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Abstract

We explore new connections between the fields and local observables in two dimensional chiral con-
formal field theory. We show that in a broad class of examples, the von Neumann algebras of local
observables (a conformal net) can be obtained from the fields (a unitary vertex operator algebra) via
a continuous geometric interpolation procedure involving Graeme Segal’s functorial definition of con-
formal field theory, and that the conformal net may be thought of as a boundary value of the Segal
CFT. In particular, we construct conformal nets from these unitary vertex operator algebras by showing
that ‘geometrically mollified’ versions of the fields yield bounded, local observables on the Hilbert space
completion of the vertex algebra. These are the first results which unite the three major definitions of
chiral conformal field theory. This work is inspired by Henriques’ picture of conformal nets arising from
degenerate Riemann surfaces.
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1 Introduction

There are three major mathematical formulations of two dimensional chiral conformal field theory (CFT).
On the algebraic side, we have the notion of a vertex operator algebra (VOA), which axiomatizes the fields
of a chiral CFT. In the language of functional analysis and operator algebras, we have conformal nets,
which axiomatize the algebras of local observables (in the sense of Haag-Kastler algebraic quantum field
theory). These two notions have been more extensively developed than the third formulation, Graeme
Segal’s geometric definition in terms of functors from the two dimensional complex bordism category
(Segal CFT).

It is widely believed that the three approaches are essentially equivalent, after imposing some technical
conditions, and perhaps restricting the Segal formulation to bordisms with genus zero. Since all three
definitions are supposed to capture the same physical notion of 2d chiral conformal field theory, each
has a version of the major examples (e.g. minimal models, WZW models) and constructions (e.g. coset
construction, orbifold construction), and it would be very satisfying to have a robust theory which
identifies the three manifestations of these.

More importantly, each of these formulations has important and interesting connections within math-
ematics, for example the connection between conformal nets and Jones’ theory of subfactors, or the
connection between vertex operator algebras and ‘monstrous moonshine.’ There are many examples of
important results in conformal field theory which can be established in one of the frameworks but not
the others1, and it is very desirable to develop the connection between different formulations of CFT
to the point that one may answer open questions about one version using a result from another. One
striking example of the value of this approach is Wassermann’s computation of the fusion rules for the
SU(N)k conformal nets using smeared primary fields [Was98], which provided a natural construction of
subfactors with index 4 cos2 π

n
.

Recently, Carpi, Kawahigashi, Longo and Weiner initiated a general theory relating vertex operator
algebras and conformal nets [CKLW18]. They give a construction which produces a conformal net from a
(simple, unitary) vetex operator algebra satisfying regularity conditions, which they show are satisfied by
essentially every known vertex operator algebra. Moreover, they show how to recover the vertex operator
algebra from the conformal net that it produces.

In this paper, we will present an alternative, geometric perspective on the relationship between vertex
operator algebras and conformal nets, based on a geometric picture of conformal nets introduced by
André Henriques [Hen14]. We will show that, in a broad class of examples, Segal’s functorial definition
of conformal field theory allows one to continuously interpolate between unitary vertex operator algebras
and conformal nets. To our knowledge, these are the first results which unite the three definitions of
conformal field theory.

We will now outline Henriques’ geometric picture of conformal nets in more detail. The dictionary
between vertex operator algebras and the geometric picture of Segal CFT has long been understood by
mathematicians and physicists. In Segal’s picture, there is a a Hilbert space H assigned to the circle S1,
and to every two dimensional complex bordism Σ there is a one dimensional space of trace class linear
maps

E(Σ) :
⊗

π0(∂Σin)

H →
⊗

π0(∂Σout)

H.

In particular, one map T : H⊗H → H assigned to a disk with two disks removed corresponds to the the
state-field correspondence a 7→ Y (a,w) of a vertex operator algebra. More precisely, we have

←→
T : H⊗H → H,
T (a⊗ b) = Y (sL0a,w)rL0b

.

where the parameters s, w and r are determined by the geometry of the surface, and L0 is the energy
operator.

1 For example, the rationality of orbifolds and cosets is an open problem in the theory of VOAs which has been solved in
the context of conformal nets, whereas the rationality of many important examples has been established for VOAs, but not for
conformal nets
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The symmetry group of a chiral conformal field theory is the group of orientation preserving diffeo-
morphisms of the unit circle, Diff+(S1). It is common practice to think of these diffeomorphisms as ‘thin’
bordisms, i.e. as degenerate annuli with zero thickness. Henriques’ idea in [Hen14] is to also consider
degenerate annuli which are thin along only part of the boundary, such as the ones in Figure 1.1. Given

Figure 1.1: A pair of degenerate annuli, one (from [Hen14]) depicted in three space,
and another embedded in the complex plane.

a Segal CFT, one might hope that it assigns bounded linear maps H → H to such degenerate annuli,
although these maps will no longer be trace class. We should be able to obtain the linear maps for
degenerate annuli as limits of maps assigned to ordinary annuli:

E

 •1

 = lim
R↓1

E

 •1 •R

 . (1.1)

The principal piece of data for a conformal net is a family of von Neumann algebras A(I), called the
local algebras, indexed by intervals I ⊂ S1. In Henriques’ geometric perspective, the local operators of
a conformal net correspond to degenerate annuli with states inserted in the thick part of the annulus.
That is, A(I) is generated by degenerate surfaces which look like:

aI , (1.2)

where a runs over all states. Thus a conformal net can be thought of as a boundary value of a Segal
CFT via a limiting procedure like the one in (1.1).

The content of this paper is that these ideas can be made rigorous in a large family of examples,
namely those examples which can be embedded in some number of complex free fermions. Moreover, we
show that Segal CFT can be used to interpolate between vertex operator algebras and conformal nets.
We’ll now outline our main results.

In [Ten17], we gave a construction of the Segal CFT for the free fermion, which assigns to a circle the
fermionic Fock Hilbert space F , and to a Riemann surface X equipped with a spin structure, trivialized
on the boundary, a one dimensional space of trace class maps

E(X) :
⊗

π0(∂Xin)

F →
⊗

π0(∂Xout)

F .

The maps T ∈ E(X) are characterized by certain commutation relations, determined by the Hardy
space H2(X), between T and generators a(f) and a(g)∗ of the canonical anticommutation relations
algebra CAR(L2(S1)). This construction has many nice properties (discussed in Section 2.1.1), the most
important of which is the compatibilty between gluing of Riemann surfaces and composition of linear
maps. We also proved in [Ten17] that

E

( )
= spanC T (1.3)
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where T : F ⊗ F → F is given on finite energy vectors a, b ∈ F0 by

T (a⊗ b) = Y (sL0a,w)rL0b.

Here, Y is the free fermion state-field correspondence and s, w, r are such that the surface in question is
D \ (rD̊ ∪ (w + sD̊))2. The spin structure in (1.3) is the one inherited from the depicted embedding into
C, and the boundary trivializations of this spin structure are the ones obtained from the Riemann maps
z 7→ rz and z 7→ w+ sz for the regions rD̊ and w+ sD̊ removed from the unit disk D (along with suitable
choices of square roots of the derivatives of these maps).

Now consider a family of Riemann surfaces of the form

XR,t = •1 •R = RD \ (φt(D̊) ∪ (w + sD̊)),

where R > 1 and (φt)t≥0 is a one-parameter semigroup of univalent (i.e. holomorphic, injective) self
maps of the unit disk D which fix 0 and map onto Jordan domains with C∞ boundary.3 There is a
unique univalent map σ : D̊ → C, called the Koenigs map of φt, which satisfies Schröder’s equation
σ(φt(z)) = φ′t(0)σ(z) for all t ≥ 0 and z ∈ D̊. We assume that σ extends smoothly to the boundary S1

of D̊.
Let Ln be the unitary, positive energy representation of the Virasoro algebra for the free fermion,

and let

L(ρ) =

∞∑
n=−∞

ρ̂nLn

be the smeared field corresponding to the function ρ(z) = σ(z)
zσ′(z) , where ρ̂n are the Fourier coefficients of

the restriction of ρ to S1.4

One can verify that the space assigned by the (non-degenerate) free fermion Segal CFT, E(XR,t), is
spanned by the map TR,t given on finite energy vectors a, b by

TR,t(a⊗ b) = R−L0Y (sL0a,w)e−tL(ρ)b,

when XR,t is given the standard spin structure inherited from C, and standard boundary trivializations
induced by the Riemann maps φt and z 7→ sz + w (along with appropriate choices of square roots
of their derivatives), after perhaps reparametrizing the semigroup φt 7→ φαt. The following theorem,
characterizing the value of the Segal CFT on the degenerate boundary limit limR↓1 XR,t (as in (1.1)) is
stated more precisely in the body of the paper as Theorem 3.10.

Theorem A. Let

TR,t ∈ E

( )
be as above, and fix t > 0. Then limR↓1 TR,t converges to a bounded operator Tt : F ⊗ F → F in the
strong operator topology, given on finite energy vectors a, b by

Tt(a⊗ b) = Y (sL0a,w)e−tL(ρ)b,

where Y is the free fermion state-field correspondence. Moreover, Tt can be characterized in terms of
commutation relations with generators for the CAR algebra determined by the Hardy space of a degenerate
Riemann surface Xt = D \ ((w + sD̊) ∪ φt(D̊)), depicted:

Xt = .

2We will use D for the closed unit disk in C, and D̊ for its interior
3 The requirement that the region removed from D be of the form φt(D̊) for a semigroup φt is for technical technical reasons,

but we expect that this assumption is not essential.
4 The function ρ is closely related to the generating vector field of the semigroup φt of Berkson and Porta [BP78].
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See Section 3 for a precise definition of the Hardy space of a degenerate Riemann surface and of the
commutation relations which characterize Tt. The most difficult part of the proof of Theorem A is to
show that the limit operator Tt is bounded. Our approach is to show that T ∗t is an example of what
we call an implementing operator (defined in Section 5), which in this case means that it arises as the
second quantization of a bounded, not necessarily contractive, map L2(S1)→ L2(S1)⊕L2(S1). We then
prove that T ∗t is bounded by combining a careful study of the boundedness of implementing operators in
general (Theorem 5.3) with the ‘quantum energy inequality’ of Fewster and Hollands [FH05] for smeared
Virasoro fields on the circle. The boundedness of the maps Tt is closely related to the concept of ‘local
energy bounds’ for fields, which will be appear in the forthcoming paper [CW].

Theorem A characterizes the value of the free fermion Segal CFT on degenerate Riemann surfaces
with standard boundary trivializations, but one can check that changing the trivializations by (spin)
diffeomorphisms γ of S1 corresponds to composition with a certain unitary representation U(γ). Given
a fixed semigroup (φt)t≥0 as above, and a fixed choice of t > 0, we will be interested in pairs (γ1, γ2) of
spin diffeomorphisms which satisfy γ1(z) = φt(γ2(z)) for all z lying in some interval I ⊂ S1; let PI be
the collection of all such pairs.

Theorem B. Let (φt)t≥0 be a one-parameter group of univalent maps φt : D→ D as above, and let ρ be
its generator. Fix t > 0, and assume that φt(S

1) ∩ S1 contains an interval. Let F0 be the finite energy
vectors of the free fermion vertex operator algebra, regarded as a subspace of its Hilbert space completion
F . Let V ⊂ (F0)⊗N be a unitary vertex operator subalgebra, and let Y : V → End(V )[[x±1]] be its
state-field correspondence. For a ∈ V , let Tt;a = Y (sL0a,w)e−tL(ρ). Then Tt;a is bounded, and

AV (I) :=
{
U(γ1)∗Tt,aU(γ2) , (U(γ1)∗Tt;aU(γ2))∗

∣∣ a ∈ V, (γ1, γ2) ∈PI

}′′
defines a conformal net on the Hilbert space completion of V , with conformal symmetry U given by the
positive energy representation of Diff+(S1) induced by the conformal vector of V .

Theorem 4.13 gives a more detailed statement of Theorem B which also addresses vertex operator
superalgebras V (which produce Fermi conformal nets). While the results of [CKLW18] are not stated for
superalgebras and Fermi conformal nets, they should still hold in that case with minimal modification.
Assuming the ‘super version’ of these results, one can show that the conformal nets constructed in
Theorem B are isomorphic to the ones constructed in [CKLW18] (see Remark 4.18). Note that while we
will cite several results from [CKLW18] on the structure of unitary vertex operator (super)algebras, our
construction of conformal nets is entirely independent. We call our construction a ‘geometric realization’,
as the generators of local algebras arise as limits of a Segal CFT, which may be depicted as degenerate
Riemann surfaces with states inserted. We outline our construction in Figure 1.2.

a
 a  a

A field Y (a,w)
A path of operators from

the Segal CFT
A bounded local operator

U(γ1)∗Y (sL0a,w)e−tL(ρ)U(γ2)

Figure 1.2: Moving continuously from the fields of a 2d chiral CFT to the local
algebras via Segal CFT.

In contrast to the construction in [CKLW18], where the local algebras are generated by unbounded
operators, our construction gives a linear map identifying states in the vertex operator algebra with
bounded generators of local algebras. This approach has considerable upside, as bounded operators
arising from fields are considerably easier to work with from a technical standpoint, as demonstrated in
Wassermann’s computation of the fusion rules for SU(N)k in [Was98]. Moreover, geometric ideas have
already proven to be valuable in the study of conformal nets, such as in the recent article [MTW18] of
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Morinelli, Tanimoto, and Weiner which proved the long-held conjecture that conformal nets automatically
satisfy the split property.

Of course, one is led to ask which unitary vertex operator algebras Theorem B applies to; that is,
which appear as subalgebras of N free fermions, for some N . We provide many examples of such VOAs in
Section 4.2, and these include the free boson, lattice VOAs corresponding to sublattices of ZN , the discrete
series of (super) Virasoro VOAs (and many other Virasoro VOAs), and affine VOAs corresponding to
simple Lie algebras g, at levels k∆g (k = 1, 2, . . .), where ∆g ∈ Z>0 is a constant depending on g.

We see no reason that Theorem B should be limited to subalgebras of free fermions; embeddings
into free fermions are simply a technical tool useful for establishing analytic properties of fields. Such
embeddings were used for the same reason in Wassermann’s paper [Was98], as well as in a forthcoming
paper of Carpi, Weiner and Xu relating representations of conformal nets and representations of vertex
operator algebras [CWX]. In the future, we hope to extend our results to a larger class of unitary VOAs
(e.g. all affine models, all Virasoro models, all lattice models).
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grateful for the hospitality and support of the Max Planck Institute for Mathematics, Bonn, without
which this project would not have been possible. This work was also supported in part by NSF grant
DMS 0856316.

2 Preliminaries

2.1 Fermionic second quantization and the free fermion Segal CFT

We will briefly outline fermionic second quantization and the free fermion Segal CFT; for a more detailed
overview, the reader may consult [Ten17].

2.1.1 Fermionic fock space

Let H and K be complex Hilbert spaces. We will write B(H,K) for the space of bounded linear maps
from H to K, abbreviated B(H) when H = K, and ‖x‖ for the operator norm of x ∈ B(H,K). For p ≥ 1
and x ∈ B(H,K), let ‖x‖p = tr((x∗x)p/2)1/p, and let

Bp(H,K) = {x ∈ B(H,K) : ‖x‖p <∞}.

We will be primarily interested in the cases p = 1 and p = 2. In these cases, elements of Bp(H,K) are
called trace class and Hilbert-Schmidt maps, respectively. We will write Bp(H) for Bp(H,H), which is a
two-sided ideal of B(H). Note that Bp(H) ⊆ Bq(H) when p ≤ q.

Given a complex Hilbert space H, CAR(H) is the universal unital C∗-algebra with generators a(f)
for f ∈ H which are linear in f and satisfy the relations

a(f)a(g) + a(g)a(f) = 0,

a(f)a(g)∗ + a(g)∗a(f) = 〈f, g〉 1.

There is an irreducible, faithful representation of CAR(H) on the Hilbert space

ΛH =
∞⊕
k=0

ΛkH,

densely defined by a(f)ω = f ∧ ω. These operators are bounded with ‖a(f)‖ = ‖f‖. The subspace Λ0H
is spanned by a distinguished unit vector Ω which satisfies a(f)∗Ω = 0 for all f ∈ H.
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The exterior Hilbert space ΛH is naturally a super Hilbert space, with Z/2-grading given by

(ΛH)j =

∞⊕
k=0

Λ2k+jH

for j ∈ {0, 1}. We will write ΓFH,p for the grading operator which acts by (−1)j on
(
ΛH

)j
.

There is a family of irreducible, faithful representations of CAR(H) indexed by projections p ∈ B(H)
given as follows. Let Hp = (pH)∗ ⊕ (1− p)H, and let FH,p = ΛHp. The representation πp : CAR(H)→
B(ΛHp) is given by

πp(a(f)) = a((pf)∗)∗ + a((1− p)f).

We will generally write a(f) instead of πp(a(f)) when the space that CAR(H) acts on is clear.
The distinguished unit vector Ωp ∈ Λ0Hp is characterized, up to scalar multiples, by the equations

a(f)Ωp = 0 for f ∈ pH,
a(g)∗Ωp = 0 for g ∈ (1− p)H.

The following result is often called the Shale-Stinespring condition, or the Segal equivalence criterion.

Theorem 2.1. Let H be a Hilbert space and let p and q be projections on H. Then there exists a unit
vector Ω̂q ∈ FH,p which satisfies

a(f)Ω̂q = 0 for f ∈ qH,

a(g)∗Ω̂q = 0 for g ∈ (1− q)H,

if and only if p − q is Hilbert-Schmidt. If these conditions are satisfied, the vector Ω̂q will be unique up
to scalar multiple.

If the conditions of Theorem 2.1 hold, then there is a unitary isomorphism FH,q → FH,p of represen-
tations of CAR(H) determined by Ωq 7→ Ω̂q.

If I = {i1, . . . , in} is a finite ordered set with i1 < i2 < . . . < in, and {hi}i∈I ⊂ H is a family of
vectors from H indexed by I, then we write

a(hI) := a(hi1) · · · a(hin) ∈ CAR(H). (2.1)

We will generally consider the case when H is separable and pH and (1 − p)H are both infinite
dimensional. We will then choose an orthonormal basis {ei}i∈Z with ei ∈ pH when i ≥ 0 and ei ∈ (1−p)H
when i < 0. Then FH,p has an orthonormal basis indexed by finite subsets I ⊂ Z≥0 and J ⊂ Z<0 given
by

a(eJ)a(eI)
∗Ωp.

A key property of the Fock space construction is that it takes direct sums to tensor products.

Proposition 2.2. There is a natural even unitary isomorphism FH⊕K,p⊕q ∼= FH,p⊗FK,q characterized
by

a(hJ)a(hI)
∗a(kJ′)a(kI′)

∗Ωp⊕q 7→ a(hJ)a(hI)
∗Ωp ⊗ a(kJ′)a(kI′)

∗Ωq,

where hJ and hI are ordered families of vectors from H and kJ′ and kI′ are ordered families of vectors
from K. The induced action of CAR(H ⊕K) on FH,p ⊗FK,q is

a(h+ k) 7→ a(h)⊗ 1 + ΓFH,p ⊗ a(k) (2.2)

where ΓFH,p is the grading operator on FH,p.

Let U(H) be the group of unitary operators on H, and let

Ures(H, p) = {u ∈ U(H) : [p, u] ∈ B2(H)}

where [a, b] is the commutator ab− ba. There is a strongly continuous projective unitary representation
of Ures(H, p) on FH,p, called the basic representation, such that the image U of u ∈ Ures(H, p) is
characterized by Ua(f)U∗ = a(uf). The image of the vacuum under U is given by

UΩp = Ω̂q, (2.3)

7



where q = upu∗ and Ω̂q is as in Theorem 2.1. Note that Ω̂q only depends on q, and not on u. For more
details on the basic representation, one may consult [Was98, §3], [PS86, §10], or [Ten17, §2.1].

In the following, fix H = L2(S1) (with normalized arclength measure on S1), and p ∈ B(H) to be the
projection of H onto the classical Hardy space

H2(D) = span{zn : n ≥ 0}.

In this case we will just write F for FH,p and Ω for the vaccum vector Ωp. We will refer to F as fermionic
Fock space.

Let Diff+(S1) be the group of orientation preserving diffeomorphisms of the unit circle S1 ⊂ C, and
let C∞(S1)× be the group of non-vanishing smooth functions S1 → C under pointwise multiplication.
Then Diff+(S1) acts on C∞(S1)× by automorphisms via γ · f = f ◦ γ−1, and we can form the semidirect
product C∞(S1)× o Diff+(S1). Let DiffNS+ (S1) be the double cover of Diff+(S1) given as a subgroup of
C∞(S1)× o Diff+(S1) by

DiffNS+ (S1) = {(ψ, γ) ∈ C∞(S1)× o Diff+(S1) : ψ2 = (γ−1)′}.

Here, and throughout, if f ∈ C∞(S1), then we write f ′ for the complex derivative

f ′(z) =
d

dz
f(z) =

1

iz

d

dθ
f(eiθ)

∣∣∣
z=eiθ

.

Let uNS : DiffNS+ (S1) → U(H) be the unitary representation given by uNS(ψ, γ)f = ψ · (f ◦ γ−1).
Then uNS(ψ, γ) ∈ Ures(H, p), and by composing with the basic representation we get a projective unitary
representation UNS : DiffNS+ (S1)→ PU(H), which is strongly continuous when DiffNS+ (S1) is given, for
example, the C∞ topology. The representing operators UNS(ψ, γ) are even for all (ψ, γ) ∈ DiffNS+ (S1).
See e.g. [Ten17, §2.1] for an expanded discussion of this representation.

Let rθ ∈ Diff+(S1) be the map rθz = eiθz. By Stone’s theorem, there is a self-adjoint operator L0,
in our case unbounded, such that

UNS(e−iθ/2, rθ) = eiθL0 . (2.4)

If we write ej for the function zj ∈ H, then {ej}j∈Z is an orthonormal basis for H, with ej ∈ pH when
j ≥ 0 and ej ∈ (1− p)H when j < 0. The corresponding basis a(eJ)a(eI)

∗Ω for F diagonalizes L0, and
one has

L0a(eJ)a(eI)
∗Ω =

(∑
i∈I

(i+ 1
2
)−

∑
j∈J

(j + 1
2
)
)
a(eJ)a(eI)

∗Ω

where J ⊂ Z<0 and I ⊂ Z≥0 are finite subsets. Note that the eigenvalues of L0 are 1
2
Z≥0, and each

eigenspace is finite dimensional. We denote by F0 the algebraic span of the eigenvectors of L0, and write
F≤N ⊂ F0 for the finite dimensional subspace spanned by eigenvectors of L0 with eigenvalue at most N .

2.1.2 The free fermion Segal CFT

Let Σ be a Riemann surface. A spin structure on Σ is a holomorphic line bundle L → Σ, and a
holomorphic isomorphism L ⊗ L → KΣ, where KΣ is the holomorphic cotangent bundle. We will refer
to a Riemann surface Σ equipped with a spin structure as a spin Riemann surface.

If L1 and L2 are spin structures on Σ1 and Σ2, respectively, then an isomorphism of spin structures
L1 → L2 is a holomorphic isomorphism of bundles B : L1 → L2 such that the diagram

L1 ⊗ L1
B⊗B−−−−−→ L2 ⊗ L2

Φ1

y yΦ2

KΣ1

B|Σ1
∗

←−−−−− KΣ2

commutes, where B|∗Σ is the pullback of holomorphic 1-forms induced by the biholomorphic map B|Σ1 :
Σ1 → Σ2.

Up to isomorphism there is a unique spin structure on C. It is given by the trivial bundle L = C×C,
and the isomorphism Φ : L⊗ L→ KC is given on sections by

Φ∗(f ⊗ g) = fg dz. (2.5)
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If 0 < r < 1, then the annulus Ar = {r ≤ |z| ≤ 1} has two non-isomorphic spin structures, called
the Neveu-Schwarz (NS) and Ramond (R) spin structures, again given by the trivial bundle L = Ar ×C.
For σ ∈ {NS,R}, the isomorphisms Φσ : L⊗ L→ KAr are given by

Φσ∗(f ⊗ g) =

{
−ifg dz σ = NS
−ifgz−1dz σ = R

We denote these spin annuli by (Ar, σ).
If Y is a closed, smooth 1-manifold, then a spin structure on Y is a smooth, complex line bundle L

and an isomorphism of complex line bundles φ : L⊗ L→ T ∗YC, where T ∗YC = T ∗Y ⊗R C.
An isomorphism of spin structures (Y1, L1) → (Y2, L2) is a smooth bundle map β : L1 → L2 such

that

L1 ⊗ L1
β⊗β−−−−−→ L2 ⊗ L2

φ1

y yφ2

T ∗Y1C
β|Y1

∗

←−−−−− T ∗Y2C

(2.6)

where β|Y1

∗ is the isomorphism of cotangent bundles induced by the diffeomorphism β|Y1 : Y1 → Y2.
If (Σ, L) is a compact spin Riemann surface with non-empty boundary, then ∂Σ becomes a spin

1-manifold by identifying T ∗∂ΣC ∼= KΣ|∂Σ in such a way that the real subspace T ∗∂Σ corresponds to
the dual of tangent vectors parallel to the boundary.

There are two non-isomorphic spin structures on the unit circle S1 ⊂ C, called the Neveu-Schwarz
(NS) and Ramond (R) spin structures, obtained by restricting (Ar, σ) to S1, where σ ∈ {NS,R}. We
denote these spin circles by (S1, σ).

The group Aut+(S1, NS) of orientation preserving automorphisms of (S1, NS) can naturally be
identified with DiffNS+ (S1) as follows. Given (ψ, γ) ∈ DiffNS+ (S1), there is a unique αNS(ψ, γ) ∈
Aut+(S1, NS) such that αNS(ψ, γ) acts on sections f ∈ C∞(S1) by αNS(ψ, γ)∗f = uNS(ψ, γ)f .

Similarly, there is an isomorphism αR of Aut+(S1, R) with the double cover DiffR+(S1) of Diff+(S1)
given by

DiffR+(S1) = {(ψ, γ) ∈ C∞(S1)× o Diff+(S1) : ψ2 =
∣∣(γ−1)′

∣∣}.
This isomorphism is characterized by

αR(ψ, γ)∗f = uR(ψ, γ)f := ψ · (f ◦ γ−1)

for all f ∈ C∞(S1). Like with the Neveu-Schwarz representation, we have uR(ψ, γ) ∈ Ures, and so we
have a projective unitary representation UR : DiffR+(S1)→ PU(F).

Definition 2.3. A spin Riemann surface with parametrized boundary is a collection of:

• A compact Riemann surface with boundary Σ with spin structure (L,Φ). We write π0(∂Σ) for
the set of connected components of ∂Σ, and for j ∈ π0(∂Σ) we let σ(j) ∈ {NS,R} denote the
isomorphism class of the restriction L|j .

• A trivialization of L|∂Σ given by an isomorphism of spin structures

β = (βj)j∈π0(∂Σ) :
⊔

j∈π0(∂Σ)

(S1, σ(j))→ L|∂Σ.

Let R be the collection of all such (Σ, L,Φ, β) with the property that Σ has no closed components. If
Xi = (Σi, Li,Φi, βi) ∈ R for i ∈ {1, 2}, then we say that X1 and X2 are isomorphic if there exists an
isomorphism of spin structures B : (Σ1, L1,Φ1)→ (Σ2, L2,Φ2) such that β2 = B ◦ β1.

The complex structure of a Riemann surface induces an orientation, and if X = (Σ, L,Φ, β) ∈ R
this allows us to partition the connected components of ∂Σ into incoming and outgoing components, as
follows. We say that a connected component j of ∂Σ is incoming if the diffeomorphism βj |S1 is orientation
reversing, and we say that j is outgoing if βj |S1 is orientation preserving. We write ∂Σ0 for the subset
of ∂Σ consisting of incoming components, and ∂Σ1 for the subset consisting of outgoing components.

The free fermion Segal CFT assigns to every X ∈ R a one-dimensional space of trace class maps

E(X) ⊂ B1

( ⊗
j∈π0(∂Σ0)

F ,
⊗

j∈π0(∂Σ1)

F
)
. (2.7)

9



The unordered tensor products in (2.7) are unordered tensor products of super Hilbert spaces, meaing
that we have a family of maps, one for every ordering of the tensor products, compatible with the braiding
of super Hilbert spaces.

The following theorem summarizes some of the main properties of the assignment X 7→ E(X). For a
more detailed treatment, see [Ten17].

Theorem 2.4. Let X = (Σ, L,Φ, β) ∈ R. The maps E(X) assigned by the free fermion Segal CFT
satisfy the following properties:

• (Existence and invariance) E(X) is one-dimensional, and its elements are homogeneous and trace
class. If X and X̃ are isomorphic, then E(X) = E(X̃).

• (Non-degeneracy) If every connected component of Σ has an outgoing boundary component, then
non-zero elements of E(X) are injective. If every connected component of Σ has an incoming
boundary component, then non-zero elements of E(X) have dense image.

• (Monoidal) If Y ∈ R, then E(X t Y ) = E(X)⊗̂E(Y ), where X t Y is the disjoint union and ⊗̂ is
the graded tensor product of maps of super Hilbert spaces.

• (Gluing) If X̂ ∈ R is obtained by sewing two boundary components of X along the parametrizations,
then the partial supertrace induces an isomorphism trs : E(X)→ E(X̂). In particular, if X0, X1 ∈
R and X is obtained by sewing the outgoing boundary of X1 to the incoming boundary of X0, then
E(X) = E(X0)E(X1).

• (Reparametrization) If (ψj , γj) ∈
∏
j∈π0(∂Σ) Diff

σ(j)
+ (S1), and X̃ = (Σ, L,Φ, β̃) ∈ R is obtained by

setting β̃j = βj ◦ ασ(j)(ψj , γj)
−1, then

E(X̃) =

 ⊗
j∈π0(∂Σ1)

Uσ(j)(ψj , γj)

E(X)

 ⊗
j∈π0(∂Σ0)

Uσ(j)(ψj , γj)
∗

 .

• (Unitarity) E(X) = E(X)∗, where X is the complex conjugate spin Riemann surface, and E(X)∗

denotes taking the adjoint elementwise.

We have omitted precise explanations of the notions of graded tensor products of maps, of sewing
spin Riemann surfaces along boundary parametrizations, and of the conjugate X; they are discussed in
[Ten17] in Section 2.1, Section 2.2, and Section 3.2, respectively.

We will now briefly describe the construction of the spaces E(X), as it is similar to the construction
of localized vertex operators in Section 3.

As before, let H = L2(S1) and let p ∈ B(H) be the projection onto the classical Hardy space

H2(D) = span{zn : n ≥ 0}.

Given X = (Σ, L,Φ, β) ∈ R, we define the boundary Hilbert space

H∂Σ =
⊕

j∈π0(∂Σ)

H.

We write O(Σ;L) for the space of sections of L which are holomorphic on the interior Σ̊ and which extend
to smooth functions on ∂Σ. Given a section F ∈ O(Σ;L), the pullback β∗F yields a smooth function on⊔
j∈π0(∂Σ) S

1, and thus an element of H∂Σ. Define the Hardy space H2(X) ⊂ H∂Σ by

H2(X) = {β∗F : F ∈ O(Σ;L)}.

Now decompose H∂Σ = H1
∂Σ ⊕H0

∂Σ, where

Hi
∂Σ =

⊕
j∈π0(∂Σi)

H

and define the boundary projections pi ∈ B(H∂Σi) by

pi =
⊕

j∈π0(∂Σi)

p.
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There is a natural unitary isomorphism

FHi
∂Σ
,pi
→

⊗
j∈π0(∂Σi)

F (2.8)

given by Proposition 2.2. That is, for every ordering of the tensor factors of the right-hand side of (2.8),
we have an isomorphism with FHi

∂Σ,pi

, and these isomorphisms are compatible with the braiding of super

Hilbert spaces.
Making this identification, we define E(X) ⊂ B1(FH0

∂Σ,p0

,FH1
∂Σ,p1

) to be the space of trace class

maps T which satisfy the H2(X) commutation relations:

a(f1)T = (−1)p(T )Ta(f0), a(g1)∗T = −(−1)p(T )Ta(g0)∗

for every (f1, f0) ∈ H2(X) ⊂ H1
∂Σ ⊕ H0

∂Σ, and every (g1, g0) ∈ H2(X)⊥, where p(T ) ∈ {0, 1} is the
parity of T , and the equation is understood by extending linearly if T is not homogeneous.

This description of E(X) is useful for two reasons. First, it is good for computing with. For every
holomorphic function on Σ one obtains a relation satisfied by elements of E(X), and in practice these
relations are easy to work with. In [Ten17, §5.2], we used this description to give a short proof that when
X is a disk with two disks removed, E(X) is spanned by maps related to vertex operators.

The second advantage of the description of E(X) in terms of commutation relations from H2(X) is
that it can be generalized to other geometric objects X which have a Hardy space. In Section 3, we will
consider what happens when X is is a ‘degenerate Riemann surface’ where the incoming and outgoing
boundary of Σ are allowed to overlap.

Example 2.5. ([Ten17, Prop. 5.1]) When X is given by the closed unit disk D, the spin structure it
inherits from C, and the identity parametrization on the boundary, then E(X) is spanned by the vacuum
vector Ω ∈ F
Example 2.6. ([Ten17, Prop. 5.2]) When X is given by the spin annulus (Ar, NS) with boundary
parametrizations given by the identity and the map z 7→ rz, then E(X) is spanned by rL0 . Note that
both the boundary parametrization and rL0 depend on a choice of square root of r. Similarly, when

NS is replaced by R, E(X) is spanned by rL
R
0 , where LR0 is the generator of the one-parameter group

UR(1, rθ).

Example 2.7. ([Ten17, Thm. 5.4] Let w ∈ D and r1, r2 ∈ (0, 1), and assume they satisfy s+ r < |w| <
1− s. Define the pair of pants

Pw,s,r = D \
(

(sD̊ + w) ∪ rD̊
)
,

where D̊ is the open unit disk.
Give Pw,s,r the spin structure inherited from C, and parametrize the boundary components via the

identity map on S1, and the maps z 7→ rz and z 7→ sz + w. Let

Y : F0 → End(F0)[[x±1]]

be the free fermion vertex operator algebra state-field correspondence (see Example 2.22). Then E(Pw,s,r)
is spanned by the map T : F ⊗ F → F given on ξ ⊗ η ∈ F0 ⊗F0 by

T (ξ ⊗ η) = Y (sL0ξ, w)rL0η

when the inputs are ordered so that the one corresponding to the boundary component sS1 + w comes
first. Note that both the boundary parametrizations and T depend on choices of square roots of s and
r. Leaving the boundary parametrizations implicit, we can depict this result as follows:

E


• 1• 0 • r

•
w

•w+s


= CT.

11



We will frequently leave the parameters w, r, s implicit as well, and depict the state insertions T (ξ ⊗ η)
as follows.

ξ

η = T (ξ ⊗ η) = Y (sL0ξ, w)rL0η .

2.2 Unitary vertex operator superalgebras

We will give only a brief overview of unitary vertex operator superalgebras. A detailed treatment of
unitary vertex operator algebras in the spirit of this paper may be found in [CKLW18, §4-5]. Our
treatment is adapted from this reference, as well as from [AL17].

Definition 2.8. A vertex operator superalgebra is given by:

1. a Z/2Z-graded vector space V = V 0 ⊕ V 1. Elements of V 0 ∪ V 1 are called homogeneous vectors,
and elements of V 0 (resp. V 1) are called even (resp. odd) vectors. If a ∈ V i, we denote the parity
p(a) = i.

2. even vectors Ω, ν ∈ V 0 called the vacuum vector and the conformal vector, respectively.

3. a state-field correspondence Y : V → End(V )[[x±1]], usually denoted

Y (a, x) =
∑
n∈Z

a(n)x
−n−1. (2.9)

Here End(V )[[x±1]] is the vector space of formal series of the form (2.9). The coefficients a(n) of
this formal series are called the modes of a.

This data must satisfy:

1. For every a ∈ V , if a is even (resp. odd) then a(n) is even (resp. odd) for all n ∈ Z.

2. For every a, b ∈ V , we have a(n)b = 0 for n sufficiently large.

3. For every a ∈ V , we have a(n)Ω = 0 for n ≥ 0 and a(−1)Ω = a.

4. Y (Ω, x) = 1V . That is, Ω(n) = δn,−11V .

5. For every a, b ∈ V , there exists a positive integer N such that we have an identity of formal series
(x− y)N [Y (a, x), Y (b, y)]± = 0. Here, the super commutator [ · , · ]± is given by

Y (a, x)Y (b, y)− (−1)p(a)p(b)Y (b, y)Y (a, x)

when a and b are homogeneous, and extended linearly otherwise.

6. If we write Y (ν, x) =
∑
n∈Z Lnx

−n−2, then the Ln give a representation of the Virasoro algebra.
That is,

[Lm, Ln] = (m− n)Lm+n + c
12

(m3 −m)δm,−n1V

for a number c ∈ C, called the central charge.

7. If we write Vα = ker(L0 − α1V ), then we have a decomposition of V as an algebraic direct sum

V 0 =
⊕
α∈Z≥0

Vα, V 1 =
⊕

α∈ 1
2

+Z≥0

Vα

with dimVα <∞.

8. For every a ∈ V we have [L−1, Y (a, x)] = d
dx
Y (a, x).

12



We will often abuse terminology by referring to V as a vertex operator superalgebra, instead of
referring to the quadruple (V, Y,Ω, ν). If V 1 = {0}, then V is called a vertex operator algebra.

If a ∈ Vα, then we say that a is homogeneous of conformal weight α =: ∆a. It follows from the
definition that if a is homogeneous, then a(n)Vβ ⊂ Vβ−n−1+∆a .

Under this definition, the Borcherds identity (or Jacobi identity) and the Borcherds commutator
formula are consequences:

Theorem 2.9. Let V be a vertex operator superalgebra. Then the Borcherds identity

∞∑
j=0

(
m

j

)(
a(n+j)b

)
(m+k−j)c =

∞∑
j=0

(−1)j
(
n

j

)
a(m+n−j)b(k+j)c

− (−1)p(a)p(b)
∞∑
j=0

(−1)j+n
(
n

j

)
b(n+k−j)a(m+j)c

holds for every a, b, c ∈ V and every m, k, n ∈ Z. In particular, for every a, b, c ∈ V we have the Borcherds
product formula

(
a(n)b

)
(k)
c =

∞∑
j=0

(−1)j
(
n

j

)(
a(n−j)b(k+j) − (−1)p(a)p(b)+nb(n+k−j)a(j)

)
c

for all n, k ∈ Z by specializing to m = 0, and the Borcherds commutator formula

a(m)b(k)c− (−1)p(a)p(b)b(k)a(m)c =

∞∑
j=0

(
m

j

)(
a(j)b

)
(m+k−j)c

for all m, k ∈ Z by specializing to n = 0. As formal series, we have

a(m)Y (b, x)− (−1)p(a)p(b)Y (b, x)a(m) =

∞∑
j=0

(
m

j

)
Y (a(j)b, x)xm−j .

See [Kac98, §4.8] for an extended discussion of the Borcherds identity.
If W = (W ∩ V 0)⊕ (W ∩ V 1) is a Z/2Z-graded subspace of V , then it is called a vertex subalgebra5

if Ω ∈ W and a(n)b ∈ W for all a, b ∈ W and n ∈ Z. If ν ∈ W , then W is called a conformal subalgebra
of V . The even vectors V 0 always form a conformal subalgebra of V .

A vertex subalgebra W is called an ideal if we have a(n)b ∈W for every a ∈ V and b ∈W . A vertex
operator superalgebra V is called simple if its only ideals are {0} and V .

A homomorphism (resp. antilinear homomorphism) from a vertex operator superalgebra V to a vertex
operator superalgebra is a complex linear (resp. antilinear) map φ : V →W which satisfies φ(ΩV ) = ΩW ,
φ(νV ) = νW , and φ(a(n)b) = φ(a)(n)φ(b) for all a, b ∈ V . We also have the obvious notion of (antilinear)
isomorphism and automorphism. The grading operator Γ = (−1)2L0 is always an automorphism of a
vertex operator superalgebra.

Definition 2.10. A unitary vertex operator superalgebra is a vertex operator superalgebra V along with
an inner product 〈 · , · 〉 on V and an antilinear automorphism θ of V , called the PCT operator, satisfying:

1. (Normalization) 〈Ω,Ω〉 = 1

2. (Invariance) 〈a, Y (θb, x)c〉 =
〈
Y (exL1(−1)L0+2L2

0x−2L0b, x−1)a, c
〉

for all a, b, c ∈ V .

Note that x is treated as a formal, real variable in the statement of the invariance property. An isomor-
phism φ : V → W of unitary vertex operator superalgebras is called unitary if 〈φa, φb〉 = 〈a, b〉 for all
a, b ∈ V . If V 1 = {0} then we refer to V as a unitary vertex operator algebra.

We will often abuse terminology by simply referring to V as a unitary vertex operator superalgebra,
with the additional data left implicit.

5The term ‘subsuperalgebra’ might be more precise, but it is a bit clumsy
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Remark 2.11. We could alter Definition 2.10 by replacing (−1)L0+2L2
0 by (−1)L0−2L2

0 . If we call the
two definitions (+) and (−) unitary vertex operator superalgebras, then there is a bijection between the
(+) and (−) notions given by

(V, Y,Ω, ν, 〈 · , · 〉 , θ)←→ (V, Y,Ω, ν, 〈 · , · 〉 ,Γθ).

See [Yam14, §2] for a more detailed discussion.

The following basic properties of the PCT operator are straightforward generalizations of [CKLW18,
Prop. 5.1].

Proposition 2.12. Let (V, Y,Ω, ν, 〈 · , · 〉 , θ) be a unitary vertex operator superalgebra. Then θ is the
unique antilinear automorphism satisfying the invariance property of Definition 2.10. Moreover, we have

1. θ(V i) = V i

2. θ2 = 1V ,

3. 〈θa, θb〉 = 〈b, a〉 for all a, b ∈ V
4. 〈Lna, b〉 = 〈a, L−nb〉 for all a, b ∈ V and n ∈ Z,

Proposition 2.13. Let V and W be unitary vertex operator superalgebras, and let φ : V → W be an
isomorphism of vertex operator superalgebras. Then φ is unitary if and only if φ ◦ θV = θW ◦ φ.

Proof. This proposition follows from the super version of the argument at the beginning of the proof of
[CKLW18, Thm 5.21], using the super version of [CKLW18, Cor. 4.11].

The following is essentially [CKLW18, Prop. 5.3], with the same proof.

Proposition 2.14. Let V be a unitary vertex operator superalgebra. Then V is simple if and only if
V0 = CΩ.

If V is a vertex operator superalgebra, a, b ∈ V , and z ∈ C, we set

Y (a, z)b =
∑
n∈Z

a(n)bz
−n−1 ∈

∏
j∈ 1

2
Z≥0

Vj .

We may regard the Hilbert space completion HV of V as the subspace of
∏
Vj consisting of vectors

∑
vj

with
∑
‖vj‖2 <∞. A useful fact about unitary vertex operator superalgebras is that Y (a, z)b in fact lies

in the Hilbert subspace HV when 0 < |z| < 1, and thus Y (a, z) is a densely defined unbounded operator
on HV .

Proposition 2.15. Let V be a unitary vertex operator superalgebra, let a, b ∈ V , and let z ∈ C with
0 < |z| < 1. Then the sum defining Y (a, z)b converges absolutely in HV , the Hilbert space completion of
V .

Proof. We assume without loss of generality that a and b are eigenvectors for L0 with eigenvalues ∆a

and ∆b, respectively. For c ∈ V an eigenvector of L0, we will re-index the modes of c by writing
cn = c(n+∆c−1), so that [L0, cn] = −ncn.

We will first establish the result under the additional assumption that L1a = 0 (i.e. that a is
quasiprimary), where Ln = ν(n+1) is the representation of the Virasoro algebra associated to V . In this
case, the invariance property for the inner product says that

〈c, (θa)nd〉 = (−1)∆a+2∆2
a 〈a−nc, d〉

for every c, d ∈ V and n ∈ Z. By standard results about vertex operator superalgebras (see [FLM88,
Prop. 8.10.3]), the series

〈Y (θa, w)Y (a, z)b, b〉 =
∑

n,m∈Z−∆a

〈(θa)namb, b〉w−n−∆az−m−∆a

= (−1)∆a+2∆2
a

∑
n,m∈Z−∆a

〈amb, a−nb〉w−n−∆az−m−∆a
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converges absolutely (to a rational function in z and w) whenever |w| > |z| > 0. In our case, |z| < 1, so
we have convergence with w = z−1. Using that 〈amb, a−nb〉 = 0 when m+ n 6= 0, we see that∑

m∈Z−∆a

〈amb, amb〉 |z|−2m <∞.

But this expression is precisely |z|2∆a ‖Y (a, z)b‖2, and so Y (a, z)b ∈ HV .
We established the above result under the assumption that L1a = 0. By [Kac98, Rem. 4.9d], V is

spanned by
{Lk−1a : k ∈ Z≥0, a ∈ V with L1a = 0, L0a = ∆aa}.

Hence it suffices to show that if a is an eigenvector for L0 and Y (a, z)b ∈ HV for all 0 < |z| < 1, then
Y (L−1a, z)b ∈ HV for all 0 < |z| < 1.

Assume we have such an a. Then

‖Y (a, z)b‖2 =
∑
n∈Z

∥∥a(n)b
∥∥2 |z|2(−n−1) <∞

for all 0 < |z| < 1. Hence the function f(z) given by the Laurent expansion

f(z) =
∑
n∈Z

∥∥a(n)b
∥∥2
z2(−n−1)

is meromorphic on the open unit disk D̊, with its only pole at z = 0. Hence z−1(zf ′)′(z) is given by the
Laurent expansion

z−1(zf ′)′(z) = 4
∑
n∈Z

(n− 1)2
∥∥a(n)b

∥∥2
z2(−n−2),

which must converge absolutely for 0 < |z| < 1. But

Y (L−1a, z)b =
d

dz
Y (L−1a, z)b =

∑
n∈Z

(n− 1)a(n)bz
−n−2,

and we have therefore shown that

‖Y (L−1a, z)b‖2 =
∑
n∈Z

(n− 1)2
∥∥a(n)b

∥∥2 |z|2(−n−2) <∞.

We now turn our attention to unitary subalgebras of unitary vertex operator superalgebras.

Definition 2.16. Let (V, Y,Ω, ν, 〈 · , · 〉 , θ) be a unitary vertex operator superalgebra. Then a subalgebra
W ⊂ V is called a unitary subalgebra if θ(W ) ⊂W and L1W ⊂W .

The following is essentially [CKLW18, Prop. 5.29].

Proposition 2.17. Let (V, Y,Ω, ν, 〈 · , · 〉 , θ) be a simple unitary vertex operator superalgebra and let
W ⊂ V be a unitary subalgebra. Let HV be the Hilbert space completion of V , let HW be the closure
of W in HV , and let eW be the projection of HV onto HW . Let νW = eW ν, and let YW and θW

be the restrictions of Y and θ to W . Then νW ∈ W and νW is a conformal vector for W making
(W,YW , νW , 〈 · , · 〉 , θW ) into a simple unitary vertex operator superalgebra. We have LWi = Li|W for
i ∈ {−1, 0, 1}, and in particular the 1

2
Z≥0 grading of W coincides with the one inherited from V .

Note that unitary subalgebras of simple unitary vertex operator superalgebras are again simple by
Proposition 2.14.

Definition 2.18. Let (V, Y,Ω, ν) be a vertex operator superalgebra and let W be a subalgebra. The
coset subalgebra W c ⊂ V is given by

W c = {a ∈ V : [Y (a, x), Y (b, y)]± = 0 for all b ∈W}.

Proposition 2.19. Let (V, Y,Ω, ν, 〈 · , · 〉 , θ) be a simple unitary vertex operator superalgebra, and let
W ⊂ V be a unitary subalgebra. Then W c is a unitary subalgebra and ν = νW + νW

c

.
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Proof. The proof that W c is a unitary subalgebra in the super case is the same as the proof given
[CKLW18, Ex. 5.27] in the even case. The statement about conformal vectors is proven just as in
[CKLW18, Prop. 5.31].

A relatively straightforward construction of unitary vertex operator superalgebras is the tensor prod-
uct.

Proposition 2.20. For i ∈ {1, 2}, let (Vi, Y
i,Ωi, νi, 〈 · , · 〉 , θi) be unitary vertex operator superalgebras.

For ai ∈ Vi homogeneous vectors with parity p(ai), let Y (a1⊗ a2, x) = Y 1(a1, x)Γ
p(a2)
V1

⊗Y 2(a2, x). Then

(V1 ⊗ V2, Y,Ω
1 ⊗ Ω2, ν1 ⊗ Ω2 + Ω1 ⊗ ν2, 〈 · , · 〉 , θ1 ⊗ θ2) is a unitary vertex operator superalgebra.

Proof. This is asserted in [AL17, Prop. 2.4], but we will expand on this a little. To see that V1 ⊗ V2 is
a vertex operator superalgebra, the only non-trivial thing to check is locality. By Dong’s lemma [Kac98,

§3.2], it suffices to check that the generators A1(x) = Y 1(a1, x)⊗ 1V2 and A2(x) = Γp(a
2)⊗Y 2(a2, x) are

pairwise local. That the Ai are local with respect to themselves is clear. Additionally, we have

[A1(x), A2(x)]± = [Y 1(a1, x)⊗ 1V2 , 1V1 ⊗ Y
2(a2, x)](Γp(a

2) ⊗ 1V2) = 0.

It is clear that θ1 ⊗ θ2 is an antilinear automorphism of V1 ⊗ V2, and the proof of invariance is straight-
forward, as in [DL14, Prop. 2.9].

Note that by Proposition 2.14, the tensor product of simple unitary vertex operator superalgebras is
again simple.

The following observation is well-known, but we were unable to find a statement in the literature,
and so a proof is included for completeness.

Proposition 2.21. Let (V, Y,Ω, ν, 〈 · , · 〉 , θ) be a simple unitary vertex operator superalgebra, and let
W be a unitary subalgebra. Let U = span{a(−1)b : a ∈ W, b ∈ W c}. Then U is a unitary conformal
subalgebra of V , unitarily isomorphic to W ⊗W c via the map u(a⊗ b) = a(−1)b.

Proof. We first check that u : a⊗ b 7→ a(−1)b gives a vertex superalgebra homomorphism W ⊗W c → V .
It is clear that u(Ω⊗ Ω) = Ω. By Proposition 2.19, we have

νV = νW + νW
c

= u(νW ⊗ Ω) + u(Ω⊗ νW
c

) = u(νW⊗W
c

).

Let a, a′ ∈ W and b, b′ ∈ W c be homogeneous vectors. By the Borcherds product formula (Theorem
2.9), we have for k ∈ Z and c ∈ V

(a(−1)b)(k)c =
∑
j≥0

a(−1−j)b(k+j)c+ (−1)p(a)p(b)b(k−1−j)a(j)c =
∑
j∈Z

a(j)b(k−1−j)c,

with the last sum finite since all modes of a and b supercommute.
On the other hand, we have

(a⊗ b)(k)(a
′ ⊗ b′) = (−1)p(b)p(a

′)
∑
j∈Z

a(j)a
′ ⊗ b(k−j−1)b

′,

and so

u
(

(a⊗ b)(k)(a
′ ⊗ b′)

)
= (−1)p(b)p(a

′)
∑
j∈Z

(a(j)a
′)(−1)b(k−j−1)b

′

= (−1)p(b)p(a
′)
∑
j∈Z

(a(j)a
′)(−1)b(k−j−1)b

′
(−1)Ω

= (−1)p(b)p(a)(−1)p(b
′)(p(a)+p(a′))

∑
j∈Z

b(k−j−1)b
′
(−1)(a(j)a

′)(−1)Ω

= (−1)p(b)p(a)(−1)p(b
′)(p(a)+p(a′))

∑
j∈Z

b(k−j−1)b
′
(−1)a(j)a

′
(−1)Ω

=
∑
j∈Z

a(j)b(k−j−1)a
′
(−1)b

′.
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Hence
(u(a⊗ b))(k)u(a′ ⊗ b′) = (a(−1)b)(k)a

′
(−1)b

′ = u
(

(a⊗ b)(k)(a
′ ⊗ b′)

)
,

which establishes that a⊗ b 7→ a(−1)b is a map of vertex operator superalgebras.
Since U is the image of u, it is a conformal vertex subalgebra of V . Conformal subalgebras are

automatically invariant under L1, so to check that U is a unitary subalgebra we just need to check
invariance under θ. However, this is clear because W and W c are unitary subalgebras, the latter by
Proposition 2.19.

Finally, we have
u(θξ ⊗ θη) = (θξ)(−1)θη = θ(u(ξ ⊗ η)).

By Proposition 2.13 this implies that u is isometric.

Example 2.22. In this paper, the most important example of a unitary vertex operator superalgebra is
the free fermion, given on the space F0 introduced in Section 2.1.1. This example is discussed in [Kac98,
§5.1] under the name ‘charged free fermions.’ It is generated by the fields

Y (a(1)∗Ω, x) =
∑
n∈Z

a(z−n−1)∗x−n−1, Y (a(z−1)Ω, x) =
∑
n∈Z

a(zn)x−n−1

and has a conformal vector ν = 1
2

(
a(z−2)a(1)∗ + a(z)∗a(z−1)

)
Ω with central charge c = 1. One can

verify directly, as in [Kac98, Eq. (5.1.0)], that the grading operator L0 = ν(1) coincides (after taking
closure) with the operator L0 defined in (2.1.1).

We have already given an inner product on F0, and so to specify a unitary structure we need only
supply a PCT operator. Let j ∈ B(L2(S1)) be given by (jf)(z) = −z−1f(z−1), and let θ : F0 → F0 be
the antilinear map given by

θa(g1) · · · a(gm)a(f1)∗ · · · a(fn)∗Ω = a(jg1)∗ · · · a(jgm)∗a(jf1) · · · a(jfn)Ω

for fi, gj ∈ L2(S1).

Proposition 2.23. The data from Example 2.22 makes F0 into a unitary vertex operator superalgebra
with c = 1.

Proof. The discussion in [Kac98, §5.1] shows that F0 is a vertex operator superalgebra with c = 1, so
we only need to verify unitarity. First, we show that θ is an antilinear automorphism of F0. It is clear
that θΩ = Ω and θν = ν, and also that θ2 = 1. If b ∈ {a(1)∗Ω, a(z−1)Ω}, then by inspection we have
θbkθ = (θb)k. It follows from the Borcherds product formula that this identity extends to all b ∈ F0, and
thus θ is an antilinear automorphism. By [AL17, Prop. 2.5], it suffices to verify the invariance property

〈a, Y (θb, x)c〉 =
〈
Y (exL1(−1)L0+2L2

0x−2L0b, x−1)a, c
〉

when b ∈ {a(1)∗Ω, a(z−1)Ω}. Note that both such b have conformal weight ∆b = 1/2, and thus satisfy
L1b = 0. Hence we have

〈a, Y (θa(1)∗Ω, x)c〉 = −
〈
a, Y (a(z−1)Ω, x)c

〉
= −

∑
n∈Z

〈a, a(zn)c〉x−n−1

= −
∑
n∈Z

〈a(zn)∗a, c〉x−n−1

=
〈
Y (exL1(−1)L0+2L2

0x−2L0a(1)∗Ω, x−1)a, c
〉
.

The proof of invariance when b = a(z−1)Ω is similar. Finally 〈Ω,Ω〉 = 1, which completes the proof.

We now make a small digression to summarize the properties of positive energy representations of
the Virasoro algebra that we will require; see [CKLW18, §3.2] for a detailed overview in the spirit of this
paper.
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Definition 2.24. The Virasoro algebra Vir is the complex Lie algebra spanned by elements Ln, n ∈ Z,
and a central element c which satisfy

[Lm, Ln] = (m− n)Lm+n + c
12

(m3 −m)δm,−n.

A unitary positive energy representation of Vir is a representation of Vir on an inner product space V ,
such that

1. 〈Lna, b〉 = 〈a, L−nb〉 for all a, b ∈ V ,

2. L0 is algebraically diagonalizable with non-negative real eigenvalues,

3. the central element c acts by a scalar multiple of the identity.

By definition, the modes Ln = ν(n+1) of the conformal vector of a unitary vertex operator superalgebra
give a unitary positive energy representation of the Virasoro algebra.

It is well known (relevant papers include [GW85] and [TL99]; see [CKLW18, §3.2] for a discussion)
that such representations exponentiate to strongly continuous projective unitary positive energy repre-
sentations of the universal cover of Diff+(S1), Diff

(∞)
+ (S1). If the representation arises from a unitary

vertex operator superalgebra, we have e4πiL0 = 1, and thus this representation factors through the double
cover DiffNS+ (S1), as in [CKL08, §6.3].

Suppose we have a positive energy representation Ln of Vir arising from a unitary vertex operator
superalgebra V , and let HV be the Hilbert space completion of V . Let L(x) =

∑
n∈Z Lnx

−n−2 be the
associated generating function, and for f ∈ C∞(S1), write

L0(f) =
∑
n∈Z

Lnf̂n,

an unbounded operator defined on V , where f(z) =
∑
n∈Z f̂nz

n is the Fourier series of f . Let L(f) denote

the closure of L0(f), and let H∞V be the smooth vectors for 1 + L0, defined by H∞V =
⋂∞
n=0D((1 + L0)n).

Then H∞V is an invariant core for L(f). We also have L(f) = L(f)∗, and if f is real-valued then L(f) is
self-adjoint.

The generators of the Virasoro algebra correspond to complex polynomial vector fields on the unit
circle S1. We denote by Vect(S1) the space of smooth vector fields, and by Vect(S1)C its complexification,
whose elements can be represented by f(z) d

dz
with f ∈ C∞(S1). The real subpace Vect(S1) consists

of those f(z) d
dz

for which −iz−1f(z) ∈ R for all z ∈ S1. For such f , there is a corresponding flow
(t, z) 7→ γt(z) ∈ C∞(R× S1) such that γt ∈ Diff+(S1) is a one-parameter group, denoted

γt(z) =: exp
(
tf(z) d

dz

)
.

By definition, the flow satisfies ∂
∂t
γt(z) = f(γt(z)). There is a unique continuous lift of γt to (ψt, γt) ∈

DiffNS+ (S1) such that ψ0 ≡ 1.
Let π be the representation of Vect(S1) via unbounded operators on HV extending the action of the

Virasoro algebra. That is, the representation given by π(f d
dz

) = L(z−1f). Let Uπ : DiffNS+ → PU(HV )
be the associated strongly continuous representation, which for every t ∈ R will satisfy

Uπ(ψt, γt) = etL(z−1f)

after correcting by a scalar.
Using this description, we wish to prove that the representation Uπ arising from the free fermion

unitary vertex operator superalgebra is the Neveu-Schwarz representation UNS introduces in Section 2.1.
First, we require a preparatory observation. For the free fermion, we write F∞ for the smooth vectors
for 1 + L0.

Proposition 2.25. If g ∈ C∞(S1), then F∞ is invariant under a(g) and a(g)∗. If f, g ∈ C∞(S1) and
ξ ∈ F∞, then

L(f)a(g)ξ = a(g)L(f)ξ − a(zfg′ + 1
2
(zf)′g)ξ (2.10)

and
L(f)a(g)∗ξ = a(g)∗L(f)ξ + a(zfg′ + 1

2
(zf)′g)∗ξ. (2.11)
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Proof. By the Borcherds commutator formula (Theorem 2.9), we have

Lka(zn)ξ = a(zn)Lkξ − (n+ k+1
2

)a(zn+k)ξ

for ξ ∈ F0. This is the desired formula (2.10) when f = zk and g = zn. By linearity, (2.10) holds when
when f and g are trigonometric polynomials.

Now let f, g ∈ C∞(S1) and ξ ∈ D(L(f)). By definition, F0 is a core for L(f), and so we may take a
sequence ξn ∈ F0 with ξn → ξ and L(f)ξn → L(f)ξ. Let

fM (z) =

M∑
k=−M

f̂kz
k, gN (z) =

N∑
k=−N

ĝkz
k

be the truncated Fourier series. We have fM → f and f ′M → f ′ in L2 norm, and similarly gN → g and
g′N → g′. By the above argument,

L(fM )a(gN )ξn = a(gN )L(fM )ξn − a(zfMg
′
N + 1

2
(zfM )′gN )ξn. (2.12)

By the definition of L(f), we have L(fM )a(gN )ξn → L(f)a(gN )ξn as M → ∞. On the other hand, we
can compute the limit of the right-hand side of (2.12) the same way, and we obtain

L(f)a(gN )ξn = a(gN )L(f)ξn − a(zfg′N + 1
2
(zf)′gN )ξn. (2.13)

As n→∞, the right-hand side of (2.13) converges, and since L(f) is closed we have a(gN )ξ ∈ D(L(f))
and

L(f)a(gN )ξ = a(gN )L(f)ξ − a(zfg′N + 1
2
(zf)′gN )ξ.

Letting N → ∞ and repeating the above argument, we get that a(g)ξ ∈ D(L(f)) and that (2.10) holds
for all smooth f and g, and all ξ ∈ D(L(f)) (and in particular all ξ ∈ F∞).

Let D = 1 + L0 = 1 +L(1). Then by the above D(D) is invariant under a(g) for all g ∈ C∞(S1), and
we have

Da(g)ξ = a(g)Dξ − a(zg′ + 1
2
g)ξ (2.14)

for all ξ ∈ D(D).
Now suppose that ξ ∈ D(D2), so that ξ,Dξ ∈ D(D). Then by (2.14) and the fact that D(D) is

invariant under a(h) when h is smooth, we have Da(g)ξ ∈ D(D). Hence a(g)ξ ∈ D(D2). Iterating this
argument, we see that D(Dn) is invariant under a(g), and thus so is F∞.

Now let ξ ∈ D(L(f)), η ∈ F∞ and f, g ∈ C∞(S1). We have L(f)∗ = L(f), and thus a(g)η ∈ D(L(f)∗).
We can now calculate

〈a(g)∗L(f)ξ, η〉 =
〈
ξ, L(f)a(g)η

〉
=
〈
ξ, a(g)L(f)η

〉
−
〈
ξ, a(zfg′ + 1

2
(zf)′g)η

〉
=
〈
a(g)∗ξ, L(f)η

〉
−
〈
a(zfg′ + 1

2
(zf)′g)∗ξ, η

〉

It follows that η 7→
〈
a(g)∗ξ, L(f)η

〉
is a bounded antilinear functional, and thus a(g)∗ξ ∈ D(L(f)) and

〈a(g)∗L(f)ξ, η〉 = 〈L(f)a(g)∗ξ, η〉 −
〈
a(zfg′ + 1

2
(zf)′g)∗ξ, η

〉
.

Thus we have (2.11). One can now use the same argument as above to show that a(g)∗D(L(f)) ⊂ D(L(f))
implies that F∞ is invariant under a(g)∗.

We now return to our original goal.

Proposition 2.26. Let (F0, Y,Ω, ν, 〈 · , · 〉 , θ) be the free fermion unitary vertex operator superalgebra,
and let U be the projective unitary representation of DiffNS+ (S1) on F associated to the positive energy
representation Ln = ν(n+1) of the Virasoro algebra. The U = UNS, the Neveu-Schwarz representation.
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Proof. Let f ∈ C∞(S1) and suppose that −iz−1f(z) ∈ R for all z, so that f(z) d
dz
∈ Vect(S1). Let

(ψt, γt) be the associated one-parameter group in DiffNS+ (S1), so that (t, z) 7→ γt(z) ∈ C∞(R× S1). To
prove that Uπ(ψt, γt) = UNS(ψt, γt) up to scalar, it will suffice to prove that

etL(z−1f)a(g)e−tL(z−1f) = a(uNS(ψt, γt)g) (2.15)

for all g ∈ C∞(S1). Indeed, by [Thu74, Thm. 1], Diff+(S1) is simple, and it follows that one-parameter
groups (ψt, γt) generate DiffNS+ (S1) algebraically (observe that the spin involution (−1, id) ∈ DiffNS+ (S1)
lies in the one-parameter subgroup (e−it/2, eitz)). Thus once we establish (2.15), we are done.

Since uNS(ψt, γt) is a strongly continuous one-parameter group, there is a skew-adjoint operator X
on L2(S1) such that

uNS(ψt, γt) = etX .

For g ∈ C∞(S1), we have

∂

∂t
uNS(ψt, γt)g = −uNS(ψt, γt)(

1
2
f ′g + fg′),

with the difference quotients converging uniformly as functions of z. Hence C∞(S1) ⊂ D(X), and for
g ∈ C∞(S1) we have Xg = − 1

2
f ′g − fg′. Since C∞(S1) is invariant under X, we also have C∞(S1) ⊂

D(Xn) for all n.
By Proposition 2.25, we have L(z−1f)a(g)ξ − a(g)L(z−1f)ξ = a(Xg)ξ for g ∈ C∞(S1) and ξ ∈ F∞.

We can then apply the argument of [Was98, §8 Exp. Thm.] to obtain (2.15) and complete the proof.

2.3 Fermi conformal nets

In this section we will briefly give the definition of a Fermi conformal net, the Z/2Z-graded analog of a
local conformal net. For a more detailed introduction, the interested reader may consult [CKL08].

We first recall some basic terminology. A super Hilbert space H is a Hilbert space, along with a Z/2Z
grading H = H0 ⊕ H1. The grading induces a unitary involution Γ = 1H0 ⊕ −1H1 called the grading
involution. Elements of H0 (resp H1) are called even (resp. odd) homogeneous vectors, and if ξ ∈ Hi we
denote the parity of ξ by p(ξ) = i. The Z/2Z grading on H induces one on B(H), correspnding to the
involution x 7→ ΓxΓ. The supercommutator [ · , · ]± on B(H) is given by [x, y]± = xy− (−1)p(x)p(y)yx for
homogeneous x and y, and by extending linearly otherwise.

An interval I ⊂ S1 is an open, connected, non-empty, non-dense subset. We denote by I the set of
all intervals. If I ∈ I, we denote by I ′ the complementary interval I̊c.

The group DiffNS+ (S1) is the subgroup of C∞(S1)× o Diff+(S1) given by

DiffNS+ (S1) = {(ψ, γ) ∈ C∞(S1)× o Diff+(S1) : ψ2 = (γ−1)′}.

It is a double cover of Diff+(S1). We denote by MöbNS the subgroup of DiffNS+ (S1) consisting of (ψ, γ)
for which γ extends to a biholomorphic automorphism of the closed unit disk D. Finally, in a slight abuse
of notation if I ∈ I we write

Diff+(I) = {(ψ, γ) ∈ DiffNS+ (S1) : γ|I′ = id and ψ|I′ ≡ 1}.

Definition 2.27. A Fermi conformal net is given by the data:

1. A super Hilbert space H = H1 ⊕H0, with corresponding unitary grading involution Γ.

2. A strongly continuous projective unitary representation U : DiffNS+ (S1) → PU(H) which restricts
to an honest unitary representation of MöbNS .

3. For every I ∈ I, a von Neumann algebra A(I) ⊂ B(H).

The data is required to satisfy:

1. The local algebras A(I) are Z/2Z graded. That is, ΓA(I)Γ = A(I).

2. If I, J ∈ I and I ⊂ J , then A(I) ⊂ A(J).

3. If I, J ∈ I and I ∩ J = ∅, then [A(I),A(J)]± = {0}.
4. U(ψ, γ)A(I)U(ψ, γ)∗ = A(γ(I)) for all (ψ, γ) ∈ DiffNS+ (S1), and U(ψ, γ)xU(ψ, γ)∗ = x when

x ∈ A(I) and (ψ, γ) ∈ Diff+(I ′).

20



5. There is a unique up to scalar unit vector Ω ∈ H, called the vacuum vector, which satisfies
U(ψ, γ)Ω = Ω for all (ψ, γ) ∈ MöbNS . This vacuum vector is required to be cyclic for the von
Neumann algebra A(S1) :=

∨
I∈I A(I), and it must satisfy ΓΩ = Ω.

6. The generator L0 of the one-parameter group U(e−it/2, eitz) is positive.

An isomorphism of Fermi conformal nets (A1, U1) and (A2, U2) on H1 and H2, respectively, is a unitary
u : H1 → H2 such that uA1(I)u∗ = A2(I) for all I ∈ I, and uU1(ψ, γ)u∗ = U2(ψ, γ) for all (ψ, γ) ∈
DiffNS+ (S1).

A Fermi conformal net with H = H0 is called a local conformal net (or sometimes just a conformal
net). If we set Ab(I) = {x ∈ A(I) : p(x) = 0}, then Ab is a local conformal net on H0.

Fermi conformal nets have many properties analogous to familiar properties of conformal nets. We
list some basic properties here:

Theorem 2.28 ([CKL08]). Let A be a Fermi conformal net. Then we have:

1. (Haag duality) A(I ′) = {x ∈ B(H) : [x, y]± = 0 for all y ∈ A(I)}
2. ΓU(ψ, γ) = U(ψ, γ)Γ for all (ψ, γ) ∈ DiffNS+ (S1).

3. U(−1, id) = e2πiL0 = Γ

4. A(I) is a type III factor for every interval I ∈ I.

5. (Reeh-Schlieder) H = A(I)Ω for every I ∈ I.

A family of von Neumann subalgebras B(I) ⊂ A(I) is called a covariant subnet if B(I) ⊂ B(J) when
I ⊂ J and U(ψ, γ)B(I)U(ψ, γ)∗ = B(γ(I)) for all (ψ, γ) ∈ MöbNS .

Theorem 2.29. Let (B, U) be a covariant subnet of a Fermi conformal net. Then there is a unique
strongly continuous projective unitary representation of DiffNS+ (S1) making B into a Fermi conformal

net on HB := B(S1)Ω.

Proof. Note that ΓB(I) = B(I)Γ since Γ = U(−1, id). Hence HB is a graded subspace of H, and B(I) is
a graded algebra. The only non-trivial thing left to verify is covariance.

The existence of a suitable representation UB of DiffNS+ (S1) can be proven just as is done for local
conformal nets in [Wei05, Thm. 6.2.29], and uniqueness can be proven just as in [CKLW18, Thm
6.10].

If B is a covariant subnet of a Fermi conformal net, then the usual argument based on Takesaki’s
theorem (given in e.g. [KL04, Lem. 2], using the Bisognano-Wichmann property [CKL08, Thm. 2])
shows the following.

Proposition 2.30. Let A be a Fermi conformal net on H, and let B ⊂ A be a covariant subnet. For
x ∈ A(I), we have x ∈ B(I) if and only if xΩ ∈ HB. In particular, B = A if and only if HB = H.

There is a notion of graded tensor product A1⊗̂A2 of a pair of Fermi conformal nets. If H1 and H2

are super Hilbert spaces and xi ∈ B(Hi), define x1⊗̂x2 = x1Γp(x2) ⊗ x2 ∈ B(H1 ⊗H2) for homogeneous
x2, and by extending linearly otherwise. We have (x1⊗̂x2)(y1⊗̂y2) = (−1)p(x2)p(y1)x1y1⊗̂x2y2. Note
that H1 ⊗H2 is a super Hilbert space with grading Γ⊗ Γ.

If (A1, U1) and (A2, U2) are Fermi conformal nets, define (A1⊗̂A2)(I) = {x1⊗̂x2 : xi ∈ Ai(I)}′′,
where the double commutant S′′ is the von Neumann algebra generated by a self-adjoint set S. Then
(A1⊗̂A2, U1 ⊗ U2) is a Fermi conformal net [CKL08, §2.6].

Example 2.31. Let H = L2(S1), and let p ∈ B(H) be the projection onto the classical Hardy space
H2(D). Let F := FH,p, and let UNS be the Neveu-Schwarz representation of DiffNS+ (S1) on F (see Section
2.1.1). Then the assignment M(I) = {a(f), a(f)∗ : f ∈ L2(S1), supp f ⊂ I}′′ gives a Fermi conformal
net, which we call the free fermion conformal net. Verification of the axioms of a Fermi conformal net is
straightforward, although we point out that the cyclicity of the vacuum is contained in [Was98, §15], as
are direct proofs of many of the properties of the free fermion conformal net.
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2.4 Composition operators

Let D denote the closed unit disk, and let D̊ be its interior. Let H2(D) = span{zn : n ≥ 0} ⊂ L2(S1)
be the Hardy space, and recall that we can identify H2(D) with the space of holomorphic functions on
D̊ with almost everywhere non-tangential L2 boundary values. Let φ : D̊ → D̊ be a holomorphic map,
and define the composition operator Cφ ∈ B(H2(D)) by Cφf = f ◦ φ. For a thorough introduction to
composition operators, the reader may consult [Sha93].

We will primarily be interested in the case when φ is a univalent (i.e. injective) map, with image

U = φ(D̊) a Jordan domain with C∞ boundary. Let Ã denote the semigroup of such φ.

By the smooth Riemann mapping theorem, if φ ∈ Ã , then φ and all of its derivatives extend contin-
uously to D, and φ induces a diffeomorphism S1 → ∂U , where S1 is the unit circle. We will denote the
extension of φ to D, as well as the restriction of this extension to S1, by φ when there is no danger of
confusion.

The deriative φ′ is non-vanishing on D. Let Ã NS be the double cover of Ã consisting of maps φ
equipped with a choice of holomorphic square root (φ′)1/2. Given φ ∈ Ã NS , we define the weighted
composition operator Wφ ∈ B(H2(D)) by

(Wφf)(z) = φ′(z)1/2f(φ(z)).

There is a natural structure of a semigroup on Ã NS , and with respect to this composition we have
Wφ1Wφ2 = Wφ2◦φ1 . The group of invertible elements in Ã NS is naturally isomorphic to MöbNS , and
Wφ corresponds to the image of φ−1|S1 ∈ MöbNS under the Neveu-Schwarz representation uNS . In
particular, if φ(D) = D, then Wφ is unitary.

Proposition 2.32. Let φ ∈ Ã , and suppose that φ(D̊) ( D̊ and there exists an a ∈ D̊ such that
φ(a) = a. Then there exists a unique univalent map σ : D̊ → C such that σ(a) = 0, σ′(a) = 1 and
σ(φ(z)) = φ′(a)σ(z) for all z ∈ D̊.

The map σ is called the Koenigs function associated to φ. Observe that the map φ(D̊) → φ(D̊)
obtained by conjugating φ by its Koenigs function is simply scaling by φ′(a). Also, when σ ∈ H2(D) it is
an eigenvector for Cφ. See [Sha93, §6.1] for an extended discussion and a proof of the above propositoin.

Definition 2.33. Let A be the subsemigroup of Ã consisting of univalent maps φ : D̊→ D̊ which have
the additional properties

• φ(0) = 0 and φ′(0) ∈ R>0.

• If σ is the Koenigs map associated to φ, then σ(D̊) is a Jordan domain with C∞ boundary.

Note that if φ ∈ A , then φ is a Riemann map for φ(D̊), and so by the smooth Riemann mapping
theorem φ extends smoothly6 to D , and induces a diffeomorphism between S1 and ∂φ(D).

It is easy to produce elements of A . If U is any Jordan domain with C∞ boundary containing 0,
σ : D̊ → U is a Riemann map with σ(0) = 0, and λ ∈ R>0 satisfies λU ⊂ U , then φ(z) = σ−1(λσ(z))
gives an element of A . Indeed, after rescaling, σ is the Koenigs map of φ, and every element of A arises
in this way. Note that there is a natural embedding A ⊂ Ã NS by choosing the square root of φ′ so that
φ′(0)1/2 ∈ R>0.

For k ∈ Z, let L2(S1)≥k = zkH2(D) = span{zn : n ≥ k}. We think of elements of L2(S1)≥k as
holomorphic functions on D̊ \ {0} with (almost everywhere, non-tangential) L2 boundary values. If
k ≥ 0, then L2(S1) ⊆ H2(D), and if φ ∈ A then L2(S1)≥k is invariant under Wφ. In fact, even when
k < 0, Wφ induces a bounded operator on L2(S1)≥k by the usual formula (Wφf)(z) = φ′(z)1/2f(φ(z)).
Indeed, if f ∈ H2(D), then

(Wφz
kf)(z) = zkφ′(z)1/2 φ(z)k

zk
f(φ(z)) ∈ L2(S1)≥k.

Hence Wφ induces a linear map L2(S1)≥k → L2(S1)≥k, and this map is bounded since L2(S1)≥k differs
from H2(D) by a finite dimensional space.

Similarly, we define L2(S1)≤k = span{zn : n ≤ k}. Let c : L2(S1) → L2(S1) be the map (cf)(z) =
zf(z). That is, c is the antilinear map satisfying czk = z−k−1. Hence cL2(S1)≥k = L2(S1)≤−k−1, and
so W̃φ := cWφc is a bounded linear map on each space L2(S1)≤k.

6 That is, φ and all of its derivatives extend continuously from D̊ to D, so that the restriction to S1 of the continuous
extension of φ is smooth.
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Definition 2.34. Let G be the set of families (φt)t≥0 ⊂ A which satisfy

• φ0(z) = z for all z ∈ D.

• φt(φs(z)) = φt+s(z) for all t, s ∈ R≥0 and all z ∈ D.

• (t, z) 7→ φt(z) is a continuous function on R≥0 × D̊.

• φt 6≡ id. That is, φt(z) 6= z for some t > 0 and z ∈ D̊ .

• limt↓0
φt(z)−z

t
= − σ(z)

σ′(z) for all z ∈ D̊, where σ is the Koenigs map of φ1.

While the final condition of Definition 2.34 may appear strict and unmotivated, we will see below
that it is simply a way of choosing an element of the orbit of φt under reparametrization φt 7→ φαt. We
will primarily be interested, not in semigroups φt ∈ G , but in domains U of the form U = φt(D̊) for
some φt ∈ G and some t > 0. Thus we do not lose anything by imposing this final restriction, and it will
simplify notation at times.

It is not difficult to produce semigroups φt ∈ G . Let U be a Jordan domain with C∞ boundary with
0 ∈ U and which is starlike about 0. That is, if z ∈ U , then U contains the line segment between z and 0.
Then if σ : D̊→ U is a Riemann map with σ(0) = 0 and we set φt(z) = σ−1(e−tσ(z)), we have φt ∈ G .

For example, consider the domain U pictured in (2.16) on the left, with the subregion e−tU shaded.

•0
σ

←−−−−−−−−−−− •0 (2.16)

Observe that φt(D), the region shaded on the right, intersects S1 in an interval.
In fact, all φt ∈ G arise via the above construction. If φt ∈ G , it is straightforward to check that the

φt share a common Koenigs map σ, and thus σ ◦ φt ◦ σ−1 acts on σ(D) by rescaling z 7→ λ(t)z. Since
this is a semigroup and φ′t(0) > 0 by assumption, we must have λ(t) = e−αt for some α ∈ R>0, and so

φt(z) = σ−1(e−αtσ(z)). (2.17)

From this formula we can see that (t, z) 7→ φt(z) is smooth.
By [BP78, Thm 1.1], there is a unique holomorphic function G : D̊→ C such that

∂

∂t
φt(z) = G(φt(z))

for t ∈ R>0 and z ∈ D̊. Using (2.17), we can compute

G(z) = lim
t↓0

∂

∂t
φt(z) = −α σ(z)

σ′(z)
.

For each z ∈ D̊, the the map t 7→ φt(z) extends smoothly to a neighborhood of R≥0, and so we have

lim
t↓0

∂

∂t
φt(z) = lim

t↓0

φt(z)− z
t

.

Since φt ∈ G , we must therefore have α = 1. By standard results (see e.g. [Dur83, Thm. 2.9]), since
σ(D̊) is starlike, we have

Re
σ(z)

zσ′(z)
= −Re

G(z)

z
≥ 0. (2.18)

We summarize the above discussion in the following proposition.

Proposition 2.35. Let U be a Jordan domain with C∞ boundary. Suppose that 0 ∈ U and that U is
starlike about 0. Let σ : D̊ → U be a Riemann map with σ(0) = 0. Let φt(z) = σ−1(e−tσ(z)). Then
σ and φt extend smoothly to D, φt induces a diffeomorphism between S1 and ∂φt(D), and (φt)t≥0 ∈ G .
Moreover, every semigroup (φt)t≥0 ∈ G arises in this way, and after rescaling by common scalar, σ is
the Koenigs map for every φt with t > 0. The holomorphic map

ρ(z) =
σ(z)

zσ′(z)

satisfies Re(ρ(z)) ≥ 0 for all z ∈ D.
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3 Free fermion Segal CFT for degenerate Riemann surfaces

3.1 Degenerate Riemann surfaces and their Hardy spaces

The main idea of this paper is to extend the notion of Segal CFT to allowed degenerate Riemann surfaces
such as

and . (3.1)

In these pictures, the shaded region should be thought of as consisting of a (shaded) disk with one or
two (unshaded) regions removed, in such a way that the boundary of the outer disk partially coincides
with the boundary of the removed regions. We will only consider degenerate Riemann surfaces of a
special form, in which the annular region is obtained by removing from the unit disk its image under an
element of a one-parameter semigroup of holomorphic self maps of the disk. These degenerate surfaces are
sufficient to produce conformal nets, although in future work we hope to treat more general degenerate
surfaces.

We now make precise exactly what data we will use for degenerate Riemann surfaces in this paper.

Definition 3.1. A degenerate annulus is a tuple (φt, t) with (φt)t∈R≥0
∈ G (see Definition 2.34) and

t ∈ R>0. The underlying space of (φt, t) is the compact space Σ = D\φt(D̊). The incoming and outgoing
boundaries are given by ∂Σ0 = φt(S

1) and ∂Σ1 = S1, respectively. The boundary ∂Σ is by definition the
disjoint union ∂Σ = ∂Σ0 t ∂Σ1. We let π0(∂Σ) and π0(∂Σi) be the sets of connected components, i.e.

π0(∂Σ1) = {S1}, π0(∂Σ0) = {φt(S1)}, π0(∂Σ) = {S1, φt(S
1)}.

Boundary parametrizations for a degenerate annulus are a pair of diffeomorphisms

γ = (γj)j∈π0(∂Σ) :
⊔

j∈π0(∂Σ)

S1 → ∂Σ

which preserve counterclockwise orientations about 0, along with choices of smooth square roots

ψ2
j =

d

dz
γj =: γ′j .

The standard boundary parametrization for a degenerate annulus (φt, t) is given by the diffeomorphisms
id and φt|S1 , along with the choices of square roots 1 and ψt|S1 , where ψt is the square root of φt with
ψ′t(0) > 0. We denote by DA the collection of all degenerate annuli with boundary parametrizations
X = (φt, t, γ, ψ), and byDAst the subcollection of ones that have the standard boundary parametrization.
We will often refer to an element (φt, t) ∈ DAst, leaving the boundary parametrizations implicit.

One should think of the data (φt, t) as capturing the degenerate surface D \ φt(D̊), as depicted on
the left in (3.1). We think of this degenerate surface as inheriting a spin structure from the standard
spin structure on C, and the boundary parametrizations provide trivializations of the restriction of this
spin structure to the boundary. It would perhaps be more accurate to call elements of DA ‘degenerate
spin annuli.’ When φt(D) ⊂ D̊, so that the ‘degenerate’ surface is actually a genuine Riemann surface
with boundary, this philosophy can be made precise (see Proposition 3.9). Of course, Definition 3.1 only
captures the special class of degenerate annuli that are induced by one-parameter families of univalent
maps (φt)t≥0.

We now move from degenerate annuli to degenerate pairs of pants.

Definition 3.2. A degenerate pair of pants is a degenerate annulus (φt, t), along with choices w ∈ D̊
and s ∈ R>0 such that w + sD ⊂ D̊ \ φt(D). The underlying space of a degenerate pair of pants is
the compact space Σ = D \

(
(w + sD̊) ∪ φt(D̊)

)
. The incoming and outgoing boundaries are given by

∂Σ0 = φt(S
1) ∪ (w + sS1) and ∂Σ1 = S1, respectively. The boundary ∂Σ is by definition the disjoint

union ∂Σ = ∂Σ0 t ∂Σ1. We let π0(∂Σ) and π0(∂Σi) be the sets of connected components, i.e.

π0(∂Σ1) = {S1}, π0(∂Σ0) = {φt(S1), w + sS1}, π0(∂Σ) = {S1, φt(S
1), w + sS1}.
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Boundary parametrizations for a degenerate pair of pants are a triple of diffeomorphisms

γ = (γj)j∈π0(∂Σ) :
⊔

j∈π0(∂Σ)

S1 → ∂Σ

which preserve the counterclockwise orientations of S1 and φt(S
1) about 0, and the counterclockwise

orientation of w + sS1 about w, along with choices of smooth square roots

ψ2
j =

d

dz
γj =: γ′j .

The standard boundary parametrizations for a degenerate pair of pants is given by the map w+sz and the
positive square root of s, along with the standard boundary parametrization for the degenerate annulus
(φt, t). We denote by DP the collection of all degenerate annuli with boundary parametrizations X =
(φt, t, w, s, γ, ψ), and by DPst the subcollection of ones that have the standard boundary parametrization.
We will often refer to an element (φt, t, w, s) ∈ DPst, leaving the boundary parametrizations implicit.
Elements of DA or DP are called degenerate Riemann surfaces, and we set DR = DA t DP and
DRst = DAst t DPst. We say that X ∈ DR is non-degenerate if φt(D) ⊂ D̊, or equivalently if Σ is a
Riemann surface with boundary.

(φt, t, w, s) ←→ •
w

•0•w+s

S1 φt(S
1)

Figure 3.1: The geometric interpretation of a degenerate pair of pants

As with degenerate annuli, it would perhaps be more accurate to call elements of DP ‘degenerate
spin pairs of pants,’ but we will generally not do so. As before, the given definitions of degenerate pair
of pants and degenerate Riemann surface obviously only include a special class of a more general notion.

We will now extend the free fermion Segal CFT to take values on X ∈ DR. As with non-degenerate
Riemann surfaces, we first need to define a Hardy space H2(X).

Definition 3.3. Let X ∈ DR, and let Σ be the underlying space of X. The pre-quantized boundary
Hilbert spaces are given by Hi

∂Σ =
⊕

j∈π0(∂Σi) L
2(S1), and H∂Σ = H1

∂Σ ⊕H0
∂Σ. Let O(Σ) be the space

of functions holomorphic on some open set U containing Σ, and let (ψj , γj)j∈π0(∂Σ) be the boundary
parametrization for X. The Hardy space H2(X) is given by

H2(X) = {ψ · (F ◦ γ) : F ∈ O(Σ)} ⊂ H∂Σ.

As with the free fermion Segal CFT, we want to assign to X the space of linear maps with satisfy the
H2(X) commutation relations. Let H = L2(S1), and let p ∈ B(H) be the projection onto the classical
Hardy space H2(D), and let

pi =
⊕

j∈π0(∂Σi)

p ∈ B(Hi
∂Σ).

As usual, we will write F for FH,p, and we set F i∂Σ =
⊗

j∈π0(∂Σi) F . When X ∈ DP, we identify F0
∂Σ

with FH0
∂Σ
,p0

via Proposition 2.2, ordering the tensor factors so that the one indexed by w + sS1 comes

first.
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Definition 3.4. Let X ∈ DR. Then we define E(X) to be space of all bounded linear maps T ∈
B(F0

∂Σ,F1
∂Σ) which satisfy the H2(X) commutation relations. That is, those T which satisfy

a(f1)T = (−1)p(T )Ta(f0), a(zf1)∗T = (−1)p(T )Ta(zf0)∗

for every (f1, f0) ∈ H2(X) ⊂ H1
∂Σ ⊕H0

∂Σ. For non-homogeneous T , the commutation relations are ex-
tended linearly, or equivalently by requiring that both the even and odd part of T satisfy the commutation
relations.

Remark 3.5. To match the definition of the Segal CFT for non-degenerate surfaces, it would have been
better to define E(X) as the space of maps satisfying

a(f1)T = (−1)p(T )Ta(f0), a(g1)∗T = −(−1)p(T )Ta(g0)∗

for every (f1, f0) ∈ H2(X) and every (g1, g0) ∈ H2(X)⊥. In the non-degenerate case, we have H2(X)⊥ =
M±zH2(X), where M±z is multiplication by (−1)iz on Hi

∂Σ, and complex conjugation is taken pointwise,
and so the two definitions are equivalent. In the non-degenerate case, it is easy to show that M±zH2(X) ⊂
H2(X)⊥, and so the space E(X) described in Definition 3.4 could, a priori, be larger than the space
defined usingH2(X). However, we will show that even with the weaker constraint, we have dimE(X) = 1,
and so the spaces E(X) are not too large.

The goal of Section 3 is to show that the spaces E(X) are one-dimensional, and that they admit a
nice description in terms of the Virasoro algebra action on F and free fermion vertex operators.

For simplicity, we would like to work with degenerate Riemann surfaces X ∈ DRst with standard
boundary parametrization. The following proposition allows us to reduce any questions about E(X) for
arbitrary X ∈ DR to one about the corresponding element Xst ∈ DRst.
Proposition 3.6. Let X1, X2 ∈ DR. Suppose that X1 and X2 are the same except for having differing
boundary parametrizations (ψ(1), γ(1)) and (ψ(2), γ(2)), respectively. Let Σ be the underlying surface of

the Xi, and for j ∈ π0(∂Σ) let γj = (γ
(2)
j )−1 ◦ γ(1)

j ∈ Diff+(S1) and ψj =
ψ

(2)
j

ψ
(1)
j ◦γ

−1
j

, so that (ψj , γj) ∈

DiffNS+ (S1). Then

H2(X2) =

 ⊕
j∈π0(∂Σ)

uNS(ψj , γj)

H2(X1) (3.2)

and

E(X2) = UNS(ψS1 , γS1)E(X1)

 ⊗
j∈π0(∂Σ0)

UNS(ψj , γj)
∗

 . (3.3)

Proof. Let U be a neighborhood of Σ, and let F ∈ O(U), so that

f (i) := ψ(i) · (F ◦ γ(i)) ∈ H2(X(i)).

Moreover,
uNS(ψj , γj)f

(1)
j = f

(2)
j ,

and consequently

{ψ(2) · (F ◦ γ(2)) : F ∈ O(Σ)} =
( ⊕
j∈π0(∂Σ)

uNS(ψj , γj)
)
{ψ(1) · (F ◦ γ(1)) : F ∈ O(Σ)}.

Taking closures yields the desired relation (3.2) for the Hardy spaces H2(X(i)).
For (ψ, γ) ∈ DiffNS+ (S1), we have

|ψ(z)|2 =
∣∣(γ−1)′(z)

∣∣ =
z(γ−1)′(z)

γ−1(z)
=
zψ(z)2

γ−1(z)
,

and thus
zψ(z) = ψ(z)γ−1(z) (3.4)
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for all z ∈ S1. A direct consequence of (3.4) is that uNS(ψ, γ) commutes with the antilinear map
c : L2(S1)→ L2(S1) given by (cf)(z) = zf(z). Hence

M±zH2(X2) =

 ⊕
j∈π0(∂Σ)

uNS(ψj , γj)

M±zH2(X1), (3.5)

where M±z is multiplication by z on copies of L2(S1) indexed by j ∈ π0(∂Σ1) and multiplication by −z
on copies corresponding to incoming boundary. Now the relation (3.3) can be verified directly from (3.2)
and (3.5), just as in [Ten17, Prop. 4.12].

Now to study E(X) when X ∈ DRst, we will often want to approximate X by non-degenerate spin
Riemann surfaces, as follows.

Definition 3.7. Let X = (φt, t, w, s) ∈ DRst and let R > 1. Then the non-degenerate extension of X
by R is the spin Riemann surface with parametrized boundary XR = (ΣR, LR,ΦR, βR) ∈ R given as
follows. Let Σ be the underlying space of X, and let ΣR = Σ ∪ {1 ≤ |z| ≤ R}. Let (LR,ΦR) be the spin
structure on ΣR obtained from restricting the standard Neveu-Schwarz spin structure on C. Define the
boundary parametrization βR :

⊔
j∈π0(∂ΣR)(S

1, NS)→ L|∂Σ so that

β∗R,jf =

{
R1/2f(Rz), j = RS1, f ∈ C∞(RS1)
ψt(z)f(φt(z)), j = φt(S

1), f ∈ C∞(φt(S
1))

where R1/2 is the positive square root, and ψt is the square root of φ′t with ψ′t(0) > 0. If X ∈ DPst,
then additionally choose βR,w+sS1 so that β∗R,w+sS1f = s1/2f(w + sz) for f ∈ C∞(w + sS1), where s1/2

is the positive square root.

X = •1•
w  XR = •1 •R•

w
.

Figure 3.2: The non-degenerate extension XR of X is a Riemann surface with boundary.

Informally, we think of X as the limit of XR as R ↓ 1, and in the proof of Theorem 3.21 we will show
that elements T ∈ E(X) can be obtained as limits (in the strong operator topology) of TR ∈ E(XR).

While it is somewhat involved to show that the spaces E(X) are non-trivial, it is easier to check that
they are not too large.

Proposition 3.8. Let X ∈ DR. Then dimE(X) ≤ 1, and elements of E(X) are even.

Proof. By Proposition 3.6, we may assume without loss of generality that X ∈ DRst. The arguments
are essentially identical in the two cases X ∈ DAst and X ∈ DPst. We will assume that we are in the
latter case.

Let T ∈ E(X) ⊂ B(F ⊗ F ,F), with the inputs ordered so that the one corresponding to sS1 + w
comes first. When n ≥ 0, we have (zn, s1/2(sz + w)n,Wφtz

n) ∈ H2(X), where Wφt is the weighted
composition operator defined in Section 2.4. Hence

a(zn)T (Ω⊗ Ω) = T (a(s1/2(sz + w)n)Ω⊗ Ω) + T (Ω⊗ a(Wφtz
n)Ω) = 0

since (sz + w)n,Wφtz
n ∈ H2(D).

For n ≥ 0 we also have

(z−n−1, s1/2z−1(sz−1 + w)n, zWφtz
n) ∈ zH2(X) (3.6)
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Since f 7→ zf exchanges H2(D) and H2(D)⊥, we have z−1(sz−1 + w)n, zWφtz
n ∈ H2(D)⊥. Hence

a(z−n−1)∗T (Ω⊗ Ω) = T (a(s1/2z−1(sz−1 + w)n)∗Ω⊗ Ω) + T (Ω⊗ a(zWφtz
n)∗) = 0. (3.7)

Combining (3.6) and (3.7), we see that T (Ω⊗ Ω) = αΩ for some α ∈ C by Theorem 2.1.
Thus to show dimE(X) ≤ 1, it suffices to show that T ∈ E(X) is determined by T (Ω⊗ Ω). We will

assume that T (Ω⊗ Ω) = 0, and prove that T = 0. It is clear that if T ∈ E(X), then both the even and
odd parts of T also lie in T (X), and so we may assume without loss of generality that T is homogeneous.

By assumption, kerT 6= 0. We will show that kerT is invariant under CAR(H0
∂Σ), and since this

algebra acts irreducibly on F1
∂Σ = F ⊗ F , the result will follow.

Let K be the image of H2(X) under the projection of H∂Σ onto H0
∂Σ. By Runge’s theorem, clK =

H0
∂Σ. By definition, given f0 ∈ K, there exists a f1 ∈ H1

∂Σ such that (f1, f0) ∈ H2(X). Hence
a(f1)T = (−1)p(T )Ta(f0), from which we can see that kerT is invariant under a(f0). Since f 7→ a(f) is
continuous, we get that kerT is invariant under a(f) for all f ∈ H0

∂Σ.
Similarly, let K̃ be the image of zH2(X) under the projection of H∂Σ onto H0

∂Σ, which is dense in
H0
∂Σ. For g0 ∈ K̃, we have a(g1)∗T = (−1)p(T )Ta(g0)∗ for some g1 ∈ H1

∂Σ. Hence kerT is invariant
under a(g0)∗ for all g0 ∈ K̃, and thus it is invariant under a(g)∗ for all g ∈ H0

∂Σ.
We have shown that kerT is a non-zero CAR(H0

∂Σ) subrepresentation of F0
∂Σ, thus T = 0, as desired.

Moreover, if T is odd and T ∈ E(X), then we must have T (Ω ⊗ Ω) = 0, and so T = 0 by the above
argument.

Using the uniqueness result of Proposition 3.8, we can show that when X ∈ DR is non-degenerate
the definition of E(X) coincides with the space assigned by the free fermion Segal CFT.

Proposition 3.9. Let X ∈ DR, and suppose that X is non-degenerate, so that the underlying space Σ
is a Riemann surface with boundary. Let (Φ, L) be the spin structure on Σ obtained by restricting the
standard Neveu-Schwarz spin structure on C, given by (2.5). Let β :

⊔
j∈π0(∂Σ)(S

1, NS) → L|∂Σ be the

spin isomorphism characterized by β∗f = ψ · (f ◦ γ) for f ∈ C∞(L|∂Σ). Let X̃ = (Σ, L,Φ, β) ∈ R, and
let H2(X̃) and E(X̃) be the Hardy space and Segal CFT for non-degenerate surfaces, as in Section 2.1.2.
Then H2(X) = H2(X̃) and E(X) = E(X̃).

Proof. Both H2(X) and H2(X̃) are given by pullbacks of holomorphic functions on Σ, with the only
difference being that H2(X) requires that the functions be holomorphic in a nieghborhood of Σ, and
H2(X̃) only requires that they extend smoothly to the boundary. However, by Runge’s theorem we may
approximate any element of H2(X) arbitrarily well by an element of H2(X̃), and since both spaces are
closed, they coincide. Both E(X) and E(X̃) consist of maps which satisfy certain commutation relations
derived from H2(X). Since H2(X)⊥ = M±zH2(X) by [Ten17, Thm. 6.1], the commutation relations
they’re required to satisfy are identical. However, elements of E(X̃) are also required to be trace class,
so that E(X̃) ⊂ E(X). But dimE(X̃) = 1 by Theorem 2.4, and by Proposition 3.8 dimE(X) ≤ 1, so
the two spaces must coincide.

3.2 Calculation of Segal CFT operators

In Section 3.2, we will give an explicit description of the spaces E(X) for X ∈ DR, in terms of the
free fermion vertex operator superalgebra. We will briefly recall notation; for a more detailed overview,
see Section 2. Let H = L2(S1), and let p ∈ B(H) be the projection onto the Hardy space H2(D). Let
F = FH,p be fermionic Fock space, and we write a(f) for the action of CAR(H) on F . Let F0 be the
subspace of finite energy vectors, and let Ln be the unitary positive energy representation of Vir on F0

coming from the conformal vector ν ∈ F0. Let F∞ ⊂ F be the space of smooth vectors for 1 + L0.
Given a function f ∈ C∞(S1), we write L(f) for the closure of

∑
n∈Z f̂nLn. If ρ ∈ H2(D) and ρ extends

smoothly to S1, then we write L(ρ) for L(ρ|S1).
The main result of this section is the following.

Theorem 3.10. Let X = (φt, t) ∈ DAst be a degenerate annulus, and let Y = (φt, t, w, s) ∈ DPst be a
degenerate pair of paints obtained by removing a disk from (φt, t). Let σ be the Koenigs map of the φt,

and let ρ(z) = σ(z)
zσ′(z) . Let (F0, Y,Ω, ν, 〈 · , · 〉 , θ) be the free fermion vertex operator superalgebra, and let

Ln be the positive energy represenation of Vir associated to ν. Let F be the Hilbert space completion of
F0. Then e−tL(ρ) and T (ξ⊗η) = Y (sL0ξ, w)e−tL(ρ)η define bounded maps on F and F⊗F , respectively.
Moreover E(X) = Ce−tL(ρ) and E(Y ) = CT .
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Theorem 3.10 is the union of Proposition 3.16 and Theorem 3.21, both proven in this section.

Corollary 3.11. Let X ∈ DR. Then dimE(X) = 1.

Proof. In the special case when X ∈ DRst, this is just Theorem 3.10. The general case follows from the
reparametrization formula Proposition 3.6.

The first step in proving Theorem 3.10 is to get control of the maps e−tL(ρ). The key ingredient is a
‘quantum energy inequality’ of Fewster and Hollands [FH05, Thm. 4.1], reformulated for Virasoro fields
on the circle (as described in Remark 3 following [FH05, Thm. 4.1], and in a forthcoming article of Carpi
and Weiner [CW]).

Theorem 3.12 ([FH05], [CW]). Let (Ln, V ) be a unitary positive energy representation of the Virasoro
algebra with central charge c, and let H be the Hilbert space completion of V . Let f ∈ C∞(S1,R) be
a function with f ≥ 0, and let L(f) be the associated smeared Virasoro field. Then there is a number
Kf > 0, depending only on f , such that

〈L(f)ξ, ξ〉 ≥ −cKf ‖ξ‖2

for all smooth vectors ξ ∈ H∞.

Using the estimate from Theorem 3.12, we may apply the Lumer-Phillips theorem to control the norm
of e−tL(ρ).

Proposition 3.13. Let V be an inner product space equipped with a unitary positive energy representation
of the Virasoro algebra Ln. Assume that Vα := kerL0 − α1V is finite-dimensional for all α ∈ R≥0. Let
ρ : D̊→ C be a holomorphic function which extends smoothly to D. Let L(ρ) =

∑
n∈Z≥0

ρ̂nLn, where ρ̂n

are the Fourier coefficients of ρ|S1 . Then for every ξ ∈ V and t ∈ R, the sum defining etL(ρ)ξ converges
to an element of V , and etL(ρ) is invertible on V . If Re ρ(z) ≥ 0 for all z ∈ D then for all t ≥ 0, e−tL(ρ)

extends to a bounded operator on the Hilbert space completion HV of V , and
(
e−tL(ρ)

)
t≥0

is a strongly
continuous semigroup.

Proof. For α ∈ R≥0, let Wα =
⊕

n≥0 Vα−n. Then Wα is finite-dimensional and invariant under L(ρ).

Hence L(ρ) induces a bounded operator on Wα, and for ξ ∈ Wα the sum defining etL(ρ)ξ converges.
Moreover, the operator etL(ρ) on Wα is invertible. Since V =

⋃
α≥0 Wα, etL(ρ)ξ is well-defined for ξ ∈ V ,

and etL(ρ) is invertible on V .
Now assume Re ρ(z) ≥ 0 for all z ∈ D. For each α, t ≥ 0, e−tL(ρ) is a bounded operator on Wα.

We need to verify that the norm of the restriction to Wα is uniformly bounded as α varies. By the
Lumer-Phillips theorem [Gol85, Thm 3.3], if M ∈ R has the property that

Re 〈L(ρ)ξ, ξ〉 ≥M ‖ξ‖2 (3.8)

for all ξ ∈Wα, then for t ≥ 0 we have

‖e−tL(ρ)|Wα‖ ≤ e
−Mt.

Thus to prove that e−tL(ρ) is bounded on HV , it suffices to show that there exists an M such that (3.8)
holds for all ξ ∈ V . Since 〈L(ρ)ξ, ξ〉 = 〈ξ, L(ρ)ξ〉, we have

Re 〈L(ρ)ξ, ξ〉 = 〈L(Re ρ)ξ, ξ〉 ,

and since Re ρ(z) ≥ 0, the condition (3.8) follows immediately from Theorem 3.12 with M = −cKRe ρ.
It is clear that e−tL(ρ) is a semigroup on V , and that the function t 7→ e−tL(ρ)ξ is continuous for

ξ ∈ V and t ≥ 0. Since ‖e−tL(ρ)‖ is locally bounded, this implies that e−tL(ρ) is a strongly continuous
semigroup.

Remark 3.14. Since the bound on the spectrum of ReL(ρ) from Theorem 3.12 is independent of the
smallest eigenvalue h of L0, we may extend Proposition 3.13 to arbitrary direct sums, allowing us to drop
the assumption that the L0 eigenspaces are finite dimensional. We will not, however, use this fact.

Now given that the operators e−tL(ρ) are bounded, we return to the example of the free fermion, and
compute commutation relations between e−tL(ρ) and the generators of the CAR algebra.
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Lemma 3.15. Let (φt)t≥0 ∈ G and let σ be the Koenigs map associated to φt. Let ρ(z) = σ(z)
zσ′(z) . Let

H≥k = span{zn : n ≥ k} ⊂ H and let H≤k = span{zn : n ≤ k}. Then for f ∈ H≥k, g ∈ H≤k, and t ≥ 0,
we have

a(f)e−tL(ρ) = e−tL(ρ)a(Wφtf), a(g)∗e−tL(ρ) = e−tL(ρ)a(W̃φtg)∗. (3.9)

Proof. Our argument is similar to [Was98, Exp. Thm. §8]. We begin with the first equality of (3.9),
namely that

a(f)e−tL(ρ)ξ = e−tL(ρ)a(Wφtf)ξ

for all ξ ∈ F . Fix ξ ∈ F .
By Proposition 2.35, we have Re ρ(z) ≥ 0 for all z ∈ D, and thus by Proposition 3.13, for t ≥ 0

and η ∈ F0, the sum defining e−tL(ρ)η converges, and the resulting operators are bounded and form a
strongly continuous semigroup.

For n ∈ 1
2
Z≥0, let Fn be the eigenspace of L0 with eigenvalue n. We may assume without loss of

generality that ξ ∈ Fn for some n. Since ‖a(f)‖ = ‖f‖ and Wφt is bounded on H≥k, we may assume
without loss of generality that f is a Laurent polynomial. Let M ∈ Z>0 be a number with M > n and
f ∈W := span{z−M , z−M+1, . . . , zM−1, zM}.

Let F≤k =
⊕2k

j=0 Fj/2. Then F≤n and F≤n+M are finite-dimensional, and as in the proof of Propo-

sition 3.13, L(ρ) is a bounded operator on both spaces. Hence e−tL(ρ) is defined on both spaces for all
t ∈ R, and yields a one-parameter group.

Now let us think of Wφt as an operator on H≥−M , with H>M an invariant subspace. Hence if q is
the projection of H≥−M onto W = H≥−M 	 H>M , we have qWφt = qWφtq. Thus qWφt is a strongly
continuous one-parameter semigroup on the finite dimensional space W , and so there exists an X ∈ B(W )
such that qWφt = etX .

Observe that since etL(ρ)ξ ∈ F≤n, Wφtf ∈W , and M > n, we have

a(Wφtf)etL(ρ)ξ = a(qWφtf)etL(ρ)ξ = a(etXf)etL(ρ)ξ.

Hence the function R≥0 → F0
≤n+M given by t 7→ e−tL(ρ)a(Wφtf)etL(ρ)ξ can be smoothly extended to all

of R, and more importantly its derivative is given by

d

dt
e−tL(ρ)a(Wφtf)etL(ρ)ξ = e−tL(ρ)

(
a(XetXf)− [L(ρ), a(etXf)]

)
etL(ρ)ξ. (3.10)

By Proposition 2.35, we have φt(z) = σ−1(e−tσ(z)) for all z ∈ D and t ≥ 0. From the formula, we
can see that (t, z) 7→ φt(z) extends to a smooth function in a neighborhood of R≥0 × 1

2
S1. Hence for

z ∈ 1
2
S1 and g ∈W , we can compute

lim
t↓0

(Wφtg)(z)− g(z)

t
=

d

dt
(Wφtg)(z)

∣∣∣∣
t=0

= −(zρ(z)g′(z) + 1
2
(zρ)′(z)g(z))

with uniform convergence in z on 1
2
S1. Hence for all k ∈ Z we have

lim
t↓0

〈
Wφtg − g

t
, zk
〉

= lim
t↓0

1

2πi

∮
1
2
S1

(Wφtg)(z)− g(z)

t
z−k−1dz

= − 1

2πi

∮
1
2
S1

(zρ(z)g′(z) + 1
2
(zρ)′(z)g(z))z−k−1dz

= −
〈
zρg′ + 1

2
(zρ)′g, zk

〉
.

Since qWφt = etX on the finite-dimensional space im q = W = span{z−M , . . . , zM}, this implies that

Xg = −q(zρg′ + 1
2
(zρ)′g).

By Proposition 2.25, we have

[L(ρ), a(etXf)]etL(ρ)ξ = −a((zρg′ + 1
2
(zρ)′g)etXf)etL(ρ)ξ = a(XetXf)etL(ρ)ξ,
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where in the last equality we use that for h ∈ H≥−M 	W , we have a(h)etL(ρ)ξ = 0 since etL(ρ)ξ ∈ F0
≤n.

Substituting this result into (3.10), we see that e−tL(ρ)a(Wφtf)etL(ρ) is independent of t, and evaluating
at t = 0 we see that

e−tL(ρ)a(Wφtf)etL(ρ)ξ = a(f)ξ

for all ξ ∈ F≤n. Hence a(f)e−tL(ρ)ξ = e−tL(ρ)a(Wφtf)ξ for all ξ ∈ F≤n, which was to be shown.
We now turn to showing that

a(g)∗e−tL(ρ)ξ = e−tL(ρ)a(W̃φtg)∗ξ (3.11)

for all g ∈ H≤k and all ξ ∈ F . As above, it suffices to consider ξ ∈ F≤n and g ∈W := {z−M−1, . . . , zM},
where we choose M > n. Recall that W̃φt = cWφtc, where cf = zf . Note that we have slightly adjusted
the definition of W in this case so that cW = W .

Using the same ideas as above, let q̃ be the projection of H≤M onto W , so that q̃W̃φt is a continuous

semigroup on W . We have q̃W̃φt = cetXc = etX̃ , where X̃ = cXc. In fact, it is straightforward to
compute X̃ explicitly, and we get

X̃g = q̃(zρg′ + 1
2
(zρ)′g).

Differentiating as above, we get

d

dt
e−tL(ρ)a(W̃φtf)∗etL(ρ)ξ = e−tL(ρ)

(
a(X̃etX̃f)∗ − [L(ρ), a(etX̃f)∗]

)
etL(ρ)ξ,

which vanishes by Proposition 2.25. This establishes (3.11), and completes the proof of the lemma.

So far, we have collected enough results to establish Theorem 3.10 for X ∈ DAst.
Proposition 3.16. Let X = (φt, t) ∈ DAst, and let ρ be as in Theorem 3.10. Then E(X) = Ce−tL(ρ).

Proof. By Proposition 3.13, e−tL(ρ) ∈ B(F), and e−tL(ρ) is clearly even. By Runge’s theorem, we have
H2(X) = span{(zk,Wφtz

k) : k ∈ Z}, and so by Lemma 3.15 e−tL(ρ) satisfies

a(f1)e−tL(ρ) = e−tL(ρ)a(f0)

for all (f1, f0) ∈ H2(X).
Now let c : L2(S1)→ L2(S1) be the antilinear unitary cf = zf . By definition, we have

M±zH2(X) = span{(czk,−cWφtz
k) : k ∈ Z} = span{(zk,−W̃φtz

k) : k ∈ Z}.

Thus is follows directly from Lemma 3.15 that

a(g1)∗e−tL(ρ) = e−tL(ρ)a(g0)∗

for every (g1, g0) ∈ zH2(X). Hence e−tL(ρ) ∈ E(X). But this finishes the proof, as we established that
dimE(X) ≤ 1 in Proposition 3.8.

We now switch from studying degenerate annuli to studying degenerate pairs of pants

X = (φt, t, w, s) ∈ DPst.

We wish to show that E(X) is spanned by the map T : F ⊗ F → F given by

T (ξ ⊗ η) = Y (sL0ξ, w)e−tL(ρ)η,

which is defined on F0 ⊗F0 by Proposition 3.13 and Proposition 2.15.
The strategy for showing this is somewhat indirect, and so we first give a short summary. Let R > 1,

and let XR be the non-degenerate extension of X (Definition 3.7). Then by the gluing property of the
(non-degenerate) Segal CFT, there is an element TR ∈ E(XR) satisfying TR(Ω ⊗ Ω) = Ω. First, will
verify that TR(ξ ⊗ η) = R−L0T (ξ ⊗ η) for ξ, η ∈ F0, and thus that TR → T as R ↓ 1, pointwise on the
algebraic tensor product F0⊗alg F0. Next, we will show that T ∗R converges pointwise on F0 to a densely
defined map which we call S. We will see that S is an example of what we call an implementing operator.
That is, there is a vector Ω̂ ∈ F ⊗ F and a map r ∈ B(H,H ⊕H) such that

Sa(ξ1)∗ · · · a(ξn)∗a(η1) · · · a(ηm)∗Ω = a(rξ1)∗ · · · a(rξn)∗a(rη1) · · · a(rηm)Ω̂
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whenever ξi ∈ pH = H2(D) and ηj ∈ (1 − p)H. Here, we have identified F ⊗ F ∼= FH⊕H,p⊕p as in
Proposition 2.2. In Section 5, we develop tools for proving boundedness of implementing operators, and
these will tell us that S is bounded. It then follows that T ∗R = SR−L0 , and thus ‖T ∗R‖ ≤ ‖S‖. Hence
‖TR‖ remains bounded as R ↓ 1, from which we can conclude that T is bounded and that TR → T in the
strong operator topology. It is then easy to verify that T satisfies the necessary commutation relations
to lie in E(X)

Our first task is to establish a formula for TR in terms of vertex operators. We will need a version of
the Borcherds commutator formula for free fermion vertex operators evaluated at a complex number.

Proposition 3.17. Suppose w ∈ C with 0 < |w| < 1, and that s > 0 satisfies w + sD ⊂ D̊ \ {0}. Then
for all ξ, η ∈ F0 and every n ∈ Z,

a(zn)Y (sL0ξ, w)η = Y (sL0a(s1/2(sz + w)n)ξ, w)η + (−1)p(ξ)Y (sL0ξ, w)a(zn)η (3.12)

and

a(z−n−1)∗Y (sL0ξ, w)η = Y (sL0a(s1/2z−1(sz−1 + w)n)∗ξ, w)η + (−1)p(ξ)Y (sL0ξ, w)a(z−n−1)∗η (3.13)

where the equations are understood as holding when ξ is homogeneous, and extended linearly otherwise.

Proof. Observe that all of the terms in (3.12) and (3.13) are well-defined elements of F , with the defining
sums converging absolutely, by Proposition 2.15 and the fact that a((sz + w)n) and a(z−1(sz−1 + w))∗

map F0 into itself. Assume without loss of generality that ξ and η are eigenvectors for L0, and that η′ is
as well. Then by the Borcherds commutator formula (Theorem 2.9), we have an identity of formal series

a(zn)Y (sL0ξ, x)η = (−1)p(ξ)Y (sL0ξ, x)a(zn)η +
∑
k≥0

(
n

k

)
Y (a(zk)sL0ξ, x)xn−kη, (3.14)

where the sum in k is finite. But the three terms of (3.14) all give absolutely convergent series when
evaluated at x = w, and so we have an equality of elements of F :

a(zn)Y (sL0ξ, w)η = (−1)p(ξ)Y (sL0ξ, w)a(zn)η +
∑
k≥0

(
n

k

)
Y (a(zk)sL0ξ, w)wn−kη

= (−1)p(ξ)Y (sL0ξ, w)a(zn)η +
∑
k≥0

wns1/2

(
n

k

)
Y (sL0a((sz/w)k)ξ, w)η

= (−1)p(ξ)Y (sL0ξ, w)a(zn)η + Y (sL0a(s1/2(sz + w)n)ξ, w)η,

where we used that s < |w| by assumption, and the finiteness of the sum in k.
The proof of relation (3.13) is similar. By the Borcherds commutator formula, we have an identity of

formal series

a(z−n−1)∗Y (sL0ξ, x)η = (−1)p(ξ)Y (sL0ξ, x)a(z−n−1)∗η +
∑
k≥0

(
n

k

)
Y (a(z−k−1)∗sL0ξ, x)xn−kη.

Evaluating at x = w and arguing as above, we get

a(z−n−1)∗Y (sL0ξ, w)η = (−1)p(ξ)Y (sL0ξ, w)a(z−n−1)∗η +
∑
k≥0

(
n

k

)
Y (a(z−k−1)∗sL0ξ, w)wn−kη

= (−1)p(ξ)Y (sL0ξ, w)a(z−n−1)∗η +
∑
k≥0

wn
(
n

k

)
s1/2Y (sL0a(z−1(s/(wz))k)∗ξ, w)η

= (−1)p(ξ)Y (sL0ξ, w)a(z−n−1)∗η + Y (sL0a(s1/2z−1(sz−1 + w))∗ξ, w)η.

We can now establish the desired formula for TR.
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Proposition 3.18. Let X = (φt, t, w, s) ∈ DPst, let R > 1 and let XR be the non-degenerate extension of
X. Let TR ∈ E(XR) be the element with TR(Ω⊗Ω) = Ω. For ξ, η ∈ F0, let T (ξ⊗η) = Y (sL0ξ, w)e−tL(ρ)η,
where ρ is as in Theorem 3.10. Then TR(ξ ⊗ η) = R−L0T (ξ ⊗ η), and TR(ξ ⊗ η) → T (ξ ⊗ η) as R ↓ 1,
for all ξ, η ∈ F0.

Proof. By Proposition 3.13, e−tL(ρ) maps F0 bijectively onto itself. Vectors of the form

a(zm1) · · · a(zmp)a(znq )∗ · · · a(zn1)∗Ω

with mj < 0 and ni ≥ 0 form a spanning set for F0, and since

e−tL(ρ)a(W̃φtz
m1) · · · a(W̃φtz

mp)a(Wφtz
nq ) · · · a(Wφtz

n1)∗Ω = a(zm1) · · · a(zmp)a(znq )∗ · · · a(zn1)∗Ω

by Lemma 3.15, vectors of the form

η = a(W̃φtz
m1) · · · a(W̃φtz

mp)a(Wφtz
nq )∗ · · · a(Wφtz

n1)∗Ω (3.15)

span F0. Thus it suffices to verify that

TR(ξ ⊗ η) = R−L0Y (sL0ξ, w)e−tL(ρ)η (3.16)

when η is of the form (3.15). We also assume without loss of generality that ξ is homogeneous. We now
proceed by induction on p and q.

When η = Ω, by the gluing proprety of the (non-degenerate) free fermion Segal CFT we have TR(ξ⊗
Ω) = αR−L0Y (sL0ξ, w)Ω for some α ∈ C×. But we normalized TR so that TR(Ω ⊗ Ω) = Ω, and thus
α = 1. Hence (3.16) holds when η = Ω.

Now assume that (3.16) holds for all ξ ∈ F0 and for a vector η of the form (3.15), and we will show
that it holds for η′ = a(Wφtz

n)η and η′′ = a(W̃φtz
−n−1)∗η for all n ∈ Z.

From the holomorphic function zn ∈ O(XR), we have

(Rn+1/2zn, s
1
2 (sz + w)n,Wφtz

n) ∈ H2(XR),

where we have ordered the boundary components S1, then sS1 +w, then φt(S
1). Hence by the definition

of the operators E(XR) we have

Rn+1/2a(zn)TR = TR(a(s
1
2 (sz + w)n)⊗ 1) + TR(Γ⊗ a(Wφtz

n)), (3.17)

where Γ is the grading. Hence

Rn+1/2a(zn)TR(ξ ⊗ η) = TR(a(s
1
2 (sz + w)n)ξ ⊗ η) + (−1)p(ξ)TR(ξ ⊗ η′). (3.18)

On the other hand, by the inductive hypothesis, Proposition 3.17, and Lemma 3.15 we have

Rn+1/2a(zn)TR(ξ ⊗ η) = Rn+1/2a(zn)R−L0Y (sL0ξ, w)e−tL(ρ)η

= R−L0a(zn)Y (sL0ξ, w)e−tL(ρ)η

= R−L0Y (sL0a(s1/2(sz + w)n)ξ, w)η + (−1)p(ξ)R−L0Y (sL0ξ, w)e−tL(ρ)η′

= TR(a(s1/2(sz + w)n)ξ ⊗ η) + (−1)p(ξ)R−L0Y (sL0ξ, w)e−tL(ρ)η′. (3.19)

Combining (3.18) and (3.19), we get

TR(ξ ⊗ η′) = R−L0Y (sL0ξ, w)e−tL(ρ)η′,

as desired.
Establishing (3.16) for η′′ = a(W̃φtz

−n−1)∗η is similar. By [Ten17, Thm. 6.1], we have H2(XR)⊥ =
M±zzH2(X), where M± is multiplication by z on copies of L2(S1) indexed by outgoing boundary com-
ponenets, and by −z on copies of L2(S1) indexed by incoming boundary components. Hence

(Rn+1/2z−n−1,−s1/2z−1(sz−1 + w)n,−zWφtz
n) ∈ H2(XR)⊥.
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By definition, W̃φtzf = zWφtf when f ∈ L2(S1)≥k, so we have

(Rn+1/2z−n−1,−s1/2z−1(sz−1 + w)n,−W̃φtz
−n−1) ∈ H2(XR)⊥.

Hence by the definition of E(XR) we have

Rn+1/2a(z−n−1)∗TR = TR(a(s1/2z−1(sz−1 + w)n)∗ ⊗ 1) + TR(Γ⊗ a(W̃φtz
−n−1)∗), (3.20)

and thus

Rn+1/2a(z−n−1)∗TR(ξ ⊗ η) = TR(a(s1/2z−1(sz−1 + w)n)∗ξ ⊗ η) + (−1)p(ξ)TR(ξ ⊗ η′′). (3.21)

Expanding (sz−1 + w)n in the domain |z|−1 < |w/s|, we see that

a(z−1(sz−1 + w)n)∗ξ ∈ F0.

As before, we may apply the inductive hypothesis, Proposition 3.17, and Lemma 3.15 to establish

Rn+1/2a(z−n−1)∗TR(ξ ⊗ η) = TR(a(s1/2z−1(sz−1 + w)n)∗ξ + (−1)p(ξ)R−L0Y (sL0ξ, w)e−tL(ρ)η′′,

from which the desired conclusion follows.
Given that TR(ξ ⊗ η) = R−L0T (ξ ⊗ η), and that T (ξ ⊗ η) ∈ F when ξ, η ∈ F0 by Proposition 2.15,

it follows immediately that TR(ξ ⊗ η)→ T (ξ ⊗ η) for such ξ, η.

Next, we want to understand the limit limR↓1 T
∗
R.

Proposition 3.19. Let X = (φt, t, w, s) ∈ DPst, let R > 1 and let XR be the non-degenerate extension
of X. Let TR ∈ E(XR) be the element with T (Ω⊗ Ω) = Ω.

Then the limit Sξ := limR↓1 T
∗
Rξ converges for all ξ ∈ F0. The limit operator S satisfies

Sa(zn)∗ξ = (s1/2a((sz + w)n)∗ ⊗ 1 + Γ⊗ a(Wφtz
n)∗)Sξ (3.22)

and
Sa(z−n−1)ξ = (s1/2a(z−1(sz−1 + w)n)⊗ 1 + Γ⊗ a(W̃φtz

−n−1))Sξ (3.23)

for all ξ ∈ F0 and all n ∈ Z, where Γ is the grading operator.

Proof. It suffices to establish the result with

ξ = a(zm1) · · · a(zmp)a(zn1)∗ · · · a(znq )∗Ω.

We will proceed inductively, first considering when ξ = Ω.
If R1 > R2 > 1, then we have TR1 = (R1/R2)−L0TR2 . Hence T ∗R1

= T ∗R2
(R1/R2)−L0 , and

T ∗R1
Ω = T ∗R2

(R1/R2)−L0Ω = T ∗R2
Ω.

Hence limR↓1 T
∗
RΩ converges.

We now assume that limR↓1 T
∗
Rξ converges, and show that the same holds for a(z−n−1)ξ and a(zn)∗ξ.

Indeed, applying the adjoint of the commutation relation from (3.17) one has

T ∗Ra(zn)∗ξ = R−n−1/2(s1/2a((sz + w)n)∗ ⊗ 1 + Γ⊗ a(Wφtz
n)∗)T ∗Rξ. (3.24)

It follows that limR↓1 T
∗
Ra(zn)∗ξ converges, and that (3.22) holds for ξ.

Similarly, applying the adjoint of the commutation relation from (3.20) one has

T ∗Ra(z−n−1)ξ = R−n−1/2(s1/2a(z−1(sz−1 + w)n)⊗ 1 + Γ⊗ a(W̃φtz
−n−1))T ∗Rξ, (3.25)

from which we see that limR↓1 T
∗
Ra(z−n−1)ξ converges, and (3.23) holds for ξ.

The commutation relations given in Proposition 3.19 almost characterize the densely defined limit
operator S = limR↓1 T

∗
R. Indeed, since the operators a(zn) and a(z−n−1)∗ act cyclically on the vacuum

vector Ω, the limit operator is specified by (3.22) and (3.23) once we have identified the vector SΩ.
Similarly, the commutation relations from Lemma 3.15 will allow us to describe (e−tL(ρ))∗ once we
better understand (e−tL(ρ))∗Ω.
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Proposition 3.20. Let (φt, t, w, s) = X ∈ DPst, let R > 1, and let XR be the non-degenerate extension
of X. Let ρ be as in Theorem 3.10. Then there exist (ψ, γ) ∈ DiffNS+ (S1) and α ∈ C× such that
(e−tL(ρ))∗Ω = αUNS(ψ, γ)Ω. If TR ∈ E(XR) is the element satisfying TR(Ω⊗Ω) = Ω, then there exists a
non-degenerate spin Riemann surface Y ∈ R, with no incoming boundary components and two outgoing
boundary componenets, such that SΩ = limR↓1 T

∗
RΩ ∈ E(Y ). Moreover, SΩ 6= 0.

Proof. We will make free use of the properties of the free fermion Segal CFT (for non-degenerate surfaces)
given in Theorem 2.4.

Let ZR ∈ R be the non-degenerate spin Riemann surface obtained from XR by filling in the disk
centered at w. By the gluing property of the free fermion Segal CFT and the formula for TR in Propo-
sition 3.18, we have R−L0e−tL(ρ) ∈ E(ZR). Hence by unitarity (e−tL(ρ))∗R−L0 ∈ E(ZR). Let Z be
the spin Riemann surface, with no incoming boundary and one outgoing boundary component, ob-
tained by gluing a standard disk to the input of ZR. Then (e−tL(ρ))∗R−L0Ω = (e−tL(ρ))∗Ω ∈ E(ZR),
and (e−tL(ρ))∗Ω 6= 0 since non-zero elements of E(ZR) are injective by the nondegeneracy property of
the CFT. By the smooth Riemann mapping theorem, ZR is spin equivalent to the standard unit disk
with some boundary parametrization, and thus by the reparametrization property of the CFT we have
(e−tL(ρ))∗Ω = αUNS(ψ, γ)Ω for some spin diffeomorphism (ψ, γ) and some α ∈ C×.

We now handle SΩ. As we saw in the proof of Proposition 3.19, T ∗RΩ is independent of R, so we fix
R > 1 and show that T ∗RΩ ∈ E(Y ) for some Y . Since T ∗R is injective by the unitarity and non-degeneracy
of the CFT, we have T ∗RΩ 6= 0. The vector T ∗RΩ has dual vector λ ∈ (F ⊗ F)∗ given by

λ(ξ ⊗ η) = 〈TR(ξ ⊗ η),Ω〉 .

The dual vacuum vector 〈 · ,Ω〉 ∈ F∗ lies in E(C∪{∞}\RD̊), and so by the gluing property of the CFT,
λ ∈ E(Y ), where Y is obtained by gluing C ∪ {∞} \ RD̊ onto XR. Hence by the unitarity property of
the CFT, T ∗RΩ = λ∗ ∈ E(Y ).

We will now show that ξ ⊗ η 7→ Y (sL0ξ, w)e−tL(ρ)η defines a bounded operator. We will require the
terminology and results of Section 5, which we now summarize.

Definition (Definition 5.1). Let H and K be separable infinite dimensional Hilbert spaces, and let p
and q be projections on H and K, respectively, with pH and (1 − p)H both infinite dimensional. Let
{ξi}i∈Z be an orthonormal basis for H with ξi ∈ pH when i ≥ 0 and ξi ∈ (1 − p)H when i < 0. Such
an orthonormal basis is called compatible with p. Let r ∈ B(H,K) and let Ω̂ ∈ FK,q. Then we have
an orthonormal basis a(ξI)

∗a(ξJ)Ωp for FH,p (see notation (2.1)) indexed by finite subsets I ⊂ Z≥0 and
J ⊂ Z<0, and the densely defined map R : FH,p → FK,q given by

Ra(ξI)
∗a(ξJ)Ω = a(rξI)

∗a(rξJ)Ω̂

is called the implementing operator associated to (r, Ω̂).

The results of Propositions 3.19 and 3.20 show that S is an implementing operator, and so we may
use the following result to prove that S, and consequently Y (sL0ξ, w)e−tL(ρ)η, are bounded.

Theorem (Theorem 5.3). Let H and K be separable Hilbert spaces, and let p and q be projections on
H and K, respectively, with pH and (1 − p)H infinite dimensional. Let {ξi}i∈Z be a basis compatible
with p. Let r ∈ B(H,K), and assume that qr(1 − p) is trace class. Let q′ be a projection on K with
q′ − q trace class, and let Ω̂q′ be a non-zero vector satisfying a(f)Ω̂q′ = a(g)∗Ω̂q′ = 0 for all f ∈ q′K
and all g ∈ (1 − q′)K. Then the implementing operator associated to (r, Ω̂q′) is bounded if and only if
E(r) := qrp+ (1− q)r(1− p) can be written as the sum E(r) = a+ x with a, x ∈ B(H,K), ‖a‖ ≤ 1 and
x trace class.

Maps r ∈ B(H,K) which have the properties that qr(1 − p) is trace class, and E(r) can be written
as sum a + x as in the theorem, are called admissible maps, and we let A(H,K) denote the space of
admissible maps.

Using this theorem, we can now prove Theorem 3.10 in the case where X ∈ DPst.
Theorem 3.21. Let X = (φt, t, w, s) ∈ DPst, and let ρ be as in Theorem 3.10. Then the map T :
F ⊗ F → F given by T (ξ ⊗ η) = Y (sL0ξ, w)e−tL(ρ)η is bounded, where Y is the free fermion state-field
correspondence. Moreover, E(X) = CT .
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Proof. Let R > 1 and let XR = (ΣR, LR,ΦR, βR) be the non-degenerate extension of X (Definition 3.7).
Let TR ∈ E(XR) be the element with TR(Ω⊗Ω) = Ω. For ξ ∈ F0, let Sξ = limR↓1 T

∗
Rξ, as in Proposition

3.19.
Let H = L2(S1) and pH = H2(D). Let V : F ⊗F → FH⊕H,p⊕p be the isomorphism of CAR(H ⊕H)

representations (Proposition 2.2), and let S′ = V S. For n ∈ Z, let ξn = zn ∈ H, so that a(ξJ)a(ξI)
∗Ω

gives an orthonormal basis for F indexed by pairs of finite subsets J ⊂ Z<0 and I ⊂ Z≥0. Let Wsz+w ∈
B(H2(D)) and W̃sz+w ∈ B(H2(D)⊥) be the weighted composition operators associated to the map z 7→
sz + w, corresponding to the positive square root s1/2. Let Wφt ∈ B(H2(D)) and W̃φt ∈ B(H2(D)⊥) be
the weighted composition operators associated to φt and the square root ψ2

t = φ′t with ψt(0) > 0 (as
defined in Section 2.4). Let W1 = Wsz+w ⊕ W̃sz+w ∈ B(H) and W2 = Wφt ⊕ W̃φt ∈ B(H). Note that
W1 and W2 commute with p.

By Proposition 3.19, S′ is the implementing operator defined in terms of the basis ξi associated
to (r, Ω̂), where r : H → H ⊕ H is given by rf = (W1f,W2f) and Ω̂ = S′Ω. By Proposition 3.20,
Ω̂ ∈ FH⊕H,p⊕p is, up to non-zero scalar, the vector assigned to a non-degenerate Riemann surface by the
free fermion Segal CFT. By [Ten17, Thm. 6.2], such vectors are of the form Ω̂q′ for a projection q′ with
the property that q′ − p⊕ p is trace class. Thus we can study the boundedness of S′ using Theorem 5.3,
with K = H ⊕H and q = p⊕ p.

By construction, r = qrp+ (1− q)r(1− p), and so to show that S′ is bounded it suffices to prove that
r ∈ A(H,K). Since sD + w ⊂ D̊, W1 is trace class (by [ST74, Prop. 5.3], for example). Thus it suffices
to show that W2 can be written as the sum of a contraction and a trace class operator.

By Lemma 3.15, (e−tL(ρ))∗ : F → F is the implementing operator associated to (W2, (e
−tL(ρ))∗Ω).

By Proposition 3.20, (e−tL(ρ))∗Ω = αUNS(ψ, γ)Ω for some (ψ, γ) ∈ DiffNS+ (S1) and some α ∈ C×. By
[PS86, Prop. 6.8.2 and Prop. 6.3.1], [uNS(ψ, γ), p] is trace class, and thus αUNS(ψ, γ)Ω = Ω̂q′′ for some
projection q′′ on H with q′′ − q trace class. Since e−tL(ρ) is bounded by Lemma 3.15, by Theorem 5.3
we have W2 ∈ A(H,H). Hence r ∈ A(H,K) as well, and so by Theorem 5.3, S′ is bounded. It follows
that S = V ∗S′ is bounded as well.

Now let R1 > R2 > 1. We have TR1 = (R2/R1)L0TR2 , and thus T ∗R1
= T ∗R2

(R2/R1)L0 . Hence if
ξ ∈ F is an eigenvector of L0 with eigenvalue m, we have

(R1/R2)mT ∗R1
ξ = T ∗R2

ξ.

Taking the limit of both sides as R2 ↓ 1, we get

T ∗R1
ξ = R−m1 Sξ = SR−L0

1 ξ.

Since R1 > 1 was arbitrary and eigenvectors ξ for L0 span a dense subspace of F , we have T ∗R = SR−L0

for all R > 1. Hence ‖T ∗R‖ ≤ ‖S‖.
But ‖T ∗R‖ = ‖TR‖, and so the operators TR remain uniformly bounded in norm as R ↓ 1. Since we

have already established that TR(ξ ⊗ η)→ T (ξ ⊗ η) for ξ, η ∈ F0 (Proposition 3.18), the uniform bound
in norm is sufficient to guarantee that T is bounded and that TR → T in the strong operator topology.

We now show that T ∈ E(X) by verifying that it satisfies the appropriate commutation relations. It
suffices to verify that

a(f1)T = Ta(f0), a(zf1)∗T = Ta(zf0)∗

for f = (f1, f0) lying in a dense subspace of H2(X).
Let Σ be the underlying space of X, and let (ψ, γ) be the standard boundary parametrization. Then

by definition, H2(X) is the closure of the set of ψ · (F ◦ γ), where F ranges over functions holomorphic
in a neighborhood U of Σ. Given f of the form ψ · (F ◦ γ), and R > 1 sufficiently small, β∗RF ∈ H2(XR).
Moreover, fR := β∗RF → f in L2 norm (in fact, uniformly) as R ↓ 1, and so a(f iR) → a(f i) in norm.
Hence taking limits in the expression a(f1

R)TR = TRa(f0
R), we get a(f1)T = Ta(f0), which establishes

the first half of the commutation relations for T .
By [Ten17, Thm. 6.1], H2(XR)⊥ = M±zH2(XR), and so

a(zf1
R)∗TR = TRa(zf0

R)∗.

Hence taking limits we get
a(zf1)∗T = Ta(zf0)∗.

We conclude that T ∈ E(X), and since dimE(X) ≤ 1 by Proposition 3.8, we conclude that E(X) =
CT .
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4 Localized vertex operators and conformal nets

4.1 Localized vertex operators for the free fermion

Recall that we use the term interval to mean an open connected subset of S1 which is non-empty and
not dense, and that we denote by I ′ the complementary interval I̊c.

Definition 4.1. Let I ⊂ S1 be an interval. We will write DP(I) for the collection of

X = (φt, t, w, s, γ, ψ) ∈ DR

with the property that the boundary parametrizations (ψj , γj)j∈π0(∂Σ) satisfy

(ψS1 , γS1)|I′ = (ψφt(S1), γφt(S1))|I′ .

Given T ∈ E(X) and ξ ∈ F , let Tξ ∈ B(F) be given by Tξ(η) = T (ξ⊗η), where as usual we have ordered
the incoming boundary components so that w + sS1 comes first. Define the set of vertex operators
localized in I

LV (I;F) = {Tξ : X ∈ DR(I), T ∈ E(X), ξ ∈ F} ⊂ B(F).

Graphically, we identify X ∈ DR(I) with T ∈ E(X), and depict them as on the left in Fig-
ure 4.1. A localized vertex operator is depicted by inserting a state ξ into one of the input disks.

X = I , Tξ = ξI

Figure 4.1: A degenerate Riemann surface X ∈ DP(I), and a localized
vertex operator Tξ ∈ LV (I;F)

Remark 4.2. While the boundary parametrizations are not clear in Figure 4.1, we are implicitly as-
suming that that γS1 |I′ = γφt(S

1)|I′ and ψS1 |I′ = ψφt(S1)|I′ , and that γS1(I ′) = I ′. More generally, the
definition of DP(I) allows (ψS1 , γS1)|J and (ψφt(S1), γφt(S1))|J for an interval J with γS1(J) = I ′.

We begin with a straightforward observation on the parity of localized vertex operators.

Proposition 4.3. Let X ∈ DP and T ∈ E(X). Let ξ ∈ F and let Tξ ∈ LV (I;F) be the corresponding
localized vertex operator. Then Tξ is homogeneous if and only if ξ is, and p(Tξ) = p(ξ).

Proof. By Proposition 3.6 and the fact that the representation UNS of DiffNS+ takes values in even
operators, it suffices to consider the case X ∈ DPst. In this case, we saw in Theorem 3.21 that E(X) is
spanned by an even map T . Thus Tξ has the same parity as ξ.

We now have our main result on localized vertex operators for the free fermion.

Theorem 4.4. Every LV (I;F) is non-empty, and LV (I;F) ⊂ M(I), where M(I) is the local algebra
of the free fermion conformal net. Moreover, M(I) is generated by LV (I;F) as a von Neumann algebra.

Proof. We will just write LV (I) instead of LV (I;F). Let (ψ̂, γ̂) ∈ DiffNS+ (S1) be a spin diffeomorphism
with γ̂(I) = J . Then we claim that

UNS(ψ̂, γ̂)LV (I)UNS(ψ̂, γ̂)∗ = LV (J). (4.1)

By symmetry, it suffices to show

UNS(ψ̂, γ̂)LV (I)UNS(ψ̂, γ̂)∗ ⊆ LV (J). (4.2)

Suppose Tξ ∈ LV (I), corresponding to ξ ∈ F and T ∈ E(X), where X = (φt, t, w, s, γ, ψ) ∈ DP(I).
Let Σ be the underlying space of X, and for j ∈ π0(∂Σ) set

γ̃j =

{
γj ◦ γ̂−1 j ∈ {S1, φt(S

1)}
γj j = w + sS1 , ψ̃j =

{
ψ̂ · (ψj ◦ γ̂−1) j ∈ {S1, φt(S

1)}
ψj j = w + sS1.
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Set X̃ = (φt, t, w, s, γ̃, ψ̃), and observe that X̃ ∈ DP(J).
By Proposition 3.6, E(X̃) is spanned by T̃ := UNS(ψ̂, γ̂)T (1⊗ UNS(ψ̂, γ̂)∗). Hence

UNS(ψ̂, γ̂)TξUNS(ψ̂, γ̂)∗ ∈ LV (J).

We have proven (4.2) and thus (4.1).
It follows that LV (I) is non-empty if and only if LV (J) is. Moreover, since

M(J) = UNS(ψ, γ)M(I)UNS(ψ, γ)∗

by diffeomorphism covariance, LV (I) generates M(I) if and only if LV (J) generates M(J).
To show that some LV (I) is non-empty, pick some one-parameter semigroup φt and a small value of t

so that φt(S
1)∩S1 contains an interval but D\φt(D) has non-empty interior, as in (2.16). Let w, s ∈ D be

arbitrary values such that w+sD ⊆ D̊\φt(D). Let I ′ be an interval whose closure is compactly contained
in φt(S

1)∩S1. We may choose a parametrization for φt(S
1) such that (ψφt(S1), γφt(S1))|I′ ≡ (1, id). Let

(ψS1 , γS1) = (1, id), and choose (ψw+sS1 , γw+sS1) arbitrarily. Let X = (φt, t, w, s, ψ, γ) ∈ DP, and by
construction X ∈ DP(I). Then for any ξ ∈ F and T ∈ E(X), we have Tξ ∈ LV (I).

Next, we show that LV (I) ⊂M(I). Let X = (φt, t, w, s, ψ, γ) ∈ DP(I). We claim that for arbitrary
f ∈ L2(S1) with supp f ⊂ I ′, we have (f, 0, f) ∈ H2(X), where as usual we have orderd the boundary
components S1, then w + sS1, then φt(S

1). Since H2(X) is closed, it suffices to prove the claim for
continuous f .

Let J = γS1(I ′). Since γS1 |I′ = γφt(S1)|I′ , we must have J ⊂ S1 ∩ φt(S1). Let h be the continuous

function on S1 such that ψS1 · (h ◦ γS1) = f .
Let K = D \ φt(D̊), and let H : K → C be the continuous function obtained by extending h to

be 0 on K \ J . By Mergelyan’s theorem [Rud87, §20], there exists a sequence of rational functions Hn
with poles at 0 and ∞ such that Hn → H uniformly on K. Let (fn, gn, kn) = ψ · (Hn ◦ γ) ∈ H2(X)
be the corresponding boundary values. By construction, we have gn → 0 uniformly. We also have that
fn = ψS1 · (Hn ◦ γS1) converges uniformly to f = ψS1 · (h ◦ γS1). Moreover, since γS1 |I′ = γφt(S1)|I′ ,
we have that kn converges uniformly to f on I ′. By construction, Hn is converging uniformly to 0 on
γφt(S1)(I), and f vanishes on I, so kn = ψφt(S1) · (Hn ◦ γφt(S1)) converges uniformly to f on I as well,

and hence on all of S1. Thus (f, 0, f) = lim(fn, gn, kn) ∈ H2(X), as claimed.
Now let T ∈ E(X) and ξ ∈ F . Then by the definition of E(X), we have

a(f)T = T (Γ⊗ a(f)),

and thus a(f)Tξ = (−1)p(ξ)Tξa(f). As usual, formulas written involving the parity hold for homogeneous
vectors, and are extended linearly otherwise. Since p(T ) = p(ξ) by Proposition 4.3, the above equation
yields

a(f)Tξ = (−1)p(T )Tξa(f), (4.3)

Since (f, 0, f) ∈ H2(X) for every f ∈ L2(S1) with supp f ⊂ I ′, and f 7→ zf gives a bijection from
functions supported in I ′ to itself, we have (f, 0, f) ∈ zH2(X) for all such f . Thus by the definition of
E(X) we have

a(f)∗Tξ = (−1)p(T )Tξa(f)∗. (4.4)

Combining (4.3) and (4.4), we have Tξ ∈M(I) by Haag duality for the fermion net (Proposition 2.28).
Now let7

A(I) := (LV (I) ∪ LV (I)∗)′′ ⊆M(I).

By (4.1), A(I) is a covariant subnet of M(I), and so to show that A(I) =M(I) if suffices to show that
A(I)Ω is dense in F (by Proposition 2.30).

Let X = (φt, w, s, ψ, γ) ∈ DP(I), and let T ∈ E(X) be nonzero. We will show that

W := span{TξΩ : ξ ∈ F}

is dense in F .

7 Here, we have used the notation that for S ⊂ B(H), S′ denotes the commutant of S, i.e. the algebra of all operators
commuting with each element of S. If S is closed under taking adjoints, then the von Neumann double commutant theorem
says that S′′ is the von Neumann algebra generated by S.
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Let J be an interval with γ−1
S1 (J) compactly contained in S1 \ φt(S1), and let f be a continuous

function supported in J . Let h ∈ C(S1) be such that ψS1 · (h ◦ γS1) = f , so that h is supported in
γ−1
S1 (J). Let H be the continuous function on S1 ∪ φt(S1) obtained by defining h to be 0 outside of

γ−1
S1 (J).

By Mergelyan’s theorem, there exists a sequence of rational functions Hn with poles at 0, ∞ and w
such that Hn → h uniformly on S1 ∪ φt(S1). Let (fn, gn, kn) = ψ · (H ◦ γ) ∈ H2(X). By construction
fn → f and kn → 0 uniformly.

Let ξ ∈ F . By the definition of E(X), we have

a(fn)T (ξ ⊗ Ω)− (−1)p(ξ)T (ξ ⊗ a(kn)Ω) = T (a(gn)ξ ⊗ Ω).

Hence
a(fn)TξΩ− (−1)p(ξ)Tξa(kn)Ω = Ta(gn)ξΩ.

The left-hand side converges to a(f)TξΩ as n → ∞. On the other hand, the right-hand side lies in W .
Hence W is invariant under a(f) for every continuous f supported in J , and thus for any f ∈ L2(S1)
with the same support.

A similar arugment shows that W is invariant under a(f)∗ where again f ∈ L2(S1) is an arbitrary
L2 function supported in J . Thus W containsM(J)Ω, which is all of F by the Reeh-Schlieder property
(see [Was98, §15], or [CKL08, Thm. 1]). We conclude that A(J)Ω = F and thus A =M.

Remark 4.5. Using the notation of Figure 4.1, the conclusion of Theorem 4.4 can be depicted

M(I) =


ξI

∣∣∣∣∣ ξ ∈ F , ∂-parametrizations



′′

,

which we refer to as a ‘geometric realization’ of the algebraic CFT M.

4.2 Localized vertex operators for other vertex operator superalgebras

Let (V, Y,Ω, ν, 〈 · , · 〉 , θ) be a simple unitary vertex operator superalgebra, with Hilbert space completion
H. Let U : DiffNS+ (S1) → PU(H) be the positive energy representation of DiffNS+ (S1) coming from the
conformal vector ν.

Definition 4.6. For X = (φt, t, w, s, ψ, γ) ∈ DP, we define E(X;V ) to be the one-dimensional vector
space of (a priori unbounded) linear maps H⊗H → H spanned by

T (ξ ⊗ η) = U(ψ̂S1 , γ̂S1)Y (sL0U(ψ̂w+sS1 , γ̂w+sS1)∗ξ, w)e−tL(ρ)U(ψ̂φt(S1), γ̂φt(S1))
∗η,

where γ̂j and ψ̂j are given in terms of the standard boundary parametrization (ψst, γst) by

γ̂j = γ−1
j ◦ γj,st ∈ Diff+(S1), and ψ̂j =

ψj

ψj,st ◦ γ̂−1
j

.

This definition is characterized by the fact that when X ∈ DPst, E(X) is spanned by the map

T (ξ ⊗ η) = Y (sL0ξ, w)e−tL(ρ)η,

and the spaces satisfy the same diffeomorphism covariance property that the free fermion localized vertex
operators enjoyed.

As before, for ξ ∈ H, set Tξ(η) = T (ξ ⊗ η) and set

LV (I;V ) = {Tξ : X ∈ DR(I), T ∈ E(X;V ), ξ ∈ H}.
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By Proposition 2.15, elements of E(X;V ) are densely defined, but we do not have proof that they
are bounded in general, or even that they extend to the algebraic tensor product H ⊗alg H. However,
the maps Tξ are densely defined for ξ lying in a dense subspace.

In the case where V is the free fermion F0, however, E(X;F0) agrees with the one-dimensional space
E(X) from Section 3 by Theorem 3.21 and Proposition 3.6. The free fermion will be our motivating
example for defining what it means for a unitary vertex operator superalgebra to have a ‘good’ theory
of localized vertex operators.

Definition 4.7. Let V be a simple unitary vertex operator superalgebra, and let H be its Hilbert space
completion. We say that V has bounded localized vertex operators if

• Maps T ∈ E(X;V ) extend to bounded linear maps in B(H⊗H,H).

• For intervals I, if we set AV (I) := (LV (I;V ) ∪ LV (I;V )∗)′′, then AV is a Fermi conformal net
with conformal symmetry U : DiffNS+ (S1)→ PU(HV ) coming from the conformal vector ν of V .

Many of the required axioms of a Fermi conformal net are automatically satisfied once the maps
T ∈ E(X;V ) are bounded, and so we give a set of sufficient conditions that one can check.

Proposition 4.8. Let V be a simple unitary vertex operator superalgebra, let U : DiffNS+ (S1)→ PU(HV )
be the associated projective representation of DiffNS+ (S1), and suppose that the following hold:

• Maps T ∈ E(X;V ) extend to bounded linear maps in B(H⊗H,H).

• The algebras AV (I) = (LV (I;V ) ∪ LV (I;V )∗)′′ satisfy graded locality (i.e., when I ∩ J = ∅, we
have [AV (I),AV (J)]± = {0}).

• U(ψ, γ) commutes elementwise with A(I) whenever (ψ, γ) ∈ Diff+(I ′).

Then AV is a Fermi conformal net with conformal symmetry U .

Proof. The sets LV (I;V ) are Z/2Z-graded and satisfy LV (I;V ) ⊂ LV (J ;V ) when I ⊂ J , and the
corresponding properties of AV (I) are immediate consequences. Similarly U(ψ, γ)LV (I;V )U(ψ, γ)∗ =
LV (γ(I);V ), and diffeomorphism covariance of AV follows, given our assumption that U(ψ, γ) commutes
with AV (I) when (ψ, γ) ∈ Diff+(I ′). Since we have also assumed that AV satisfies graded locality, the
only thing to check is the vacuum axiom.

Since V is simple, Ω is the unique (up to scalar) vector fixed by MöbNS . Fix an interval I, and let
K = A(I)Ω. If (ψ, γ) ∈ Diff+(I), then

U(ψ, γ)LV (I;V ) = LV (I;V )U(ψ, γ) = LV (I;V ).

Hence U(ψ, γ)K ⊆ K. By the Reeh-Schlieder property for the Virasoro nets, it follows that U(ψ, γ)Ω ∈ K
for all (ψ, γ) ∈ DiffNS+ (S1). Now from the definition of LV (I;V ), we can see that K contains Y (a, z)Ω
for all a ∈ V , for at least one z ∈ D̊.

Since K ⊆ AV (S1)Ω, we have Y (a, z)Ω ∈ AV (S1)Ω for the same a and z as above. But AV (S1)Ω
is clearly unvariant under the rotation subgroup of DiffNS+ , and thus is 1

2
Z-graded. Thus when a is

homogeneous, we must have a ∈ AV (S1)Ω, which establishes that AV (S1)Ω = H.

Remark 4.9. The first two conditions in the statement of Proposition 4.8 are analagous to the conditions
required in [CKLW18] to construct a conformal net; the first is analogous to energy boundedness, and
the second to strong locality. We expect that it is not too difficult to show that the third condition holds
automatically in the presence of the first two, but we will not discuss this question as the third condition
is easily verified in all of our examples.

Remark 4.10. The fact that we have defined AV (I) to be generated by LV (I;V ) ∪ LV (I;V )∗ instead
of just LV (I;V ) is an artifact of the fact that we have only considered a special class of degenerate
annuli and pairs of pants lying in one-parameter families (see also the discussion in Section 4.3.1). If
we were to instead define LV (I;V ) to be maps assigned to all degenerate pairs of pants we would have
LV (I;V ) = LV (I;V )∗.

Our next project is to show that the property of having bounded localized vertex operators is well-
behaved with respect to tensor products and taking unitary subalgebras.

Proposition 4.11. Let V1 and V2 be simple unitary vertex operator superalgebras. Then V1 ⊗ V2 has
bounded localized vertex operators if and only if V1 and V2 do. In this case, AV1⊗V2 = AV1 ⊗AV2 .
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Proof. Let Y be the state-field correspondence for V1 ⊗ V2, and let Y i be the state-field correspondence
for Vi. By definition, we have Y (ξ1 ⊗ ξ2, x) = Y 1(ξ1, x)Γp(ξ2) ⊗ Y 2(ξ2, x) for homogeneous ξi ∈ Vi. If
X ∈ DP(I) and T ∈ E(X;V1 ⊗ V2), we have Tξ1⊗ξ2 = Tξ1⊗̂Tξ2 . Thus the boundedness of elements
of LV (I;V1 ⊗ V2) is equivalent to the boundedness of elements of LV (I;V1)⊗̂LV (I;V2), and we have
LV (I;V1 ⊗ V2) ⊆ LV (I;V1)⊗̂LV (I;V2).

First consider when V1 and V2 have bounded localized vertex operators. Then AV1⊗V2 is a diffeomor-
phism covariant subnet of AV1 ⊗AV2 , and to check equality it suffices to show that AV1⊗V2Ω = HV1⊗V2 .
This can be done just as in the proof of Proposition 4.8.

Now consider when V1 ⊗ V2 has bounded localized vertex operators. The inclusion AV1⊗V2(I) ⊆
AV1(I) ⊗ AV2(I) is clear, but it requires a small argument to establish the reverse inclusion. Let Hi
be the Hilbert space completion of Vi, and let Ui be the projective representation of DiffNS+ (S1) on
Hi obtained by integrating the representation of the Virasoro algebra coming from Vi. Let Ki be the
subspace of Hi generated by Ω under Ui, and let

Bi(I) = {Ui(ψ, γ) : (ψ, γ) ∈ Diff+(I)}′′.

Then Bi(I) and Bi(J) commute when I and J are disjoint (see [CKLW18, §3.2]).
Let C(I) ⊆ AV1⊗V2(I) be the local algebra of the Virasoro subnet, given by

C(I) = {U1(ψ, γ)⊗ U2(ψ, γ) : (ψ, γ) ∈ Diff+(I)}′′,

and observe that C(I) ⊂ B1(I)⊗ B2(I), and that C(I) commutes with B1(J)⊗ B2(J) when I and J are
disjoint.

We now set out to verify that B1(I) ⊗ B2(I) ⊆ AV1⊗V2(I). Fix X ∈ DP(I), let T ∈ E(X;V1 ⊗ V2),
and let T1, T2 be such that T1 ⊗ T2 = TΩ⊗Ω. From the definition of E(X;V1 ⊗ V2), T1Ω ⊗ T2Ω lies
in C(S1)(Ω⊗ Ω), whose finite energy vectors are the subrepresentation of the Virasoro algebra LV1⊗V2

n

generated by the vaccum Ω ⊗ Ω. Hence T1 ⊗ T2 ∈ C(I) by Proposition 2.30, and thus T1 ⊗ T2 ∈
B1(I) ⊗ B2(I). It is a standard, but non-trivial, fact about von Neumann algebras that we may now
conclude Ti ∈ Bi(I).

Now suppose that Y ∈ DP(J) for some interval J disjoint from I, and let S ∈ E(Y ;V1 ⊗ V2). Then
writing SΩ⊗Ω = S1 ⊗ S2, we have Si ∈ BI(J), as above, and thus [Si, Ti] = 0. Now if we select a, b ∈ V1,
we have

Ta⊗Ω = T̃1 ⊗ T2, Sb⊗Ω = S̃1 ⊗ S2

for some operators T̃1 ∈ LV (X,V1) and S̃1 ∈ LV (Y, V1). Since V1 ⊗ V2 has bounded localized vertex
operators, Ta⊗Ω and Sb⊗Ω supercommute. But since T2 and S2 are even and commute, and their
product is nonzero, T̃1 and T̃2 supercommute as well. Since all elements of LV (X,V1) and LV (Y, V1)
arise as above, and we may apply the same argument to the adjoints, we get that AV1(I) and AV1(J)
supercommute elementwise. Applying the same argument to the second tensor factor shows that AV2(I)
and AV2(J) also supercommute, and we conclude that the algebras AVi(I) are graded local. The same
argument can also be used to show that AVi(I) commutes with Bi(J) when I and J are disjoint, which
completes the proof that both Vi have bounded localized vertex operators, by Proposition 4.8.

Theorem 4.12. Let V be a simple unitary vertex operator superalgebra with bounded localized vertex
operators, and let W be a unitary subalgebra. Then W has bounded localized vertex operators.

Proof. First consider when W is a conformal subalgebra; that is, when the conformal vector νV of V lies
in W . Let eW ∈ B(HV ) be the projection onto HW , the closure of W , and let

LV (I;V )W = {Tξ : X ∈ DP(I), T ∈ E(X;V ), ξ ∈ HW }.

Since W is a conformal subalgebra, eW commutes with all unitaries U(ψ, γ) and with e−tL(ρ).
Let X ∈ DP(I) and let T ∈ E(X;V ). Recall that Tξ is given by the formula

Tξ(η) = U(ψ1, γ1)Y (sL0U(ψ2, γ2)∗ξ, w)e−tL(ρ)U(ψ3, γ3)∗η

when ξ ∈ U(ψ2, γ2)V and η ∈ U(ψ3, γ3)V , for some (ψj , γj) ∈ DiffNS+ (S1). By the super version of
[CKLW18, Lem. 5.28], we have

eWU(γ1)Y (sL0U(γ2)∗ξ, w)e−tL(ρ)U(γ3)∗eW η = U(γ1)Y (sL0U(γ2)∗eW ξ, w)e−tL(ρ)U(γ3)∗eW η
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for all such ξ and η, and

U(γ1)Y (sL0U(γ2)∗ξ, w)e−tL(ρ)U(γ3)∗eW η = eWU(γ1)Y (sL0U(γ2)∗eW ξ, w)e−tL(ρ)U(γ3)∗η

for ξ ∈ U(γ2)W and η ∈ U(γ3)W .
Since T ∈ E(X;V ) is bounded by assumption, these relations extend to all of HV and HW , and we

get
eWTξeW = TeW ξeW = eWTeW ξ (4.5)

for all ξ ∈ HV . Thus LV (I;W ) = eWLV (I;V )eW = eWLV (I;V )W , so LV (I;W ) consists of bounded
operators.

Let B(I) = (LV (I;V )W ∪ LV (I;V )W
∗)′′. It is clear that B(I) ⊂ AV (I) and that B(J) ⊂ B(I) when

J ⊂ I. For any (ψ, γ) ∈ DiffNS+ (S1) we have U(ψ, γ)LV (I;V )WU(ψ, γ)∗ = LV (γ(I), V )W , and thus
U(ψ, γ)B(I)U(ψ, γ)∗ = B(γ(I)). Hence B is a covariant subnet of AV .

Let
B(S1) =

∨
I∈I

B(I)

be the von Neumann algebra generated by all B local algebras assigned to intervals. Let HB = B(S1)Ω,
so that B is a Fermi conformal net on HB by Theorem 2.29. We will show that HB = HW and that
B(I)eW = AW (I), which will establish that AW (I) is a Fermi conformal net with confomal symmetry
UeW .

Since elements of LV (I;V )W commute with eW by (4.5), we haveHB ⊂ HW . Since eWLV (I;V )eW =
eWLV (I;V )W and eWLV (I;V )∗eW = eWLV (I;V )W

∗, we have eWAV (I)eW = eWB(I) and thus

HB = eWHB ⊇ eWB(I)Ω = eWAV (I)Ω = HW .

Hence HB = HW , and thus we have a Fermi conformal net eWB(I) on HW with conformal symmetry
eWU . Moreover, since LV (I;W ) = eWLV (I;V )W and LV (I;W )∗ = eWLV (I;V )W

∗, we have eWB(I) =
AW (I), which completes the proof when the inclusion W ⊂ V is conformal.

Now consider when the inclusion W ⊂ V is not conformal. Let W̃ = {ξ(−1)η : ξ ∈ W, η ∈ W c} ⊆ V .

By Proposition 2.21, W̃ is a unitary conformal subalgebra of V , so by the above proof W̃ has bounded
localized vertex operators. But by the same proposition, W̃ is unitarily equivalent to W ⊗W c, so by
Proposition 4.11, W̃ has bounded localized vertex operators as well.

Theorem 4.4, combined with Proposition 2.26, says that the free fermion vertex operator algebra F0

has bounded localized vertex operators. We can use Proposition 4.11 and Theorem 4.12 to extend this
to more examples.

Theorem 4.13. Let W be a unitary subalgebra of (F0)⊗N for some N ∈ Z≥1. Then W has bounded
localized vertex operators.

Proof. By Proposition 4.11, (F0)⊗N has bounded localized vertex operators, and so by Theorem 4.12
the same is true of any unitary subalgebra.

We are led naturally to ask which unitary vertex operator algebras can arise as unitary subalgebras
of (F0)⊗N . We have nothing approaching an exhaustive answer, but this class includes many important
examples.

Example 4.14 (The free boson). The free boson arises as the charge zero component of F0, a result
which comprises one half of the fermion-boson correspondence (see [Kac98, §5.1-5.2]). The free boson is
a unitary subalgebra of F0 since it is conformal (and in particular, L1-invariant), and θ-invariant, as θ
exchanges the charge M and charge −M subspaces of F0.

Example 4.15 (Sublattices of ZN ). Given a positive definite integral lattice Λ, there is a corresponding
simple vertex operator superalgebra VΛ (see [Kac98, §5.5]) which has a natural unitary structure ([DL14,
Thm 4.12] and [AL17, Thm 2.9]). As discussed in [Kac98, Ex. 5.5a], (F0)⊗N is the vertex operator
superalgebra corresponding to the lattice ZN . Given a sublattice Λ ⊂ ZN , one has an embedding of
vertex operator superalgebras VΛ ⊂ (F0)⊗N . It is straightforward to check that if Λ ⊂ Λ′, then VΛ is a
unitary subalgebra of VΛ′ from explicit formulas for θL (see [AL17, Lem. 2.8], where θ is called φ) and
for L1 (see the proof of [Kac98, Prop. 5.5]).
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Example 4.16 (Many WZW models). Let G be compact, simple, simply connected Lie group, and
let g be its complexified Lie algebra. Since the weight 1 subspace of (F0)⊗N contains a copy of u(N)
(see [Was98, §7] for an explicit construction), given a unitary representation π : G → CN , we obtain
an embedding of the affine vertex algebra Vg,∆π ↪→ (F0)⊗N at some level ∆π ∈ Z>0, called the Dynkin
index of π. It is clear from the explicit formula for the action of the matrix units (Eij)(−1) on (F0)⊗N

(see e.g. [Was98, §7]) that Vg,∆π is invariant under θF . Since Vg,∆π is generated by vectors with weight
1, it will automatically be invariant under L1. Thus Vg,∆π is a unitary subalgebra of (F0)⊗N .

For k ∈ Z>0, Vg,k∆π is a unitary subalgebra of V ⊗kg,∆π
, and thus every Vg,k∆π has bounded localized

vertex operators. The smallest Dynkin indices ∆g = minπ ∆π for each g are given in Figure 4.2 (see
[Dyn52, Tbl. 5] and [LS97, Prop. 2.6]). For more details on this construction, see the discussion at the
beginning of [Pos03, §5.2].

g = An Bn Cn Dn E6 E7 E8 F4 G2

∆g = 1 2 1 2 6 12 60 6 2

Figure 4.2: Minimal Dynkin indices for simple Lie algebras

Since the Dn level 1 VOA comes from a sublattice of Zn, we have in fact shown that the Dn VOAs
have bounded localized vertex operators at all positive integer levels as a consequence of Example 4.15,
instead of just at even ones as suggested by Figure 4.2. Of course, the An and Cn VOAs also have
bounded localized vertex operators at every level as a consequence of Figure 4.2. We expect that all
affine VOAs have bounded localized vertex operators.

Example 4.17 (Many (super) Virasoro models). If c ∈ Z≥1, then the Virasoro vertex operator algebra
with central charge c is a unitary subalgebra of (F0)⊗c, and thus has bounded localized vertex operators.
If c lies in the discrete series, then the corresponding Virasoro VOA is realized as a subalgebra of
SU(2)n ⊗ SU(2)1 inside the unitary coset subalgebra SU(2)n+1

c (the Goddard-Kent-Olive construction
[GKO86]). Thus the discrete series of Virasoro VOAs have bounded localized vertex operators, since
SU(2)n⊗SU(2)1 ⊂ (F0)⊗2n+2 is a unitary subalgebra. We get the same when c is the sum of an integer
and values in the discrete series of unitary Virasoro representations, and when c is the central charge of
a coset of one of the other examples given (and so on).

Similarly, the discrete series of (N = 1) super Virasoro vertex operator algebras are realized in the
coset of SU(2)n+2 ⊂ SU(2)n ⊗ SU(2)2 (by [GKO86, §3], see also [CKL08, §6.4]), and so have bounded
localized vertex operators. In [CHK+15, §5], it is shown that the discrete series of N = 2 super Virasoro
VOAs can be embedded as unitary subalgebras of free fermions, and in a recent paper [MTY18], the
N = 4 super conformal algebra with central charge c = 6 is realized as a unitary conformal subalgebra
of (F0)⊗6.

Remark 4.18. The main results of [CKLW18] should generalize to the case of super VOAs and Fermi
conformal nets without any major modification, and using the “super version” of that paper, one can
prove that the Fermi conformal nets constructed via Theorem 4.13 from unitary subalgebras V ⊂ (F0)⊗N

coincide with the CKLW nets (that is, the nets constructed in [CKLW18]). The free fermion Fermi
conformal net is, by definition, generated by smeared generating fields for the free fermion vertex operator
superalgebra, and so the CKLW free fermion net agrees with the one constructed from F0 via Theorem
4.4. By [CKLW18, Cor. 8.2] and Proposition 4.11, the net constructed from (F0)⊗N agrees with
the CKLW net. Now by the super version of [CKLW18, Thm. 7.1], unitary subalgebras of (F0)⊗N

are strongly local, and the corresponding CKLW nets agree with the ones constructed from bounded
localized vertex operators by the super version of [CKLW18, Thm. 7.4]. A direct proof that the even
part of (F0)⊗N is strongly local will also appear in [CWX], which implies that any even unitary subalgebra
of (F0)⊗N is strongly local by the results of [CKLW18].

We expect that the above discussion should apply to any simple unitary vertex operator superalgebra
with bounded localized vertex operators. That is, we expect that such vertex operator superalgebras are
energy bounded and strongly local, and that the Fermi conformal net arising from the bounded localized
vertex operators is isomorphic to the CKLW net.
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4.3 Further directions

The goal of this paper is to demonstrate that many Fermi conformal nets can be constructed geometrically
from unitary vertex operator superalgebras via assigning values to some degenerate Riemann surfaces.
In the interest of (relative) brevity, we have not attempted to develop a general theory of degenerate
Riemann surfaces, or bounded localized vetex operators. In this section we will briefly discuss several
directions for future research.

4.3.1 Relaxing the semigroup condition for fermions

Let U ⊂ D be a Jordan domain with C∞ boundary, and let φ : D → U be a Riemann map. For our
construction of Fermi conformal nets, it sufficed to assign bounded operators to degenerate annuli D \U
with the property that φ fit into a one-parameter semigroup fixing 0. This condition was essential to
our proof, but it would be very surprising if it were anything other than a technical convenience. In the
free fermion example, we saw that the boudnedness of the operator assigned to the degenerate annulus
is equivalent to being able to write Wφ as the sum of a contraction and a trace class operator. This, in
turn, is equivalent to a condition on the decay of the approximation numbers8

an(Wφ) = inf{‖Wφ − F‖ : rank(F ) < n}.

When U ⊂ D is a Jordan domain with C∞ boundary and U ∩ S1 6= ∅, we have limn→∞ an(Wφ) = 1,
and the boundedness of the operator assigned to the degenerate annulus is equivalent to the condition∏∞
n=1 an(Wφ) <∞.
The φ with this property on the approximation numbers (relaxing the requirement that U ∩ S1 6= ∅)

form a semigroup, and it is quite large. As a consequence of the results in this paper, it contains all
one-parameter semigroups of φ with common fixed point lying in the open disk D̊. At some point, we
would like to show that this semigroup in fact contains all φ mapping onto Jordan domains with C∞

boundary by carefully analyzing the approximation numbers of Wφ.

4.3.2 A general theory of Segal CFT for degenerate Riemann surfaces

Eventually, we would like to upgrade our construction of maps assigned to degenerate Riemann surfaces
to a functorial field theory. That is, one should be able to precisely describe a bordism category of
degenerate Riemann surfaces, and construct examples of field theories using this bordism category as
a source. In the free fermion example, the maps that should be assigned to degenerate surfaces can
be characterized via commutaiton relations with respect to a Hardy space, just as with the degenerate
surfaces considered in this paper.

A related project is Henriques’ partial construction of extended 2d functorial conformal field theories
from Riemann surfaces with cusps [Hen14]. Henriques uses a presentation of the category of complex
bordisms which features a generator

.

In the language of our paper, this generator corresponds to a degenerate Riemann surface

. (4.6)

We did not discuss degenerate surfaces of this type, but the results of this paper allow one to assign
bounded maps to such a degenerate surface in the free fermion example as long as the maps corresponding

8 One might also call these the singular values of Wφ, but this term is sometimes reserved for compact operators
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to the individual annuli

and (4.7)

are bounded.
We briefly sketch a proof of this fact, which is similar to the proof of boundedness of operators

assigned to degenerate pairs of pants in Theorem 3.21.
Given a degenerate Riemann surface such as the one in (4.6), write it as D \ (φ1(D̊) ∪ φ2(D̊)) for

Riemann maps φi. If both annuli D \ φi(D̊) have associated bounded operators, then it must be that∏∞
n=1 an(Wφi) <∞ for i = 1, 2. Equivalently, this means that each Wφi can be written as the sum of a

contraction and a trace class operator.
Now if we set Wξ = (Wφ1ξ,Wφ2ξ), we have

WW ∗ =

(
Wφ1W

∗
φ1

Wφ1W
∗
φ2

Wφ2W
∗
φ1

Wφ2W
∗
φ2

)
.

Since φ1(S1) ∩ φ2(S1) = ∅, it is straightforward to check that the off-diagonal entries of WW ∗ are trace
class (in fact, they are integral operators with a smooth kernel). On the other hand, WφiW

∗
φi

can be
written as the sum of a contraction and a trace class, so the same is true of WW ∗, and hence W . Thus
W⊕W̃ defines an admissible operator in B(H,H⊕H), where H = L2(S1) and admissibility is understood
with repsect to the Hardy space projections p and p⊕ p.

Arguing as in Section 3.2, one may show that the adjoint of the operator which should be assigned
the the degenerate surface in (4.6) is the implementing operator associated to (W ⊕ W̃ , Ω̂), for a vector
Ω̂ which is assigned to a non degenerate Riemann surface by the free fermion Segal CFT. Boundedness
now follows as in Theorem 3.21.

4.3.3 More examples and constructions

While the class of vertex operator superalgebras which can be embedded unitarily in (F0)⊗N is quite
large, there are important examples for which we do not know of such an embedding. Most notably, the
lists of lattice, WZW and Virasoro models discussed in Examples 4.15, 4.16 and 4.17 are incomplete.
Ideally, we would like a general argument for each of the three cases.

It would also be desirable to show that the property of having bounded localized vertex operators is
preserved under additional operations, for example “nice” extensions. In order to prove anything about
localized vertex operators for extensions, we would require a broader notion of localized vertex operators
which includes module and intertwining operators.

4.3.4 Modules and intertwining operators

In this paper we only considered operators assigned to degenerate Riemann surfaces in the vacuum
sector, and we saw that the operators that should be assigned were related to vertex operators. To
assign operators to degenerate Riemann surfaces with boundary components labeled by sectors, we
would need to generalize our results to intertwining operators. Bounded localized intertwining operators
will play an important role in relating the tensor product of VOA modules with the tensor product of
representations of the associated conformal net, in the same way that Wassermann used the boundedness
of certain smeared intertwining operators in his proof of the fusion rules for the SU(N)k conformal nets
in [Was98]. We begin the study of bounded localized intertwining operators in the sequel article [Ten18].

5 Implementing operators

Consider the following general scenario. Let H and K be separable Hilbert spaces, and let p and q be
projections on H and K, respectively. Assume that pH and (1− p)H are infinite dimensional. With this
data, we can form the Fock spaces FH,p and FK,q, which carry representations of CAR(H) and CAR(K),
respectively.
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Fix an orthonormal basis {ξi}i∈Z for H, and assume that ξi ∈ pH when i ≥ 0, ξi ∈ (1 − p)H when
i < 0. Such a basis for H is said to be compatible with p. Recall that if I = {i1, . . . , in} ⊂ Z with
i1 < i2 < · · · < in, and if {ψi} ⊂ H is a family of vectors indexed by I, then we write

a(ψI) = a(ψi1) · · · a(ψin) ∈ CAR(H). (5.1)

The Fock space FH,p has an orthonormal basis a(ξJ)a(ξI)
∗Ωp, where I runs over finite subsets of Z≥0

and J runs over finite subsets of Z<0.

Definition 5.1. Let H,K, p, q, and ξi be as above. Let r ∈ B(H,K) and Ω̂ ∈ FK,q. Then the imple-
menting operator associated to (r, Ω̂) is the densely defined linear map R : FH,p → FK,q given by

Ra(ξJ)a(ξI)
∗Ωp = a(rξJ)a(rξI)

∗Ω̂.

We now set out to establish a sufficient condition for an implementing operator to be bounded.

Definition 5.2. Let H and K be Hilbert spaces, and let p and q be projections on H and K, respectively.
For r ∈ B(H,K), define the diagonal expectation of r by E(r) = qrp + (1 − q)r(1 − p). The class of
admissible operators A(H,K) is defined to be those r ∈ B(H,K) with qr(1 − p) trace class, and which
have the property that there exist a, x ∈ B(H,K) with ‖a‖ ≤ 1 and x trace class such that E(r) = a+x.

In other words, if we think of elements of B(H,K) as 2×2 matrices with respect to the decompositions
pH ⊕ (1− p)H and qK ⊕ (1− q)K, then for r ∈ B(H,K) to be admissible we require the top right entry
of r to be trace class, and the diagonal entries to have a decomposition as (contraction) + (trace class).

Definition 5.2 depends on the projections p and q, which we omit from the notation as they will
remain fixed in our applications.

In a moment, we will give Theorem 5.3, the main result of Section 5 which partially characterizes
boundedness of implementing maps in terms of admissibility. First, we need to briefly recall some facts
about the representation theory of the CAR algebra (see Section 2.1.1).

Let q′ ∈ B(K) be a projection, and assume that q′ − q is Hilbert-Schmidt. Then there is a unique-
up-to-scalar vector Ω̂q′ ∈ FK,q such that

a(f)Ω̂q′ = a(g)∗Ω̂q′ = 0 (5.2)

for every f ∈ q′K and every g ∈ (1 − q′)K. When q′ = q, then Ω̂q′ is just the ordinary vacuum vector
Ωq ∈ FK,q.
Theorem 5.3. Let H and K be separable Hilbert spaces, and let p and q be projections on H and K,
respectively, with pH and (1−p)H infinite dimensional. Let {ξi}i∈Z be an orthonormal basis for H which
is compatible with p. Let r ∈ B(H,K), and assume that qr(1− p) is trace class. Let q′ be a projection on
K with q′−q trace class, and let Ω̂q′ ∈ FK,q be a non-zero vector satisfying (5.2). Then the implementing

operator associated to (r, Ω̂q′) is bounded if and only if r ∈ A(H,K).

We will prove Theorem 5.3 with several lemmas giving operations under which the boundedness of
the implementer for (r, Ω̂) is preserved.

First, we check that the boundedness of the implementing operator is independent of the choice of
basis used to define it.

Proposition 5.4. Let H,K, p, q be as in Theorem 5.3, and let Ω̂ ∈ FK,q and r ∈ B(H,K) be arbitrary.
Then the boundedness of the implementing operators associated to (r, Ω̂) is independent of the choice of
basis ξi. When the implementing operators for two choices of bases are bounded, then their extensions to
FH,p coincide.

Proof. Let ξ
(1)
i and ξ

(2)
i be two orthonormal bases for H, and densely define linear maps R(1) and R(2)

by
R(m)a(ξ

(m)
J )a(ξ

(m)
I )∗Ωp = a(rξ

(m)
J )a(rξ

(m)
I )∗Ω̂.

Assume that R(1) extends to a bounded map on all of FH,p. Fix finite subsets I ⊂ Z≥0 and J ⊂ Z<0,
and write

a(ξ
(2)
J )a(ξ

(2)
I )∗Ωp =

∑
I′,J′

cI′,J′a(ξ
(1)

J′ )a(ξ
(1)

I′ )∗Ωp
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where I ′ runs over finite subsets of Z≥0, J ′ runs over finite subsets of Z<0, and cI′,J′ ∈ C. Then we have

a(rξ
(2)
J )a(rξ

(2)
I )∗Ω̂ =

∑
I′,J′

cI′,J′a(rξ
(1)

J′ )a(rξ
(1)

I′ )∗Ω̂

for the same coefficients cI′,J′ . We can now calculate

R(1)a(ξ
(2)
J )a(ξ

(2)
I )∗Ωp = R(1)

∑
I′,J′

cI′,J′a(ξ
(1)

J′ )a(ξ
(1)

I′ )∗Ωp

=
∑
I′,J′

cI′,J′a(rξ
(1)

J′ )a(rξ
(1)

I′ )∗Ω̂

= a(rξ
(2)
J )a(rξ

(2)
I )∗Ω̂

= R(2)a(ξ
(2)
J )a(ξ

(2)
I )∗Ωp.

Since R(1) and R(2) agree on a basis, R(2) is also bounded and R(1) = R(2).

Lemma 5.5. Let H,K, p, q, ξi be as in Theorem 5.3, and let r ∈ B(H,K) and Ω̂ ∈ FK,q be arbitrary.
Let x ∈ B(H,K) be a trace class operator with xp = 0. Then the implementer associated to (r, Ω̂) is
bounded if and only if the implementer associated to (r + x, Ω̂) is.

Proof. Let R be the implementer assigned to (r, Ω̂) , and let T be the implementer assigned to (r+x, Ω̂).
Assume that R defines a bounded operator, and we will prove that T is bounded as well. By Proposition
5.4, we can choose any orthonormal basis ξi for H to define R and T with respect to, as long as ξi ∈ pH
when i ≥ 0 and ξj ∈ (1− p)H when j < 0.

Since xp = 0 and x is compact, the singular value decomposition of x yields an orthonormal basis
{ξj}j<0 for (1− p)H, an orthonormal set {ηj}j<0 ⊂ K, and scalars λj ∈ C with xξj = λjηj . Moreover,
since x is trace class we have

∑
|λj | <∞. Extend ξj to an orthonormal basis {ξj}j∈Z for H.

For L ⊂ Z<0 a finite subset, set λL =
∏
`∈L λ`. Recall that if we have L = {`1, . . . , `n} with

`1 < · · · < `n, and if {ψ`}`∈L is a family of vectors indexed by L, then we set

a(ψL) = a(ψ`1) · · · a(ψ`n).

We will now show that
T =

∑
L⊂Z<0

λLa(ηL)Ra(ξL)∗, (5.3)

where the sum runs over finite subsets L. Since ‖a(η`)
∗‖ = ‖a(ξ`)‖ = 1,∑

L⊂Z<0

‖λLa(ηL)Ra(ξL)∗‖ ≤ ‖R‖
∑
L

|λL| = ‖R‖
∏
`∈Z<0

(1 + |λ`|),

and so the right-hand side of (5.3) converges absolutely in norm. Thus to verify (5.3), and in particular
that T is bounded, it suffices to check that both sides agree when applied to basis vectors a(ξJ)a(ξI)

∗Ω,
where J ⊂ Z<0 and I ⊂ Z≥0 are finite sets.

For J ⊂ Z a finite subset, {ψj}j∈J a family of vectors and L ⊆ J , let εL,J ∈ {±1} be such that

a(ψJ) = εL,Ja(ψL)a(ψJ\L).

Note that εL,J is independent of the ψj . With this notation, for J ⊂ Z<0 and I ⊂ Z≥0 finite subsets we
have

Ta(ξJ)a(ξI)
∗Ωp = a((r + x)ξJ)a(rξI)

∗Ω̂

=
∑
L⊂J

εL,Ja(xξL)a(rξJ\L)a(rξI)
∗Ω̂

=
∑
L⊂J

εL,Ja(xξL)Ra(ξJ\L)a(ξI)
∗Ωp

=
∑
L⊂J

λLa(ηL)Ra(ξL)∗a(ξJ)a(ξI)
∗Ωo

=

 ∑
L⊂Z<0

λLa(ηL)Ra(ξL)∗

 a(ξJ)a(ξI)
∗Ωp.
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In the last equality, we used that a(ξL)∗a(ξJ)a(ξI)
∗Ωp = 0 when L ⊂ Z<0 but L 6⊂ J . This establishes

(5.3) and completes the proof.

The next lemma establishes Theorem 5.3 in the case where the Ω̂q′ = Ωq, the vacuum vector in FK,q.
Lemma 5.6. Let H, K, p, q, and ξi be as in Theorem 5.3. Let r ∈ B(H,K) and assume that qr(1− p)
is trace class. Then the implementer R associated to (r,Ωq) is bounded if and only if r ∈ A(H,K).

Proof. We must show that R is bounded if and only if qrp + (1 − q)r(1 − p) =: E(r) can be written as
the sum of a contraction plus a trace class.

Recall that R is given by the formula

Ra(ξJ)a(ξI)
∗Ωp = a(rξJ)a(rξI)

∗Ωq (5.4)

where as usual I is a finite subset of Z≥0 and J is a finite subset of Z<0. Since a(g)∗Ωq = 0 when
g ∈ (1− q)K, one can see that R is independent of (1− q)rp, and so we assume without loss of generality
that (1− q)rp = 0.

By Lemma 5.5 and the assumption that qr(1−p) is trace class, the boundedness of (5.4) is unchanged
by subtracting off qr(1 − p). Thus it suffices to prove the lemma under the assumption that r is block
diagonal, i.e. that r = E(r) = qrp+ (1− q)r(1− p).

There is a natural unitary UH : FH,p → Λ(1− p)H ⊗ ΛpH given by

UHa(ξJ)a(ξI)
∗Ωp = a(ξJ)Ω⊗ a(ξI)

∗Ω

for J ⊂ Z<0 and I ⊂ Z≥0 finite subsets. Here, we are thinking of Λ(1 − p)H = F(1−p)H,0 and ΛpH =
FpH,1pH when we write the actions of CAR(pH) and CAR((1−p)H) on these spaces. Thus a(ξJ)Ω gives
an orthonormal basis for Λ(1−p)H indexed by finite subsets J ⊂ Z<0, and a(ξI)

∗Ω gives an orthonormal
basis for ΛpH indexed by finite subsets I ⊂ Z≥0.

Let UK : FK,q → Λ(1− q)K ⊗ ΛqK be the unitary given by

UKa(ψJ)a(ψ′I)
∗Ωq = a(ψJ)Ω⊗ a(ψ′I)

∗Ω

for all finite families of vectors {ψ′i}i∈I ⊂ qK and {ψj}j∈J ⊂ (1− q)K.
Since r is block diagonal, we have UKRU

∗
H = R− ⊗ R+, where R− : Λ(1 − p)H → Λ(1 − q)K and

R+ : ΛpH → ΛqK are given by

R−a(ξJ)Ω = a((1− q)r(1− p)ξJ)Ω, R+a(ξI)
∗Ω = a(qrpξI)

∗Ω

for finite subsets J ⊂ Z<0 and I ⊂ Z≥0.
Thus to complete the proof we must show that R− ⊗ R+ is bounded if and only if r can be written

as a sum of a contraction plus a trace class, or equivalently if (1 − q)r(1 − p) and qrp can both be
written as the sum of a contraction plus a trace class. We will prove that R− is bounded if and only if
(1 − q)r(1 − p) can be written as contraction plus trace class, and the corresponding statement for R+

and qrp is identical.
We begin with a small piece of notation. If L1 and L2 are Hilbert spaces, and t ∈ B(L1, L2), we will

write Λ(t) : Λ(L1)→ Λ(L2) for the densely defined operator given on finite wedge products by

Λ(t)(ψ1 ∧ · · · ∧ ψn) = tψ1 ∧ · · · ∧ tψn.

Note that Λ(t) is the restriction of

∞⊕
n=0

t⊗n ∈
∞⊕
n=0

B
(
L1
⊗n, L2

⊗n)
to an invariant subspace, so ‖Λ(t)‖ ≤ 1 when ‖t‖ ≤ 1. However, Λ(t) can be bounded even when t is not
a contraction.

To simplify notation, let H ′ = (1− p)H, K′ = (1− q)K, and s = (1− q)r(1− p) ∈ B(H ′,K′). In this
notation, R− = Λ(s), and we must show that R− is bounded if and only if s can be written as the sum
of a contraction and a trace class operator.
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Assume first that s = b+ x with ‖b‖ ≤ 1 and x trace class. Since x is trace class, the singular value
decomposition yields an orthonormal basis {ξj}j∈Z<0 for H ′, an orthonormal set {ηj}j∈Z<0 , and scalars
(λj) ∈ `1(Z<0) such that xξj = λjηj . One can then verify, just as in the proof of Lemma 5.5, that

R− =
∑

L⊂Z<0

λL a(ηL)Λ(b)a(ξL)∗

where the sum is indexed by finite subsets L and λL =
∏
`∈L λ`. Hence

‖R−‖ ≤
∑
L

|λL| =
∏
`<0

(1 + |λ`|) <∞

and so R− is bounded.
Now assume that R− is bounded, and we will prove that s can be written as the sum of a contraction

and a trace class operator. Let s = u |s| be the polar decomposition, and observe that Λ(|s|) = Λ(u∗)Λ(s),
and thus Λ(|s|) is bounded. Note that Λ(|s|) = |Λ(s)| ≥ 0. Let p≤1 be the spectral projection for |s|
corresponding to the interval [0, 1], and let p>1 = 1−p≤1. Observe that b := |s| p≤1+p>1 is a contraction,
and let x = |s| − b. Then x is supported on p>1H

′, and x ≥ 0.
Let ψ1, . . . , ψn ∈ p>1H

′ be an arbitrary orthonormal family. Then we have

‖Λ(|s|)‖ ≥ 〈Λ(|s|)ψ1 ∧ · · · ∧ ψn, ψ1 ∧ · · · ∧ ψn〉
= 〈Λ(x+ 1)ψ1 ∧ · · · ∧ ψn, ψ1 ∧ · · · ∧ ψn〉

=
∑

L⊆{1,...,n}

det(〈xψi, ψj〉)i,j∈L

≥
n∑
j=1

〈xψj , ψj〉 .

Hence x is trace class, with ‖x‖1 ≤ ‖Λ(|s|)‖. We have therefore produced a decomposition |s| = b + x
with ‖b‖ ≤ 1 and x trace class. It follows that s = ub + ux is a decompostion of the same type, which
was to be shown.

Lemma 5.7. Let H, K, p, q and ξi be as in Theorem 5.3. Let r ∈ B(H,K), and assume that qr(1− p)
is trace class. Let q′ be a projection on K with q − q′ trace class. Then the implementer associated to
(r,Ωq) is bounded if and only if the implementer associated to (r, Ω̂q′) is.

Proof. Let R be the implementer associated to (r, Ω̂q′).
Let u ∈ Ures(K, q) be a unitary with q′ = uqu∗, and let U ∈ U(FK,q) be the image of u under the

basic representation (see Secion 2.1.1). Then UΩq = Ω̂q′ and Ua(f)U∗ = a(uf) for all f ∈ K.
Then we see that

Ra(ξJ)a(ξI)
∗Ωp = a(rξJ)a(rξI)

∗Ω̂q′

= a(rξJ)a(rξI)
∗UΩq

= Ua(u∗rξJ)a(u∗rξI)
∗Ωq.

Thus R is bounded if and only if the implementer associated to (u∗r,Ωq) is bounded. Our problem
is then reduced to showing that, under the assumption that qr(1 − p) is trace class, the implementer
associated to (r,Ωq) is bounded if and only if the implementer associated to (u∗r,Ωq) is bounded, where
u ∈ U(K) has the property that uqu∗ − q is trace class.

By Lemma 5.6, it suffices to show that if r ∈ A(H,K), then u∗r ∈ A(H,K) as well. Assume that
r ∈ A(H,K). Then qr(1− p) is trace class, and by assumption [q, u∗] = u∗(uqu∗ − q) is as well. Hence

qu∗r(1− p) = u∗qr(1− p) + [q, u∗]r(1− p)

is trace class as well.
Similarly, we have

E(u∗r) = qu∗rp+ (1− q)u∗r(1− p)
= u∗

(
qrp+ (1− q)r(1− p)

)
+ [q, u∗]r(2p− 1)

= u∗E(r) + [q, u∗]r(2p− 1),
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and since since E(r) can be written as the sum of a contraction and a trace class operator, so can E(u∗r).
This establishes that u∗r ∈ A(H,K), and completes the proof.

We can now assemble the above lemmas to give a short proof of Theorem 5.3.

Proof of Theorem 5.3: By Lemma 5.7, the implementer associated to (r, Ω̂q′) is bounded if and only if
the implementer associated to (r,Ωq) is bounded, and by Lemma 5.6, this implementer is bounded if and
only if r ∈ A(H,K).
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[Hen14] André Henriques. Three-tier CFTs from Frobenius algebras. In Topology and field theories,
volume 613 of Contemp. Math., pages 1–40. Amer. Math. Soc., Providence, RI, 2014.

[Kac98] Victor Kac. Vertex algebras for beginners, volume 10 of University Lecture Series. American
Mathematical Society, Providence, RI, second edition, 1998.

[KL04] Yasuyuki Kawahigashi and Roberto Longo. Classification of local conformal nets. Case c < 1.
Ann. of Math. (2), 160(2):493–522, 2004.

[LS97] Yves Laszlo and Christoph Sorger. The line bundles on the moduli of parabolic G-bundles
over curves and their sections. Ann. Sci. École Norm. Sup. (4), 30(4):499–525, 1997.
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