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Geometric realization of algebraic conformal field theories

James E. Tener

Abstract

We explore new connections between the fields and local observables in two dimensional chiral con-
formal field theory. We show that in a broad class of examples, the von Neumann algebras of local
observables (a conformal net) can be obtained from the fields (a unitary vertex operator algebra) via
a continuous geometric interpolation procedure involving Graeme Segal’s functorial definition of con-
formal field theory, and that the conformal net may be thought of as a boundary value of the Segal
CFT. In particular, we construct conformal nets from these unitary vertex operator algebras by showing
that ‘geometrically mollified’ versions of the fields yield bounded, local observables on the Hilbert space
completion of the vertex algebra. These are the first results which unite the three major definitions of
chiral conformal field theory. This work is inspired by Henriques’ picture of conformal nets arising from
degenerate Riemann surfaces.
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1 Introduction

There are three major mathematical formulations of two dimensional chiral conformal field theory (CFT).
On the algebraic side, we have the notion of a vertexz operator algebra (VOA), which axiomatizes the fields
of a chiral CFT. In the language of functional analysis and operator algebras, we have conformal nets,
which axiomatize the algebras of local observables (in the sense of Haag-Kastler algebraic quantum field
theory). These two notions have been more extensively developed than the third formulation, Graeme
Segal’s geometric definition in terms of functors from the two dimensional complex bordism category
(Segal CFT).

It is widely believed that the three approaches are essentially equivalent, after imposing some technical
conditions, and perhaps restricting the Segal formulation to bordisms with genus zero. Since all three
definitions are supposed to capture the same physical notion of 2d chiral conformal field theory, each
has a version of the major examples (e.g. minimal models, WZW models) and constructions (e.g. coset
construction, orbifold construction), and it would be very satisfying to have a robust theory which
identifies the three manifestations of these.

More importantly, each of these formulations has important and interesting connections within math-
ematics, for example the connection between conformal nets and Jones’ theory of subfactors, or the
connection between vertex operator algebras and ‘monstrous moonshine.” There are many examples of
important results in conformal field theory which can be established in one of the frameworks but not
the others', and it is very desirable to develop the connection between different formulations of CFT
to the point that one may answer open questions about one version using a result from another. One
striking example of the value of this approach is Wassermann’s computation of the fusion rules for the
SU(N)k conformal nets using smeared primary fields [Was98], which provided a natural construction of
subfactors with index 4 cos® =.

Recently, Carpi, Kawahigashi, Longo and Weiner initiated a general theory relating vertex operator
algebras and conformal nets [CKLW18]. They give a construction which produces a conformal net from a
(simple, unitary) vetex operator algebra satisfying regularity conditions, which they show are satisfied by
essentially every known vertex operator algebra. Moreover, they show how to recover the vertex operator
algebra from the conformal net that it produces.

In this paper, we will present an alternative, geometric perspective on the relationship between vertex
operator algebras and conformal nets, based on a geometric picture of conformal nets introduced by
André Henriques [Hen14]. We will show that, in a broad class of examples, Segal’s functorial definition
of conformal field theory allows one to continuously interpolate between unitary vertex operator algebras
and conformal nets. To our knowledge, these are the first results which unite the three definitions of
conformal field theory.

We will now outline Henriques’ geometric picture of conformal nets in more detail. The dictionary
between vertex operator algebras and the geometric picture of Segal CFT has long been understood by
mathematicians and physicists. In Segal’s picture, there is a a Hilbert space # assigned to the circle S?,
and to every two dimensional complex bordism 3 there is a one dimensional space of trace class linear

maps
E®: Q& H—- & H
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In particular, one map 7' : H ® H — H assigned to a disk with two disks removed corresponds to the the
state-field correspondence a — Y (a,w) of a vertex operator algebra. More precisely, we have

T - HOH—H,
T(a®b) =Y (s*a,w)r b

where the parameters s,w and r are determined by the geometry of the surface, and Lo is the energy
operator.

1 For example, the rationality of orbifolds and cosets is an open problem in the theory of VOAs which has been solved in
the context of conformal nets, whereas the rationality of many important examples has been established for VOAs, but not for
conformal nets



The symmetry group of a chiral conformal field theory is the group of orientation preserving diffeo-
morphisms of the unit circle, Diff + (S'). It is common practice to think of these diffeomorphisms as ‘thin’
bordisms, i.e. as degenerate annuli with zero thickness. Henriques’ idea in [Henl4] is to also consider
degenerate annuli which are thin along only part of the boundary, such as the ones in Figure 1.1. Given
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Figure 1.1: A pair of degenerate annuli, one (from [Hen14]) depicted in three space,
and another embedded in the complex plane.

a Segal CFT, one might hope that it assigns bounded linear maps H — H to such degenerate annuli,
although these maps will no longer be trace class. We should be able to obtain the linear maps for
degenerate annuli as limits of maps assigned to ordinary annuli:

E =limE R | . (1.1)

The principal piece of data for a conformal net is a family of von Neumann algebras A(I), called the
local algebras, indexed by intervals I C S'. In Henriques’ geometric perspective, the local operators of
a conformal net correspond to degenerate annuli with states inserted in the thick part of the annulus.
That is, A(T) is generated by degenerate surfaces which look like:

I @ , (1.2)

where a runs over all states. Thus a conformal net can be thought of as a boundary value of a Segal
CFT via a limiting procedure like the one in (1.1).

The content of this paper is that these ideas can be made rigorous in a large family of examples,
namely those examples which can be embedded in some number of complex free fermions. Moreover, we
show that Segal CFT can be used to interpolate between vertex operator algebras and conformal nets.
We’ll now outline our main results.

In [Tenl7], we gave a construction of the Segal CFT for the free fermion, which assigns to a circle the
fermionic Fock Hilbert space F, and to a Riemann surface X equipped with a spin structure, trivialized
on the boundary, a one dimensional space of trace class maps

EX): & F-» Q F
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The maps T € E(X) are characterized by certain commutation relations, determined by the Hardy
space H?(X), between T and generators a(f) and a(g)* of the canonical anticommutation relations
algebra CAR(L?(S')). This construction has many nice properties (discussed in Section 2.1.1), the most
important of which is the compatibilty between gluing of Riemann surfaces and composition of linear

maps. We also proved in [Tenl7] that
E () = spang T (1.3)



where T : F @ F — F is given on finite energy vectors a,b € F° by
T(a®b) =Y (s"a,w)rob.

Here, Y is the free fermion state-field correspondence and s, w,r are such that the surface in question is
D\ (D U (w + sD))?. The spin structure in (1.3) is the one inherited from the depicted embedding into
C, and the boundary trivializations of this spin structure are the ones obtained from the Riemann maps
2+ rz and z — w+ sz for the regions rD and w + sID removed from the unit disk D (along with suitable
choices of square roots of the derivatives of these maps).

Now consider a family of Riemann surfaces of the form

Xre=| () R = RD\ (¢(D) U (w+ D)),

where R > 1 and (¢:)i>0 is a one-parameter semigroup of univalent (i.e. holomorphic, injective) self
maps of the unit disk I) which fix 0 and map onto Jordan domains with C° boundary.®> There is a
unique univalent map o : D — C, called the Koenigs map of ¢, which satisfies Schroder’s equation
o(¢(2)) = ¢4(0)o(z) for all t > 0 and z € D. We assume that o extends smoothly to the boundary S
of D.

Let L, be the unitary, positive energy representation of the Virasoro algebra for the free fermion,

and let -
>

n=—oo

o(2)
zo'(z)?

be the smeared field corresponding to the function p(z) = where p,, are the Fourier coefficients of

the restriction of p to S*.*
One can verify that the space assigned by the (non-degenerate) free fermion Segal CFT, E(Xg ), is
spanned by the map Tk given on finite energy vectors a, b by

Tri(a®b) = R™20Y (s%0a, w)e p,

when Xg; is given the standard spin structure inherited from C, and standard boundary trivializations
induced by the Riemann maps ¢: and z — sz + w (along with appropriate choices of square roots
of their derivatives), after perhaps reparametrizing the semigroup ¢: — ¢a¢. The following theorem,
characterizing the value of the Segal CFT on the degenerate boundary limit limg|; Xr, (as in (1.1)) is
stated more precisely in the body of the paper as Theorem 3.10.

Theorem A. Let
TR’t © " ()

be as above, and fix t > 0. Then limg1 Tr,: converges to a bounded operator Ty : F @ F — F in the
strong operator topology, given on finite energy vectors a,b by

Ti(a®b) =Y(s*0a, w)e = @p,

where Y is the free fermion state-field correspondence. Moreover, Ty can be characterized in terms of
commutation relations with generators for the CAR algebra determined by the Hardy space of a degenerate
Riemann surface Xy =D\ ((w + sD) U ¢¢(D)), depicted:

x=0 ).

2We will use D for the closed unit disk in C, and D for its interior

3 The requirement that the region removed from I be of the form ¢; (]D)) for a semigroup ¢; is for technical technical reasons,
but we expect that this assumption is not essential.

4 The function p is closely related to the generating vector field of the semigroup ¢+ of Berkson and Porta [BP78].




See Section 3 for a precise definition of the Hardy space of a degenerate Riemann surface and of the
commutation relations which characterize T3. The most difficult part of the proof of Theorem A is to
show that the limit operator T} is bounded. Our approach is to show that 7} is an example of what
we call an implementing operator (defined in Section 5), which in this case means that it arises as the
second quantization of a bounded, not necessarily contractive, map L?(S*) — L?(S') @ L?*(S'). We then
prove that T} is bounded by combining a careful study of the boundedness of implementing operators in
general (Theorem 5.3) with the ‘quantum energy inequality’ of Fewster and Hollands [FHO5] for smeared
Virasoro fields on the circle. The boundedness of the maps T} is closely related to the concept of ‘local
energy bounds’ for fields, which will be appear in the forthcoming paper [CW].

Theorem A characterizes the value of the free fermion Segal CFT on degenerate Riemann surfaces
with standard boundary trivializations, but one can check that changing the trivializations by (spin)
diffeomorphisms 7 of S* corresponds to composition with a certain unitary representation U (7). Given
a fixed semigroup (¢¢)t>0 as above, and a fixed choice of ¢ > 0, we will be interested in pairs (y1,72) of
spin diffeomorphisms which satisfy v1(z) = ¢+(72(2)) for all z lying in some interval I C S*; let &1 be
the collection of all such pairs.

Theorem B. Let (¢1)i>0 be a one-parameter group of univalent maps ¢+ : D — D as above, and let p be
its generator. Fizt > 0, and assume that ¢.(S*) N S contains an interval. Let F° be the finite energy
vectors of the free fermion vertex operator algebra, regarded as a subspace of its Hilbert space completion
F. Let V. C (F)®N be a unitary vertex operator subalgebra, and let Y : V — End(V)[[z*']] be its
state-field correspondence. For a € V, let Tr.o = Y (s™a, w)eftL(”). Then Tt,q is bounded, and

Av(D) = {UM) To.alU(12), (Un) TealU(2))" | @ €V, (m1,72) € 21}

defines a conformal net on the Hilbert space completion of V', with conformal symmetry U given by the
positive energy representation of Diff 1 (S*) induced by the conformal vector of V.

Theorem 4.13 gives a more detailed statement of Theorem B which also addresses vertex operator
superalgebras V' (which produce Fermi conformal nets). While the results of [CKLW18] are not stated for
superalgebras and Fermi conformal nets, they should still hold in that case with minimal modification.
Assuming the ‘super version’ of these results, one can show that the conformal nets constructed in
Theorem B are isomorphic to the ones constructed in [CKLW18] (see Remark 4.18). Note that while we
will cite several results from [CKLW18] on the structure of unitary vertex operator (super)algebras, our
construction of conformal nets is entirely independent. We call our construction a ‘geometric realization’,
as the generators of local algebras arise as limits of a Segal CFT, which may be depicted as degenerate
Riemann surfaces with states inserted. We outline our construction in Figure 1.2.
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A field ¥(a, w) the Segal CFT U(n)*Y (shoa,w)e  H U (75)

Figure 1.2: Moving continuously from the fields of a 2d chiral CFT to the local
algebras via Segal CFT.

In contrast to the construction in [CKLW18], where the local algebras are generated by unbounded
operators, our construction gives a linear map identifying states in the vertex operator algebra with
bounded generators of local algebras. This approach has considerable upside, as bounded operators
arising from fields are considerably easier to work with from a technical standpoint, as demonstrated in
Wassermann’s computation of the fusion rules for SU(N); in [Was98]. Moreover, geometric ideas have
already proven to be valuable in the study of conformal nets, such as in the recent article [MTW18] of



Morinelli, Tanimoto, and Weiner which proved the long-held conjecture that conformal nets automatically
satisfy the split property.

Of course, one is led to ask which unitary vertex operator algebras Theorem B applies to; that is,
which appear as subalgebras of N free fermions, for some N. We provide many examples of such VOAs in
Section 4.2, and these include the free boson, lattice VOAs corresponding to sublattices of ZV, the discrete
series of (super) Virasoro VOAs (and many other Virasoro VOAs), and affine VOAs corresponding to
simple Lie algebras g, at levels kAy (kK =1,2,...), where Ay € Z~( is a constant depending on g.

We see no reason that Theorem B should be limited to subalgebras of free fermions; embeddings
into free fermions are simply a technical tool useful for establishing analytic properties of fields. Such
embeddings were used for the same reason in Wassermann’s paper [Was98], as well as in a forthcoming
paper of Carpi, Weiner and Xu relating representations of conformal nets and representations of vertex
operator algebras [CWX]. In the future, we hope to extend our results to a larger class of unitary VOAs
(e.g. all affine models, all Virasoro models, all lattice models).
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2 Preliminaries

2.1 Fermionic second quantization and the free fermion Segal CFT

We will briefly outline fermionic second quantization and the free fermion Segal CFT; for a more detailed
overview, the reader may consult [Tenl7].

2.1.1 Fermionic fock space

Let H and K be complex Hilbert spaces. We will write B(H, K) for the space of bounded linear maps
from H to K, abbreviated B(H) when H = K, and ||z|| for the operator norm of z € B(H, K). Forp > 1
and z € B(H, K), let |z, = tr((z*x)P/?)'/?, and let

By(H,K) ={z € B(H,K) : |lz[|, < co}.

We will be primarily interested in the cases p = 1 and p = 2. In these cases, elements of B,(H, K) are
called trace class and Hilbert-Schmidt maps, respectively. We will write B, (H) for B,(H, H), which is a
two-sided ideal of B(H). Note that B,(H) C B4(H) when p < g.

Given a complex Hilbert space H, CAR(H) is the universal unital C*-algebra with generators a(f)
for f € H which are linear in f and satisfy the relations

a(f)a(g) + a(g)a(f) =0,
a(f)a(g)” +alg)a(f) = (f,9) 1.

There is an irreducible, faithful representation of CAR(H) on the Hilbert space

densely defined by a(f)w = f A w. These operators are bounded with ||a(f)|| = || f||. The subspace A°H
is spanned by a distinguished unit vector 2 which satisfies a(f)*Q2 =0 for all f € H.



The exterior Hilbert space AH is naturally a super Hilbert space, with Z/2-grading given by
. g .
(AH) = @A™ H
k=0

for j € {0,1}. We will write 'z, , for the grading operator which acts by (—1)’ on (AH)j.
There is a family of irreducible, faithful representations of CAR(H) indexed by projections p € B(H)
given as follows. Let H, = (pH)" @ (1 — p)H, and let Fr , = AH,. The representation m, : CAR(H) —

B(AH,) is given by
mp(a(f)) = a((f)")" +a((1 = p)f).
We will generally write a(f) instead of m,(a(f)) when the space that CAR(H) acts on is clear.
The distinguished unit vector 2, € AOH,, is characterized, up to scalar multiples, by the equations
a(f)Qp =0 for f € pH,
a(g)" Q=0 forge (1—p)H.

The following result is often called the Shale-Stinespring condition, or the Segal equivalence criterion.
Theorgm 2.1. Let H be a Hilbert space and let p and q be projections on H. Then there exists a unit
vector g € Fu,p which satisfies

a(f)Qq =0 for f € qH,

a(g)"Qy =0 forg € (1 q)H,
if and only if p — q is Hilbert-Schmidt. If these conditions are satisfied, the vector Qq will be unique up
to scalar multiple.

If the conditions of Theorem 2.1 hold, then there is a unitary isomorphism Fp g — Fp,p of represen-
tations of CAR(H) determined by €, — €.

If I = {é1,...,in} is a finite ordered set with i1 < iz < ... < in, and {h;}ier C H is a family of
vectors from H indexed by I, then we write

a(hr) = a(hi,) -~ a(hi,) € CAR(H). (2.1)

We will generally consider the case when H is separable and pH and (1 — p)H are both infinite
dimensional. We will then choose an orthonormal basis {e; }icz with e; € pH wheni > 0and e; € (1—p)H
when ¢ < 0. Then Fg , has an orthonormal basis indexed by finite subsets I C Z>o and J C Z<o given
by

aley)aler)™Qp.
A key property of the Fock space construction is that it takes direct sums to tensor products.

Proposition 2.2. There is a natural even unitary isomorphism Fuex poq = FH,p ® FK,q characterized
by
a(hy)a(hr)" a(ks)alkr) Qpaq — a(hs)a(h)™Qp @ ak,)alkr)™Qq,

where hy and hy are ordered families of vectors from H and kj and kj are ordered families of vectors
from K. The induced action of CAR(H ® K) on Fu,p ® Fi,q 18

a(h+k)—alh)@1+Tr,, ®a(k) (2.2)
where U, is the grading operator on Fu p.
Let U(H) be the group of unitary operators on H, and let
Ures(H,p) = {u € U(H) : [p,u] € B2(H)}

where [a, b] is the commutator ab — ba. There is a strongly continuous projective unitary representation
of Ures(H,p) on Fru,p, called the basic representation, such that the image U of u € Ures(H,p) is
characterized by Ua(f)U* = a(uf). The image of the vacuum under U is given by

UQ, =Q,, (2.3)

EN|



where ¢ = upu™ and Qq is as in Theorem 2.1. Note that Qq only depends on ¢, and not on u. For more
details on the basic representation, one may consult [Was98, §3], [PS86, §10], or [Tenl7, §2.1].

In the following, fix H = L?(S*) (with normalized arclength measure on S'), and p € B(H) to be the
projection of H onto the classical Hardy space

H?*(D) = span{z" : n > 0}.

In this case we will just write F for Fg , and 2 for the vaccum vector Q,. We will refer to F as fermionic
Fock space.

Let Diff (S') be the group of orientation preserving diffeomorphisms of the unit circle S* C C, and
let C*°(S")* be the group of non-vanishing smooth functions S* — C under pointwise multiplication.
Then Diff; (S*) acts on C*°(S')* by automorphisms via - f = foy~*, and we can form the semidirect
product C>(S*)* x Diff 4 (S*). Let DiffY(S") be the double cover of Diff  (S*) given as a subgroup of
C>=(S")* x Diff; (S') by

DiffY5 (5%) = {(¢,7) € C®(S")* x Diff { (§1) : »* = (v 1)’}
Here, and throughout, if f € C°°(S"), then we write f’ for the complex derivative

y d 1.d .,
fz) = Ef(z) = E@f(@ ) it
Let uns : DiffY(S') — U(H) be the unitary representation given by uns(¥,7)f = ¢ - (f oy71).
Then uns(¥,v) € Ures(H, p), and by composing with the basic representation we get a projective unitary
representation Uys : Diff¥°(S') — PU(H), which is strongly continuous when Diff¥°(S') is given, for
example, the C* topology. The representing operators Uns(t,7) are even for all (¢,v) € Diffy%(S").
See e.g. [Tenl7, §2.1] for an expanded discussion of this representation.
Let 9 € Diff 1 (S*) be the map 79z = ez, By Stone’s theorem, there is a self-adjoint operator Lo,
in our case unbounded, such that
Uns(e7"2 rg) = e'F0, (2.4)
If we write e; for the function 2/ € H, then {e;};ez is an orthonormal basis for H, with e; € pH when
j>0ande; € (1—p)H when j < 0. The corresponding basis a(es)a(er)*Q for F diagonalizes Lo, and

one has
Loa(es)aler)’@ = (D_(i+3) = > (5 + ) )alealen) D
iel jeJ
where J C Z<o and I C Z>q are finite subsets. Note that the eigenvalues of Lo are %Zzo, and each

eigenspace is finite dimensional. We denote by F° the algebraic span of the eigenvectors of Lo, and write
F<n C FP for the finite dimensional subspace spanned by eigenvectors of Lo with eigenvalue at most N.

2.1.2 The free fermion Segal CFT

Let ¥ be a Riemann surface. A spin structure on X is a holomorphic line bundle L — X, and a
holomorphic isomorphism L ® L — Ky, where Ks is the holomorphic cotangent bundle. We will refer
to a Riemann surface ¥ equipped with a spin structure as a spin Riemann surface.

If L1 and Lo are spin structures on X1 and Y2, respectively, then an isomorphism of spin structures
L1 — Lo is a holomorphic isomorphism of bundles B : L1 — L2 such that the diagram

Lol 222, 1,9L,

<I>1l J"Pz
Blg,*
K, Ks,

commutes, where B|y; is the pullback of holomorphic 1-forms induced by the biholomorphic map Bls, :
21 — 22.

Up to isomorphism there is a unique spin structure on C. It is given by the trivial bundle L = C x C,
and the isomorphism ® : L ® L — K¢ is given on sections by

. (f®g) = fgda. (2.5)



If 0 < r < 1, then the annulus A, = {r < |z| < 1} has two non-isomorphic spin structures, called
the Neveu-Schwarz (NS) and Ramond (R) spin structures, again given by the trivial bundle L = A, x C.
For o € {NS, R}, the isomorphisms ®, : L ® L — Kj, are given by

_ —ifgdz c=NS
®o.(f®9) = { —ifgz"'dz o=R

We denote these spin annuli by (A,, o).

If Y is a closed, smooth 1-manifold, then a spin structure on Y is a smooth, complex line bundle L
and an isomorphism of complex line bundles ¢ : L @ L — T*Y¢, where T"Ye = T"Y ®g C.

An isomorphism of spin structures (Yl,Ll) — (Y27L2) is a smooth bundle map 8 : L1 — L2 such
that

L1 ® L1 SLLEN Lo ® L2

ml lqﬁz (2.6)

Blyy ™
T*ch (—-i~ T*YQ(C

where [ |y1* is the isomorphism of cotangent bundles induced by the diffeomorphism Sy, : Y1 — Ya.

If (X,L) is a compact spin Riemann surface with non-empty boundary, then 9% becomes a spin
1-manifold by identifying T*0%¢ = Kyx|ss in such a way that the real subspace T*0% corresponds to
the dual of tangent vectors parallel to the boundary.

There are two non-isomorphic spin structures on the unit circle S' ¢ C, called the Neveu-Schwarz
(NS) and Ramond (R) spin structures, obtained by restricting (A, o) to S*, where o € {NS, R}. We
denote these spin circles by (S*, o).

The group Auty(S',NS) of orientation preserving automorphisms of (S', NS) can naturally be
identified with DiffY¥(S*) as follows. Given (¢,7) € Diff¥®(S'), there is a unique ans(1,v) €
Aut4 (S*, NS) such that ans(1,7) acts on sections f € C*(S*) by ans(t,v)«f = uns(¥,7)f-

Similarly, there is an isomorphism ar of Aut4(S*, R) with the double cover Diffff(S") of Diff; (S)
given by

Diff (") = {(¢h,7) € C=(S")* % Diff 4 (51) : ¢* = |(v )|}

This isomorphism is characterized by

ar(Y,7)f =ur(®,7)f =1 (foy™)

for all f € C*°(S'). Like with the Neveu-Schwarz representation, we have ur(1,y) € Ures, and so we
have a projective unitary representation Ur : Difff(S*) — PU(F).

Definition 2.3. A spin Riemann surface with parametrized boundary is a collection of:

e A compact Riemann surface with boundary ¥ with spin structure (L, ®). We write mo(9X) for
the set of connected components of 9%, and for j € m(9X) we let o(j) € {NS, R} denote the
isomorphism class of the restriction L|;.

e A trivialization of L|ss given by an isomorphism of spin structures

B=(Bjerooxy s || (8%0()) = Llox.

JjET(9X)

Let R be the collection of all such (X, L, ®, 8) with the property that ¥ has no closed components. If
Xi = (8i, L, @, 8:) € R for i € {1,2}, then we say that X; and X, are isomorphic if there exists an
isomorphism of spin structures B : (31, L1, ®1) — (X2, L2, ®2) such that S2 = Bo §;.

The complex structure of a Riemann surface induces an orientation, and if X = (X,L,®,8) € R
this allows us to partition the connected components of 0% into incoming and outgoing components, as
follows. We say that a connected component j of 9% is incoming if the diffeomorphism f;|g1 is orientation
reversing, and we say that j is outgoing if B;|s1 is orientation preserving. We write O%° for the subset
of 9% consisting of incoming components, and X! for the subset consisting of outgoing components.

The free fermion Segal CFT assigns to every X € R a one-dimensional space of trace class maps

E(X)CB1( R 5 QK F) (2.7)

j€me(0x0)  jem (%)



The unordered tensor products in (2.7) are unordered tensor products of super Hilbert spaces, meaing
that we have a family of maps, one for every ordering of the tensor products, compatible with the braiding
of super Hilbert spaces.

The following theorem summarizes some of the main properties of the assignment X +— E(X). For a
more detailed treatment, see [Tenl7].

Theorem 2.4. Let X = (X,L,®,8) € R. The maps E(X) assigned by the free fermion Segal CFT
satisfy the following properties:

o (Ewistence and invariance) E(X) is one-dimensional, and its elements are homogeneous and trace
class. If X and X are isomorphic, then E(X) = E(X).

e (Non-degeneracy) If every connected component of ¥ has an outgoing boundary component, then
non-zero elements of E(X) are injective. If every connected component of ¥ has an incoming
boundary component, then non-zero elements of E(X) have dense image.

e (Monoidal) If Y € R, then E(X UY) = BE(X)RE(Y), where X UY is the disjoint union and ® is
the graded tensor product of maps of super Hilbert spaces.

e (Gluing) IfX € R is obtained by sewing two boundary components of X along the parametrizations,

then the partial supertrace induces an isomorphism tr° : E(X) — E(X). In particular, if Xo, X1 €
R and X is obtained by sewing the outgoing boundary of X1 to the incoming boundary of Xo, then
E(X) = E(Xo)E(X1).

® (Reparametrization) If (¥;,7;) € [1jcnom) Diffi(j)(Sl), and X = (2, L, ®,3) € R is obtained by
setting B; = Bj o a5y (15,7;) ", then

EX)=| & Ueip@sv) | EX) | Q@ Usiiy(ws,7)"
j€mo(8x1) J€mo(8E0)

(Unitarity) E(X) = E(X)*, where X is the complex conjugate spin Riemann surface, and E(X)*
denotes taking the adjoint elementwise.

We have omitted precise explanations of the notions of graded tensor products of maps, of sewing
spin Riemann surfaces along boundary parametrizations, and of the conjugate X; they are discussed in
[Tenl7] in Section 2.1, Section 2.2, and Section 3.2, respectively.

We will now briefly describe the construction of the spaces E(X), as it is similar to the construction
of localized vertex operators in Section 3.

As before, let H = L*(S") and let p € B(H) be the projection onto the classical Hardy space

H*(D) = span{z" : n > 0}.

Given X = (X, L, ®,8) € R, we define the boundary Hilbert space

Hps = EB H.

JjET (%)

We write O(X; L) for the space of sections of L which are holomorphic on the interior 3 and which extend
to smooth functions on 9. Given a section F' € O(X; L), the pullback 8*F yields a smooth function on
Ujerocom) S', and thus an element of Hpx. Define the Hardy space H?(X) C Hps by

H*(X)={pF:FcO(%L)}
Now decompose Hgs; = His @ HJs;, where
His= @ H
jEm(9%?)

and define the boundary projections p; € B(Hyxi) by

ri= @ »

j€mo (9T
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There is a natural unitary isomorphism

‘FHZ';E,M - ® F (2.8)

jEm(8T)

given by Proposition 2.2. That is, for every ordering of the tensor factors of the right-hand side of (2.8),
we have an isomorphism with F, HiL and these isomorphisms are compatible with the braiding of super
D

Hilbert spaces.
Making this identification, we define E(X) C B (ngg s Fuy ) to be the space of trace class
»PO »P1

maps T which satisfy the H2(X) commutation relations:
a(fHT = (=1 D Ta(f%),  alg")'T = (1" Ta(g")"

for every (f',f°) € H*(X) C Hjs ® HYs, and every (g*,¢°) € H*(X)*, where p(T) € {0,1} is the
parity of T, and the equation is understood by extending linearly if T" is not homogeneous.

This description of E(X) is useful for two reasons. First, it is good for computing with. For every
holomorphic function on ¥ one obtains a relation satisfied by elements of E(X), and in practice these
relations are easy to work with. In [Tenl7, §5.2], we used this description to give a short proof that when
X is a disk with two disks removed, F(X) is spanned by maps related to vertex operators.

The second advantage of the description of E(X) in terms of commutation relations from H?(X) is
that it can be generalized to other geometric objects X which have a Hardy space. In Section 3, we will
consider what happens when X is is a ‘degenerate Riemann surface’ where the incoming and outgoing
boundary of ¥ are allowed to overlap.

Example 2.5. ([Tenl7, Prop. 5.1]) When X is given by the closed unit disk D, the spin structure it
inherits from C, and the identity parametrization on the boundary, then E(X) is spanned by the vacuum
vector ) € F

Example 2.6. ([Tenl7, Prop. 5.2]) When X is given by the spin annulus (A,, NS) with boundary
parametrizations given by the identity and the map z — rz, then F(X) is spanned by r“°. Note that
both the boundary parametrization and % depend on a choice of square root of r. Similarly, when
NS is replaced by R, E(X) is spanned by rLfIB, where L{ is the generator of the one-parameter group
Ur(1,79).

Example 2.7. ([Tenl7, Thm. 5.4] Let w € D and 71,72 € (0,1), and assume they satisfy s +r < |w| <
1 — s. Define the pair of pants

Pw,s,r =D\ ((S]D) +w) U TD) ,

where D is the open unit disk.
Give Py s, the spin structure inherited from C, and parametrize the boundary components via the
identity map on S*, and the maps z — rz and z — sz + w. Let

Y FO 5 End(F0)[[z*]

be the free fermion vertex operator algebra state-field correspondence (see Example 2.22). Then E(Py,s,»)
is spanned by the map T: F® F — F given on £ @ 1 € F° @ F° by

T(E®n) =Y(s"&w)r oy

when the inputs are ordered so that the one corresponding to the boundary component sS* 4+ w comes
first. Note that both the boundary parametrizations and 7" depend on choices of square roots of s and
r. Leaving the boundary parametrizations implicit, we can depict this result as follows:

o=
E r 1 | =CT.
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We will frequently leave the parameters w,r, s implicit as well, and depict the state insertions T(€ ® n)

as follows.
@ = T(E®n) = Y(s"&w)r™n.
2.2 Unitary vertex operator superalgebras

We will give only a brief overview of unitary vertex operator superalgebras. A detailed treatment of
unitary vertex operator algebras in the spirit of this paper may be found in [CKLW18, §4-5]. Our
treatment is adapted from this reference, as well as from [AL17].

Definition 2.8. A vertex operator superalgebra is given by:

1.

a Z/2Z-graded vector space V = V° @ V'. Elements of V° U V" are called homogeneous vectors,
and elements of V° (resp. V') are called even (resp. odd) vectors. If a € V*, we denote the parity

p(a) =1i.

2. even vectors Q,v € VY called the vacuum vector and the conformal vector, respectively.

. a state-field correspondence Y : V' — End(V)[[zF']], usually denoted

Y(a,z) = Za(n)x_n_l. (2.9)

nez

Here End(V)[[z*']] is the vector space of formal series of the form (2.9). The coefficients a ) of
this formal series are called the modes of a.

data must satisfy:

. For every a € V, if a is even (resp. odd) then a(y) is even (resp. odd) for all n € Z.
. For every a,b € V, we have a(,)b = 0 for n sufficiently large.

. For every a € V, we have a(,)Q2 =0 for n > 0 and a(_1)Q? = a.

. Y(Q,z) = 1y. That is, Q) = dn,—11v.

. For every a,b € V, there exists a positive integer N such that we have an identity of formal series

(x —y)V[Y(a,z),Y(b,y)]+ = 0. Here, the super commutator [-, -]+ is given by
Y(a7 I)Y(b, y) - (_1)p(a)p(b)Y(b’ y)Y((l, Z’)

when a and b are homogeneous, and extended linearly otherwise.

. If we write Y(v,z) = ZnEZ L,Lazf”fz, then the L,, give a representation of the Virasoro algebra.

That is,
[Lins Ln] = (m = ) Ly + 5 (m°

for a number c € C, called the central charge.

— m)ém,,nlv

. If we write V,, = ker(Lo — aly), then we have a decomposition of V as an algebraic direct sum

Voz@va, vi= EB I’A

Z 1
a€Lzo a€5+Z50

with dim V, < oo.

. For every a € V we have [L_1,Y(a,2)] = LY (a,z).

12



We will often abuse terminology by referring to V' as a vertex operator superalgebra, instead of
referring to the quadruple (V,Y,Q,v). If V! = {0}, then V is called a vertex operator algebra.

If a € V,, then we say that a is homogeneous of conformal weight a =: A,. It follows from the
definition that if a is homogeneous, then a(,)Vs C Va_n_144,-

Under this definition, the Borcherds identity (or Jacobi identity) and the Borcherds commutator
formula are consequences:

Theorem 2.9. Let V be a vertex operator superalgebra. Then the Borcherds identity

oo m oo
Z <] > (a(n+)b) (m4k—5C Z < >a(m+n k45
—
J Jj=
pm)p(wz ﬁ"( )b(n-‘rk 7)8m+5)C

holds for every a,b,c € V and every m,k,n € Z. In particular, for every a,b,c € V we have the Borcherds
product formula

')

a b)+n
(agmb) e =D (-1 () (a(nfj)b(k+j) — ()PP n%))

j=0

for all n,k € Z by specializing to m = 0, and the Borcherds commutator formula

a)p(b = m
a(m)b(k)c _ (_1)P( )p( )b(k)a(m)c = Z <J> (a(j)b) (m+k7j)c

=0

for all m, k € Z by specializing to n = 0. As formal series, we have

a - m m—j
aimyY (b, ) — (=1)PPOY (b 2)ag) = Z (j ) Y (ag)b, x)z™ 7.

=0

See [Kac98, §4.8] for an extended discussion of the Borcherds identity.

fW=WnV% @ (WnV?) is a Z/2Z-graded subspace of V, then it is called a vertex subalgebra®
it Qe W and ag,yb € W for all a,b € W and n € Z. If v € W, then W is called a conformal subalgebra
of V. The even vectors V° always form a conformal subalgebra of V.

A vertex subalgebra W is called an ideal if we have a,)b € W for every a € V and b € W. A vertex
operator superalgebra V is called simple if its only ideals are {0} and V.

A homomorphism (resp. antilinear homomorphism) from a vertex operator superalgebra V' to a vertex
operator superalgebra is a complex linear (resp. antilinear) map ¢ : V. — W which satisfies ¢(Qv') = Qw,
é(vv) = vw, and ¢(amyb) = d(a)m)e(b) for all a,b € V. We also have the obvious notion of (antilinear)
isomorphism and automorphism. The grading operator I' = (71)2L0 is always an automorphism of a
vertex operator superalgebra.

Definition 2.10. A unitary vertex operator superalgebra is a vertex operator superalgebra V along with
an inner product (-, -) on V and an antilinear automorphism 6 of V, called the PCT operator, satisfying:

1. (Normalization) (2,Q) =1
2. (Invariance) (a,Y (6b,x)c) = <Y(61L1(71)L0+2L3x72L0b,x*1)a, c> for all a,b,c € V.
Note that x is treated as a formal, real variable in the statement of the invariance property. An isomor-

phism ¢ : V. — W of unitary vertex operator superalgebras is called unitary if (¢a, $b) = (a,b) for all
a,b e V. If V! = {0} then we refer to V as a unitary vertex operator algebra.

We will often abuse terminology by simply referring to V' as a unitary vertex operator superalgebra,
with the additional data left implicit.

5The term ‘subsuperalgebra’ might be more precise, but it is a bit clumsy
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Remark 2.11. We could alter Definition 2.10 by replacing (—1)L0+2L% by (—1)L072L%. If we call the
two definitions (+) and (—) unitary vertex operator superalgebras, then there is a bijection between the
(+) and (—) notions given by

(V;YaQaVv<'7 ’>70)<—)(‘/7Y395V7<‘7 >7F0)

See [Yam14, §2] for a more detailed discussion.

The following basic properties of the PCT operator are straightforward generalizations of [CKLW18,
Prop. 5.1].

Proposition 2.12. Let (V,Y,Q,v, (-, -),0) be a unitary vertex operator superalgebra. Then 0 is the
unique antilinear automorphism satisfying the invariance property of Definition 2.10. Moreover, we have
1. ovH=Vv*
2. 6% =1y,
3. (Ba,6b) = (b,a) for all a,b €V
4. {(Lna,b) = (a,L_nb) for alla,b €V andn € Z,

Proposition 2.13. Let V and W be unitary vertex operator superalgebras, and let ¢ : V. — W be an
isomorphism of vertex operator superalgebras. Then ¢ is unitary if and only if ¢ o Oy = Ow o ¢.

Proof. This proposition follows from the super version of the argument at the beginning of the proof of
[CKLW18, Thm 5.21], using the super version of [CKLW18, Cor. 4.11]. O

The following is essentially [CKLW18, Prop. 5.3], with the same proof.

Proposition 2.14. Let V be a unitary vertex operator superalgebra. Then V is simple if and only if
Vo = CQ.

If V is a vertex operator superalgebra, a,b € V, and z € C, we set

Y(a,2)b= Za(n>bz_n_l € H V;.
nez KIS %ZZD

We may regard the Hilbert space completion Hy of V as the subspace of [ V; consisting of vectors > v;

with 3 ||v;]|*> < co. A useful fact about unitary vertex operator superalgebras is that Y (a, z)b in fact lies

in the Hilbert subspace Hyv when 0 < |z| < 1, and thus Y'(a, z) is a densely defined unbounded operator

on Hy.

Proposition 2.15. Let V' be a unitary vertex operator superalgebra, let a,b € V, and let z € C with

0 < |z] < 1. Then the sum defining Y (a,z)b converges absolutely in Hy , the Hilbert space completion of
V.

Proof. We assume without loss of generality that a and b are eigenvectors for Lo with eigenvalues A,
and Ay, respectively. For ¢ € V an eigenvector of Lo, we will re-index the modes of ¢ by writing
Cn = C(nta,—1), SO that [Lo, cn] = —ncn.

We will first establish the result under the additional assumption that Lia = 0 (i.e. that a is
quasiprimary), where L, = v(,41) is the representation of the Virasoro algebra associated to V. In this
case, the invariance property for the inner product says that

(e, (0a)nd) = (~1)2*T22% (a_c, d)

for every ¢,d € V and n € Z. By standard results about vertex operator superalgebras (see [FLM88,
Prop. 8.10.3]), the series

(Y(0a,w)Y (a, 2)b,b) = Z ((00) namb, by w™ "Rz Ra

nmeL—Ag,

2
= (—1)RaT22a Z (Amb, a_pb) w " Re T Re
n,meL—ANAg
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converges absolutely (to a rational function in z and w) whenever |w| > |z| > 0. In our case, |z| < 1, so
we have convergence with w = Z~'. Using that (amb,a—,b) = 0 when m + n # 0, we see that

Z (amb, amb) |2| 7>™ < oco.

mEZ—Ag

But this expression is precisely |z|*2* ||Y (a, 2)b||?, and so Y (a, 2)b € Hy .
We established the above result under the assumption that Lia = 0. By [Kac98, Rem. 4.9d], V is
spanned by
{L* a:k € Z>o,a € V with Lia = 0, Loa = Asa}.

Hence it suffices to show that if a is an eigenvector for Lo and Y (a,2)b € Hy for all 0 < |z| < 1, then
Y(L_1a,z)b € Hy for all 0 < |z| < 1.
Assume we have such an a. Then

1Y (@, 2)b]* = [Jagmb||* 117" < 00

nez

for all 0 < |z| < 1. Hence the function f(z) given by the Laurent expansion

12) =3 lagb|* 2270

nez

is meromorphic on the open unit disk I, with its only pole at z = 0. Hence z~'(zf")(z) is given by the
Laurent expansion

2N (2) =4 (0= 1) ||a@b||* 22,

neZ
which must converge absolutely for 0 < |z| < 1. But
Y(L-1a,2)b = iY(Lfla 2)b = Z(n — Dagybz "3,
) dZ )

ne”Z

and we have therefore shown that

1Y (Lora, 2)bl* = > (0 — 1) [Jagnb]|* |27 < oo

nez

We now turn our attention to unitary subalgebras of unitary vertex operator superalgebras.

Definition 2.16. Let (V,Y,Q,v, (-, -),0) be a unitary vertex operator superalgebra. Then a subalgebra
W C V is called a unitary subalgebra if 6(W) C W and LiWW C W.

The following is essentially [CKLW18, Prop. 5.29].

Proposition 2.17. Let (V,Y,Q,v, (-, -),0) be a simple unitary vertex operator superalgebra and let
W C V be a unitary subalgebra. Let Hyv be the Hilbert space completion of V, let Hw be the closure
of W in Hy, and let ew be the projection of Hyv onto Hw. Let W= ewv, and let YW and 6V
be the restrictions of Y and 6 to W. Then vV € W and v" is a conformal vector for W making
W, YW, oW (-, -),0%) into a simple unitary vertex operator superalgebra. We have LYY = Li|w for
i € {—1,0,1}, and in particular the %Zzo grading of W coincides with the one inherited from V.

Note that unitary subalgebras of simple unitary vertex operator superalgebras are again simple by
Proposition 2.14.

Definition 2.18. Let (V,Y,Q,v) be a vertex operator superalgebra and let W be a subalgebra. The
coset subalgebra W*© C V is given by

We={aeV:[Y(a,z),Y(by)+=0forallbec W}
Proposition 2.19. Let (V,Y,Q,v, (-, -),0) be a simple unitary vertex operator superalgebra, and let

W C V be a unitary subalgebra. Then W€ is a unitary subalgebra and v = v" + 1V,

15



Proof. The proof that W€ is a unitary subalgebra in the super case is the same as the proof given
[CKLW18, Ex. 5.27] in the even case. The statement about conformal vectors is proven just as in
[CKLW18, Prop. 5.31]. O

A relatively straightforward construction of unitary vertex operator superalgebras is the tensor prod-
uct.
Proposition 2.20. Foric {1,2}, let (V;,Y", Q"' (-, -),6:) be unitary vertex operator superalgebras.
For a' € Vi homogeneous vectors with parity p(a®), let Y(a' ® a®,z) = Y (a', :c)Ff,(laz) ®Y?(a®,x). Then
MW Y, '@ v +Q'®@v?, (-, -),01 ®0s) is a unitary vertex operator superalgebra.

Proof. This is asserted in [AL17, Prop. 2.4], but we will expand on this a little. To see that V4 ® V2 is
a vertex operator superalgebra, the only non-trivial thing to check is locality. By Dong’s lemma [Kac98,

§3.2], it suffices to check that the generators AY(z) = Y(a',2) ® 1y, and A%(z) = rre?) g y?2 (a?, x) are
pairwise local. That the A* are local with respect to themselves is clear. Additionally, we have

[A' (), (@) = [V} (0", 2) © Ty, 1y ® V2 (2, 2)] (17 @ 1) = 0.

It is clear that 61 ® 62 is an antilinear automorphism of Vi ® V2, and the proof of invariance is straight-
forward, as in [DL14, Prop. 2.9]. O

Note that by Proposition 2.14, the tensor product of simple unitary vertex operator superalgebras is
again simple.

The following observation is well-known, but we were unable to find a statement in the literature,
and so a proof is included for completeness.

Proposition 2.21. Let (V,Y,Q,v, (-, -),0) be a simple unitary vertex operator superalgebra, and let
W be a unitary subalgebra. Let U = span{a(_)b : a € W,b € W}, Then U is a unitary conformal
subalgebra of V', unitarily isomorphic to W @ W< wvia the map u(a ® b) = a(_b.

Proof. We first check that u : a ® b+ a(_1)b gives a vertex superalgebra homomorphism W ® W¢ — V.
It is clear that u(Q ® Q) = Q. By Proposition 2.19, we have

V="t oWV = u(Z/W Q) +uQ® VWC) = u(yW®Wc).

Let a,a’ € W and b,b" € W¢ be homogeneous vectors. By the Borcherds product formula (Theorem
2.9), we have for k € Z and c € V

b
(ac-nb)we =Y a1-pbaspe+ (D" bg i _jagie =D agbu-1-pe,
Jj=0 JEL

with the last sum finite since all modes of a and b supercommute.
On the other hand, we have

(a ® b)(k) (a/ ® b/) _ (71)17“7)17([1’) Za(j)a/ ® b(kfjfl)bl,

JEZ
and so

u((a ®@b)x)(a' ® b')) = (=P N Maya) —1ybg— )b

JEL
= (=P aga’) (b -nb—1Q
JEL
— (_1)p(b)p(a)(_1)p(b )(p(a)+p(a’)) Z b(k—j—l)b/(—l)(a(j)a/)(—l)Q
JEL
— (71)1?(17)?(&)(71)?(’3 )(p(a)+p(a’)) Z b(kfj—l)bl(fl)a(j)al(fl)g
JEL

= agbu—j-na-nb.
JEL
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Hence
(u(a ® b)) yu(a @) = (a(_1)b)wal_nb = u((a ® b) (@' ® b')),
which establishes that a ® b — a(_1)b is a map of vertex operator superalgebras.

Since U is the image of u, it is a conformal vertex subalgebra of V. Conformal subalgebras are
automatically invariant under Li, so to check that U is a unitary subalgebra we just need to check
invariance under 6. However, this is clear because W and W€ are unitary subalgebras, the latter by
Proposition 2.19.

Finally, we have

w(0€ @ On) = (6€)(—1)0n = O(u(€ ® n)).
By Proposition 2.13 this implies that u is isometric. O

Example 2.22. In this paper, the most important example of a unitary vertex operator superalgebra is
the free fermion, given on the space F° introduced in Section 2.1.1. This example is discussed in [Kac9s,
§5.1] under the name ‘charged free fermions.” It is generated by the fields

Y(a(1)'Qz) =Y alz""H)2", Y(a(z HQ2) =) a(z")z "

neZ neZ

and has a conformal vector v = 1(a(27?)a(1)* + a(z)*a(z~"))Q with central charge ¢ = 1. One can
verify directly, as in [Kac98, Eq. (5.1.0)], that the grading operator Lo = v(;) coincides (after taking
closure) with the operator Lo defined in (2.1.1).

We have already given an inner product on F°, and so to specify a unitary structure we need only
supply a PCT operator. Let j € B(L*(S")) be given by (jf)(z) = —2"'f(z7'), and let 6 : F* — F° be
the antilinear map given by

Oa(gr) -~ algm)a(f)” - a(fa) Q= a(ig)” - aligm) a(if1) - a(ifa)Q2
for fi,g; € L*(S").
Proposition 2.23. The data from Ezample 2.22 makes F° into a unitary vertex operator superalgebra

with ¢ = 1.

Proof. The discussion in [Kac98, §5.1] shows that F° is a vertex operator superalgebra with ¢ = 1, so
we only need to verify unitarity. First, we show that  is an antilinear automorphism of F°. It is clear
that 6Q = Q and 6v = v, and also that 0° = 1. If b € {a(1)*Q,a(27')Q}, then by inspection we have
6bi@ = (Ob). It follows from the Borcherds product formula that this identity extends to all b € F°, and
thus 6 is an antilinear automorphism. By [AL17, Prop. 2.5], it suffices to verify the invariance property

(a, Y (0b,z)c) = <Y(e““1L1 (—l)L‘)JFQLg:rﬁLOb7 z Ya, c>

when b € {a(1)*Q,a(27")Q}. Note that both such b have conformal weight A, = 1/2, and thus satisfy
L1b = 0. Hence we have

(a,Y(0a(1)"Q,2)c) = — {a,Y (a(z~)Q, z)c)
=— Z (a,a(z")cyx ™!

ne”Z

=— Z (a(z")*a,c)yz !

nez
= <Y(e%L1(—1)L°+2Lgyc_2L0a(l)*Q,:zc_l)a7 c> .
The proof of invariance when b = a(z~1)Q is similar. Finally (Q2, Q) = 1, which completes the proof. [

We now make a small digression to summarize the properties of positive energy representations of
the Virasoro algebra that we will require; see [CKLW18, §3.2] for a detailed overview in the spirit of this
paper.
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Definition 2.24. The Virasoro algebra Vir is the complex Lie algebra spanned by elements L., n € Z,
and a central element ¢ which satisfy

3

[Lm, Ln] = (m = n)Limtn + 35(m” = m)dm,—n.

A unitary positive energy representation of Vir is a representation of Vir on an inner product space V,
such that

1. (Lna,b) = {a, L_xb) for all a,b €V,
2. Ly is algebraically diagonalizable with non-negative real eigenvalues,
3. the central element ¢ acts by a scalar multiple of the identity.

By definition, the modes L,, = v/(,41) of the conformal vector of a unitary vertex operator superalgebra
give a unitary positive energy representation of the Virasoro algebra.

It is well known (relevant papers include [GW85] and [TL99]; see [CKLW18, §3.2] for a discussion)
that such representations exponentiate to strongly continuous projective unitary positive energy repre-
sentations of the universal cover of Diff; (S'), Dif‘fﬂroo)(s 1). If the representation arises from a unitary
vertex operator superalgebra, we have e?™0 = 1, and thus this representation factors through the double
cover Diffy¥(Sh), as in [CKLO0S, §6.3].

Suppose we have a positive energy representation L,, of Vir arising from a unitary vertex operator
superalgebra V', and let Hy be the Hilbert space completion of V. Let L(z) = > _, Loz~ "2 be the
associated generating function, and for f € C°°(S'), write

L(f) = Lufn,

nez

nez

an unbounded operator defined on V, where f(z) =3, fnz" is the Fourier series of f. Let L(f) denote
the closure of L°(f), and let H5® be the smooth vectors for 1 + Lo, defined by Hy® = (22, D((1 + Lo)™).
Then H§® is an invariant core for L(f). We also have L(f) = L(f)*, and if f is real-valued then L(f) is
self-adjoint.

The generators of the Virasoro algebra correspond to complex polynomial vector fields on the unit
circle S*. We denote by Vect(S") the space of smooth vector fields, and by Vect(S")c its complexification,
whose elements can be represented by f(2)< with f € C*(S"). The real subpace Vect(S") consists
of those f(z)d% for which —iz7'f(z) € R for all z € S'. For such f, there is a corresponding flow
(t,2) = y:(2) € C°(R x S*) such that v, € Diff;(S') is a one-parameter group, denoted

7i(2) = exp (££(2) ).

By definition, the flow satisfies %’yt(z) = f(1¢(2)). There is a unique continuous lift of v; to (¢, 7:) €
DiffY¥¥(S') such that v = 1.

Let 7 be the representation of Vect(S') via unbounded operators on Hy extending the action of the
Virasoro algebra. That is, the representation given by m(f-1) = L(2~"f). Let Uy : DiffY — PUHv)
be the associated strongly continuous representation, which for every ¢t € R will satisfy

Ur (Y1, 7t) = LT

after correcting by a scalar.

Using this description, we wish to prove that the representation U, arising from the free fermion
unitary vertex operator superalgebra is the Neveu-Schwarz representation Uy s introduces in Section 2.1.
First, we require a preparatory observation. For the free fermion, we write F°° for the smooth vectors
for 1+ Lo.

Proposition 2.25. If g € C™(S"), then F>° is invariant under a(g) and a(g)*. If f,g € C(S") and
& e F, then

L(f)a(9)¢ = a(9)L(f)¢ — a(zfg' + 5(2f) 9)¢ (2.10)
and

L(f)a(9)"¢ = a(g)"L(f)€ + a(zfg" + 3(2f)'9)"¢. (2.11)
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Proof. By the Borcherds commutator formula (Theorem 2.9), we have
Lia(z")é = a(2")Li& — (n + 55 )a(z" )¢

for &€ € F°. This is the desired formula (2.10) when f = 2z and g = 2™. By linearity, (2.10) holds when
when f and g are trigonometric polynomials.

Now let f,g € C*(S*) and & € D(L(f)). By definition, F° is a core for L(f), and so we may take a
sequence &, € F° with &, — € and L(f)&, — L(f)€. Let

M N N
)= Y Bt an) = Y et
k=—M

k=—N

be the truncated Fourier series. We have far — f and fj; — f in L? norm, and similarly gy — ¢ and
gn — ¢'. By the above argument,

L(fam)a(gn)én = algn)L(far)én — alzfargn + 5(2fm) gn)én. (2.12)

By the definition of L(f), we have L(far)a(gn)&n — L(f)a(gn)€n as M — oo. On the other hand, we
can compute the limit of the right-hand side of (2.12) the same way, and we obtain

L(f)a(gn)én = algn)L(f)én — alzfgn + 5 (2f) g )én. (2.13)

As n — oo, the right-hand side of (2.13) converges, and since L(f) is closed we have a(gn)€ € D(L(f))
and
L(f)a(gn)€ = algn)L(f)€ — a(zfgn + 5(2f) gn)E-
Letting N — oo and repeating the above argument, we get that a(g)¢ € D(L(f)) and that (2.10) holds
for all smooth f and g, and all £ € D(L(f)) (and in particular all £ € F°°).
Let D =1+ Lo = 1+ L(1). Then by the above D(D) is invariant under a(g) for all g € C>(S*), and
we have

Da(g)§ = a(g)D¢ — a(zg + 39)¢ (2.14)
for all £ € D(D).

Now suppose that ¢ € D(D?), so that &, Dé € D(D). Then by (2.14) and the fact that D(D) is
invariant under a(h) when h is smooth, we have Da(g)¢ € D(D). Hence a(g)¢ € D(D?). Tterating this
argument, we see that D(D") is invariant under a(g), and thus so is F*°.

Now let ¢ € D(L(f)),n € F* and f,g € C>(S"). We have L(f)* = L(f), and thus a(g)n € D(L(f)*).
We can now calculate

(a(g)"L(£)&,m) = (& L(f)alg)n)
= (& a(9)L(f)n) — (& azfg" + 5 (=) 9)n)
= (a(9)"&, L(f)n) — (a(=fg" + 3(2F) 9) & m)

It follows that 1 — (a(g)*&, L(f)n) is a bounded antilinear functional, and thus a(g)*¢ € D(L(f)) and

(a(g)"L(f)&,n) = (L(f)alg)"€,n) — (a(2fg" + 5(2f)'9)"&m).
Thus we have (2.11). One can now use the same argument as above to show that a(g)*D(L(f)) C D(L(f))
implies that F*° is invariant under a(g)™. O
We now return to our original goal.

Proposition 2.26. Let (F°,Y,Q,v, (-, -),0) be the free fermion unitary vertex operator superalgebra,
and let U be the projective unitary representation of Diﬁfs(sl) on F associated to the positive energy
representation L, = V(1) of the Virasoro algebra. The U = Uns, the Neveu-Schwarz representation.
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Proof. Let f € C*(S") and suppose that —iz~'f(z) € R for all z, so that f(z)-£ € Vect(S"). Let
(¢, 7:) be the associated one-parameter group in Diffy%(S), so that (¢,z) — v:(z) € C=(R x S'). To
prove that Ux (¥, v:) = Uns(w¢,v:) up to scalar, it will suffice to prove that

—1 —1
etL(z f)a(g)efﬂ’(z f):a(uNS(ﬂJt,’Yt)g) (2.15)

for all g € C*°(S"). Indeed, by [Thu74, Thm. 1], Diff | (S') is simple, and it follows that one-parameter
groups (11, v:) generate Diffy ¥(S") algebraically (observe that the spin involution (—1,id) € Diffy % (s?)
lies in the one-parameter subgroup (e /2, e'z)). Thus once we establish (2.15), we are done.

Since ung (¢, v¢) is a strongly continuous one-parameter group, there is a skew-adjoint operator X
on L*(S') such that

X
uns (Y, 7)) =€

For g € C*(S'), we have

%uws(wu%)g = —uns (¥, 7)(5.'9 + f9),
with the difference quotients converging uniformly as functions of z. Hence C*°(S*) C D(X), and for
g € C(S") we have Xg = —1f'g— fg'. Since C*°(S") is invariant under X, we also have C*°(S") C
D(X™) for all n.

By Proposition 2.25, we have L(z7" f)a(g)¢ — a(g)L(z7 f)€ = a(Xg)¢ for g € C°°(S') and &€ € F™.
We can then apply the argument of [Was98, §8 Exp. Thm.] to obtain (2.15) and complete the proof. [

2.3 Fermi conformal nets

In this section we will briefly give the definition of a Fermi conformal net, the Z/2Z-graded analog of a
local conformal net. For a more detailed introduction, the interested reader may consult [CKLOS].

We first recall some basic terminology. A super Hilbert space H is a Hilbert space, along with a Z/2Z
grading H = H° @ H'. The grading induces a unitary involution I' = 1,0 @ —141 called the grading
involution. Elements of H° (resp H') are called even (resp. odd) homogeneous vectors, and if &£ € H* we
denote the parity of & by p(§) = i. The Z/2Z grading on H induces one on B(H), correspnding to the
involution x + Izl The supercommutator |-, -]+ on B(#) is given by [z,y]+ = zy — (—1)P@PWyg for
homogeneous = and y, and by extending linearly otherwise.

An interval I C S' is an open, connected, non-empty, non-dense subset. We denote by Z the set of
all intervals. If T € Z, we denote by I’ the complementary interval Ie.

The group DiffY®(S") is the subgroup of C*(S*)* x Diff . (S') given by

Diff}(8") = {(4,7) € C*(8")* x Diff4 (1) : v” = (+7)'}.

It is a double cover of Diff;(S*). We denote by M6b™* the subgroup of Diff¥®(S') consisting of (1, )
for which ~ extends to a biholomorphic automorphism of the closed unit disk D. Finally, in a slight abuse
of notation if I € 7 we write

Diff 4 (I) = {(¥,~) € Diff}¥(S") : 4|y = id and 9| = 1}.

Definition 2.27. A Fermi conformal net is given by the data:
1. A super Hilbert space H = H' @ #H°, with corresponding unitary grading involution T.

2. A strongly continuous projective unitary representation U : Diff¥¥(S') — PU(H) which restricts
to an honest unitary representation of M6b™9.

3. For every I € Z, a von Neumann algebra A(I) C B(H).
The data is required to satisfy:
1. The local algebras A(I) are Z/2Z graded. That is, TA(I)I = A(I).
2. IfI,J €Z and I C J, then A(I) C A(J).
3. If I,J € T and INJ = 0, then [A(I), A(J)]+ = {0}.
4

U@ ADU,) = A((I) for all ($,7) € DIff¥S(sY), and U(y,7)eU(w,)" = & when
z € A(I) and (3,~) € Diff 4 (I').
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5. There is a unique up to scalar unit vector 2 € H, called the vacuum vector, which satisfies
U(,7)Q = Q for all (¢,) € M6b™®. This vacuum vector is required to be cyclic for the von
Neumann algebra A(S") := \/;.; A(I), and it must satisfy ['Q = Q.

6. The generator Lo of the one-parameter group U(efit/Q, e“z) is positive.

An isomorphism of Fermi conformal nets (A1, U1) and (A2, Usz) on Hi and Ha, respectively, is a unitary
u : Hi — Hz such that uA;(I)u* = Ax(I) for all I € Z, and uUi (¢, y)u" = Uz2(3,7) for all (¢,7) €
DiffY 9 (S1).

A Fermi conformal net with H = H° is called a local conformal net (or sometimes just a conformal
net). If we set Ay(I) = {x € A(I) : p(z) = 0}, then A, is a local conformal net on H°.

Fermi conformal nets have many properties analogous to familiar properties of conformal nets. We
list some basic properties here:

Theorem 2.28 ([CKLO08]). Let A be a Fermi conformal net. Then we have:
. (Haag duality) A(I') = {x € B(H) : [x,y]+ =0 for all y € A(I)}

2. TU (2, ) = U, ¥)T for all (1,~) € Diffy5(Sh).

8. U(—1,id) = e*™to =T

4. A(I) is a type III factor for every interval I € T.

5

~

. (Reeh-Schlieder) H = A(I)SY for every I € T.
A family of von Neumann subalgebras B(I) C A(I) is called a covariant subnet if B(I) C B(J) when
Ic Jand U@,v)BIU(p,~)* = B(y(I)) for all (1,~) € Mob™5.

Theorem 2.29. Let (B,U) be a covariant subnet of a Fermi conformal net. Then there is a unique
strongly continuous projective unitary representation of Difffs(Sl) making B into a Fermi conformal

net on Hp := B(S1)Q.

Proof. Note that I'B(I) = B(I)I" since I' = U(—1,id). Hence Hp is a graded subspace of H, and B([) is
a graded algebra. The only non-trivial thing left to verify is covariance.

The existence of a suitable representation Up of Diff¥¥(S") can be proven just as is done for local
conformal nets in [Wei05, Thm. 6.2.29], and uniqueness can be proven just as in [CKLW18, Thm
6.10]. O

If B is a covariant subnet of a Fermi conformal net, then the usual argument based on Takesaki’s
theorem (given in e.g. [KLO4, Lem. 2], using the Bisognano-Wichmann property [CKL08, Thm. 2])
shows the following.

Proposition 2.30. Let A be a Fermi conformal net on H, and let B C A be a covariant subnet. For
x € A(I), we have x € B(I) if and only if xQ € Hp. In particular, B = A if and only if Hp = H.

There is a notion of graded tensor product A;1&.As of a pair of Fermi conformal nets. If 71 and Hs
are super Hilbert spaces and x; € B(H;), define x1®x2 = 2. TP2) @ ¢y € B(H1 ® Hz) for homogeneous
x2, and by extending linearly otherwise. We have (z1®x2)(y1Qy2) = (—1)p<w2)p(y1>w1y1®x2y2. Note
that Hi1 ® Ho is a super Hilbert space with grading I' ® I'.

If (A1,U1) and (Ag,Us) are Fermi conformal nets, define (A1®A2)(I) = {z1®z2 : z; € A;(I)},
where the double commutant S” is the von Neumann algebra generated by a self-adjoint set S. Then
(A1®A2,U; ® Us) is a Fermi conformal net [CKLO0S, §2.6].

Example 2.31. Let H = L*(S"), and let p € B(H) be the projection onto the classical Hardy space
H?(D). Let F := Fup, and let Uns be the Neveu-Schwarz representation of Diff¥®(S') on F (see Section
2.1.1). Then the assignment M(I) = {a(f),a(f)* : f € L*(S*), supp f C I} gives a Fermi conformal
net, which we call the free fermion conformal net. Verification of the axioms of a Fermi conformal net is
straightforward, although we point out that the cyclicity of the vacuum is contained in [Was98, §15], as
are direct proofs of many of the properties of the free fermion conformal net.
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2.4 Composition operators

Let D denote the closed unit disk, and let D be its interior. Let H2(D) = span{z” : n > 0} C L?(S?)
be the Hardy space, and recall that we can 1dent1fy H? (D) with the space of holomorphlc functions on
D with almost everywhere non-tangential L? boundary values. Let ¢ : D — D be a holomorphic map,
and define the composition operator Cy € B(H?*(D)) by Cyf = f o ¢. For a thorough introduction to
composition operators, the reader may consult [Sha93].

We will primarily be interested in the case when ¢ is a univalent (i.e. injective) map, with image
U = ¢(D) a Jordan domain with C* boundary. Let o/ denote the semigroup of such ¢.

By the smooth Riemann mapping theorem, if ¢ € ﬂ?j then ¢ and all of its derivatives extend contin-
uously to I, and ¢ induces a diffeomorphism S' — AU, where S! is the unit circle. We will denote the
extension of ¢ to I, as well as the restriction of this extension to S*, by ¢ when there is no danger of
confusion. .

The deriative ¢’ is non-vanishing on D. Let VS be the double cover of &/ consisting of maps ¢
equipped with a choice of holomorphic square root (¢')Y/2. Given ¢ € &V°, we define the weighted
composition operator W, € B(H?(D)) by

(Wolf)(z) = ¢'(2)" 2 f(6(2))-

There is a natural structure of a semigroup on o NS , and with respect to this composition we have
Weg, Wey = Wynos,. The group of invertible elements in /" is naturally isomorphic to Méb™®, and
Wy corresponds to the image of ¢~ '|g1 € Mo6b™S under the Neveu-Schwarz representation uys. In
particular, if ¢(D) = D, then W, is unitary.

Proposition 2.32. Let ¢ € JZZ and suppose that ¢(D) - D and there exists an a € D such that
¢(a) = a. Then there exists a unique univalent map o : D — C such that o(a) = 0, o'(a) = 1 and
o(¢(2)) = ¢'(a)o(z) for all z € D.

The map o is called the Koenigs function associated to ¢. Observe that the map qu(]D)) — d)(]D))
obtained by conjugating ¢ by its Koenigs function is simply scaling by ¢’(a). Also, when o € H*(D) it is
an eigenvector for Cy. See [Sha93, §6.1] for an extended discussion and a proof of the above propositoin.

Definition 2.33. Let &/ be the subsemigroup of o consisting of univalent maps ¢ : D — D which have
the additional properties

e $(0) =0 and ¢'(0) € Rso.
e If o is the Koenigs map associated to ¢, then a(]fl)) is a Jordan domain with C* boundary.

Note that if ¢ € o7, then ¢ is a Riemann map for d)(]ﬁ)), and so by the smooth Riemann mapping
theorem ¢ extends smoothly® to D, and induces a diffeomorphism between S* and 9¢(D).

It is easy to produce elements of /. If U is any Jordan domain with C'*° boundary containing 0,
o : D — U is a Riemann map with o(0) = 0, and A € Rs satisfies AU C U, then ¢(z) = o~ (Ao (2))
gives an element of <. Indeed, after rescaling, o is the Koenigs map of ¢, and every element of &/ arises
in this way. Note that there is a natural embedding <7 C 7™ by choosing the square root of ¢’ so that
¢’ (0)1/% € Rxy.

For k € Z, let L*(S* )oK = Z*H?*(D) = span{z" :n > k}. We think of elements of L?*(S')s as
holomorphic functions on I \ {0} with (almost everywhere, non-tangential) L? boundary values. If
k > 0, then L?*(S') C H*(D), and if ¢ € o then L?*(S')>y is invariant under Wy. In fact, even when
k < 0, W, induces a bounded operator on L?(S')>j by the usual formula (W, f)(2) = ¢'(z )I/Qf(¢(z)).
Indeed, if f € H?*(D), then

k

(Wor 1)) = 26/ ()12 2E0

Hence W, induces a linear map L*(S")>x — L*(S*)s>k, and this map is bounded since L*(S')s, differs
from H?(D) by a finite dimensional space.

Similarly, we define L?(S')<y = span{z" : n < k}. Let c: L*(S') — L2( 1Y be the map (cf)(z) =
2f(z). That is, c is the antilinear map satisfying cz® = 27" Hence cL?*(S')>r = L*(S*)<_k_1, and
s0 Wy := ¢Wyc is a bounded linear map on each space L*(S")<y.

f(p(2)) € L*(S") >k

6 That is, ¢ and all of its derivatives extend continuously from D to D, so that the restriction to S' of the continuous
extension of ¢ is smooth.
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Definition 2.34. Let ¢ be the set of families (¢:)¢>0 C &/ which satisfy
¢o(z) = z for all z € D.

Dt(ds(2)) = pr4s(2) for all ¢, s € R>g and all z € D.

(t,2) — ¢¢(2) is a continuous function on R>q x I.

¢+ Z id. That is, ¢+(z) # z for some ¢t > 0 and z € D.
% =— :,<(zz)) for all z € D, where o is the Koenigs map of 1.

While the final condition of Definition 2.34 may appear strict and unmotivated, we will see below
that it is simply a way of choosing an element of the orbit of ¢: under reparametrization ¢ — ¢at. We
will primarily be interested, not in semigroups ¢: € ¢, but in domains U of the form U = ¢>t(]f))) for
some ¢, € ¢ and some t > 0. Thus we do not lose anything by imposing this final restriction, and it will
simplify notation at times.

It is not difficult to produce semigroups ¢: € 4. Let U be a Jordan domain with C'*° boundary with
0 € U and which is starlike about 0. That is, if z € U, then U contains the line segment between z and 0.
Then if o : D — U is a Riemann map with ¢(0) = 0 and we set ¢:(z) = o' (e *o(z)), we have ¢, € 4.

For example, consider the domain U pictured in (2.16) on the left, with the subregion e *U shaded.

° 1imw0

— (2.16)

Observe that ¢; (D), the region shaded on the right, intersects S* in an interval.

In fact, all ¢+ € 4 arise via the above construction. If ¢: € ¢, it is straightforward to check that the
¢: share a common Koenigs map o, and thus ¢ o ¢; 0 0! acts on o(D) by rescaling z — A(t)z. Since
this is a semigroup and ¢;(0) > 0 by assumption, we must have A(t) = e~ for some o € R~0, and so

bi(z) =0 e o (2)). (2.17)

From this formula we can see that (¢, z) — ¢¢(z) is smooth. )
By [BP78, Thm 1.1], there is a unique holomorphic function G : D — C such that

0
D gu(2) = clou(2))
for t € Rso and z € D. Using (2.17), we can compute
i 2 __ 02
G(z) = ltlflol En oi(z) = agl(z).

For each z € ]ﬁ), the the map t — ¢+(z) extends smoothly to a neighborhood of R>¢, and so we have

. 0 . ¢t(Z) —z

Mo =l
Since ¢¢ € ¢, we must therefore have « = 1. By standard results (see e.g. [Dur83, Thm. 2.9]), since
o(D) is starlike, we have

Re ng) = —Re Gz)

z0'(z) z
We summarize the above discussion in the following proposition.

Proposition 2.35. Let U be a Jordan domain with C* boundary. Suppose that 0 € U and that U is
starlike about 0. Let o : D — U be a Riemann map with o(0) = 0. Let ¢i(2) = o ‘(e ‘o (2)). Then
o and ¢: extend smoothly to D, ¢¢ induces a diffeomorphism between S* and d¢p¢(D), and (¢¢)t>0 € 9.
Moreover, every semigroup (¢+)it>0 € ¥ arises in this way, and after rescaling by common scalar, o is
the Koenigs map for every ¢, with t > 0. The holomorphic map

_ o2
p(Z) - ZO'/(Z)

> 0. (2.18)

satisfies Re(p(z)) > 0 for all z € D.
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3 Free fermion Segal CFT for degenerate Riemann surfaces

3.1 Degenerate Riemann surfaces and their Hardy spaces

The main idea of this paper is to extend the notion of Segal CFT to allowed degenerate Riemann surfaces
such as

and . (3.1)

In these pictures, the shaded region should be thought of as consisting of a (shaded) disk with one or
two (unshaded) regions removed, in such a way that the boundary of the outer disk partially coincides
with the boundary of the removed regions. We will only consider degenerate Riemann surfaces of a
special form, in which the annular region is obtained by removing from the unit disk its image under an
element of a one-parameter semigroup of holomorphic self maps of the disk. These degenerate surfaces are
sufficient to produce conformal nets, although in future work we hope to treat more general degenerate
surfaces.
We now make precise exactly what data we will use for degenerate Riemann surfaces in this paper.

Definition 3.1. A degenerate annulus is a tuple (¢¢,t) with (¢¢)icr., € & (see Definition 2.34) and
t € R>o. The underlying space of (¢4,t) is the compact space X =D\ ¢ (]D)) The incoming and outgoing
boundaries are given by 0%° = ¢;(S*) and 9L* = S*, respectively. The boundary 0% is by definition the
disjoint union 8% = 9%° L1 9%*. We let 7o (9%) and 70(9%?) be the sets of connected components, i.e.

m0(9%") = {8}, m0(9%°) = {¢:(5")}, m0(9%) = {S", ¢¢(S")}.

Boundary parametrizations for a degenerate annulus are a pair of diffeomorphisms

v=ieroomy || 8" 0%
JjE™(OT)

which preserve counterclockwise orientations about 0, along with choices of smooth square roots

d
2
b= g =

The standard boundary parametrization for a degenerate annulus (¢¢,t) is given by the diffeomorphisms
id and ¢¢|g1, along with the choices of square roots 1 and g1, where 1); is the square root of ¢; with
1¥1(0) > 0. We denote by DA the collection of all degenerate annuli with boundary parametrizations
X = (¢¢,t,7,7%), and by DA, the subcollection of ones that have the standard boundary parametrization.
We will often refer to an element (¢:,t) € D.As, leaving the boundary parametrizations implicit.

One should think of the data (¢:,t) as capturing the degenerate surface D \ ¢ (]D)), as depicted on
the left in (3.1). We think of this degenerate surface as inheriting a spin structure from the standard
spin structure on C, and the boundary parametrizations provide trivializations of the restriction of this
spin structure to the boundary. It would perhaps be more accurate to call elements of DA ‘degenerate
spin annuli.” When ¢.(D) C ]13), so that the ‘degenerate’ surface is actually a genuine Riemann surface
with boundary, this philosophy can be made precise (see Proposition 3.9). Of course, Definition 3.1 only
captures the special class of degenerate annuli that are induced by one-parameter families of univalent
maps (¢t )¢>o-

We now move from degenerate annuli to degenerate pairs of pants.

Definition 3.2. A degenerate pair of pants is a degenerate annulus (¢y,t), along with choices w € D
and s € Ry such that w + sD C D \ ¢¢+(D). The underlying space of a degenerate pair of pants is
the compact space X = D\ ((w + SD) U qbt(ID))) The incoming and outgoing boundaries are given by
0% = ¢:(S*) U (w + sSY) and 9% = S, respectively. The boundary 0% is by definition the disjoint
union 9% = 9%° U 9%'. We let m(9%) and mo(8%*) be the sets of connected components, i.e.

T0(92") = {8}, m(95°) = {9e(S1),w + 58"}, mo(9%) = {5, ge(51),w + 55"}
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Boundary parametrizations for a degenerate pair of pants are a triple of diffeomorphisms

v=ieroomy || 8" 0%
JE™(OT)

which preserve the counterclockwise orientations of S and o:(S 1) about 0, and the counterclockwise
orientation of w + sS! about w, along with choices of smooth square roots

d
Vi = v =

The standard boundary parametrizations for a degenerate pair of pants is given by the map w+ sz and the
positive square root of s, along with the standard boundary parametrization for the degenerate annulus
(¢¢,t). We denote by DP the collection of all degenerate annuli with boundary parametrizations X =
(¢¢,t, w, 8,7,1), and by DP,; the subcollection of ones that have the standard boundary parametrization.
We will often refer to an element (¢¢,t,w,s) € DPy, leaving the boundary parametrizations implicit.
Elements of DA or DP are called degenerate Riemann surfaces, and we set DR = DA LI DP and
DRst = DAst LI DPs:. We say that X € DR is non-degenerate if ¢+(D) C ]]o), or equivalently if ¥ is a
Riemann surface with boundary.

0,

Sl

(pr, t,w, 8) — @w+s

Figure 3.1: The geometric interpretation of a degenerate pair of pants

As with degenerate annuli, it would perhaps be more accurate to call elements of DP ‘degenerate
spin pairs of pants,” but we will generally not do so. As before, the given definitions of degenerate pair
of pants and degenerate Riemann surface obviously only include a special class of a more general notion.

We will now extend the free fermion Segal CFT to take values on X € DR. As with non-degenerate

Riemann surfaces, we first need to define a Hardy space H?(X).
Definition 3.3. Let X € DR, and let ¥ be the underlying space of X. The pre-quantized boundary
Hilbert spaces are given by Hiy = ®j€ﬂ'o(82i) L?(SY), and Hos = His, @ HYs,. Let O(X) be the space
of functions holomorphic on some open set U containing X, and let (¢;,7;)jen,0x) be the boundary
parametrization for X. The Hardy space H?(X) is given by

H*(X)={¢-(Fo~): Fe O} C Hps.

As with the free fermion Segal CFT, we want to assign to X the space of linear maps with satisfy the
H?*(X) commutation relations. Let H = L?(S'), and let p € B(H) be the projection onto the classical
Hardy space H?(D), and let

pi= €D peB(Hy).
jEm™(8%?)
As usual, we will write F for Fg,p, and we set Fps = ®jew0(azi) F. When X € DP, we identify Fox,
with ]:ng,p via Proposition 2.2, ordering the tensor factors so that the one indexed by w 4 sS* comes
first.

0
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Definition 3.4. Let X € DR. Then we define E(X) to be space of all bounded linear maps T €
B(F3s, Fas) which satisfy the H?(X) commutation relations. That is, those T' which satisfy

a(f)T = (1) Ta(f°),  alzf1) T = (-1)""Ta(zf)"

for every (f*, f°) € H*(X) C Hjs. ® Hys. For non-homogeneous T, the commutation relations are ex-
tended linearly, or equivalently by requiring that both the even and odd part of T satisfy the commutation
relations.

Remark 3.5. To match the definition of the Segal CF'T for non-degenerate surfaces, it would have been
better to define E(X) as the space of maps satisfying

a(f)T = (=1)"DTa(f%),  alg')'T = —(~1)""'Ta(g’)"

for every (f*, f°) € H*(X) and every (g%, ¢°) € H?(X)™*. In the non-degenerate case, we have H*(X)* =
My, H?(X), where My, is multiplication by (—1)"z on Hjs, and complex conjugation is taken pointwise,
and so the two definitions are equivalent. In the non-degenerate case, it is easy to show that M. H?(X) C
H?(X)*, and so the space E(X) described in Definition 3.4 could, a priori, be larger than the space
defined using H?(X). However, we will show that even with the weaker constraint, we have dim E(X) = 1,
and so the spaces F(X) are not too large.

The goal of Section 3 is to show that the spaces E(X) are one-dimensional, and that they admit a
nice description in terms of the Virasoro algebra action on F and free fermion vertex operators.

For simplicity, we would like to work with degenerate Riemann surfaces X € DR, with standard
boundary parametrization. The following proposition allows us to reduce any questions about E(X) for
arbitrary X € DR to one about the corresponding element X, € DR ;.

Proposition 3.6. Let X1, X2 € DR. Suppose that X1 and X2 are the same except for having differing

boundary parametrizations (w(l),’y(l)) and (w(z),’y@)), respectively. Let 3 be the underlying surface of
(2)

the X;, and for j € mo(0X) let v; = (')/J(.Q))_1 07;.1) € Diff . (SY) and ¥; = %, so that (¢j,7;) €
PARRY
DiffY¥¥(SY). Then
H(X2)=| P uns@y,y) | H(X1) (3.2)
JE™H(OX)
and
E(X2) = Uns(s1, 751 ) E(X1) Q) Uns@y,)" |- (3:3)

jem(9%0)
Proof. Let U be a neighborhood of 3, and let F' € O(U), so that
f(i) — q/)(i) i (F O,Y(i)) c H2(X(i)).

Moreover,
1 2
uns (s, 1 = 7,
and consequently

(W® - (For®): Feo®mt=( @ uvs@s){v" - (Foy): Feo(®)}.

JET™ (%)

Taking closures yields the desired relation (3.2) for the Hardy spaces HZ(X(Z')),
For (¢,v) € DiffY5(S"), we have

() = (v (2)] = 2(3:1();()2) - ﬁ@)

and thus

2P(z) = ¥(2)7(2) (34)
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for all z € S*. A direct consequence of (3.4) is that uns(¢,v) commutes with the antilinear map
c: L?(SY) — L?(S%) given by (cf)(2) = zf(z). Hence

MeH(X2) = | @D uns(y,) | MeH2 (X)), (3.5)
JET(IT)

where M. is multiplication by z on copies of L?(S") indexed by j € mo(0X') and multiplication by —z
on copies corresponding to incoming boundary. Now the relation (3.3) can be verified directly from (3.2)
and (3.5), just as in [Tenl7, Prop. 4.12]. O

Now to study E(X) when X € DR, we will often want to approximate X by non-degenerate spin
Riemann surfaces, as follows.

Definition 3.7. Let X = (¢¢,t,w,s) € DRs and let R > 1. Then the non-degenerate extension of X
by R is the spin Riemann surface with parametrized boundary Xr = (Xgr, Lr,®Pr,Sr) € R given as
follows. Let ¥ be the underlying space of X, and let ¥g = XU {1 < |z| < R}. Let (Lg, ®r) be the spin
structure on X r obtained from restricting the standard Neveu-Schwarz spin structure on C. Define the
boundary parametrization Sr : |_|j€ﬂ0<32R)(Sl, NS) — L|ss: so that
RY2f(Rz), j=RS', feC>RS
Pe(2)f(9e(2), G =¢e(SY), feCP(du(S))

where R'/? is the positive square root, and t; is the square root of ¢} with ¥i(0) > 0. If X € DP,
then additionally choose B 451 S0 that 85 . o1 f = '/ f(w + s2) for f € C®(w + sS"), where s'/*
is the positive square root.

B f = {

X:@ - Xp= @ R.

Figure 3.2: The non-degenerate extension Xp of X is a Riemann surface with boundary.

Informally, we think of X as the limit of Xr as R | 1, and in the proof of Theorem 3.21 we will show
that elements T' € E(X) can be obtained as limits (in the strong operator topology) of Tr € E(XR).

While it is somewhat involved to show that the spaces E(X) are non-trivial, it is easier to check that
they are not too large.

Proposition 3.8. Let X € DR. Then dim E(X) <1, and elements of E(X) are even.

Proof. By Proposition 3.6, we may assume without loss of generality that X € DR,;. The arguments
are essentially identical in the two cases X € DAs and X € DP,:. We will assume that we are in the
latter case.

Let T € E(X) C B(F ® F,F), with the inputs ordered so that the one corresponding to sS* + w
comes first. When n > 0, we have (2", sY%(sz + w)", Wy, 2") € H*(X), where Wy, is the weighted
composition operator defined in Section 2.4. Hence

a(z"T(Q® Q) = T(a(s?(sz + w)")Q @ Q) + T(Q @ a(Wy,2")) =0

since (sz + w)™, Wy, 2™ € H*(D).
For n > 0 we also have

(27" sV (52T + )", Wy, 27) € 2H2(X) (3.6)
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Since f + zf exchanges H?(D) and H?(D)*, we have 2! (sz™" + )", 2Wy, 2" € H*(D)*. Hence
az"YTQ® Q) = T(a(s?2 sz + 1)) Q@ Q) + T(Q® a(zW,,27)") = 0. (3.7)

Combining (3.6) and (3.7), we see that T(2 ® Q) = af for some o € C by Theorem 2.1.

Thus to show dim E(X) < 1, it suffices to show that T' € E(X) is determined by T (22 ® Q). We will
assume that T(2 ® Q) = 0, and prove that "= 0. It is clear that if T € E(X), then both the even and
odd parts of T also lie in T'(X), and so we may assume without loss of generality that T is homogeneous.

By assumption, ker T # 0. We will show that ker T is invariant under CAR(Hgy), and since this
algebra acts irreducibly on Fis = F ® F, the result will follow.

Let K be the image of H?(X) under the projection of Hps onto HYx. By Runge’s theorem, cl K =
Hjs.. By definition, given f° € K, there exists a f' € Hjs such that (f',f°) € H?*(X). Hence
a(fHT = (—1)PPDTa(f°), from which we can see that ker T is invariant under a(f°). Since f — a(f) is
continuous, we get that ker T is invariant under a(f) for all f € Hps.

Similarly, let K be the image of zH? (X) under the projection of Hax onto Hpy, which is dense in
HYs. For ¢° € K, we have a(g!)*T = (=1)PDTa(¢g°)* for some g* € HLy. Hence ker T is invariant
under a(g°)* for all ¢° € K, and thus it is invariant under a(g)* for all g € Hy,.

We have shown that ker T is a non-zero CAR(HgE) subrepresentation of Fgs, thus T = 0, as desired.
Moreover, if T is odd and T € E(X), then we must have T(Q ® Q) = 0, and so T" = 0 by the above
argument. O

Using the uniqueness result of Proposition 3.8, we can show that when X € DR is non-degenerate
the definition of E(X) coincides with the space assigned by the free fermion Segal CFT.

Proposition 3.9. Let X € DR, and suppose that X is non-degenerate, so that the underlying space %
is a Riemann surface with boundary. Let (®,L) be the spin structure on ¥ obtained by restricting the
standard Neveu-Schwarz spin structure on C, given by (2.5). Let 8 : Ujeﬁo(az)(SI,NS) — L|ox be the
spin isomorphism characterized by B*f =1 - (f o) for f € C*(L|ox). Let X = (X,L,9,08) € R, and
let H*(X) and E(X) be the Hardy space and Segal CFT for non-degenerate surfaces, as in Section 2.1.2.

Then H*(X) = H*(X) and E(X) = E(X).

Proof. Both H?(X) and H?(X) are given by pullbacks of holomorphic functions on ¥, with the only
difference being that HQ(X) requires that the functions be holomorphic in a nieghborhood of ¥, and
H Q(X ) only requires that they extend smoothly to the boundary. However, by Runge’s theorem we may
approximate any element of H?(X) arbitrarily well by an element of H?(X), and since both spaces are
closed, they coincide. Both E(X) and E(X) consist of maps which satisfy certain commutation relations
derived from H?(X). Since H*(X)* = My,.H?2(X) by [Ten17, Thm. 6.1], the commutation relations
they’re required to satisfy are identical. However, elements of E(X' ) are also required to be trace class,

so that E(X) C E(X). But dim E(X) = 1 by Theorem 2.4, and by Proposition 3.8 dim E(X) < 1, so
the two spaces must coincide. O

3.2 Calculation of Segal CFT operators

In Section 3.2, we will give an explicit description of the spaces F(X) for X € DR, in terms of the
free fermion vertex operator superalgebra. We will briefly recall notation; for a more detailed overview,
see Section 2. Let H = L?(S'), and let p € B(H) be the projection onto the Hardy space H?(D). Let
F = Fu,p be fermionic Fock space, and we write a(f) for the action of CAR(H) on F. Let F° be the
subspace of finite energy vectors, and let L, be the unitary positive energy representation of Vir on F°
coming from the conformal vector v € F°. Let F* C F be the space of smooth vectors for 1 + Lo.
Given a function f € C*°(S'), we write L(f) for the closure of Y onez faLn. If p € H?(D) and p extends
smoothly to S*, then we write L(p) for L(p|g1).
The main result of this section is the following.

Theorem 3.10. Let X = (¢¢,t) € DAs: be a degenerate annulus, and let Y = (¢¢,t,w,s) € DPs be a
degenerate pair of paints obtained by removing a disk from (¢¢,t). Let o be the Koenigs map of the ¢,
and let p(z) = % Let (F°,Y,Q,v, (-, -),0) be the free fermion vertex operator superalgebra, and let
L,, be the positive energy represenation of Vir associated to v. Let F be the Hilbert space completion of
FO. Then e ) qnd T(E®n) = Y(s™o¢g, w)eftL(p)n define bounded maps on F and F @ F, respectively.

Moreover E(X) = Ce ) gnd E(Y)=CT.
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Theorem 3.10 is the union of Proposition 3.16 and Theorem 3.21, both proven in this section.

Corollary 3.11. Let X € DR. Then dim E(X) = 1.

Proof. In the special case when X € DR, this is just Theorem 3.10. The general case follows from the
reparametrization formula Proposition 3.6. O

The first step in proving Theorem 3.10 is to get control of the maps e (P The key ingredient is a

‘quantum energy inequality’ of Fewster and Hollands [FH05, Thm. 4.1], reformulated for Virasoro fields
on the circle (as described in Remark 3 following [FHO05, Thm. 4.1}, and in a forthcoming article of Carpi
and Weiner [CW]).

Theorem 3.12 ([FHO5], [CW]). Let (L,,V) be a unitary positive energy representation of the Virasoro
algebra with central charge ¢, and let H be the Hilbert space completion of V. Let f € C*°(S*,R) be
a function with f > 0, and let L(f) be the associated smeared Virasoro field. Then there is a number
Ky > 0, depending only on f, such that

(L(f)&,€) > —c K [1€]1?

for all smooth vectors & € H™.

Using the estimate from Theorem 3.12, we may apply the Lumer-Phillips theorem to control the norm
of e tE(P),

Proposition 3.13. Let V' be an inner product space equipped with a unitary positive energy representation
of the Virasoro algebra Lyn. Assume that Vo := ker Lo — aly s finite-dimensional for all o € Rxo. Let
p: D — C be a holomorphic function which extends smoothly to D. Let L(p) = ZnEZ>0 pnLn, where pp,

are the Fourier coefficients of p|g1. Then for every £ € V and t € R, the sum defining e!*P¢ converges
to an element of V, and et*?) is invertible on V. If Re p(z) >0 for all z € D then for allt > 0, et
extends to a bounded operator on the Hilbert space completion Hyv of V', and (e_tL(p))DO is a strongly
continuous semigroup.

Proof. For o € R>q, let W, = @nzo Va—n. Then W, is finite-dimensional and invariant under L(p).

Hence L(p) induces a bounded operator on Wa, and for £ € W, the sum defining etL(p)f converges.
Moreover, the operator e*(?) on W, is invertible. Since V = Uaso Was e'L(P¢ is well-defined for £ € V,
and ¢'* is invertible on V.

Now assume Rep(z) > 0 for all z € D. For each a,t > 0, e~ is a bounded operator on W,.
We need to verify that the norm of the restriction to Wy is uniformly bounded as « varies. By the
Lumer-Phillips theorem [Gol85, Thm 3.3], if M € R has the property that

Re (L(p)¢,€) > M ||¢||” (3.8)
for all £ € W, then for ¢ > 0 we have
e P, | < e

Thus to prove that e **(?) is bounded on Hyv, it suffices to show that there exists an M such that (3.8)
holds for all £ € V. Since (L(p)¢, &) = (€, L(p)€), we have

Re(L(p)¢, &) = (L(Rep)§, &),

and since Re p(z) > 0, the condition (3.8) follows immediately from Theorem 3.12 with M = —cKRep.
It is clear that e *“(”) is a semigroup on V, and that the function ¢ — e~ **(")¢ is continuous for

€eVandt>0. Since ||e **P)|| is locally bounded, this implies that e *“(") is a strongly continuous

semigroup. O

Remark 3.14. Since the bound on the spectrum of Re L(p) from Theorem 3.12 is independent of the
smallest eigenvalue h of Lo, we may extend Proposition 3.13 to arbitrary direct sums, allowing us to drop
the assumption that the Lo eigenspaces are finite dimensional. We will not, however, use this fact.

—tL(P) are bounded, we return to the example of the free fermion, and

—tL(P) and the generators of the CAR algebra.

Now given that the operators e
compute commutation relations between e
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Lemma 3.15. Let (¢:)i>0 € ¥ and let o be the Koenigs map associated to ¢y. Let p(z) = <22, Let

- - - s zo'(z)
H>y =span{z" :n >k} C H and let H<, = span{z™ : n < k}. Then for f € H>x, g € H<y, and t > 0,
we have

a(feHP = e Da(Wy, f),  alg)e P = e a(Wy, g)". (3.9)

Proof. Our argument is similar to [Was98, Exp. Thm. §8]. We begin with the first equality of (3.9),
namely that
a(f)e e = TP a(Wy, f)E

forall (£ € F. Fix £ € F.

By Proposition 2.35, we have Rep(z) > 0 for all z € D, and thus by Proposition 3.13, for ¢ > 0
and € F°, the sum defining eft“”)n converges, and the resulting operators are bounded and form a
strongly continuous semigroup.

For n € %sz let F,, be the eigenspace of Lo with eigenvalue n. We may assume without loss of
generality that £ € F,, for some n. Since ||a(f)|| = ||f|| and Wy, is bounded on H>j, we may assume
without loss of generality that f is a Laurent polynomial. Let M € Z~o be a number with M > n and
feW :=span{z=M =M+ ML MY

Let F<i = @iio Fjs2. Then F<, and F<n4n are finite-dimensional, and as in the proof of Propo-

—tL(r) ig defined on both spaces for all

sition 3.13, L(p) is a bounded operator on both spaces. Hence e
t € R, and yields a one-parameter group.

Now let us think of Wy, as an operator on H>_ps, with H- s an invariant subspace. Hence if ¢ is
the projection of H>_p onto W = H>_n © Hsp, we have gWy, = gWs,q. Thus ¢Wy, is a strongly
continuous one-parameter semigroup on the finite dimensional space W, and so there exists an X € B(W)
such that qWy, = e'*.

Observe that since e'“(P¢ e Fen, Wy, f € W, and M > n, we have
(W, e 7€ = a(qW, e ™76 = a(e'™ e ¢.

Hence the function R>o — F2,,, , given by t = e ") a(Wy, f)e“?¢ can be smoothly extended to all
of R, and more importantly its derivative is given by

d

Ze M Oa(Wy, et e = O (a(Xe X f) = [L(p), ale™ ) )eH e (3.10)

By Proposition 2.35, we have ¢;(2) = o~ '(e"‘o(2)) for all z € D and ¢t > 0. From the formula, we
can see that (t,z) — ¢¢(z) extends to a smooth function in a neighborhood of R>o x 1S*. Hence for
z € %Sl and g € W, we can compute

im Weed)2) =9() _ d oy

£10 t dt = —(2p(2)d'(2) + 3(20)' (2)9())

t=0

with uniform convergence in z on %S !, Hence for all k € Z we have

L B R

t10 t tL0 271 ist t
1 / / e
=5 ¢ (2p(2)g'(2) + 3(z0) (2)9(2))2 " ldz
e 551

=— <ng’ +3(z0)'9, Z’“> :

X on the finite-dimensional space imq = W = span{sz, e zM}, this implies that

Since ¢Wy, = €'
Xg=—q(zpg' + 5(2p)'9).
By Proposition 2.25, we have

[L(p), a(e"™ [le™ P e = —a((2pg’ + L(2p) g)e'™ e Pe = a(Xe™ et Pe,
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where in the last equality we use that for h € Hs_a © W, we have a(h)e'*(P¢ = 0 since 'L(P)¢ € ]—"%n.
Substituting this result into (3.10), we see that e ~*“(") a(W,, f)e'F(” is independent of ¢, and evaluating

at t = 0 we see that
e P a(Wy, e V¢ = a(f)€

for all € € F<,,. Hence a(f)e P¢ = et (W, f)€ for all € € F<,, which was to be shown.
We now turn to showing that

a(g)e e = e P a(Wy, g)"¢ (3.11)

for all g € H<y, and all € € F. As above, it suffices to consider £ € F<p, and g € W := {z7 M7 . M},
where we choose M > n. Recall that W@ = cWy,c, where cf = zf. Note that we have slightly adjusted
the definition of W in this case so that cW = W.

Using the same ideas as above, let ¢ be the projection of H<ys onto W, so that ‘ij is a continuous

semigroup on W. We have qu = cetXc = X , where X = cXc. In fact, it is straightforward to
compute X explicitly, and we get

Xg=d(zpg + 3(2p)'9)-
Differentiating as above, we get

%eftL(P)a(Wmf)*etL(p)g — L) (G(Xeticf)* B [L(p)’a(et)_(f)*])et[,(m&

which vanishes by Proposition 2.25. This establishes (3.11), and completes the proof of the lemma. [

So far, we have collected enough results to establish Theorem 3.10 for X € DAs;.
Proposition 3.16. Let X = (¢,1) € DAy, and let p be as in Theorem 3.10. Then E(X) = Ce '),

Proof. By Proposition 3.13, e ) ¢ B(F), and e ) g clearly even. By Runge’s theorem, we have
H?*(X) = span{(z*, Wy, 2*) : k € Z}, and so by Lemma 3.15 e~ */(") satisfies

a(fl)e—tL(p) _ e—tL(p)a(fO)

for all (f*, f°) € H*(X). o
Now let ¢ : L?(S') — L?(S") be the antilinear unitary cf = zf. By definition, we have

My, H?(X) = span{(cz*, —cWy, 2*) : k € Z} = span{(z¥, =Wy, 2*) : k € Z}.

Thus is follows directly from Lemma 3.15 that

a(gl)*e—tL(p) — 6—tL(p)a(90)*
for every (g%, ¢") € zH2(X). Hence e 0 ¢ E(X). But this finishes the proof, as we established that
dim E(X) <1 in Proposition 3.8. O

We now switch from studying degenerate annuli to studying degenerate pairs of pants
X = (¢, t,w,s) € DPg.
We wish to show that E(X) is spanned by the map T : F ® F — F given by
T(E®n) =Y(s"&w)e Py,

which is defined on F° ® F° by Proposition 3.13 and Proposition 2.15.

The strategy for showing this is somewhat indirect, and so we first give a short summary. Let R > 1,
and let Xr be the non-degenerate extension of X (Definition 3.7). Then by the gluing property of the
(non-degenerate) Segal CFT, there is an element Tr € FE(Xg) satisfying Tr(Q2 ® Q) = Q. First, will
verify that Tr(£ ® n) = R™XT (£ ® n) for £,n € F°, and thus that Tr — T as R | 1, pointwise on the
algebraic tensor product F° Ralg F 0. Next, we will show that T} converges pointwise on F° to a densely
defined map which we call S. We will see that S is an example of what we call an implementing operator.
That is, there is a vector ! € F ® F and a map r € B(H,H @ H) such that

Sa(&1)” -+ -alén) alm) -~ a(nm)™Q = a(r&1)” - - a(rén)"alrm) - - a(rnm)
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whenever & € pH = H*(D) and n; € (1 — p)H. Here, we have identified F ® F & Frgm,pap as in
Proposition 2.2. In Section 5, we develop tools for proving boundedness of implementing operators, and
these will tell us that S is bounded. It then follows that Th = SR™X°, and thus |T}|| < ||S||. Hence
|ITr|| remains bounded as R | 1, from which we can conclude that 7" is bounded and that T — 7" in the
strong operator topology. It is then easy to verify that T' satisfies the necessary commutation relations
to lie in E(X)

Our first task is to establish a formula for Tr in terms of vertex operators. We will need a version of
the Borcherds commutator formula for free fermion vertex operators evaluated at a complex number.

Proposition 3.17. Suppose w € C with 0 < |w| < 1, and that s > 0 satisfies w + sD C D\ {0}. Then
for all £,m € F° and every n € Z,

a(z")Y (56 w)n = Y (s"a(s"(s2 + w)")& whn + (1" QY (s"° &, w)a(=")n (3.12)

and
a(z" Y Y (sP08 w)n = Y(s™0a(s 22 (s +w) ") g w)n + (=1)POY (sP08, w)a(zT" )y (3.13)
where the equations are understood as holding when £ is homogeneous, and extended linearly otherwise.

Proof. Observe that all of the terms in (3.12) and (3.13) are well-defined elements of F, with the defining
sums converging absolutely, by Proposition 2.15 and the fact that a((sz +w)™) and a(z~*(sz™' +w))*
map FV into itself. Assume without loss of generality that ¢ and n are eigenvectors for Lg, and that 1’ is
as well. Then by the Borcherds commutator formula (Theorem 2.9), we have an identity of formal series

a(z")Y (s50¢, z)n = (=1)POY (s50¢, z)a (2" n+z< ) F)stog, z)a ", (3.14)

where the sum in k is finite. But the three terms of (3.14) all give absolutely convergent series when
evaluated at * = w, and so we have an equality of elements of F:

a(zMY (s"0¢, wyn = (—=1)POv (s0¢, w)a(z" n+z<> M)stog wyw™ " y

k>0

= (-1)POY(s"g, wyal" ) + > w"s /<"> (s"0a((sz/w)*)€, w)n

k>0
= (~D)POY (5" w)a(z")n + Y (s a(s"* (sz + w)" )&, w)n,

where we used that s < |w| by assumption, and the finiteness of the sum in k.
The proof of relation (3.13) is similar. By the Borcherds commutator formula, we have an identity of
formal series

a(Zinil)*Y(SLof,ZE)’I] ( )p(f)y( Lof ZE) —n— 77 + Z < > 7k71)*SL0§’x)xn7kn'
k>0
Evaluating at * = w and arguing as above, we get

a(e™" )Y ("0 win = (=17 OV (706 wya(= T ”+Z(>Y T

k>0

= (~1)"OY ("¢ w)alz"" ) 4 Y w” <n>SI/QY(SL“G(Z_l(8/(w2))k)*€,W)n

k>0
= (—1)p<§)Y(sLO§, w)a(z""" M) + Y(sLoa(sl/2z71(8271 +w))*E w)n.

‘We can now establish the desired formula for Tg.
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Proposition 3.18. Let X = (¢, t,w,s) € DPs, let R > 1 and let Xr be the non-degenerate extension of
X. Let Tr € E(XR) be the element with Tr(QRQ) = Q. For&,n e F°, let T(£®n) = Y (sLog, w)e Py,
where p is as in Theorem 3.10. Then Tr(§ ® 1) = R™X°T(E®n), and Tr(E®n) = T(E®n) as R} 1,
for all £, € F°.

Proof. By Proposition 3.13, e 7*£(® maps F° bijectively onto itself. Vectors of the form
a(z™)--a(z™P)a(z")" - a(2")Q
with m; < 0 and n; > 0 form a spanning set for F°, and since
e P Wy, 2™ - a(We, 2™ )a(Wg, 2™9) - - - a(We, 2™ ) Q2 = a(z™) - - a(2™)a(2")" - - - a(z™)*Q
by Lemma 3.15, vectors of the form
n=aWy,z™) - a(Wy, 2™ )a(Wy,2")* - - a(Wg,2™)*Q (3.15)
span F°. Thus it suffices to verify that
Tr(€®n) = ROV (s"0¢ w)e™ 7y (3.16)

when 7 is of the form (3.15). We also assume without loss of generality that £ is homogeneous. We now
proceed by induction on p and gq.

When n = Q, by the gluing proprety of the (non-degenerate) free fermion Segal CFT we have Tr(§ ®
Q) = aR Loy (stog w)Q for some o € C*. But we normalized Tx so that Tr(Q ® Q) = Q, and thus
a = 1. Hence (3.16) holds when n = Q.

Now assume that (3.16) holds for all £ € ]-:0 and for a vector n of the form (3.15), and we will show
that it holds for n’ = a(Wy,2™)n and 5" = a(Wy, 2z~ ""1)*n for all n € Z.

From the holomorphic function 2" € O(Xg), we have

1
(1727, 53 (52 4+ w)", W, 2") € H(Xn),
where we have ordered the boundary components S*, then sS* +w, then ¢;(S"). Hence by the definition
of the operators E(Xr) we have
1
R 24(2™)Tr = Tr(a(s2 (sz + w)™) @ 1) + Tr(L ® a(Wy,2")), (3.17)

where I is the grading. Hence

RV 0(" Y Tr(€ © 1) = Tr(a(s? (52 + w)")E @) + (~1)"OTr(E @ ). (3.18)

On the other hand, by the inductive hypothesis, Proposition 3.17, and Lemma 3.15 we have

R™M2a(z"Tr(€ @) = R™ ' 2a(z") R0y (s"0¢, w)e Py
= R gz Y (sh0¢, w)e Py
= RfLOY(sLOa(sl/2 (sz +w)")&,w)n + (—1)7’('5)1%71:0Y(sL"§7 w)eitL(mn'
= Tr(a(s"?(sz + w)")E@ ) + (—1)PO R0y (shog w)e )y (3.19)
Combining (3.18) and (3.19), we get
T @) = R50Y (s70¢ w)e™ ",

as desired.

Establishing (3.16) for 7 = a(Wy,z~""")*n is similar. By [Tenl17, Thm. 6.1], we have H?*(Xg)* =
My,zH?(X), where My is multiplication by z on copies of L*(S") indexed by outgoing boundary com-
ponenets, and by —z on copies of L2(S 1) indexed by incoming boundary components. Hence

(RMTY27m=t g2 Y sz )™, —2Wy, 27) € H2(XR)™.
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By definition, W%ﬁ = 2Wy, f when f € L*(S")>k, so we have
(Rn+1/22_n_17 _51/22_1(52_1 + E)n’ _Wd)tz—n—l) c HQ(XR)L

Hence by the definition of E(Xr) we have

R 20z "Y' T = Tr(a(s'?2 7 (sz7 ' +@)") @ 1) + Tr(T ® a(We, 2~ ")), (3.20)
and thus
R™1/20(577 ) T (€ @ ) = Tala(s"2 (52~ + )" €0 m) + ()" OTale0n). (321

Expanding (sz~! +@)" in the domain |z| ™" < |w/s|, we see that
a(z" M (sz7 @))€ e FO
As before, we may apply the inductive hypothesis, Proposition 3.17, and Lemma 3.15 to establish
R 20(a7 ) Tn(g @) = Tlals'/ 7 (57! +)") 6+ (-1)" O R0V (5208, w)e ™0,

from which the desired conclusion follows.
Given that Tr(é ® n) = R™0T (¢ ® 1), and that T(£¢ ® ) € F when &,1 € F° by Proposition 2.15,
it follows immediately that Tr(€ ® n) — T(€ ® n) for such &, 7. O

Next, we want to understand the limit limg1 Tx.

Proposition 3.19. Let X = (¢¢,t,w,s) € DPs, let R > 1 and let Xr be the non-degenerate extension
of X. Let Tr € E(XR) be the element with T(2 ® Q) = Q.
Then the limit S¢€ := limgy1 THE converges for all € € F°. The limit operator S satisfies

Sa(z")*¢ = (s"2a((sz + w)")* ® 1 + T @ a(Wy, 2")")S¢ (3.22)

and
Sa(z"" "¢ = (s"az sz L+ )" @1+ T @ a(We, 2z " 1))SE (3.23)
for all € € F° and all n € Z, where T is the grading operator.

Proof. 1t suffices to establish the result with
E=a(z™)--a(z™)a(z")" - a(2™) Q.

We will proceed inductively, first considering when £ = 2.
If Ry > Ry > 1, then we have Tr, = (R1/R2)”"°Tg,. Hence T, = Th,(R1/R2)"*°, and

Th Q= Tg,(Ri/R2) Q= T5, Q.
Hence limpy1 T2 converges.
We now assume that limpg 1 T3¢ converges, and show that the same holds for a(z~"71)¢ and a(2™)*¢.
Indeed, applying the adjoint of the commutation relation from (3.17) one has
Tha(z")*¢ = R7"Y2(s"2a((sz + w)")* @ 1+ T ® a(Wy,2"))THE. (3.24)
It follows that limpg i Tra(z")"§ converges, and that (3.22) holds for &.
Similarly, applying the adjoint of the commutation relation from (3.20) one has
Tha(z " eE=R ™V a(z sz P +0)") @ 1+ T @ a(Wy, 2z " )THE, (3.25)
from which we see that limg|; Tha(z~""1)¢ converges, and (3.23) holds for €. O

The commutation relations given in Proposition 3.19 almost characterize the densely defined limit
operator S = limgy; Tj. Indeed, since the operators a(z") and a(z™""')* act cyclically on the vacuum
vector ), the limit operator is specified by (3.22) and (3.23) once we have identified the vector SQ.
Similarly, the commutation relations from Lemma 3.15 will allow us to describe (eftL(p))* once we
better understand (e *L(P))*Q.
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Proposition 3.20. Let (¢¢,t,w,s) = X € DPst, let R > 1, and let Xr be the non-degenerate extension
of X. Let p be as in Theorem 3.10. Then there exist (,v) € Diff¥¥(S') and o € C* such that
(e N Q = aUns (¥, 7)Q. If Tr € E(XR) is the element satisfying Tr(Q®Q) = Q, then there exists a
non-degenerate spin Riemann surface Y € R, with no incoming boundary components and two outgoing
boundary componenets, such that SQ = limpg;1 TpQ € E(Y). Moreover, SQ # 0.

Proof. We will make free use of the properties of the free fermion Segal CET (for non-degenerate surfaces)
given in Theorem 2.4.

Let Zr € R be the non-degenerate spin Riemann surface obtained from Xg by filling in the disk
centered at w. By the gluing property of the free fermion Segal CFT and the formula for Tr in Propo-
sition 3.18, we have R™20e™*(P) ¢ E(Zg). Hence by unitarity (e *“?))*R™L0 ¢ E(Zg). Let Z be
the spin Riemann surface, with no incoming boundary and one outgoing boundary component, ob-
tained by gluing a standard disk to the input of Zgz. Then (e L) R=LoQ) = (e W) *Q ¢ E(Zg),
and (67”‘“’))*9 # 0 since non-zero elements of E(Zg) are injective by the nondegeneracy property of
the CFT. By the smooth Riemann mapping theorem, Z is spin equivalent to the standard unit disk
with some boundary parametrization, and thus by the reparametrization property of the CFT we have
(e P Q = alUns (1, 7)Q for some spin diffeomorphism (3,7) and some o € C*.

We now handle SQ). As we saw in the proof of Proposition 3.19, T2 is independent of R, so we fix
R > 1 and show that Tz € E(Y) for some Y. Since T is injective by the unitarity and non-degeneracy
of the CFT, we have T # 0. The vector T2 has dual vector A € (F ® F)* given by

AE®@n) = (Tr(E®n),Q).

The dual vacuum vector { - , ) € F* lies in E(CU{oo} \DRIﬁ))7 and so by the gluing property of the CFT,
X € E(Y), where Y is obtained by gluing C U {oco} \ RD onto Xg. Hence by the unitarity property of

the CFT, TpQ = \* € E(Y). O

We will now show that £ ® n — Y(sLog, w)eftL(p)n defines a bounded operator. We will require the
terminology and results of Section 5, which we now summarize.

Definition (Definition 5.1). Let H and K be separable infinite dimensional Hilbert spaces, and let p
and ¢ be projections on H and K, respectively, with pH and (1 — p)H both infinite dimensional. Let
{&i}icz be an orthonormal basis for H with & € pH when ¢ > 0 and & € (1 — p)H when 7 < 0. Such
an orthonormal basis is called compatible with p. Let r € B(H, K) and let Qe Fr,q- Then we have
an orthonormal basis a(&r)*a(£5)$2, for Fu,p (see notation (2.1)) indexed by finite subsets I C Z>o and
J C Z<o, and the densely defined map R : Fu,p, = Fk,q given by

Ra(&1)"a(€5) = a(rér) a(ré)Q

is called the implementing operator associated to (r, Q)

The results of Propositions 3.19 and 3.20 show that S is an implementing operator, and so we may
use the following result to prove that S, and consequently Y(sLof, w)eftL(mn, are bounded.

Theorem (Theorem 5.3). Let H and K be separable Hilbert spaces, and let p and q be projections on
H and K, respectively, with pH and (1 — p)H infinite dimensional. Let {&;}icz be a basis compatible
with p. Let v € B(H,K), and assume that qr(1 — p) is trace class. Let q' be a projection on K with
q' — q trace class, and let Qq/ be a mon-zero vector satisfying a(f)flq/ = a(g)*flq/ =0 foradl f € ¢K
and all g € (1 — ¢')K. Then the implementing operator associated to (r, Qq/) 1s bounded if and only if
E(r):=qrp+ (1 — q)r(1 — p) can be written as the sum E(r) = a4+ x with a,x € B(H, K), |la]| <1 and
x trace class.

Maps r € B(H, K) which have the properties that ¢gr(1 — p) is trace class, and E(r) can be written
as sum a + x as in the theorem, are called admissible maps, and we let A(H, K) denote the space of
admissible maps.

Using this theorem, we can now prove Theorem 3.10 in the case where X € DPg;.

Theorem 3.21. Let X = (¢¢,t,w,s) € DPq, and let p be as in Theorem 3.10. Then the map T :
FQF — F given by T(E®@n) = Y(SLOE,w)eftL(p)n is bounded, where Y is the free fermion state-field
correspondence. Moreover, E(X) = CT.
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Proof. Let R > 1 and let Xgr = (Xr, Lr, Pr, Sr) be the non-degenerate extension of X (Definition 3.7).
Let Tr € E(XRr) be the element with Tr(Q®Q) = Q. For & € F, let S¢ = limpg1 THE, as in Proposition
3.19.

Let H = L?(S") and pH = H*(D). Let V : F ® F — Fuew pop be the isomorphism of CAR(H & H)
representations (Proposition 2.2), and let S’ = V.S. For n € Z, let &, = 2™ € H, so that a(£5)a(£7)*Q
gives an orthonormal basis for F indexed by pairs of finite subsets J C Z<o and I C Z>o. Let We.4o €
B(H?*(D)) and W4 € B(H?*(D)*) be the weighted composition operators associated to the map z
5z + w, corresponding to the positive square root s'/2. Let Wy, € B(H?*(D)) and Wy, € B(H?*(D)*) be
the weighted composition operators associated to ¢ and the square root ¥? = ¢} with 1 (0) > 0 (as
defined in Section 2.4). Let W1 = W10 @ Wsz+w € B(H) and Wo = Wy, W¢t € B(H). Note that
W1 and W2 commute with p.

By Proposition 3.19, S’ is the implementing operator defined in terms of the basis &; associated
to (r, Q), where 7 : H — H @& H is given by rf = (Wi f,Waf) and ) = §’Q. By Proposition 3.20,
QeF HoH,pop 1S, Up to non-zero scalar, the vector assigned to a non-degenerate Riemann surface by the
free fermion Segal CFT. By [Tenl7, Thm. 6.2], such vectors are of the form Qq/ for a projection ¢’ with
the property that ¢’ —p @® p is trace class. Thus we can study the boundedness of S’ using Theorem 5.3,
with K = H® H and ¢ = p & p.

By construction, r = grp+ (1 — q¢)r(1 — p), and so to show that S’ is bounded it suffices to prove that
r € A(H,K). Since sD+w C D, Wy is trace class (by [ST74, Prop. 5.3], for example). Thus it suffices
to show that W3 can be written as the sum of a contraction and a trace class operator.

By Lemma 3.15, (¢ *£(")* . F — F is the implementing operator associated to (Wa, (e~*£(P)*Q).
By Proposition 3.20, (e *()*Q = alUns(),7)Q for some (1, ~) € Diff}¥(S') and some o € C*. By
[PS86, Prop. 6.8.2 and Prop. 6.3.1], [uns(¥,7),p] is trace class, and thus aUns(¢,7)Q = Qqu for some
projection ¢ on H with ¢” — ¢ trace class. Since e **”) is bounded by Lemma 3.15, by Theorem 5.3
we have W> € A(H, H). Hence r € A(H, K) as well, and so by Theorem 5.3, S” is bounded. It follows
that S = V*S’ is bounded as well.

Now let Ry > Ry > 1. We have Tr, = (R2/R1)"°Tr,, and thus T, = Th,(R2/R1)"°. Hence if
& € F is an eigenvector of Lo with eigenvalue m, we have

(R1/R2)"Tg, & = Tr,y&.
Taking the limit of both sides as Rz | 1, we get
Tr, & = Ry™S¢ = SRy ™°¢.

Since Ry > 1 was arbitrary and eigenvectors £ for Lo span a dense subspace of F, we have T5 = SR™%0
for all R > 1. Hence ||T%] < |I5]-

But ||Tz]| = ||Tr||, and so the operators Tr remain uniformly bounded in norm as R | 1. Since we
have already established that Tr(¢ ® ) — T(£ ®n) for &1 € F° (Proposition 3.18), the uniform bound
in norm is sufficient to guarantee that T' is bounded and that Tr — T in the strong operator topology.

We now show that T' € F(X) by verifying that it satisfies the appropriate commutation relations. It
suffices to verify that

a(f)T =Ta(f%),  a(zf")'T = Ta(zf°)"
for f = (f*, f°) lying in a dense subspace of H?(X).

Let X be the underlying space of X, and let (1, 7) be the standard boundary parametrization. Then
by definition, H?(X) is the closure of the set of ¢ - (F o ), where F ranges over functions holomorphic
in a neighborhood U of . Given f of the form 1 - (F o), and R > 1 sufficiently small, 85 F € H*(Xg).
Moreover, fr := fRF — f in L? norm (in fact, uniformly) as R | 1, and so a(f%) — a(f*) in norm.
Hence taking limits in the expression a(f3)Tr = Tra(fy), we get a(f)T = Ta(f°), which establishes
the first half of the commutation relations for 7.

By [Ten17, Thm. 6.1], H*(Xgr)* = M+, H2(XR), and so

a(zf}) Tr = Tra(zf3)".
Hence taking limits we get L L
a(zf)*'T = Ta(zf°)".
We conclude that T € E(X), and since dim E(X) < 1 by Proposition 3.8, we conclude that E(X)
CT.

[
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4 Localized vertex operators and conformal nets

4.1 Localized vertex operators for the free fermion

Recall that we use the term interval to mean an open connected subset of S ! which is non-empty and
not dense, and that we denote by I’ the complementary interval I¢.

Definition 4.1. Let I C S be an interval. We will write DP(I) for the collection of

= (¢t7 t7 w, s,7, /d)) € DR
with the property that the boundary parametrizations (1;,7;) e, (ox) satisfy

(st v50) | = (Vg (1) Vo sy

Given T € E(X) and £ € F, let Tt € B(F) be given by T¢(n) = T(£ ® n), where as usual we have ordered
the incoming boundary components so that w + sS* comes first. Define the set of vertex operators
localized in I
LV(I; F)={T: : X e DR(I),T € E(X),§ € F} C B(F).
Graphically, we identify X € DR(I) with T € E(X), and depict them as on the left in Fig-
ure 4.1. A localized vertex operator is deplcted by inserting a state £ into one of the input disks.

@) -

Figure 4.1: A degenerate Riemann surface X € DP(I), and a localized
vertex operator Te € LV (I; F)

Remark 4.2. While the boundary parametrizations are not clear in Figure 4.1, we are implicitly as-
Suming that that Ys1 |I’ = V¢ (Sl)|1/ and wSl |]/ = wm(sl)‘l’, and that Ys1 (I/) = I/. More generally, the
definition of DP(I) allows (g1,7s1)|s and (g, (s1), Ve, (s1))]s for an interval J with vg1(J) = TI'.

We begin with a straightforward observation on the parity of localized vertex operators.

Proposition 4.3. Let X € DP and T € E(X). Let £ € F and let Te € LV (I; F) be the corresponding
localized vertex operator. Then Te is homogeneous if and only if & is, and p(T¢) = p(&).

Proof. By Proposition 3.6 and the fact that the representation Uns of Difff 9 takes values in even
operators, it suffices to consider the case X € DP,;. In this case, we saw in Theorem 3.21 that E(X) is
spanned by an even map 7. Thus T¢ has the same parity as . O

We now have our main result on localized vertex operators for the free fermion.

Theorem 4.4. Every LV (I;F) is non-empty, and LV (I; F) C M(I), where M(I) is the local algebra
of the free fermion conformal net. Moreover, M(I) is generated by LV (I; F) as a von Neumann algebra.

Proof. We will just write LV (I) instead of LV (I; F). Let (¢,4) € Diff¥%(S*) be a spin diffecomorphism
with 4(I) = J. Then we claim that

Uns(, )LV (IUns($,9)" = LV (J). (4.1)
By symmetry, it suffices to show
Uns($,9) LV (DUns($,9)" € LV (J). (4.2)

Suppose Tt € LV (I), corresponding to £ € F and T € E(X), where X = (¢¢, t,w,s,v,%) € DP(I).
Let X be the underlying space of X, and for j € m(9X) set

_fmedTt Ge{S¢u(SY)} 5, = - @iod™) je{shau(sN)
i Vi j=w+sS! ’ J p; j=w+sSt.
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Set X = (¢t7t,w7s77y71/~)), and observe that )~(~€ DP(J).. A
By Proposition 3.6, E(X) is spanned by T := Uns(¥,%9)T(1 ® Uns(¢,%)*). Hence

Uns(,4)TeUns(,4)" € LV(J).

We have proven (4.2) and thus (4.1).
It follows that LV (I) is non-empty if and only if LV (J) is. Moreover, since

M(J) = Uns(, VM) Uns(3h,7)"

by diffeomorphism covariance, LV (I) generates M(I) if and only if LV (J) generates M(J).

To show that some LV (I) is non-empty, pick some one-parameter semigroup ¢; and a small value of ¢
so that ¢¢(S*)NS* contains an interval but D\ ¢;(ID) has non-empty interior, as in (2.16). Let w,s € D be
arbitrary values such that w+sD C Ho))\@ (D). Let I' be an interval whose closure is compactly contained
in ¢;(S')NS'. We may choose a parametrization for ¢;(S") such that (Yo (s1y) Yau(s1)) | = (1,1d). Let
(¥s1,751) = (1,id), and choose (4451, Vwrsst) arbitrarily. Let X = (¢, t,w,s,¥,v) € DP, and by
construction X € DP(I). Then for any £ € F and T' € E(X), we have T: € LV (I).

Next, we show that LV (I) C M(I). Let X = (¢4, ¢, w,s,v,v) € DP(I). We claim that for arbitrary
f € L*(S*) with supp f C I, we have (f,0, f) € H*(X), where as usual we have orderd the boundary
components S', then w + sS*, then ¢¢(S'). Since H*(X) is closed, it suffices to prove the claim for
continuous f.

Let J = vg1(I'). Since vg1|rr = v4,(s1)l1, we must have J C S' N #:(S*). Let h be the continuous
function on S* such that g1 - (Royg1) = f.

Let K = D\ ¢:(D), and let H : K — C be the continuous function obtained by extending h to
be 0 on K \ J. By Mergelyan’s theorem [Rud87, §20], there exists a sequence of rational functions H,
with poles at 0 and co such that H, — H uniformly on K. Let (fa,gn,kn) = % - (Ha 0v) € H*(X)
be the corresponding boundary values. By construction, we have g, — 0 uniformly. We also have that
fn = tbs1 - (Hn 0 7s1) converges uniformly to f = tg1 - (h o ys1). Moreover, since yg1|r = 74, (s1)l175
we have that k,, converges uniformly to f on I’. By construction, H,, is converging uniformly to 0 on
Yor(st)(I), and f vanishes on I, so kn = 1y, (s1y - (Hn © 74,(s1)) converges uniformly to f on I as well,
and hence on all of S*. Thus (f,0, f) = im(fn, gn, kn) € H*(X), as claimed.

Now let T' € E(X) and £ € F. Then by the definition of F(X), we have

a(f)T =TT @ a(f)),

and thus a(f)Te = (—1)?©Tea(f). As usual, formulas written involving the parity hold for homogeneous
vectors, and are extended linearly otherwise. Since p(T') = p(§) by Proposition 4.3, the above equation
yields
a(f)Te = (-1)" D Teal ), (4.3)
Since (f,0, f) € H*(X) for every f € L*(S") with supp f C I, and f — zf gives a bijection from
functions supported in I’ to itself, we have (f,0, f) € zH2(X) for all such f. Thus by the definition of
E(X) we have
a(f)' Te = (~1)"VTea(f)". (4.4)
Combining (4.3) and (4.4), we have T¢ € M(I) by Haag duality for the fermion net (Proposition 2.28).
Now let”
A(I) == (LV(I) U LV(I)*)" € M(I).
By (4.1), A(I) is a covariant subnet of M(I), and so to show that A(l) = M(I) if suffices to show that
A(I)Q is dense in F (by Proposition 2.30).
Let X = (¢r,w,s,9,7v) € DP(I), and let T € E(X) be nonzero. We will show that

W :=span{T:Q: £ € F}

is dense in F.

7 Here, we have used the notation that for S C B(H), S’ denotes the commutant of S, i.e. the algebra of all operators
commuting with each element of S. If S is closed under taking adjoints, then the von Neumann double commutant theorem
says that S” is the von Neumann algebra generated by S.
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Let J be an interval with 'y;ll(J) compactly contained in S*\ ¢,(S'), and let f be a continuous
function supported in J. Let h € C(S') be such that wg1 - (hoyg1) = f, so that h is supported in
fygll(.]). Let H be the continuous function on S* U ¢:(S") obtained by defining h to be 0 outside of
'Y_g_vll (J).

By Mergelyan’s theorem, there exists a sequence of rational functions H, with poles at 0, co and w
such that H,, — h uniformly on S U ¢:(S*). Let (fn,gn,kn) =9 - (H ov) € H*(X). By construction
fn — f and k, — 0 uniformly.

Let & € F. By the definition of F(X), we have

a(fa)T(€® Q) — (~1)POT(€ @ a(kn)) = T(a(gn)E ® Q).

Hence
a(fn)TeQ — (~1)P O Tea(kn)Q = Ta(q, )

The left-hand side converges to a(f)T:Q as n — co. On the other hand, the right-hand side lies in W.
Hence W is invariant under a(f) for every continuous f supported in J, and thus for any f € L*(S")
with the same support.

A similar arugment shows that W is invariant under a(f)* where again f € L?(S') is an arbitrary
L? function supported in J. Thus W contains M (J)Q, which is all of F by the Reeh-Schlieder property
(see [Was98, §15], or [CKLO08, Thm. 1]). We conclude that A(J)Q2 = F and thus A = M. O

Remark 4.5. Using the notation of Figure 4.1, the conclusion of Theorem 4.4 can be depicted

2

M(I)=4q 1 <‘ ¢ € F, O-parametrizations ,

which we refer to as a ‘geometric realization’ of the algebraic CF'T M.

4.2 Localized vertex operators for other vertex operator superalgebras

Let (V,Y,Q,v, (-, -),0) be a simple unitary vertex operator superalgebra, with Hilbert space completion
H. Let U : DiffY5(S') — PU(H) be the positive energy representation of Diff}®(S') coming from the
conformal vector v.

Definition 4.6. For X = (¢¢,t,w, s,¢,v) € DP, we define E(X;V) to be the one-dimensional vector
space of (a priori unbounded) linear maps H ® H — H spanned by

T(§ ® 77) = U(’(&Sl ) ’AYSl )}/(‘SLOUv(z:[;w-&-s,ﬁ'1 ) :Yw-s-ssl )*57 w)eitL(p)U(z&qht(Sl)v ’7¢t(sl))*777

where 4; and 1[11 are given in terms of the standard boundary parametrization (¢s¢,vst) by

4; =7; ' oy € DI (SY), and ¥, = - —-
Yy, st 0,

This definition is characterized by the fact that when X € DP, E(X) is spanned by the map
T(E@n) =Y(s"¢w)e 7y,

and the spaces satisfy the same diffeomorphism covariance property that the free fermion localized vertex
operators enjoyed.
As before, for € € H, set Tz(n) = T(§ @ n) and set

LV(I;V)={T: : X e DR(I), T € E(X;V), £ € H}.
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By Proposition 2.15, elements of E(X;V) are densely defined, but we do not have proof that they
are bounded in general, or even that they extend to the algebraic tensor product H ®a14 H. However,
the maps T¢ are densely defined for £ lying in a dense subspace.

In the case where V is the free fermion F°, however, E (X;F O) agrees with the one-dimensional space
E(X) from Section 3 by Theorem 3.21 and Proposition 3.6. The free fermion will be our motivating
example for defining what it means for a unitary vertex operator superalgebra to have a ‘good’ theory
of localized vertex operators.

Definition 4.7. Let V be a simple unitary vertex operator superalgebra, and let H be its Hilbert space
completion. We say that V has bounded localized vertex operators if

e Maps T' € E(X;V) extend to bounded linear maps in B(H @ H, H).

e For intervals I, if we set Ay (I) := (LV(I;V) U LV (I;V)*)"”, then Ay is a Fermi conformal net
with conformal symmetry U : Diff}®(S*) — PU(Hy) coming from the conformal vector v of V.

Many of the required axioms of a Fermi conformal net are automatically satisfied once the maps
T € E(X;V) are bounded, and so we give a set of sufficient conditions that one can check.

Proposition 4.8. Let V be a simple unitary vertex operator superalgebra, let U : Difffs (SY) — PU(Hv)
be the associated projective representation of Difffs(sl), and suppose that the following hold:

e Maps T € E(X;V) extend to bounded linear maps in B(H @ H,H).

e The algebras Av(I) = (LV(I; V) U LV(I;V)*)" satisfy graded locality (i.e., when INJ = 0, we
have [Av (I), Av(J)]+ = {0}).

o U(yp,y) commutes elementwise with A(I) whenever (v, ) € Diffy (I').

Then Ay is a Fermi conformal net with conformal symmetry U.

Proof. The sets LV (I;V) are Z/2Z-graded and satisfy LV (I;V) C LV(J;V) when I C J, and the
corresponding properties of Ay (I) are immediate consequences. Similarly U (v, )LV (I; VU (¢¥,~v)* =
LV (~(I); V), and diffeomorphism covariance of Ay follows, given our assumption that U(v,~) commutes
with Ay (I) when (i,~) € Diff £ (I'). Since we have also assumed that Ay satisfies graded locality, the
only thing to check is the vacuum axiom.

Since V is simple, €2 is the unique (up to scalar) vector fixed by Mo6b™VS. Fix an interval I, and let
K =A()Q. If (¢,7) € Diff 1 (), then

U, VLV V) = LV(I;V)U (¢, 7) = LV(L; V).

Hence U(¢,v)K C K. By the Reeh-Schlieder property for the Virasoro nets, it follows that U (i), v)Q2 € K
for all (,v) € Diff¥9(S"). Now from the definition of LV (I; V), we can see that K contains Y (a, 2)Q
for all a € V, for at least one z € D.

Since K C Ay (S1)Q2, we have Y (a,2)Q € Ay (S1)Q for the same a and z as above. But Ay (S1)Q
is clearly unvariant under the rotation subgroup of Difff S and thus is %Z-graded. Thus when a is
homogeneous, we must have a € Ay (S1)Q2, which establishes that Ay (S1)Q = H. O

Remark 4.9. The first two conditions in the statement of Proposition 4.8 are analagous to the conditions
required in [CKLW18] to construct a conformal net; the first is analogous to energy boundedness, and
the second to strong locality. We expect that it is not too difficult to show that the third condition holds
automatically in the presence of the first two, but we will not discuss this question as the third condition
is easily verified in all of our examples.

Remark 4.10. The fact that we have defined Ay (I) to be generated by LV (I;V)U LV (I;V)* instead
of just LV (I;V) is an artifact of the fact that we have only considered a special class of degenerate
annuli and pairs of pants lying in one-parameter families (see also the discussion in Section 4.3.1). If
we were to instead define LV (I; V) to be maps assigned to all degenerate pairs of pants we would have
LV(I;V)=LV(I;V)".

Our next project is to show that the property of having bounded localized vertex operators is well-
behaved with respect to tensor products and taking unitary subalgebras.

Proposition 4.11. Let Vi and V> be simple unitary vertex operator superalgebras. Then Vi ® Vo has
bounded localized vertex operators if and only if Vi and Vo do. In this case, Av, v, = Av, ® Av,.
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Proof. Let Y be the state-field correspondence for Vi ® Vz, and let Y be the state-field correspondence
for V;. By definition, we have Y (£1 ® &,2) = Y(&1,2)IPE2) @ Y?(&a, z) for homogeneous & € V;. If
X € DP(I) and T € E(X;Vi ® V»), we have Tt e, = T, ®Te,. Thus the boundedness of elements
of LV(I; V1 ® V2) is equivalent to the boundedness of elements of LV (I;V1)®LV (I;Vz), and we have
LV(LVi®@Va) C LV(I; V)LV (I; Va).

First consider when Vi and V5 have bounded localized vertex operators. Then Av, gv, is a diffeomor-
phism covariant subnet of Ay, ® Ay, , and to check equality it suffices to show that Ay, v, Q2 = Hv,ovs-
This can be done just as in the proof of Proposition 4.8.

Now consider when Vi ® V2 has bounded localized vertex operators. The inclusion Ay, gv, () C
Av, (I) ® Av,(I) is clear, but it requires a small argument to establish the reverse inclusion. Let H;
be the Hilbert space completion of V;, and let U; be the projective representation of Difff S(Sl) on
‘H; obtained by integrating the representation of the Virasoro algebra coming from V;. Let K; be the
subspace of H,; generated by €2 under U;, and let

Bi(I) = {Ui(v,7) : (4,7) € Diff (I)}".

Then B;(I) and B;(J) commute when I and J are disjoint (see [CKLW18, §3.2]).
Let C(I) C Av, gv, () be the local algebra of the Virasoro subnet, given by

C(I) = {U1(v,7) ® U2(¥,7) : (¥,7) € Diff(I)}",

and observe that C(I) C B1(I) ® Bz2(I), and that C(I) commutes with B1(J) ® B2(J) when I and J are
disjoint.

We now set out to verify that Bi(I) ® B2(I) C Av,ow (I). Fix X € DP(I), let T € E(X;V1 @ V2),
and let T1,T> be such that T3 ® T> = Taoga. From the definition of E(X; Vi ® V2), T1Q ® ToQ lies
in C(S1)(Q ® Q), whose finite energy vectors are the subrepresentation of the Virasoro algebra LY1®V2
generated by the vaccum Q ® Q. Hence 71 ® T> € C(I) by Proposition 2.30, and thus 77 ® To €
Bi(I) ® B2(I). It is a standard, but non-trivial, fact about von Neumann algebras that we may now
conclude T; € B;(I).

Now suppose that Y € DP(J) for some interval J disjoint from I, and let S € E(Y; V1 ® V). Then
writing Soga = S1 ® S2, we have S; € Br(J), as above, and thus [S;, T;] = 0. Now if we select a,b € Vi,
we have _ ~

Togo =T ® T3, Shen = S1 ® S2
for some operators Ty € LV(X,V1) and S € LV (Y,V1). Since Vi ® V2 has bounded localized vertex
operators, Togo and Spga supercommute. But since 75 and Sz are even and commute, and their
product is nonzero, Ty and Th supercommute as well. Since all elements of LV (X, V1) and LV (Y, V1)
arise as above, and we may apply the same argument to the adjoints, we get that Ay, (I) and Ay, (J)
supercommute elementwise. Applying the same argument to the second tensor factor shows that Ay, (I)
and Ay, (J) also supercommute, and we conclude that the algebras Ay, (I) are graded local. The same
argument can also be used to show that Ay, (I) commutes with B;(J) when I and J are disjoint, which
completes the proof that both V; have bounded localized vertex operators, by Proposition 4.8. O

Theorem 4.12. Let V be a simple unitary vertex operator superalgebra with bounded localized vertex
operators, and let W be a unitary subalgebra. Then W has bounded localized vertex operators.

Proof. First consider when W is a conformal subalgebra; that is, when the conformal vector vV of V lies
in W. Let ew € B(Hv) be the projection onto Hw, the closure of W, and let

LV(I;Vyw = {Te : X e DP(I),T € E(X;V),€ € Hw}.

Since W is a conformal subalgebra, ey commutes with all unitaries U (¢, ) and with e tL),
Let X € DP(I) and let T' € E(X;V). Recall that T¢ is given by the formula

Te(n) = U1, m)Y (s"°U (2, 72) "€, w)e” DU (3,73)"n

when & € U(¢2,72)V and n € U(¢s,v3)V, for some (¢;,7v;) € Dif‘ffs(Sl). By the super version of
[CKLW18, Lem. 5.28], we have

ewU(n)Y (s™°U (12) "€, w)e” DU (ys) ewn = U(11)Y (s"°U (72) " ew &, w)e P U(v3) ewn

41



for all such £ and 7, and
Um)Y (s"U(y2) €, we MU (ys) ewn = ewU(m)Y (s"°U (12) ew €, w)e™ U (ys)

for £ € U(y2)W and n € U(y3)W.
Since T' € E(X;V) is bounded by assumption, these relations extend to all of Hy and Hw, and we
get
ewTleew = Teycew = ew ey e (4.5)

for all £ € Hy. Thus LV(I; W) = ew LV (I; V)ew = ew LV (I;V)w, so LV (I; W) consists of bounded
operators.

Let B(I) = (LV(I; V)w U LV(I; V)w™)". Tt is clear that B(I) C Ay (I) and that B(J) C B(I) when
J C I. For any (¢,v) € Diff}¥(S') we have U (v, )LV (I;V)wU(¢,7)* = LV(y(I),V)w, and thus
U,v)B(I)U(,v)" = B(y(I)). Hence B is a covariant subnet of Ay .

Let
B(sh) =\/ B(I)

be the von Neumann algebra generated by all B local algebras assigned to intervals. Let Hg = B(S')(,
so that B is a Fermi conformal net on Hp by Theorem 2.29. We will show that Hp = Hw and that
B(I)ew = Aw(I), which will establish that Aw (I) is a Fermi conformal net with confomal symmetry
U@W .

Since elements of LV (I; V)w commute with ey by (4.5), we have Hp C Hw. Since ew LV (I; V)ew =
ew LV(I;V)w and ew LV (I;V)*ew = ew LV(I;V)w ", we have ew Ay (I)ew = ew B(I) and thus

Hi =ewHs 2 ewB(I)Q=ew Av(I)Q2 = Hw.

Hence Hp = Hw, and thus we have a Fermi conformal net ewB(I) on Hw with conformal symmetry
ewU. Moreover, since LV (I; W) = ew LV (I; V)w and LV (I; W)* = ew LV(I; V)w ", we have ew B(I) =
Aw (I), which completes the proof when the inclusion W C V is conformal.

Now consider when the inclusion W C V is not conformal. Let W = {—yn:E€eW,neWeCV.
By Proposition 2.21, W is a unitary conformal subalgebra of V, so by the above proof W has bounded
localized vertex operators. But by the same proposition, W is unitarily equivalent to W ® W€, so by
Proposition 4.11, W has bounded localized vertex operators as well. O

Theorem 4.4, combined with Proposition 2.26, says that the free fermion vertex operator algebra F°
has bounded localized vertex operators. We can use Proposition 4.11 and Theorem 4.12 to extend this
to more examples.

Theorem 4.13. Let W be a unitary subalgebra of (FO)®N for some N € Z>1. Then W has bounded
localized vertex operators.

Proof. By Proposition 4.11, (.FO)@N has bounded localized vertex operators, and so by Theorem 4.12
the same is true of any unitary subalgebra. O

We are led naturally to ask which unitary vertex operator algebras can arise as unitary subalgebras
of (.FO)@N . We have nothing approaching an exhaustive answer, but this class includes many important
examples.

Example 4.14 (The free boson). The free boson arises as the charge zero component of FO, a result
which comprises one half of the fermion-boson correspondence (see [Kac98, §5.1-5.2]). The free boson is
a unitary subalgebra of F° since it is conformal (and in particular, Li-invariant), and -invariant, as 6
exchanges the charge M and charge —M subspaces of F°.

Example 4.15 (Sublattices of ZN). Given a positive definite integral lattice A, there is a corresponding
simple vertex operator superalgebra Vi (see [Kac98, §5.5]) which has a natural unitary structure ([DL14,
Thm 4.12] and [AL17, Thm 2.9]). As discussed in [Kac98, Ex. 5.5a], (F°)®" is the vertex operator
superalgebra corresponding to the lattice Z. Given a sublattice A C ZY, one has an embedding of
vertex operator superalgebras Va C (F°)®N. Tt is straightforward to check that if A C A’, then V4 is a
unitary subalgebra of Vj/ from explicit formulas for 67 (see [AL17, Lem. 2.8], where 6 is called ¢) and
for Ly (see the proof of [Kac98, Prop. 5.5]).
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Example 4.16 (Many WZW models). Let G be compact, simple, simply connected Lie group, and
let g be its complexified Lie algebra. Since the weight 1 subspace of (F°)®¥ contains a copy of u(N)
(see [Was98, §7] for an explicit construction), given a unitary representation w : G — CV, we obtain
an embedding of the affine vertex algebra Vg a, < (F°)® at some level A, € Zo, called the Dynkin
index of 7. It is clear from the explicit formula for the action of the matrix units (Ey;) 1) on (F°)®V
(see e.g. [Was98, §7]) that Vg A, is invariant under 0r. Since Vg A, is generated by vectors with weight
1, it will automatically be invariant under L;. Thus Vg A, is a unitary subalgebra of (f0)®N.

For k € Z~o, Vg,xa, is a unitary subalgebra of Vfﬁw, and thus every Vg ra,. has bounded localized
vertex operators. The smallest Dynkin indices Ay = min, A, for each g are given in Figure 4.2 (see
[Dyn52, Thl. 5] and [LS97, Prop. 2.6]). For more details on this construction, see the discussion at the
beginning of [Pos03, §5.2].

g= An Bn Cn Dn EG E7 ES F4 G2
Ag=| 1 2 1 2 6 [ 12160 ]| 6 2

Figure 4.2: Minimal Dynkin indices for simple Lie algebras

Since the D,, level 1 VOA comes from a sublattice of Z™, we have in fact shown that the D, VOAs
have bounded localized vertex operators at all positive integer levels as a consequence of Example 4.15,
instead of just at even ones as suggested by Figure 4.2. Of course, the A, and C, VOAs also have
bounded localized vertex operators at every level as a consequence of Figure 4.2. We expect that all
affine VOAs have bounded localized vertex operators.

Example 4.17 (Many (super) Virasoro models). If ¢ € Z>1, then the Virasoro vertex operator algebra
with central charge c is a unitary subalgebra of (F°)®¢, and thus has bounded localized vertex operators.
If ¢ lies in the discrete series, then the corresponding Virasoro VOA is realized as a subalgebra of
SU(2)n, ® SU(2); inside the unitary coset subalgebra SU(2)n+1° (the Goddard-Kent-Olive construction
[GKOS86]). Thus the discrete series of Virasoro VOAs have bounded localized vertex operators, since
SU(2)n ® SU(2)1 C (F°)®2"2 is a unitary subalgebra. We get the same when c is the sum of an integer
and values in the discrete series of unitary Virasoro representations, and when c is the central charge of
a coset of one of the other examples given (and so on).

Similarly, the discrete series of (N = 1) super Virasoro vertex operator algebras are realized in the

coset of SU(2)n+2 C SU(2)n ® SU(2)2 (by [GKOS86, §3], see also [CKLO08, §6.4]), and so have bounded
localized vertex operators. In [CHK 15, §5], it is shown that the discrete series of N = 2 super Virasoro
VOAs can be embedded as unitary subalgebras of free fermions, and in a recent paper [MTY18], the
N = 4 super conformal algebra with central charge ¢ = 6 is realized as a unitary conformal subalgebra
of (F°)®S.
Remark 4.18. The main results of [CKLW18] should generalize to the case of super VOAs and Fermi
conformal nets without any major modification, and using the “super version” of that paper, one can
prove that the Fermi conformal nets constructed via Theorem 4.13 from unitary subalgebras V' C (.7:0)®N
coincide with the CKLW nets (that is, the nets constructed in [CKLW18]). The free fermion Fermi
conformal net is, by definition, generated by smeared generating fields for the free fermion vertex operator
superalgebra, and so the CKLW free fermion net agrees with the one constructed from F° via Theorem
4.4. By [CKLWI18, Cor. 8.2] and Proposition 4.11, the net constructed from (F°)®N agrees with
the CKLW net. Now by the super version of [CKLW18, Thm. 7.1], unitary subalgebras of (F°)®¥
are strongly local, and the corresponding CKLW nets agree with the ones constructed from bounded
localized vertex operators by the super version of [CKLW18, Thm. 7.4]. A direct proof that the even
part of (F)®¥ is strongly local will also appear in [CWX], which implies that any even unitary subalgebra
of (F®)®N is strongly local by the results of [CKLW18].

We expect that the above discussion should apply to any simple unitary vertex operator superalgebra
with bounded localized vertex operators. That is, we expect that such vertex operator superalgebras are
energy bounded and strongly local, and that the Fermi conformal net arising from the bounded localized
vertex operators is isomorphic to the CKLW net.
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4.3 Further directions

The goal of this paper is to demonstrate that many Fermi conformal nets can be constructed geometrically
from unitary vertex operator superalgebras via assigning values to some degenerate Riemann surfaces.
In the interest of (relative) brevity, we have not attempted to develop a general theory of degenerate
Riemann surfaces, or bounded localized vetex operators. In this section we will briefly discuss several
directions for future research.

4.3.1 Relaxing the semigroup condition for fermions

Let U C D be a Jordan domain with C*° boundary, and let ¢ : D — U be a Riemann map. For our
construction of Fermi conformal nets, it sufficed to assign bounded operators to degenerate annuli D\ U
with the property that ¢ fit into a one-parameter semigroup fixing 0. This condition was essential to
our proof, but it would be very surprising if it were anything other than a technical convenience. In the
free fermion example, we saw that the boudnedness of the operator assigned to the degenerate annulus
is equivalent to being able to write Wy as the sum of a contraction and a trace class operator. This, in
turn, is equivalent to a condition on the decay of the approzimation numbers®

an(Wy) = inf{||Wy — F|| : rank(F') < n}.

When U C D is a Jordan domain with C* boundary and U N S* # 0, we have lim, o an(Wy) = 1,
and the boundedness of the operator assigned to the degenerate annulus is equivalent to the condition
[, an(1Wy) < 0. -

The ¢ with this property on the approximation numbers (relaxing the requirement that U N St 0)
form a semigroup, and it is quite large. As a consequence of the results in this paper, it contains all
one-parameter semigroups of ¢ with common fixed point lying in the open disk D. At some point, we
would like to show that this semigroup in fact contains all ¢ mapping onto Jordan domains with C*°
boundary by carefully analyzing the approximation numbers of Wy.

4.3.2 A general theory of Segal CFT for degenerate Riemann surfaces

Eventually, we would like to upgrade our construction of maps assigned to degenerate Riemann surfaces
to a functorial field theory. That is, one should be able to precisely describe a bordism category of
degenerate Riemann surfaces, and construct examples of field theories using this bordism category as
a source. In the free fermion example, the maps that should be assigned to degenerate surfaces can
be characterized via commutaiton relations with respect to a Hardy space, just as with the degenerate
surfaces considered in this paper.

A related project is Henriques’ partial construction of extended 2d functorial conformal field theories
from Riemann surfaces with cusps [Henl4]. Henriques uses a presentation of the category of complex
bordisms which features a generator

In the language of our paper, this generator corresponds to a degenerate Riemann surface

(4.6)

We did not discuss degenerate surfaces of this type, but the results of this paper allow one to assign
bounded maps to such a degenerate surface in the free fermion example as long as the maps corresponding

8 One might also call these the singular values of W, but this term is sometimes reserved for compact operators
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to the individual annuli

are bounded.

We briefly sketch a proof of this fact, which is similar to the proof of boundedness of operators
assigned to degenerate pairs of pants in Theorem 3.21.

Given a degenerate Riemann surface such as the one in (4.6), write it as D\ (¢1(ID) U ¢2(D)) for
Riemann maps ¢;. If both annuli D\ ¢;(D) have associated bounded operators, then it must be that
[0, an(Wy,) < oo for ¢ = 1,2. Equivalently, this means that each Wy, can be written as the sum of a
contraction and a trace class operator.

Now if we set W& = (Wy, &, Wy, ), we have

* W¢1W;1 W, thg)
W (W¢2 ng W, W‘;Q .

Since ¢1(S) N ¢a(S') = 0, it is straightforward to check that the off-diagonal entries of WIW* are trace
class (in fact, they are integral operators with a smooth kernel). On the other hand, Wy, W3, can be
written as the sum of a contraction and a trace class, so the same is true of WW* and hence W. Thus
W @®W defines an admissible operator in B(H, H®H), where H = L*(S") and admissibility is understood
with repsect to the Hardy space projections p and p & p.

Arguing as in Section 3.2, one may show that the adjoint of the operator which should be assigned
the the degenerate surface in (4.6) is the implementing operator associated to (W @& W, Q), for a vector

Q which is assigned to a non degenerate Riemann surface by the free fermion Segal CFT. Boundedness
now follows as in Theorem 3.21.

4.3.3 More examples and constructions

While the class of vertex operator superalgebras which can be embedded unitarily in (f0)®N is quite
large, there are important examples for which we do not know of such an embedding. Most notably, the
lists of lattice, WZW and Virasoro models discussed in Examples 4.15, 4.16 and 4.17 are incomplete.
Ideally, we would like a general argument for each of the three cases.

It would also be desirable to show that the property of having bounded localized vertex operators is
preserved under additional operations, for example “nice” extensions. In order to prove anything about
localized vertex operators for extensions, we would require a broader notion of localized vertex operators
which includes module and intertwining operators.

4.3.4 Modules and intertwining operators

In this paper we only considered operators assigned to degenerate Riemann surfaces in the vacuum
sector, and we saw that the operators that should be assigned were related to vertex operators. To
assign operators to degenerate Riemann surfaces with boundary components labeled by sectors, we
would need to generalize our results to intertwining operators. Bounded localized intertwining operators
will play an important role in relating the tensor product of VOA modules with the tensor product of
representations of the associated conformal net, in the same way that Wassermann used the boundedness
of certain smeared intertwining operators in his proof of the fusion rules for the SU(N)y conformal nets
in [Was98]. We begin the study of bounded localized intertwining operators in the sequel article [Ten18].

5 Implementing operators
Consider the following general scenario. Let H and K be separable Hilbert spaces, and let p and ¢ be
projections on H and K, respectively. Assume that pH and (1 —p)H are infinite dimensional. With this

data, we can form the Fock spaces Fu,, and Fg q, which carry representations of CAR(H) and CAR(K),
respectively.
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Fix an orthonormal basis {&;}:cz for H, and assume that & € pH when ¢ > 0, & € (1 — p)H when
i < 0. Such a basis for H is said to be compatible with p. Recall that if I = {41,...,i,} C Z with
11 <2 < -+ <in,and if {¢;} C H is a family of vectors indexed by I, then we write

a(yr) = a(yi,) - a(¢i,) € CAR(H). (5.1)

The Fock space Fr,, has an orthonormal basis a(£7)a(§r)*Qp, where I runs over finite subsets of Z>q
and J runs over finite subsets of Zg.

Definition 5.1. Let H, K,p,q, and & be as above. Let r € B(H,K) and Qe Fk,q- Then the imple-
menting operator associated to (r,(2) is the densely defined linear map R : Fu,p, — Fk,q given by

Ra(€5)a(1)"Qp = a(rés)a(rén)™Q
We now set out to establish a sufficient condition for an implementing operator to be bounded.

Definition 5.2. Let H and K be Hilbert spaces, and let p and g be projections on H and K, respectively.
For r € B(H, K), define the diagonal expectation of r by E(r) = grp + (1 — ¢)r(1 — p). The class of
admissible operators A(H, K) is defined to be those r € B(H, K) with gr(1 — p) trace class, and which
have the property that there exist a,x € B(H, K) with ||a|]| < 1 and z trace class such that E(r) = a+z.

In other words, if we think of elements of B(H, K) as 2 X 2 matrices with respect to the decompositions
pH @& (1 —p)H and ¢K @ (1 — q)K, then for r € B(H, K) to be admissible we require the top right entry
of r to be trace class, and the diagonal entries to have a decomposition as (contraction) + (trace class).

Definition 5.2 depends on the projections p and ¢, which we omit from the notation as they will
remain fixed in our applications.

In a moment, we will give Theorem 5.3, the main result of Section 5 which partially characterizes
boundedness of implementing maps in terms of admissibility. First, we need to briefly recall some facts
about the representation theory of the CAR algebra (see Section 2.1.1).

Let ¢’ € B(K) be a projection, and assume that ¢’ — ¢ is Hilbert-Schmidt. Then there is a unique-
up-to-scalar vector qu € Fk,q such that

a(f)Qy = alg)"Qy = 0 (5.2)

for every f € ¢'K and every g € (1 — ¢')K. When ¢’ = ¢, then qu is just the ordinary vacuum vector
Qq S ]:K,q~

Theorem 5.3. Let H and K be separable Hilbert spaces, and let p and q be projections on H and K,
respectively, with pH and (1—p)H infinite dimensional. Let {&;};cz be an orthonormal basis for H which
is compatible with p. Let r € B(H, K), and assume that qr(1 — p) is trace class. Let ¢’ be a projection on
K with q' —q trace class, and let Qq/ € Fk,q be a non-zero vector satisfying (5.2). Then the implementing
operator associated to (r, Qq/) is bounded if and only if r € A(H, K).

We will prove Theorem 5.3 with several lemmas giving operations under which the boundedness of
the implementer for (r, Q) is preserved.

First, we check that the boundedness of the implementing operator is independent of the choice of
basis used to define it.

Proposition 5.4. Let H, K,p,q be as in Theorem 5.3, and let Qe Fr,q and r € B(H, K) be arbitrary.
Then the boundedness of the implementing operators associated to (r, Q) is independent of the choice of
basis £&;. When the implementing operators for two choices of bases are bounded, then their extensions to
FH,p coincide.

Proof. Let 5}1) and 51(2) be two orthonormal bases for H, and densely define linear maps R and R®
by
R™a(€5™)a(€™) Qp = a(rey™ )a(ré™) Q2

Assume that R™") extends to a bounded map on all of Fi,p. Fix finite subsets I C Zso and J C Z<o,

and write
2 2 1
a(€)a€?) 2 = > e pa€)alel))

1’,J’
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where I’ runs over finite subsets of Z>¢, J' runs over finite subsets of Z<o, and ¢;/ ;s € C. Then we have
a(r€?)a(ré) 2 = 37 er pralr€)))alrér)) 0
g

for the same coefficients ¢y ;7. We can now calculate

RVa(eP)a(e?) @y = RS ep yral€l))a(€l))
I’,J’
= > erpa(re))alrel)) 0
I’,J’

= a(réP)a(rg;”) 0
= RPa(¢7)a(¢)?)" .
Since R™ and R® agree on a basis, R®@ is also bounded and R = R®. O

Lemma 5.5. Let H,K,p,q,& be as in Theorem 5.3, and let r € B(H,K) and Qe Fr,q be arbitrary.
Let x € B(H,K) be a trace class operator with xp = 0. Then the implementer associated to (r, Q) s
bounded if and only if the implementer associated to (r + x,Q) is.

Proof. Let R be the implementer assigned to (r, Q) , and let T be the implementer assigned to (r + z, Q)
Assume that R defines a bounded operator, and we will prove that 7" is bounded as well. By Proposition
5.4, we can choose any orthonormal basis & for H to define R and T with respect to, as long as & € pH
when ¢ > 0 and &; € (1 — p)H when j < 0.

Since zp = 0 and x is compact, the singular value decomposition of x yields an orthonormal basis
{&}j<o for (1 —p)H, an orthonormal set {n;};<o C K, and scalars \; € C with z&; = \;jn;. Moreover,
since z is trace class we have Y |A;| < co. Extend &; to an orthonormal basis {{;},cz for H.

For L C Z<o a finite subset, set A\, = HZEL A¢. Recall that if we have L = {{1,...,0,} with
£y < -+ < ALy, and if {¢s}ecr is a family of vectors indexed by L, then we set

a(¥r) = a(ye,) - - a(te,, ).
We will now show that

> Ava(ne)Ra(én)”, (5.3)

LCZ<o
where the sum runs over finite subsets L. Since ||la(ne)*|| = |la(&)|| =1,
>~ Icalmr)Rar) | < IRIDY S el = IRI [T 1+ el
LCZ<o L =

and so the right-hand side of (5.3) converges absolutely in norm. Thus to verify (5.3), and in particular
that T is bounded, it suffices to check that both sides agree when applied to basis vectors a(£s)a(€r)*Q,
where J C Z<o and I C Zx>( are finite sets.

For J C Z a finite subset, {1;};cs a family of vectors and L C J, let €1,; € {£1} be such that

a(ys) = EL,JUL(i/JL)CL(%bJ\L)~
Note that ez, s is independent of the ;. With this notation, for J C Z<o and I C Z>o finite subsets we
have
Ta(€r)a(ér) Qp = al((r + x)ér)a(rér) Q2
= Z eL,Ja(a:gL)a(rfJ\L)a(r&)*ﬁ
LCJ

= Y erga(@ér)Ra(énn)alén) 2y

LCJ

> Ava(nr)Ra(é) " a(€r)a(6r) Qo

LCJ

> Ava(ne)Ra(én)” | a(ér)a(én) @

LCZ<o
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In the last equality, we used that a(ér)*a(£s)a(§r)*Qp = 0 when L C Z<o but L ¢ J. This establishes
(5.3) and completes the proof. O

The next lemma establishes Theorem 5.3 in the case where the Qq/ = ()4, the vacuum vector in Fg 4.

Lemma 5.6. Let H, K, p, q, and & be as in Theorem 5.3. Let r € B(H, K) and assume that qr(1 — p)
is trace class. Then the implementer R associated to (r,Qq) is bounded if and only if r € A(H, K).

Proof. We must show that R is bounded if and only if grp 4+ (1 — q)r(1 — p) =: E(r) can be written as
the sum of a contraction plus a trace class.
Recall that R is given by the formula

Ra(&7)a(ér)"Qp = a(r&r)a(rér) Qg (5.4)

where as usual I is a finite subset of Z>o and J is a finite subset of Z.o. Since a(g)*Qy = 0 when
g € (1—q)K, one can see that R is independent of (1 — g)rp, and so we assume without loss of generality
that (1 —q)rp =0.

By Lemma 5.5 and the assumption that ¢r(1—p) is trace class, the boundedness of (5.4) is unchanged
by subtracting off gr(1 — p). Thus it suffices to prove the lemma under the assumption that r is block
diagonal, i.e. that r = E(r) = grp+ (1 — ¢)r(1 — p).

There is a natural unitary Up : Fr,p — A(1 — p)H ® ApH given by

Una(§5)a(ér)™Qp = a(€)Q @ a(ér)"Q

for J C Z<o and I C Zx¢ finite subsets. Here, we are thinking of A(1 — p)H = F1_pym,0 and ApH =
Fpm,1,; when we write the actions of CAR(pH) and CAR((1 —p)H) on these spaces. Thus a(&7)2 gives
an orthonormal basis for A(1—p)H indexed by finite subsets J C Z<o, and a(£7)*Q gives an orthonormal
basis for ApH indexed by finite subsets I C Z>o.

Let Uk : Fr,qg — A(1 — ¢)K ® AgK be the unitary given by

Ura($s)a(t7) Qg = a(s)Q ® a(¥7)"Q

for all finite families of vectors {t; }ier C ¢K and {¢;};es C (1 —¢)K.
Since r is block diagonal, we have Ux RUp = R— ® R4, where R_ : Al —p)H — A(1 — ¢)K and
Ry : ApH — AgK are given by

R_a(£5)Q = a((1 - q)r(1 —p)&s)Q, Ria(ér)"Q = a(grpér)™Q

for finite subsets J C Z<op and I C Z>o.

Thus to complete the proof we must show that R— ® Ry is bounded if and only if r can be written
as a sum of a contraction plus a trace class, or equivalently if (1 — ¢)r(1 — p) and grp can both be
written as the sum of a contraction plus a trace class. We will prove that R_ is bounded if and only if
(1 = g)r(1 — p) can be written as contraction plus trace class, and the corresponding statement for R
and qrp is identical.

We begin with a small piece of notation. If L1 and Lo are Hilbert spaces, and t € B(L1, L), we will
write A(t) : A(L1) — A(L2) for the densely defined operator given on finite wedge products by

A (1 A Athn) = th1 A+ Aty

Note that A(t) is the restriction of

B e BB 1)
n=0 n=0
to an invariant subspace, so ||[A(t)|| < 1 when ||¢|| < 1. However, A(t) can be bounded even when ¢ is not
a contraction.
To simplify notation, let H' = (1—p)H, K' = (1—¢)K, and s = (1 — q)r(1 —p) € B(H', K’). In this
notation, R— = A(s), and we must show that R_ is bounded if and only if s can be written as the sum
of a contraction and a trace class operator.
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Assume first that s = b+ = with ||b]| < 1 and z trace class. Since z is trace class, the singular value
decomposition yields an orthonormal basis {&;};cz_, for H', an orthonormal set {n;};cz_,, and scalars
(\j) € £1(Z <o) such that z&; = \;n;. One can then verify, just as in the proof of Lemma 5.5, that

R_= > Apa(n)A(b)a(ér)’

LCZ<o

where the sum is indexed by finite subsets L and A\;, = HzeL A¢. Hence

IR-11 < D> el =TT+ [Ael) < o0

£<0

and so R_ is bounded.

Now assume that R_ is bounded, and we will prove that s can be written as the sum of a contraction
and a trace class operator. Let s = u |s| be the polar decomposition, and observe that A(|s|) = A(u™)A(s),
and thus A(|s|) is bounded. Note that A(|s|) = |A(s)| > 0. Let p<i be the spectral projection for |s|
corresponding to the interval [0, 1], and let p>1 = 1 —p<1. Observe that b := |s| p<1+p>1 is a contraction,
and let z = |s| — b. Then z is supported on p>1H’, and z > 0.

Let 41,...,%n € p>1H' be an arbitrary orthonormal family. Then we have

JAGSII = (A1 A= A byt A+ A o)
— (Ao + D1 A At b1 A A )

Z det({xvi, ;)i er

> (wy,5) -
j=1

Hence z is trace class, with ||z]|; < ||[A(]s])|]. We have therefore produced a decomposition |s| = b+«
with ||b]| < 1 and z trace class. It follows that s = ub 4+ ux is a decompostion of the same type, which
was to be shown. O

Lemma 5.7. Let H, K, p, q and & be as in Theorem 5.5. Let r € B(H, K), and assume that qr(1 — p)
is trace class. Let q¢' be a projection on K with ¢ — ¢’ trace class. Then the implementer associated to
(r,Qq) is bounded if and only if the implementer associated to (r,8y) is.

Proof. Let R be the implementer associated to (r, Qq/).

Let u € Ures(K, q) be a unitary with ¢ = uqu®, and let U € U(Fk,q) be the image of w under the
basic representation (see Secion 2.1.1). Then UQ, = Qs and Ua(f)U* = a(uf) for all f € K.

Then we see that

Ra(£1)a(6r)*Qp = a(r&s)a(rén)*Qy
= a(rés)a(rér) Uy
=Ua(u*rés)a(u*rér) Qq.
Thus R is bounded if and only if the implementer associated to (u*r,€q) is bounded. Our problem
is then reduced to showing that, under the assumption that ¢r(1 — p) is trace class, the implementer
associated to (r, ) is bounded if and only if the implementer associated to (u*r, Qq) is bounded, where
u € U(K) has the property that uqu™ — ¢ is trace class.
By Lemma 5.6, it suffices to show that if r € A(H, K), then v*r € A(H, K) as well. Assume that
r € A(H,K). Then ¢r(1 — p) is trace class, and by assumption [¢,u*] = u* (uqu™ — ¢) is as well. Hence
qu'r(l —p) =u"qr(1—p) + g, u"]r(1 —p)
is trace class as well.
Similarly, we have
E(u'r) = qu'rp+ (1 — q)u’r(1 —p)
=u"(qgrp+ (1 —q)r(1 —p)) +[g,u"lr(2p - 1)
= U*E(T) + [qa u*}r(zp - 1)7
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and since since E(r) can be written as the sum of a contraction and a trace class operator, so can E(u*r).
This establishes that u*r € A(H, K), and completes the proof. O

We can now assemble the above lemmas to give a short proof of Theorem 5.3.

Proof of Theorem 5.3: By Lemma 5.7, the implementer associated to (r, Qq/) is bounded if and only if
the implementer associated to (7, 4) is bounded, and by Lemma 5.6, this implementer is bounded if and

only if r € A(H, K). O
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