, 2) are two extensions of L∗, then a morphism from (L1, r1) to
(L2, r2) is a morphism of line bundles φ : L1 → L2 commuting with the isomorphisms ri. In this
way, we get a category P(L∗) of extensions of L∗ to X.

Lemma 194. Suppose X is complex manifold and Y has codimension at least 2 in X. Let L∗ be a line
bundle on X∗ which extends to a line bundle X. Then this extension is unique up to isomorphism.

Proof. Suppose (Li, ri) are two extensions. Then r−1
2 ◦ r1 : j∗L1 → j∗L2 is an isomorphism of line

bundles. By Hartog’s theorem, it extends to an isomorphism R : L1 → L2 commuting with the
restrictions ri. �

There are two main problematic differences between extensions of line bundles in the holomor-
phic and the algebraic case. The first is that not all holomorphic line bundles on X∗ extend to X
even when X is a manifold. For example, as we pointed out in Remark 8, there are infinitely many
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analytic line bundles on C2 \ {0} which do not extend to C2. In fact, by the exponential exact se-
quence, it is easy to see that every line bundle on C2 is trivial. So the trivial line bundle is the only
line bundle on C2 \ {0} which extends to C2. By Lemma 194, in this case, the extension is unique.

The second difference is that analytic line bundles can have too many extensions. To be precise,
they can have uncountably many extensions which are not even meromorphically equivalent. (We
show in Proposition 205 that, when X is smooth, meromorphic extensions of line bundles in the
algebraic setting are unique.) Before giving Deligne’s definition of meromorphic equivalence, we
want to illustrate this problem with an example.

Example 195. Let E be an (algebraic) elliptic curve over C and let p be a point in E. Set U = E \ {p}
considered as an algebraic curve. Then write X, X∗ and Y for E, U and {p} respectively regarded
as analytic varieties.

We have an exact sequence

0 → Z → Pic E → Pic U → 0.

where the first non-trivial map sends 1 to the line bundle OE([p]) and the second sends a line
bundle to its restriction to U. From this, it is not hard to see that any algebraic line bundle on U
extends to E, and, while the extension is not unique, it is unique modulo tensoring with OE([p]).
(Here we use the obvious algebraic analogue of Definition 193.)

The analytic case is very different. Here, by GAGA [39], we have Pic X = Pic E. However, from
the exponential exact sequence

0 → 2πiZ → OX∗ → O×
X∗ → 1

and the fact that X∗ is Stein, it follows easily that Pic X∗ = 0. So the restriction of any line bundle
on X to X∗ is trivial. The trivial line bundle on X∗ has uncountably many non-isomorphic exten-
sions to X as every line bundle on X gives rise to an extension of OX∗ . In fact, the situation is even
worse than it seems: every line bundle L on X gives rise to uncountably many non-isomorphic
extensions of OX∗ . To understand this phenomenon we make the following definition.

Definition 196. With X, Y and X∗ as in (13.1), write P for the set of isomorphism classes of ex-
tensions (L, r) of the trivial line bundle OX∗ to a line bundle on X. We give P an (abelian) group
structure by setting (L1, r1)(L2, r2) = (L1 ⊗L2, r1 ⊗ r2).

Proposition 197. Suppose that X is a complex manifold and X∗ is a Zariski open subset. Then we have an
exact sequence

1 → H0(X∗,O×
X∗)

H0(X,O×
X )

→ P → Pic X → Pic X∗.

Proof. First we describe the maps in the sequence. The last one is restriction. The second-to-
last sends an extension (L, r) to L. The sequence is exact at Pic X by the definition of P (as the
set of isomorphism classes of extensions of the trivial line bundle on X∗). We have a map φ :
H0(X,O×

X∗ ) → P given by φ( f ) = (OX , f ) where we think of f as an isomorphism from OX∗ to
itself. The kernel of φ consists of function f with (OX, f ) isomorphic to (OX , 1). This is exactly
H0(X,O×

X ). Since any element in the kernel of P → Pic X can be written as (OX , f ) for some f as
above, this finishes the proof of the proposition. �

Remark 198. In the case of the elliptic curve from Example 195 above, both Pic X and the group
H0(X∗,O×

X∗)/H0(X,O×
X ) = H0(X∗,O×

X∗)/C× are uncountable.
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13.3. Meromorphic Extensions of Coherent Analytic Sheaves. For any analytic space T we write
Coh T for the category of coherent sheaves on T.

Suppose F ∗ is a coherent analytic sheaf on X∗. An extension of F ∗ to X is a coherent analytic
sheaf F on X together with an isomorphism rF : F|X∗ → F ∗. A morphism F → F ′ of extensions
is then a morphism of coherent sheaves on X respecting the isomorphisms to F over X∗.

We now give a theorem from [13, p. 65]

Theorem 199 (Deligne). Suppose F1 and F2 are extensions of F . Then the following conditions are
equivalent.

there is an extension F3 of F along with morphisms from F3 to F1 and F2;(200)

there is an extension F4 of F along with a morphisms from F1 and F2 to F4;(201)

either (200) or (201) hold locally on X.(202)

Deligne says that F1 and F2 are meromorphically equivalent if the conditions in Theorem 199
above hold.

Proof. For the convenience of the reader, we give a slightly expanded version of Deligne’s proof of
the equivalence of (200—202) above. First note that, if G is any coherent analytic sheaf on X, then
the sheaf ΓYG of sections with support in Y is coherent [40, Proposition 3, p. 366]. Moreover, we
have a short exact sequence

0 → ΓYG → G → j∗ j−1G. (203)

So, the coherence of ΓYG implies the coherence of the image of the map G → j∗ j−1G.

Now, suppose we have F3 as in (200). Set F4 = (F1 ⊕ F2)/F3 where the embedding of F3 is
the diagonal embedding. Then F4 with the obvious morphisms satisfies (201). On the other hand,
if we have F4 as in (201), setting F3 = F1 ∩ F2 gives an extension satisfying (200).

Finally, suppose (200) holds locally. Set F4 equal to the sum of the images of F1 and F2 in j∗F .

The morphisms r−1
i : F → j∗Fi for i = 1, 2 induce morphisms ai : F → j∗F4. We need to show

that F4 is coherent and that the ai (i = 1, 2) are two idenitical isomorphisms.

Fortunately, both statements above are local on X. So we can assume that (200) holds globally.
Then set F ′

3 equal to the image of F3 in F1 ⊕F2. We get an exact sequence

0 → ΓY(
F1 ⊕F2

F ′
3

) → F1 ⊕F2

F ′
3

→ F4 → 0. (204)

This shows that F4 is coherent. And applying j∗ proves the rest. �

We say that two holomorphic line bundles (Li, ri) are meromorphically equivalent if they are
meromorphically equivalent as coherent analytic sheaves.

We can also make the same definition of meromorphic equivalence in the algebraic setting re-
placing X∗, X,F ∗ and F with algebraic spaces and coherent algebraic sheaves. Then we have the
following proposition.

Proposition 205. Suppose X is a smooth complex algebraic variety and X∗ is a Zariski open subset. Any
two algebraic extensions (L1, r1) and (L2, r2) of an algebraic line bundle L∗ on X∗ are meromorphically
equivalent.

Proof. As in the analytic case, by (202), the question is local on X. So pick a point x ∈ X. We
can find an affine open neighborhood of x where L1 and L2 are trivial, i.e., isomorphic to OX .

Replacing X with this affine open neighborhood, we can regard f := r−1
2 ◦ r1 : OX∗ → OX∗ as a

meromorphic function on X with poles and zeros only on Y = X \ X∗. Since X is smooth, OX,x

is a UFD. So, after possibly shrinking X further about x, we can assume that f = g/h with g and
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h non-zero regular functions which are non-vanishing off of Y. Now, set (L3, r3) := (OX , r1/h).
Multiplication by h (resp. g) gives an inclusion of L3 in L1 (resp. L2) compatible with the isomor-
phisms ri. So, by (200), (L1, r1) and (L2, r2) are meromorphically equivalent. �

Remark 206. In the analytic case, there are, in general, uncountably many non-meromophically
equivalent extensions of a given holomorphic line bundle. This is not hard to see directly from
Example 195.

Lemma 207. Suppose F is an extension to X of a coherent analytic sheaf F ∗ on X∗. Set G := F/ΓYF .
Then the composition

F ∗ rF→ j∗F → j∗G (208)

gives G the structure of an extension of F ∗. Moreover, ΓYG = 0, and G is meromorphically equivalent to
F .

Proof. Obvious. �

In [13, p. 65], Deligne gives the following definition.

Definition 209. A coherent analytic sheaf on X∗ meromorphic along Y is a coherent analytic sheaf
on X∗ together with a locally defined system of equivalence classes of extensions to X.

We want to reformulate this definition in a way that lends itself to defining a category of mero-
morphic extensions. For this, suppose U is an open subset of X. Set U∗ = U ∩ X∗, YU = U ∩ Y
and write jU : U∗ → U for the inclusion. Write Coh(Y) U for the full subcategory of Coh U con-

sisting of sheaves supported on Y. This is a thick subcategory. Set Coheffm U := Coh U/ Coh(Y) U,
the quotient category. We call this the category of effective meromorphic extensions on U. Since

j∗ Coh(Y) U = 0, the restriction functor Coh U → Coh U∗ factors as Coh U
q→ Coheffm U → Coh U∗

naturally (where q is the quotient functor).

Proposition 210. Suppose V ⊂ U is the inclusion of an open set. Then the restriction functor Coh U →
Coh V induces an exact functor Coheffm U → Coheffm V.

Proof. Easy (so we leave it to the reader). �

It follows that we get a category Coh
effm
X , or simply Coheffm, fibered over the category Xtop of

open subsets of X (whose fiber over U is Coheffm U). (See [16] for the notion of fibered categories.)

Lemma 211. Suppose F1 and F2 are two extensions to X of a coherent analytic sheaf F ∗ on X∗. Then the
following are equivalent

(a) F1 and F2 are meromorphically equivalent.
(b) There is an isomorphism q(F1) → q(F2) commuting with the isomorphisms j∗Fi → F ∗.

Proof. Suppose that F1 and F2 are meromorphically equivalent. Let F3 be as in (200). Then Fi/F3

is supported on Y for i = 1, 2. So the induced map q(F3) → q(Fi) is an isomorphism for i = 1, 2.
Then (b) follows.

Now assume that (b) holds. If we set Gi := Fi/ΓYFi, for i = 1, 2, then the quotient map Fi → Gi

induces both an equivalence of meromorphic extensions and an isomorphism in Coheffm X. So, by
replacing Fi with Gi, we see that we can assume that neither F1 norF2 has a non-trivial subsheaf
supported on Y.

Assume then that f : qF1 → qF2 is an isomorphism commuting as in (b). By the definition of a
quotient category, we have

Hom
Coheffm X

(qF1, qF2) = lim−→
F ′

1,F ′
3

Hom(F3,F2/F4)
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where the limit runs over all pairs F3,F4 of coherent subsheaves of F1 and F2 respectively such
that F1/F3 and F4 are supported on Y. Since F2 has no non-trivial subsheaf supported on Y, f

is represented by a morphism f̃ : F3 → F2. Since f = q( f̃ ) is an isomorphism, ker f̃ and coker f̃
are both supported on Y. Since F1 has no non-trivial subsheaf supported on Y, this implies that

f̃ : F3 → F2 is a mono-morphism with cokernel supported on Y. From this (a) follows directly. �

Proposition 212. Suppose F and G are coherent analytic sheaves on X. Then the natural morphism

ρ : Hom
Coheffm X

(qF , qG) → HomCoh X∗(j∗F , j∗G)
induced by restriction is a monomorphism.

Proof. We can assume that ΓYF = ΓYG = 0. Then Hom
Coheffm X

(qF , qG) = lim−→F ′ HomCoh X(F ′,G)
where the limit is taken over all subsheaves F ′ of F such that F/F ′ is supported on Y. Suppose
f is a homomorphism from qF to qG represented by a morphism f ′ : F ′ → G. If j∗( f ′) = 0, then
f ′(F ′) is supported on Y. But, since ΓYG = 0, this implies that f ′ = 0. �

Definition 213. We write Cohm
X for the stackification of the fibered category Coh

effm
X [16, p. 76].

This is the category of coherent analytic sheaves on X meromorphic along Y.

If CohX denotes the stack of coherent analytic sheaves on Xtop, then we get a sequence of mor-
phisms of fibered categories

CohX → Coh
effm
X → Cohm

X . (214)

We call the composition Q.

For any open subset U ⊂ X, we get a restriction functor Coh
effm
X (U) → CohX∗(U∗) (with U∗ =

U ∩X). It is easy to see that this functor factors naturally through Cohm
X(U

∗). By abuse of notation,
we write

j∗ : Cohm
X(U) → CohX(U

∗) (215)

for the the induced restriction functor.

Proposition 216. A coherent analytic sheaf on X∗ meromorphic along Y is the same thing as an object of
Cohm

X(X).

Proof. By the definition of stackification, an object F of Cohm
X(X) consists of a family of objects Fα

in Coh
effm
X (Uα) for an open cover {Uα} of X together with descent data for gluing the data together.

Explicitly, this descent data consists of isomorphisms

φα,β : Fα|Uα∩Uβ
→ Fβ|Uα∩Uβ

(217)

in the category Coh
effm
X (Uα ∩ Uβ) which are compatible in the sense that φγ,βφα,β = φγ,α.

Since the restriction of the descent data to X∗ gives descent data for a coherent sheaf on X∗, the
object F gives rise to a sheaf F ∗ on X∗. Moreover, it is not difficult to see that this sheaf F ∗ is
independent of the choice of presentation of F in terms of descent data. This gives the functor
Cohm

X(X) → Coh X∗ explicitly. The sheaves Fα are then by definition meromorphic extensions of
FU∗

α
. So, from this, we see that an object F in Cohm

X gives rise to a coherent sheaf F ∗ on X∗ along
with a meromorphic extension of F ∗ to X in Deligne’s sense.

On the other hand, suppose we start with a coherent sheaf F ∗ on X∗, an open covering {Uα}
of X and a family (Fα, rα) of extensions of F ∗ from U∗

α to Uα. Assume that Fα and Fβ have
meromorphically equivalent restrictions to Uαβ := Uα ∩ Uβ. Then there is a morphism φα,β in

Coheffm(Uαβ) as in (217) commuting with the restrictions rα and rβ. The fundamental point to
make now is that, in fact, by Proposition 212, there is a unique such morphism φα,β. This implies
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that the resulting family {φα,β} automatically satisfies the descent condition required to give an

object F in Cohm
X(X).

We leave the rest of the verification (e.g., the fact that F is independent of the presentation
(Fα, rα)) to the reader. �

Lemma 218. Suppose X is a complex manifold, and F ∈ Coh
effm
X (X) is is a coherent analytic sheaf on X

such that j∗F is an invertible sheaf. Then the double dual F∨∨ is an invertible sheaf on X and the canonical

morphism F → F∨∨ is an isomorphism in Coh
effm
X (X).

Proof. The double dual F∨∨ is reflexive. (This is proved in the algebraic setting in [24], and the
same proof works in the analytic setting.) Since F∨∨ is rank 1 and reflexive, it is a line bundle [32,
Lemma 1.1.15, p. 154]. The kernel and cokernel of the canonical morphism φ : F → F∨∨ is clearly

supported on Y. So φ is an isomorphism in Coh
effm
X (X). �

Corollary 219. Suppose X is a complex manifold, and F̂ is an object in Cohm
X such that j∗(F̂) is a line

bundle. Then F̂ is locally isomorphic to a line bundle.

Proof. Since this is (by definition) a local question, we can assume that the object F̂ is represented
by a coherent analytic sheaf F on X. Then the result follows from Lemma 218. �

Definition 220. We call an object F̂ ∈ Cohm
X which is locally isomorphic to a line bundle a mero-

morphic line bundle (along Y).

Write P̂icY(X) for the set of isomorphism classes of meromorphic line bundles along Y. Obvi-

ously restriction gives a map P̂icY(X) → Pic(X∗), and we get a map Pic X → P̂icY(X) by associat-
ing to each line bundle on X its associated meromorphic line bundle. Moreover, the composition

Pic X → P̂icY X → Pic X∗ is just the usual restriction.

Suppose L̂ and M̂ are meromorphic line bundles. Then, in the language of Deligne, L̂ and

M̂ are meromorphic extensions of L := j∗L̂ and M := j∗M̂ respectively. We can find a covering
{Uα}α∈I of X and extensions Lα, Mα of L|U∗

α
and MU∗

α
respectively representing the meromorphic

equivalence classes L̂ and M̂. By Corollary 219, we can, moreover, assume that Lα and Mα are
line bundles. It is not hard to check that, for α, β ∈ I, Lα ⊗Mα is meromorphically equivalent
to Lβ ⊗Mβ as an extensions of L ⊗ M from Uα ∩ Uβ ∩ X∗ to Uα ∩ Uβ. Thus, {Lα ⊗ Mα}α∈I

represents a meromorphic extension of L⊗M. It is then not hard to check that the meromorphic
equivalence class of this extension is independent of the choice of the covering {Uα} and the

choices of the Lα and Mα representing L̂ and M̂ respectively. So it makes sense to define the

tensor product L̂ ⊗ M̂ to be the meromorphic extension of L⊗M represented by the data {Lα ⊗
Mα}α∈I . This gives rise to an abelian group structure on P̂icY X (defined by taking isomorphism

classes of tensor product). Moreover, it is easy to see that the maps Pic X → P̂icY X → Pic X∗ are
group homomorphisms under this tensor product.

Adjunction gives a morphism of sheaves OX → j∗ j−1OX (which is a monomorphism if X is a
complex manifold and Y is nowhere dense). Then jmer

∗ OX∗ is the subsheaf of j∗ j−1OX consisting
of sections which can be locally written in the form g/h with g, h ∈ OX and h invertible outside
of Y. We then get a morphism of sheaves OX → jmer

∗ OX∗. For a coherent sheaf F on X, restriction
gives a morphism R : F ⊗OX

jmer
∗ OX∗ → j∗ j−1F (which is a monomorphism for F locally free).

Write Fmer for the image of R.

Note that Omer
X = jmer

∗ OX∗ .

Proposition 221. Suppose F is a reflexive sheaf on a smooth complex analytic space X. Then

HomCohm
X
(QOX , QF) = Fmer.



JUMPS IN THE ARCHIMEDEAN HEIGHT 57

Proof. Restriction gives a morphism of sheaves

ρ : HomCohm
X
(QOX , QF) → j∗ j−1F . (222)

Using Proposition 212, we see that this is a monomorphism. To see that it factors through Fmer is
a local question. So suppose ϕ : QOX → QF is a morphism in Cohm

X defined near a point x ∈ X.
We then have a coherent analytic subsheaf ι : I → OX and a morphism ψ : I → F such that
OX/I is supported on Y and ϕ = Q(ψ) ◦ Q(ι)−1. Taking double duals and using the assumption
that F is reflexive, we get a map σ : I∨∨ → F . Then J := I∨∨ is a rank 1 reflexive sheaf, and,
therefore, invertible. Moreover, we have I ⊂ J ⊂ OX . So OX/J is also supported on Y. By
replacing X with a suitably small open neighborhood of x, we can assume that J = hOX is a
principal ideal. Writing ιJ : J → OX for the inclusion, it follows that ϕ = Q(σ) ◦ Q(ι J)

−1. We
then get that ρ(ϕ) = σ(h)/h ∈ Fmer.

To show that ρ induces an isomorphism with Fmer, take s ∈ Fmer(U) for some open set U. We
can work locally near a point x ∈ X, so we can assume that s = a/h where a and h are holomorphic
near x and h is a unit off of Y. Set I = hOX , and let ι : I → OX denote the inclusion. Write
α : I → F for the OX linear morphism sending h to a. Then we see that s = ρ(Q(α)) ◦Q(ι)−1). �

Definition 223. Suppose L̂ is a meromorphic line bundle on X along Y. We write

L̂mer := HomCohm
X
(QOX , L̂mer).

By Proposition 221, the sheaf L̂mer, which we call the sheaf of meromorphic sections of L̂, is a locally
rank one jmer

∗ OX-module.

Suppose X is smooth and L̂ is a meromorphic line bundle along Y. Write ÔX for the object

Q(OX) in Cohm
X , and write IsomCohm

X
(ÔX , L̂) for the subsheaf of HomCohm

X
(ÔX , L̂) consisting of

isomorphisms. Then IsomCohm
X
(ÔX , L̂) is a torsor for the sheaf AutCohm

X
(ÔX). By Proposition 221,

AutCohm
X
(ÔX) is identified with the subsheaf jmer

∗ O×
X∗ consisting of invertible sections of jmer

∗ OX∗ .
So, this gives a map

c : P̂icY X → H1(X, jmer
∗ O×

X∗). (224)

On the other hand, suppose E is a jmer
∗ O×

X∗ -torsor. The restriction, E∗, of E to X∗ gives a line
bundle L∗ on X∗ via the Borel construction: Explicitly

L∗ := E∗ ×O×
X∗ OX∗ . (225)

In other words, for U open in X∗, L∗(U) is the quotient of E∗ ×OX by the diagonal action of O×
X

(acting by f (e, g) = ( f−1e, f g)). We get a map of sheaves E∗ → L∗ (given explicitly by e 7→ (e, 1))
sending the sections of E isomorphically onto the non-vanishing sections of L∗.

Now, if U is an open set in X and s ∈ E(U), we get an extension Ls of L∗ from U∗ = U ∩ X∗ to
U essentially by declaring the image of s in L∗ to be a generator of Ls. To be more precise, we set
Ls = OU and choose an isomorphism j∗Ls → L by sending 1 to s. If we pick a different t ∈ E(U),
then Lt and Ls are meromorphically equivalent because s/t is meromorphic and non-vanishing
off of Y. So we can glue together the different choices of Ls for s ∈ E(U) (varying s and U), to get
a meromorphic line bundle b(E). This gives us a map

b : H1(X, jmer
∗ O×

X∗) → P̂icY X. (226)

Proposition 227. The maps b and c above are inverse to each other. So, when X is smooth, the sets P̂icY X
and H1(X, jmer

∗ O×
X ) are isomorphic.

Proof. This is just a matter of wading through the definitions, and we feel it is best to leave it to
the reader. �
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Suppose now that X is smooth and, for simplicity, assume that Y is nowhere dense in X. A

meromorphic extension of a line bundle L∗ on X∗ is then the same thing as a pair (L̂, r) with L̂ a

meromorphic line bundle and r : j∗L̂ → L∗ is an isomorphism.

Lemma 228. Suppose X is smooth and Y is nowhere dense. Let L∗ be a line bundle on X∗. Then there
is a one-one correspondence between meromorphic extensions of L∗ and pairs (E, ρ) where E is a jmer

∗ O×
X∗

torsor and ρ : E∗ → L∗× is an O×
X∗-equivariant isomorphism from the restriction of E to X∗ to the sheaf of

non-vanishing sections of L∗.

Proof. If (L̂, r) is a meromorphic extension of L∗, we get a torsor E := IsomCohm
X
(ÔX , L̂) and the

map r : j∗L̂ → L∗ provides us with the isomorphism from E∗ to the non-vanishing sections
of L∗. On the other hand, suppose we are given a pair (E, ρ) as above. Then E gives rise to a

meromorphic line bundle L̂ = b(E) as in Proposition 226 above. And, the map ρ provides an

isomorphism of the holomorphic bundle E∗ ×O×
X∗ OX∗ with L∗. It is easy to check that these two

correspondences are mutually inverse. So the lemma follows. �

Theorem 229. Suppose ν, ω, S, S̄ and L = L(ν, ω) are as in Q6. Set Y = S̄ \ S. Then there is a unique

(up to isomorphism) meromorphic extension L̂ of L to S̄ whose non-vanishing meromorphic sections are the
admissible biextensions.

Proof. The jmer
∗ O×

S -torsor Bad (ν, ω) of Corollary 179 gives us a torsor E and the restriction isomor-

phism from Bad (ν, ω) (which is a torsor on S̄) to B(ν, ω) (which is the O×
S torsor of invertible

section of L) gives us an isomorphism ρ as in Lemma 228. So we see that (E, ρ) gives us a mero-

morphic extension L̂ of L to S̄.

The extension is clearly unique up to isomorphism because Bad (ν, ω) determines both the tor-
sor E and the map ρ. �

14. EXTENSION THEOREM

In this section, the goal is to show that the meromorphic extension of L(ν, ω) constructed in

Theorem 229 actually gives rise to a line bundle L(ν, ω) extending L(ν, ω). The extensionsL(ν, ω)
is not unique by the choices involved are easily understood.

14.1. Setup and torsion pairings of smooth divisors. We take S̄ to be a complex manifold, j :
S → S̄ the inclusion of a Zariski open and H to be a weight −1 variation of pure Hodge structure

without torsion on S. We write Y := S̄ \ S, Y(1) = {Y1, . . . , Yk} for the set of components of Y

which are codimension 1 in S̄. We write Y(2) for the union of the codimension 2 components of Y

and the singular locus of Y. We write S′ := S̄ \ Y(2), and Y′ = Y ∩ S′. Then Y′ is a smooth divisor
in S′ with components Y′

i := Yi ∩ S′.

Definition 230. Suppose L is a Z local system on S. Set

IH1
Z L := {α ∈ H1(S,L) : αQ ∈ IH1(S,LQ)}.

By Theorem 110, the map cl : ANF(S,H)S̄ → H1(S,H) factors through IH1
Z H.

For each Yi ∈ Y(1) we are going to define a pairing

τi : IH1
Z H⊗ IH1

Z H∨ → Q/Z (231)

which we will call the i-th torsion pairing.

We define (231) first in the case that S̄ = ∆, S = ∆∗ and Y = {0}. Note that, in this case,

IH1
Z(∆,H) = {α ∈ H1(∆∗,H) : αQ = 0}. In other words, it is just the set of torsion elements of

H1(∆∗,H). So, in this case the pairing in (231) is just given by the torsion pairing τ.
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In general we take a test curve ϕ̄ : ∆ → S′ intersecting Yi ∈ Y(1) transversally at a point ϕ̄(0).
By Theorem 113, the pull back of IH1

Z H to ∆∗ consists of torsion classes. Then we can define τi

to be the torsion pairing restricted to the test curve. It is easy to see that this definition does not
depend on the test curve.

14.2. Extension of the line bundle L(ν, ω).

Lemma 232. Suppose j : S → S̄ is an in §14.1. Suppose that codimS̄ Y ≥ 2. Let π : T̄ → S̄ be a proper
morphism from a complex manifold, T̄, which is an isomorphism over S, and suppose M is a line bundle on
T̄. Set L := (π∗M)∨∨, the reflexive hull of π∗M. Then L is a line bundle on S̄ and there is a canonical
isomorphism L|S ∼= M|S. (See Remark 234.)

Proof. Write i : S → T̄ for the open immersion lifting j. Since π is proper, π∗M is coherent. We
have j∗π∗M = i∗M by smooth base change. So j∗L = j∗(π∗(M)∨∨) = (i∗M)∨∨ = i∗M.

Now, L is reflexive and agrees with a line bundle outside of codimension 2. It is therefore a rank
1 reflexive sheaf. Therefore, since S̄ is a complex manifold, L is a line bundle. (This is in [32].) �

Theorem 233. Suppose S, S̄, Y and H are as in the beginning of §14.1, so that H is a torsion free variation
of Hodge structure on S of weight −1 and S̄ is a smooth partial compactification of S. Suppose

(ν, ω) ∈ ANF(S,H)S̄ × ANF(S,H∨)S̄.

Then each choice of coset representative τ̃i of τi := τi(cl ν, cl ω) ∈ Q/Z determines a unique extension

L of L := L(ν, ω) to S̄ whose non-vanishing sections are admissible biextension variations V with the
following property: for every test curve ϕ̄ : ∆ → S′ interesting Yi transversally at ϕ̄(0), µ(ϕ∗V) = τ̃i.

Proof. First assume that Y is a normal crossing divisor. Then, by Corollary 177, the sheaf Bad (ν, ω)
of admissible biextension variations is a pseudo-torsor for the group of non-vanishing meromor-
phic functions with poles along Y. By Theorem 81, this pseudo-torsor is actually a torsor for

the sheaf of non-vanishing meromorphic functions. For every section V of Bad (ν, ω) and every
test curve ϕ̄ : ∆ → S′ intersecting the divisor Y transversally at y = ϕ̄(0) with y a point in Yi,
µ(ϕ∗V) = τ̃ϕ∗V is a coset representative of τi. Fixing the τ̃i then reduces the torsor to a O×

S̄
torsor

Bad
(ν, ω). Equivalently, it gives a line bundle L as desired.

Now, in the general case, set Y′ = Y ∩ S′. Then, as Y′ is a normal crossing divisor in S′, there
is a extension L′ of L to S′. Now, use Hironaka to find a proper morphism π : T̄ → S̄ which is
an isomorphism over S′ such that the inverse image of Y under π is a normal crossing divisor D.
Write D = ∪m

i=1Di in such a way that the Di (i = 1, . . . , k) are the strict transforms of the Yi. Pick
rational numbers τ̃i lifting the τi keeping them the same as for the Yi for i = 1, . . . k (and making

arbitrary choices for i = k + 1, . . . , m). Then we get a unique extension M of L′ to T̄. Finally
Lemma 232 produces the desired extension on S̄.

The uniqueness follows from Hartog’s theorem and the property in the statement of Theo-

rem 233, which defines L on S′. The point is that two extensions of L which agree outside of a
codimension 2 set are equal by Hartog’s theorem. �

Remark 234. We get a canonical choice of extension Lcan ∈ Pic S̄ ⊗ Q defined by taking all the
τ̃i = 0.

15. THE CERESA CYCLE AND THE HAIN-REED BUNDLE

15.1. Fix an integer g > 1 and let Tg denote the Teichmüller space of a smooth, projective genus
g Riemann surface X. Write Γg for the mapping class group, the space of orientation preserving
diffeomorphisms of X taken modulo isotopy. Then, Tg is a complex manifold, which is isomorphic
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as a real manifold to R6g−6. Moreover, Γg acts on Tg with orbifold quotient Mg, the moduli stack

of smooth, projective genus g curves. Write H = H1(X, Z) and write Q : ∧2H → Z for the
intersection pairing. Fix a basis e1, . . . , eg, f1, . . . , fg for H with the property that

Q(ei, f j) = δij, Q(ei, ej) = Q( fi, f j) = 0

for 1 ≤ i, j ≤ g. Write Sp2g(Z) = Sp(H) for the group of automorphisms of H with determinant

one preserving Q. The action of an element of Γg on H determines a surjection Γg → Sp2g(Z).

The kernel Tg of this surjection is called the Torelli group.

The pairing Q induces pairings Qk : ∧kH ⊗ ∧kH → Z for all non-negative integers k. These

are Sp2g(Z)-equivariant and (−1)k-symmetric. If we set θ := ∑
g
i=1 ei ∧ fi ∈ ∧2H, then θ is

Sp2g(Z)-invariant. It follows that the maps u : ∧kH → ∧k+2H induced by v 7→ v ∧ θ are Sp2g(Z)-

equivariant as well.

15.2. Boundary components of Mg. Suppose g > 2 and h is an integer such that 1 ≤ h ≤ ⌊g/2⌋.
Then Dh denotes the Zariski closure of the locus of stable curves consisting of a smooth curve of
genus h and another smooth curve of genus g − h meeting at one point. D0 denotes the Zariski
closure of the locus of stable curves consisting of a curve of geometric genus g − 1 with one node.
Then D = D0 ∪ · · · ∪ D⌊g/2⌋ is a normal crossing divisor whose support is the complement of Mg

in Mg (the Deligne-Mumford compactification of Mg).

The divisor D0 intersects itself in components which we will label as D0,h for 0 ≤ h ≤ ⌊g/2⌋.
(D is not a strict normal crossing divisor.) For h > 0, the component D0,h is the Zariski closure of
the locus of stable curves consisting of two smooth curves of genus h and g − h − 1 respectively
meeting at two points. The generic point of the component D0,0 is a curve of geometric genus g− 2
with 2 nodes.

15.3. Dehn twists and bounding pairs. If γ is any simple closed curve, we let Tγ denote the Dehn
twist of X determined by γ. This is an element of the mapping class group.

A simple closed curve γ in X is said to be bounding if X \ γ is a union of two open Riemann
surfaces. A pair (γ, δ) of homologous simple closed curves, which are not homologously trivial,
is said to be a bounding pair if γ and δ are disjoint, homologous and not homologically trivial. (See
Johnson [26].) Contracting the simple closed curves γ and δ in a bounding pair to two distinct
points produces a curve C which is a union of two smooth curves of genus h =: h(γ, δ) and
g − h − 1 respectively for 1 ≤ h ≤ g − 1 meeting at two points. Thus contracting the simple closed
curves produces a curve in the interior of D0,h. It is possible to pick the symplectic basis from
§15.1 in such a way that {e1, . . . , eh, f1, . . . , fh} and {eh+2, . . . , eg, fh+2, . . . , fg} are symplectic bases
for the cohomology of the two components. We say that such a symplectic basis is adapted to the
bounding pair.

15.4. Johnson Homomorphism. The lattice ∧3H decomposes as a sum of two sublattices as fol-
lows [See [21] or [26]]: Let u : H → ∧3H and c : ∧3H → H be the Sp(H)-equivariant maps given
by

u(x) = θ ∧ x, c(x ∧ y ∧ z) = Q(x, y)z + Q(y, z)x + Q(z, x)y

Direct computation shows c ◦ u(x) = (g − 1)x. Define I : ∧3H → ∧3H by the rule

I(ω) = (g − 1)ω − u ◦ c(ω)

Lemma 235. ker(I) = im(u). Moreover, there exists a subgroup L of ∧3H such that ∧3H = u(H)⊕ L.
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Proof. The assertion that im u ⊂ ker I follows from the fact that c ◦ u(x) = (g − 1)x. To see that
ker I ⊂ im u, suppose ω ∈ ker I. Then (g − 1)ω = u ◦ c(ω). So (g − 1)ω ∈ im u. So it suffices to
show that im u has a complement, L, in ∧3H.

The required subgroup L is generated by the following elements:

(i) all products of the form vi ∧ vj ∧ vk where each vl is either el of fl and i < j < k,
(ii) all products of the form vi ∧ ej ∧ f j where vi is either ei or fi and i − j is not congruent to 0

or 1 modulo g.

�

Define V = ∧3H/ im(u). By the previous lemma, the quotient map ∧3H → V restricts to an
isomorphism I(∧3H) → V. Let j : V → I(∧3H) denote the inverse isomorphism. We note that,
since V ∼= L, V is torsion free.

Theorem 236 (Johnson). Suppose g > 1. There is a surjective group homomorphism τ : Tg → V. If
(γ, δ) is a bounding pair then there is a symplectic basis adapted to (γ, δ) such that

τ(TγT−1
δ ) = [(

h

∑
i=1

ei ∧ fi) ∧ fh+1] ∈ V

where h = h(γ, δ).

15.5. The Variation V. By abuse of notation, we can view H as a variation of Hodge structure of
weight −1 on Mg. We get an exact sequence of variations Hodge structure of weight −1

0 → H
u→ (∧3H)(−1) → V → 0 (237)

where V ∼= im(I)(−1) as in the previous section.

Suppose now that C ∈ D0,h is a curve obtained by contracting a bounding pair (γ, δ) as in §15.3.
Since γ and δ are homotopic, Tγ and Tδ act identically on H and, thus, on V. The action of T = Tγ

on H is given by h 7→ h + Q(h, γ)γ. So T = id+N is unipotent with monodromy logarithm N
given by h 7→ Q(h, γ)γ. We have N2 = 0.

We can find a polydisk P = ∆3g−3 and an étale map j : P → Mg such that j(0) = C and

P′ := j−1Mg
∼= ∆∗2 × ∆3g−5. If C has no automorphisms, then (by shrinking P if necessary)

we can arrange it so that j is an isomorphism onto its image. Then the monodromy action of

Z2 = π1(P′) on the pullback of the universal curve to P′ is given (a, b) 7→ Ta
γTb

δ . In particular, if

we write N1 and N2 for the logarithms of the monodromy on H, or, rather, its pullback to P′, we
see that N1 = N2. Moreover, if N = N1, then N2 = 0.

Corollary 238. We have IH1(P, V) = NV.

15.6. Normal functions on Mg.

Theorem 239. [22] There is an element ξ ∈ H1(Γg, V), which is the class of a normal function ν ∈
ANF(Mg, V)M̄g

. The restriction of ξ to Tg under the map

H1(Γg, V) → H1(Tg, V) = Hom(Tg, V)

is twice the Johnson homomorphism.

Theorem 240. Suppose C ∈ Mg is a curve without automorphism obtained by contracting a bounding
pair (γ, δ) as in §15.3. Then, in terms of a symplectic basis adapted to the bounding pair, we have

singC ξ = [2(
h

∑
i=1

ei ∧ fi) ∧ fh+1] ∈ NV.
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Proof. Consider the commutative diagram

IH1(Mg, V)

�� **❯❯❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

IH1(P, V)

��

H1(Tg, V) = Hom(Tg, V)

��
H1(Z2, V) = H1(P′, V) // H1(Z, V) = V.

The map along the bottom row is induced by the map Z → Z2 = π1(P′) sending the generator
to (1,−1). The map on the right is induced by the homomorphism Z → Tg which sends the

generator to TγT−1
δ .

By Theorem (239), the image of ξ in Hom(Tg, V) is the homomorphism which takes TγT−1
δ to

[2(∑h
i=1 ei ∧ fi) ∧ fh+1]. By restriction, the image of the Johnson homomorphism in H1(Z, V) = V

is precisely [2(∑h
i=1 ei ∧ fi) ∧ fh+1]. The result then follows from Lemma 152. �

The variation V has a polarization q : V ⊗ V → Z(1) defined by

q(u, v) :=
1

g − 1
Q(j(u), j(v)).

(See [21, p. 203].) This polarization gives an isomorphism aq : V → V∨ and thus a normal function
ν∨ = aq(ν) ∈ ANF(Mg, V∨)Mg

. This in turn gives a metrized line bundle L := L(ν, ν∨) on Mg.

Theorem 241. Suppose C is a generic curve in D0,h. Then

hq(singC ξ, singC ξ) =
4t1t2

t1 + t2
(g − h − 1)h

Proof. To simplify the notation below, we let h′ = g − h − 1, and recall that

singC ξ = 2[
h

∑
i=1

ei ∧ fi ∧ fh+1] = 2N[
h

∑
i=1

ei ∧ fi ∧ eh+1]

where N = N1 = N2 is the monodromy logarithm around the two branches of D0 intersecting at
C.

Invoking Proposition (153), it follows that:

hq(singC ξ, singC ξ) =
t1t2

t1 + t2
q(2[

h

∑
i=1

ei ∧ fi ∧ eh+1], 2[
h

∑
i=1

ei ∧ fi ∧ fh+1])

=
4t1t2

(g − 1)(t1 + t2)
Q(j[(

h

∑
i=1

ei ∧ fi) ∧ eh+1], j[(
h

∑
i=1

ei ∧ fi) ∧ fh+1]).
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Now, for v = eh+1 or fh+1, c((∑h
i=1 ei ∧ fi) ∧ v) = hθ ∧ v. So using this to compute j, we see that

hq(singC ξ, singC ξ) =
4t1t2

(g − 1)(t1 + t2)
Q

(
h′

h

∑
i=1

ei ∧ fi ∧ eh+1 − h
g

∑
i=h+2

ei ∧ fi ∧ eh+1,

h′
h

∑
i=1

ei ∧ fi ∧ fh+1 − h
g

∑
i=h+2

ei ∧ fi ∧ fh+1

)

=
4t1t2

(g − 1)(t1 + t2)
[(h′)2h + h2(h′)]

=
4t1t2

(g − 1)t1 + t2
(h′)h(h + h′)

=
4t1t2

t1 + t2
(g − h − 1)h

since h + h′ = g − 1. �

16. GENERAL JUMP PAIRING

16.1. General Pairing. The goal of this section is to give a definition of the jump pairing on local
intersection cohomology without the assumption that the boundary divisor is normal crossing.

To this end, we fix our usual notation that H is a variation of pure Hodge structure with Q

coefficients on a complex manifold S which is a Zariski open subset of another manifold S̄. Write
j : S → S̄ for the embedding. Since we will only be concerned with the local situation, we will
assume that S̄ = ∆r is a polydisk.

The intermediate extension j!∗HQ[r] gives rise to a perverse sheaf IC(H) on S̄. Write PS̄ P for
the set of all isomorphism classes mixed extensions of IC(QS̄) by IC(H) by IC(QS̄) in the category

of perverse sheaves on S̄. For a local system of Q-vector spaces L on S, we can write IHk(L) for

IHk
0(L). By shrinking S̄ if necessary, we can assume that IHk

0(L) = IHk(S̄,L).
We get a map

π : P → IH1(HQ)× IH1(H∨
Q)

by identifying the intersection cohomology groups with the appropriate extension groups. More-

over, since IH1(S̄, Q) = IH2(S̄, Q) = 0, Proposition 168 shows that π is surjective and, for any
pair

(α, β) ∈ IH1(HQ)× IH1(H∨
Q), (242)

the set Extpan(α, β) injects into P . It follows that P has the structure of a biextension of IH1(HQ)×
IH1(H∨

Q) by IH1(S̄, Q) = 0.

Corollary 243. For each pair (α, β) as in (242), there exists a unique element X = X(α, β) of P with
π(X) = (α, β).

Proposition 244. Suppose (ϕ̄, ϕ) : (∆, ∆∗) → (S̄, S) is a test curve. Then ϕ∗X(α, β) is in the biextension
RQ of (181). In other words, both ϕ∗α and ϕ∗β vanish.

Proof. This follows directly from Theorem 113. �

Definition 245. The jump j(α, β, ϕ̄) of α and β along a test curve ϕ̄ is the number τ̃ϕ∗X(α, β).

Let QS (or simply Q if S is clear) denote the set of isomorphisms of mixed extensions of Q by

H by Q on S such that the associated classes α ∈ H1(S,H) and β ∈ H1(S,H∨) lie in IH1(H)
and IH1(H∨) respectively. Here we view α and β as extension classes (of Q by H and of H by Q

respectively).
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Lemma 246. For (α, β) ∈ IH1(H)× IH1(H∨), Extpan(α, β) is the fiber of Q over (α, β).

Proof. We need to show that G( f0, f1) = 0 for every pair ( f0, f1) ∈ Hom(Q,H)× Hom(H, Q). By
symmetry and additivity of G( f0, f1), it suffices to show that the composition

Hom(H, Q)× IH1(H) → Ext1(Q, Q) = H1(S, Q)

induced by the cup product vanishes. (Here the Hom and Ext groups are taken in the category of
local systems on S.)

To see this, note that Hom(H, Q) = Hom(IC(H), IC(Q)) (by restriction). So we get a commu-
tative diagram

HomS̄(IC(H), IC(Q))× Ext1
S̄(IC(H), IC(Q))) // Ext1

S̄(IC(Q), IC(Q))

��

H1(S̄, Q) = 0

HomS(H, Q)× IH1(H) // Ext1
S(Q, Q) H1(S, Q)

where the downward arrows are restriction. The result follows immediately. �

Corollary 247. The map Q → IH1(H)× IH1(H∨) makes Q into a biextension of IH1(H)× IH1(H∨)
by H1(S, Q). Moreover, the map P → Q induced by restriction is a morphism of biextensions.

Explanation. Here the operations+1 and +2 are the obvious ones coming from §10.5 as is the action

of H1(S, Q) = Ext1
S(Q, Q). �

Now suppose ϕ̄ : ∆ → S̄ is a test curve. Since the classes α and β vanish on restriction to ∆∗ via
ϕ, we get a homomorphism of biextensions ϕ∗ : QS → Q∆∗ . Via the isomorphism τ̃ : Q∆∗ → Q,
we then get a number τ̃ϕ∗X for any isomorphism class X ∈ Q.

16.2. Comparison with the asymptotic height pairing. Now, we want to compare the general
jump pairing from Definition 245 with the asymptotic height pairing defined earlier. To do this,
we first want to generalize Theorem 155 to the local systems X ∈ QS where S = ∆∗r. Pick a ∈ ∆∗.
Then, for each r-tuple, t = (t1, . . . , tr) ∈ Z≥0, we can write ϕ̄t : ∆ → ∆r for the test curve s 7→
a(st1 , . . . , str). Write

τ̃tX := τ̃ϕ∗X.

It is easy to see that this rational number does not depend on the choice of a. Recall that ǫi =
(0, . . . , 0, 1, . . . , 0) with the 1 in the i-th place.

For any non-negative integer r, write Perv(∆r) for the category of perverse sheaves on ∆r and,
following Saito’s notation from [36, §3.1], write Perv(QX)nc for the full subcategory consisting of
perverse sheaves which are constructible with respect to the stratification induced by the coordi-
nate hyperplanes.

Lemma 248. Suppose a and b are non-negative integers with a + b = r, y = (y1, . . . , ya) ∈ (∆∗)a and

write ϕ̄ : ∆b → ∆r for the map sending z = (z1, . . . , zb) to (y1, . . . , ya, z1, . . . , zb). If F is a perverse
sheaf in Perv(∆r)nc then ϕ̄∗F is an object in Perv(∆b)nc. Consequently the functor ϕ̄∗ : Perv(∆r)nc →
Perv(∆b)nc is exact.

Proof. As in [36, §3.1], the perverse sheaves in Perv(∆r)nc consist of perverse sheaves on ∆r with
characteristic variety contained in the conormal bundles of the intersections of the coordinate

hyperplanes. Consequently, the map ϕ̄ : ∆b → ∆r is non-characteristic. The result then follows
from Kashiwara’s theorem on non-characteristic restriction. �

Corollary 249. We have τ̃ǫi
X(α, β) = 0 for all integers i with 1 ≤ i ≤ n.
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Proof. Pick a ∈ ∆∗ to define ϕ̄t : ∆ → ∆r as above for any t ∈ Z≥0. Since ϕ̄∗
ǫi

: Perv(∆r)nc →
Perv(∆)nc is exact, ϕ∗

ǫi
X(α, β) is in the trivial biextension P∆. So τ̃ϕ∗

ǫi
X(α, β) = 0. �

Corollary 250. Suppose X ∈ Q∆∗r , and t ∈ Zr
≥0. Then

τ̃tX = τ̃tX(α, β) +
r

∑
i=1

τ̃ǫi
X.

Proof. We have X = X(α, β) + E for some element E ∈ Ext1
∆∗r(Q, Q) = H1(∆∗r, Q) = Qr. Conse-

quently, τ̃tX = τ̃tX(α, β) + τ̃tE. The result follows from the (easy) fact that τ̃tE = ∑ τ̃ǫi
(E)ti. �

We now state an analogue of Theorem 155.

Proposition 251. Suppose X ∈ Q∆∗r with π(X) = (α, β). Then

h(t)(α, β) = −τ̃t(X) +
r

∑
i=1

τ̃ǫi
ti.

Proof. The proof is essentially the same as the proof of Theorem 155. �

Theorem 252. Suppose H is a torsion free variation of pure Hodge structure on (∆∗)r and (α, β) ∈
IH1(H)× IH1(H∨). Let (t1, . . . , tr) ∈ Zr

≥0, and write ϕ̄ : ∆ → ∆r for the test curve s 7→ (st1 , . . . , str).
Then

h(α, β)(t) = −j(α, β, ϕ̄t).

Proof. Apply Proposition 251 to X = X(α, β) using the fact that τ̃ǫi
X = 0 for all i. �
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1989. Actes du Colloque de Théorie de Hodge (Luminy, 1987).
[9] Eduardo Cattani, Aroldo Kaplan, and Wilfried Schmid. Degeneration of Hodge structures. Ann. of Math. (2),

123(3):457–535, 1986.
[10] Eduardo Cattani, Aroldo Kaplan, and Wilfried Schmid. L2 and intersection cohomologies for a polarizable varia-

tion of Hodge structure. Invent. Math., 87(2):217–252, 1987.
[11] Lear D. Extensions of normal functions and asymptotics of the height pairing. PhD Thesis, University of Washing-

ton, 1990.
[12] Mark Andrea A. de Cataldo and Luca Migliorini. On singularities of primitive cohomology classes. Proc. Amer.

Math. Soc., 137(11):3593–3600, 2009.
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