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Abstract
We introduce the notion of metrically systolic simplicial complexes. We study geo-
metric and large-scale properties of such complexes and of groups acting on them
geometrically. We show that all two-dimensional Artin groups act geometrically on
metrically systolic complexes. As direct corollaries we obtain new results on two-
dimensional Artin groups and all their finitely presented subgroups: we prove that the
Conjugacy Problem is solvable, and that the Dehn function is quadratic. We also show
several large-scale features of finitely presented subgroups of two-dimensional Artin
groups, lying background for further studies concerning their quasi-isometric rigidity.
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1 Introduction

Artin groups are amongmost intensively studied classes of groups inGeometric Group
Theory. Conjecturally, they possess nice geometric, topological, algebraic, and algo-
rithmic properties, but most of such features are established only for rather restricted
subclasses. Even in the case of two-dimensional Artin groups such basic questions as
solvability of the Conjugacy Problem or the form of the Dehn function have remained
open. One, conjectural, approach to many questions concerning Artin groups is show-
ing that they act geometrically on CAT(0) spaces. Such results were established only
for a number of rather limited subclasses ofArtin groups, for: right-angledArtin groups
(RAAGs) [12]; certain classes of 2-dimensional Artin groups [3,7]; Artin groups of
finite type with three generators [9]; 3-dimensional Artin groups of type FC [4]; spher-
ical Artin groups of type A4 and B4 [8]; 6-strand braid group [30]. Another method of
treating Artin groups is finding other non-positive-curvature-like structures describ-
ing them. Such approach was successfully carried out e.g. in [1,2,5,42,43]. In [33] the
authors undertake similar path showing that Artin groups of large type are systolic, that
is, simplicially non-positively curved. This allowed to prove many new results about
such groups. In the current article we exhibit a non-positive-curvature-like structure
of all two-dimensional Artin groups and all their finitely presented subgroups, and
conclude a number of new algorithmic, and large-scale geometric results for those
groups.

As the main tool we introduce a new notion of metrically systolic simplicial com-
plex. Roughly speaking, a simply connected flag simplicial complex with a piecewise
Euclidean metric on its 2-skeleton is metrically systolic if all essential loops in links
of vertices have (angle) length at least 2π (see Sect. 2 for details). This definition
may be treated as a metric analogue of the definition of systolic complex (see e.g.
[17,29,33,35]). Our main tool for exploring features of metrically systolic complexes
is the use of disc diagrams. It allows us to prove the following results about metri-
cally systolic complexes and groups acting on them geometrically, that is, metrically
systolic groups.

Theorem 1.1 Let X be a metrically systolic complex, and let G be a metrically systolic
group. Then the following properties hold.

(1) Every loop in X bounds a CAT(0) disc diagram (see Theorems 2.6 and 2.8 in the
text).

(2) The Dehn functions of X and G are quadratic (see Corollary 2.7).

123



Metric systolicity and two-dimensional Artin groups 1313

(3) Finitely presented subgroups of G are metrically systolic (see Theorem 3.1).
(4) If G is torsion-free and gm is conjugated to gn only when gn = gm, for every

g ∈ G, then the Conjugacy Problem is solvable in G (see Theorem 3.6).
(5) X and G have constant filling radius for 2-spherical cycles (see Theorem 3.7

and Corollary 3.8).
(6) Morse Lemma for 2-dimensional quasi-discs in X (see Theorem 3.9).

We believe that metrically systolic complexes deserve further extensive studies on
their own; see a list of open questions in Sect. 7. Geometrically, metric systolicity
enables us to formalize a weaker notion of non-positively curved space where one
only requires every minimal filling disc of a 1-cycle to be non-positively curved.
This naturally arises by examining the geometry of 2-dimensional Artin groups. It is
interesting to compare this with the work of Petrunin and Stadler [44], where (roughly
speaking) they showed any minimal disc in a CAT (0) space is CAT (0). Thus it is
natural to wonder whether one can set up this weaker notion in a more analytical way
and apply it to natural classes of examples.

In the current paper we focus on the use of metric systolicity in the context of Artin
groups. To this end, starting with the standard Cayley complex for a 2-dimensional
Artin group G, we modify it to obtain a metrically systolic G–complex. Therefore,
we conclude the following.

Theorem 1.2 (Theorem 6.1) Two-dimensional Artin groups are metrically systolic.

We refer to the next section for an intuitive explanation of the construction of
the complex, as well as comparison with our previous work on constructing systolic
complexes for large-type Artin groups from [33].

Direct consequences of Theorems 1.1 and 1.2 are new results on 2-dimensional
Artin groups and their subgroups listed in Corollary 1.3. Let us note that even if 2-
dimensional Artin groups were CAT(0), this, a priori, would not say anything about
their finitely presented subgroups—this suggests an important advantage of metric
systolicity. Moreover, by Brady and Crisp [3], there are 2-dimensional Artin groups
which can not act nicely on 2-dimensional CAT(0) complexes. On the other hand,
metric systolicity enables us to stay in the 2-dimensional world—one need to study
only CAT(0) disc diagrams. This will be convenient for our further work in [34]
concerning quasi-isometries of 2-dimensional Artin groups.

Corollary 1.3 Let G be a finitely presented subgroup of a 2-dimensional Artin group.
Then:

(1) G has quadratic Dehn function and, in particular, solvable Word Problem;
(2) G has solvable Conjugacy Problem;
(3) G has constant filling radius for 2-spherical cycles;
(4) Morse Lemma for two-dimensional quasi-discs in G holds.

Dehn function, Word Problem, and Conjugacy Problem are among the most basic
notions explored in the context of any group. Still, little was known about them for
2-dimensional Artin groups and their finitely presented subgroups prior to our work.

As far as we know there have been no general results concerning Dehn function
for 2-dimensional Artin groups before. Chermak [18] proved the Word Problem is
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1314 J. Huang, D. Osajda

solvable for 2-dimensional Artin groups, but no general statement of this type have
been known for finitely presented subgroups.

Solvability of the Conjugacy Problem for 2-dimensional Artin groups and their
finitely presented subgroups follows directly from Theorem 1.1 (4). It is so because
2-dimensional Artin groups are torsion-free by [13], and their cyclic subgroups are
undistorted (see Theorem 1.4 below). Prior to our result solvability of the Conjugacy
Problem was established only for a few particular subclasses of Artin groups: braid
groups [27], finite type Artin groups [10,15,16,23], large-type Artin groups [1,2],
triangle-free Artin groups [43], 3-dimensional Artin groups of type FC [4], certain 2-
dimensional Artin groups with 3 generators [3], some Artin groups of Euclidean type
[11,24,25,38,39], RAAG’s [14,32,45,47]. In particular, the question about solvability
of the Conjugacy Problem has been open for the class of 2-dimensional Artin groups.

Assertions (3) and (4) from Corollary 1.3 could be derived without referring to
metric systolicity. However, for the proof of the strong form of (3), as presented in
Theorem 3.7 in the text, the use of metric systolicity is very convenient. This result,
in turn, is a crucial ingredient in the proof of the Morse Lemma for two-dimensional
quasi-discs (see the proof of Theorem 3.9). The latter is an important large-scale
feature of metrically systolic complexes, groups, and of 2-dimensional Artin groups.

The metrically systolic complexes constructed in Theorem 1.2, as well as the large-
scale features mentioned above, will play fundamental role in the study of quasi-
isometric invariants of 2-dimensional Artin groups in our subsequent work [34]. For
applications in [34] we need another result, presented in the following theorem. It does
not rely on metric systolicity, and follows from known facts, but it seems that it is not
present in the literature.

Theorem 1.4 (Theorem 7.7 andCorollary 7.8) Let A� be a 2-dimensional Artin group.
Then

(1) every abelian subgroup of A� is quasi-isometrically embedded;
(2) nontrivial solvable subgroups are either Z or virtually Z

2.

Comments on the proof of Theorem 1.2. Here we present a rough idea of the con-
struction of metrically systolic complexes for two dimensional Artin groups.

Let � be a finite simple graph with each of its edges labeled by an integer ≥ 2. An
Artin group with defining graph �, denoted A� , is given by the following presentation.
The generators of A� are in one to one correspondence with vertices of �, and there is
a relation of the form aba · · ·

︸ ︷︷ ︸

n

= bab · · ·
︸ ︷︷ ︸

n

whenever two vertices a and b are connected

by an edge labeled by n.
An Artin group is of dimension d if it has cohomological dimension d. By Charney

and Davis [13], A� has dimension ≤ 2 if and only if for any triangle � ⊂ � with
its sides labeled by p, q, r , we have 1

p + 1
q + 1

r ≤ 1. In particular, the class of all
large-typeArtin groups, where the label of each edge in� is≥ 3, is properly contained
in the class of Artin groups of dimension ≤ 2.

Let A� be an Artin group of dimension≤ 2 and let X∗
� be the presentation complex

of A� . A natural way to metrize X∗
� is to declare each 2-cell in X∗

� is a regular polygon
in the Euclidean plane. However, if we take 2-cells �1 and �2 (say, two n-gons) such
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Π1 Π2

v1
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Fig. 1 Adding the edge e and the triangles �1 = o1o2v1, and �2 = o1o2v2 (in the universal cover of X
∗
�)

that P = �1 ∩ �2 is a path with ≥ 2 edges, then any interior vertex of P is not
non-positively curved. Let oi be the center of �i and let the two endpoints of P be
v1 and v2. Let K be the region in �1 ∪ �2 bounded by the 4-gon whose vertices are
o1, o2, v1 and v2. Those positively curved corner points are contained in K . Now we
add a new edge e between o1 and o2 and add two new triangles {�i }2i=1 such that the
three sides of �i are e, o1vi and o2vi ; see Fig. 1.

Geometrically, one can think of K as a configuration sitting inside the Euclidean 3-
space E

3. Then positively curved points in K give rise to corners in the configuration.
Now we use the polyhedron bounded by K ∪ �1 ∪ �2 to fill these corners. Combi-
natorially, one can think of �1 ∪ �2 as a replacement of K to get rid of positively
curved points in the disc diagram.

Now we decide the length of e. From the geometric viewpoint, e should be shorter
if P is longer. From the combinatorial viewpoint, we would like oi to be flat after we
replace K by �1 ∪ �2. Thus ∠o1(v1, o2) = ∠o1(o2, v2) = |P|

4n 2π (|P| is the number
of edges in P), which determines the length of e.

Pick a triangle� ⊂ �, then� gives rise to three 2-cells arranged in a cyclic fashion
around a vertex v. The condition on two dimensionality of A� implies v is already
non-positively curved in such configuration, so we do not apply any modifications
here.
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1316 J. Huang, D. Osajda

The main difference between the construction in [33] and the one in this paper is
that the former is purely combinatorial, while the current one uses both the metric
and combinatorial structure. Thus the method in this paper has more flexibility and
applies to a much larger class of Artin groups. Moreover, the structure of flat points
in the disc diagrams is more convenient for our later use in [34]. However, since
we are now outside the purely combinatorial setting, some results from [33]—e.g.
biautomaticity—are much harder to obtain.

Organization of the paper. In Sect. 2 we define metrically systolic complexes and
prove their fundamental property—every cycle can be filled by a CAT (0) disc dia-
gram. In Sect. 3, we prove the rest of properties in Theorem 1.1, using CAT (0) disc
diagrams as a basic tool. In Sect. 4, we construct the metrically systolic complexes for
2-generated Artin groups. In Sect. 5, we study the local properties of these complexes
with two purposes. First we show the complexes in Sect. 4 are indeed metrically sys-
tolic. Second we show that there are no local obstructions to metric systolicity if we
glue these complexes together under certain conditions. In Sect. 6 we glue the com-
plexes for dihedral Artin groups to construct the metrically systolic complexes for any
2-dimensional Artin groups, and prove Theorem 1.2. In Sect. 7, we prove Theorem 1.4
and leave some open questions about metrically systolic groups and complexes.

2 Metrically systolic complexes

In this sectionwe introduce the notion ofmetrically systolic complex. Thenwe show its
most important feature, used later extensively for proving other properties ofmetrically
systolic complexes and groups. The feature is the existence of CAT(0) disc diagrams
filling any cycle inside the complex; see Theorems 2.6 and 2.8. The proofs presented in
Sect. 2.2 gobymodifying anygivendisc diagram to aCAT(0) onebyperforming afinite
sequence of local “moves”. As an immediate consequence we obtain the quadratic
Dehn function in Corollary 2.7.

2.1 Definition

Let X be a flag simplicial complex with its two-skeleton X (2) equipped with a metric
d in which every 2-simplex (triangle) is isometric to a Euclidean triangle. For a vertex
v ∈ X its link, denoted lk(v, X (1)), is the full subcomplex (subgraph) of X (1) spanned
by all vertices adjacent to v. Every link is equipped with an angular metric, defined
as follows. For an edge v1v2, we define the angular length of this edge to be the angle
∠v(v1, v2) with the apex v. This turns the link into a metric graph, and the angular
metric, which we denote by d∠, is the path metric of this metric graph (note that a
priori we do not know whether ∠v(v1, v2) = d∠(v1, v2) for adjacent vertices v1 and
v2). The angular length of a path ω in the link, which we denote by length∠(ω), is
the summation of angular lengths of edges in this path. In this paper we assume that
the following weak form of triangle inequality holds for angular length in X : for each
v ∈ X and every three pairwise adjacent vertices v1, v2, v3 in the link of v we have
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Metric systolicity and two-dimensional Artin groups 1317

that ∠v(v1, v3) ≤ ∠v(v1, v2) + ∠v(v2, v3). Then we call X (with metric d) a metric
simplicial complex.

Remark 2.1 Note that we allow that the inequality becomes equality—intuitively it
corresponds to degenerate 2-simplices in a link, which corresponds to degenerate
3-simplices in X .

For k = 4, 5, 6, . . ., a simple k-cycle C in a simplicial complex is 2-full if there is
no edge connecting any two vertices in C having a common neighbor in C .

Definition 2.2 (Metrically systolic complexes and groups)A link in ametric simplicial
complex is 2π -large if every 2-full simple cycle in the link has angular length at least
2π . A metric simplicial complex X is locally 2π -large if every its link is 2π -large.
A simply connected locally 2π -large metric complex is called a metrically systolic
complex.Metrically systolic groups are groups acting geometrically by isometries on
metrically systolic complexes.

Remark 2.3 A systolic complex, that is, a connected simply connected flag simplicial
complex for which all full cycles in links consist of at least six edges is metrically
systolic when equipped with the metric in which all triangles are Euclidean triangles
with edges of unit lengths. For more on systolic complexes see e.g. [17,19,26,29,33,
35,36,49].

2.2 CAT(0) disc diagrams

A standard reference for singular disc diagrams (or van Kampen diagrams) is [37,
Chapter V]. Our approach is close to the ones from [17, Section 5] and [35, Section 1].
The material is rather standard, however we need a precise description of diagram
modifications for further use.

A singular disc D is a simplicial complex isomorphic to a finite connected and
simply connected subcomplex of a triangulation of the plane. There is the (obvious)
boundary cycle for D, that is, a map from a triangulation of 1-sphere (circle) to the
boundary of D, which is injective on edges. For a cycle C in a simplicial complex X ,
a singular disc diagram for C is a simplicial map f : D → X from a singular disc D,
whichmaps the boundary cycle of D ontoC ; see Fig. 2 (left). By the relative simplicial
approximation theorem [50], for every cycle in a simply connected simplicial complex
there exists a singular disc diagram (cf. also van Kampen’s lemma e.g. in [37, pp. 150–
151]). Below we describe how to obtain singular disc diagrams with some additional
properties, by modifying a given one.

A singular disc diagram is called nondegenerate if it is injective on all simplices.
It is reduced if distinct adjacent triangles (i.e., triangles sharing an edge) are mapped
into distinct triangles. The area of a singular disc diagram is the number of 2-simplices
(triangles) in the underlying singular disc. A singular disc diagram for a cycle C in X
is minimal if it has the minimal area among singular disc diagrams for C in X . For a
metric simplicial complex X and a nondegenerate singular disc diagram f : D → X
we equip D with ametric in which f |σ is an isometry onto its image, for every simplex
σ in D. Then, f is aCAT(0) singular disc diagram if D is CAT(0), that is, if the angular
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1318 J. Huang, D. Osajda

Fig. 2 A singular disc with the boundary cycle C = (v1, v2, . . . , v86) (left), and a singular strip for a pair
P = (. . . , v−1, v0, v1, v2, . . .) (solid thick), P ′ = (. . . , v′−1, v

′
0, v

′
1, v

′
2, . . .) (dashed thick)

length of every link in D being a cycle (that is, the link of an interior vertex in D) is
at least 2π .

Parallelly to singular disc diagrams one may consider a related notion of singular
strip diagrams. A singular strip S is a simplicial complex isomorphic to an infinite
connected and simply connected subcomplex of a triangulation of the plane whose
complement has two infinite components. The two infinite paths being boundaries of
those components are called the boundary paths of S. Having two infinite paths P, P ′
in X , a singular strip diagram for the pair P, P ′ is a simplicial map f : S → X from a
singular strip S into X mapping boundary paths of S onto, respectively, P and P ′; see
Fig. 2 (right). A nondegenerate, reduced or CAT(0) singular strip diagram is defined
analogously as the corresponding singular disc diagram.

Having a singular disc diagram f : D → X for a cycle C in X we describe a way
of producing a new singular disc diagram f ′ : D′ → X for C , with some additional
properties (see e.g. Theorem 2.6 below). In order to do this we need elementary
operations—moves—described below.

A-move:Assume there exist pairwise adjacent vertices u, v, w not bounding a triangle
in D, that is, there are vertices v1, . . . , vk in the region in D bounded by edges between
u, v, w. The new singular disc D′ is obtained from D by removing all the vertices
vi (and hence also edges containing them); see Fig. 3 (at the top). The new map
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Metric systolicity and two-dimensional Artin groups 1319

Fig. 3 Moves

f ′ : D′ → X is defined as f ′(x) = f (x), for all vertices x in D′, and then extended
simplicially. Such modification is called the A-move on u, v, w and is denoted by
A(u, v, w).

For the next moves we assume that the situation as above does not happen, that is,
each triple of pairwise adjacent vertices defines a triangle in D. In particular it means
that for each internal edge uv in D there are exactly two vertices w, z each adjacent
to both u and v.

B-move: Assume there are two triangles uvw and uvz such that f (w) = f (z). The
new singular disc D′ is obtained from D by removing the edge uv and adding an edge
wz; see Fig. 3. By our assumptions D′ is a simplicial singular disc. The new map
f ′ : D′ → X is defined as f ′(x) := f (x), for all vertices x in D′, and then extended
simplicially. Such modification is called B-move on u, v and is denoted by B(u, v).

C-move: Assume there is an edge u1u2 such that f (u1) = f (u2). Such edge need to
be internal, so that there are two triangles u1u2w and u1u2z containing the edge. The
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1320 J. Huang, D. Osajda

new singular disc D′ is obtained from D by removing u1, u2 (and all edges containing
them), and then adding a new vertex u adjacent to all vertices (of D except u1, u2)
that are adjacent in D to u1 or u2; see Fig. 3. By our assumptions D′ is a simplicial
singular disc. The new map f ′ : D′ → X is defined as f ′(x) := f (x), for all vertices
x �= u in D′, and f ′(u) := f (u1) = f (u2), and then extended simplicially. Such
modification is called C-move on u1, u2 and is denoted by C(u1, u2).

D-move: Assume there is a vertex v in D with the link being a cycle (that v is an
internal vertex), and such that for a vertex u adjacent to w, z in the link the vertices
f (w) and f (z) are adjacent (we write f (w) ∼ f (z)). Then the new singular diagram
D′ is obtained from D by removing the edge uv and adding an edge wz; see Fig. 3
(bottom). The new map f ′ : D′ → X is defined as f ′(x) := f (x), for all vertices x in
D′, and then extended simplicially. Such modification is called D-move on v, u and is
denoted by D(v, u).

The following lemma is essentially the same as [17, Lemma 5.1] and [35,
Lemma 1.6]. Although in the latter two only simple cycles are considered, the general
case follows by decomposing a given cycle into simple pieces. We omit the straight-
forward proof.

Lemma 2.4 Let f : D → X be a singular disc diagram for a cycle C in a simplicial
complex X. Then by applying A-moves, B-moves, and C-moves the diagram may be
modified to a nondegenerate reduced singular disc diagram for C. In particular, any
minimal singular disc diagram for C is nondegenerate and reduced.

The main technical tool for dealing with metrically systolic complexes are CAT(0)
singular disc diagrams. Their existence is established in the following theorem. It is
an analogue of a result for systolic complexes obtained in [17, pp. 159–161] and [35,
Lemma 1.7]. The proof is also an analogue of the systolic case proof. Before the
theorem we prove a useful lemma.

Lemma 2.5 Let f : D → X be a singular disc diagram into a metrically systolic
complex X. Suppose that there is an interior vertex v in D whose link is a cycle C of
angular length less than 2π . Then, by performing a finite number of A-, and D-moves
we may find a singular disc diagram f ′ : D′ → X such that D′ is a union of the full
subcomplex of D spanned by all vertices of D except v, and triangles with vertices in
C, and the map f ′ agrees with f on all vertices of D′ and on all edges coming from
D.

Proof We proceed by induction on the combinatorial length of C . If this length is 3
then we perform A-move. Assume that C consists of at least 4 edges. Denote C =
(v1, v2, . . . , vk). Then f (C) = ( f (v1), f (v2), . . . , f (vk)) is a cycle in X of angular
length less then 2π . There is 2 < l ≤ k such that C ′ = ( f (v1), f (v2), . . . , f (vl))
is a simple cycle. This is a cycle in the link of f (v) of angular length less than 2π .
If l = 3 then f (v1) and f (v3) are adjacent. If l > 3 then, by metric systolicity, C ′
is not 2-full. This means that there exists a vertex, say f (v2), such that its neighbors
in C ′—in our case f (v1) and f (v3)—are adjacent. Hence we may perform D-move
D(v, v2), to obtain a new singular disc diagram f

′ : D′ → X . Furthermore,∠v(v1, v3)
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Metric systolicity and two-dimensional Artin groups 1321

in D
′
is at most ∠v(v1, v2) + ∠v(v2, v3) in D, so that the angular length of the link of

v in D
′
, being the cycle (v1, v3, . . . , vk), is less than 2π . By the inductive assumption

we obtain the desired diagram f ′ : D′ → X . 
�
Theorem 2.6 (CAT(0) disc diagram) Let f : D → X be a singular disc diagram for
a cycle C in a metrically systolic complex X. By performing a finite number of A-,
B-, C-, D-moves the diagram may be modified to a CAT(0) nondegenerate reduced
singular disc diagram f ′ : D′ → X for C. Furthermore:

(1) f ′ does not use any new vertices in the sense that there is an injective map i from
the vertex set of D′ to the vertex set of D such that f = f ′ ◦ i on the vertex set
of D;

(2) thenumber of 2-simplices in D′ is at most the number of 2-simplices in D;
(3) any minimal singular disc diagram for C is CAT(0) nondegenerate and reduced.

Proof We proceed with successive diagrams f : D → X , starting from f := f
depending on the following cases.

Case 1: A-move, B-move, or C-move may be performed. Then the new diagram
f
′ : D′ → X is obtained by performing the corresponding move.

Case 2:NoA-move, B-move, or C-movemay be performed and there exists an internal
vertex v whose link is a cycle C = (v1, v2, . . . , vk) of angular length less than 2π (in
the metric induced from X ). Then, by Lemma 2.5 there exists a singular disc diagram
f
′ : D

′ → X , where D
′
is obtained from D by replacing the star of v with a disc

without internal vertices, and f
′
coincides with f on all vertices except v.

Case 3:We are not in situations from Case 1 or Case 2. Then the diagram f : D → X
is a CAT(0) nondegenerate reduced singular disc diagram for C .

After performing modifications as in Case 2, the area of the diagram decreases.
Proceeding as in Case 1, that is performingA-moves, B-moves, or C-moves eventually
decreases the area of the diagram. It is so because A-move and C-move decrease the
area, and after performing B-move we are in position to perform A-move or C-move.
Hence eventually we end up in Case 3.

Assertions (1), (2) and (3) follow immediately from the construction. 
�
Corollary 2.7 The Dehn function of a metrically systolic complex or group is at most
quadratic.

For further applications (e.g. in [34]) wewill need singular disc diagramswith some
further features (see Theorem 2.8 below). To construct themwe have to consider other
types ofmoves: E-moves and F-moves described below.Again, starting froma singular
disc diagram f : D → X into a metrically systolic complex X we construct a new
diagram f ′ : D′ → X . For the new moves we assume that we are in the situation
when no A-, B-, or C-move may be performed, and there is an interior vertex v and
two vertices w, z in its link such that f (w) = f (z). Observe that then w and z are not
adjacent.

E-move:Assume that there does not exist a vertex different than v and adjacent to both
w, z. We assume furthermore that the angular lengths of two paths betweenw and z in
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the link ofv are strictly smaller than 2π . The newdisc diagram f ′ : D′ → X is obtained
as follows. First we construct an intermediate singular disc D′′ by “collapsing” vertices
w, z to a single vertex x , that is, we removew, z, and introduce a new vertex x adjacent
to all vertices that were adjacent in D to w or z; see Fig. 4 (top). Furthermore, we add
two “copies” v′, v′′ of the vertex v, adjacent to vertices in two paths of the link of v,
and to x . A singular disc diagram f ′′ : D′′ → X is defined by setting f ′′(x) = f (w),
f ′′(v′) = f ′′(v′′) = f (v), and f ′′ agrees with f otherwise. Observe that the angular
lengths of links of v′ and v′′ are strictly smaller than 2π . Hence, by double application
of Lemma 2.5 we find a desired singular disc diagram f ′ : D′ → X with the two links
filled without internal vertices.

F-move:Assume that there exists a vertex u different than v and adjacent to bothw, z.
We first construct a singular disc diagram f ′′ : D′′ → X by joining w and z by an
edge, removing edges from v “crossing” the new edge wz and adding a copy v′ of
v adjacent to vertices in the original link of v not adjacent to v anymore; see Fig. 4
(bottom). In D′′ there is a triangle wzu, and performing the A-move A(u, w, z) we
obtain the desired singular disc diagram f ′ : D′ → X .

Theorem 2.8 (CAT(0) disc diagram II) Let f : D → X be a singular disc diagram
for a cycle C in a metrically systolic complex X. By performing a finite number of
A-, B-, C-, D-, E-, F-moves the diagram may be modified to a CAT(0) nondegenerate
reduced singular disc diagram f ′ : D′ → X for C satisfying the following property.
For every flat vertex v ∈ D′ the restriction f |St(v) is injective. Furthermore:

(1) f ′ does not use any new vertices in the sense that there is an injective map i from
the vertex set of D′ to the vertex set of D such that f = f ′ ◦ i on the vertex set
of D;

(2) the number of 2-simplices in D′ is at most the number of 2-simplices in D;
(3) any minimal singular disc diagram for C is such.

Proof ByTheorem 2.6, using finitelymanyA-, B-, C-, D-moves wemaymodify f to a
CAT(0) nondegenerate reduced singular disc diagram f . Moreover, we may reach the
situation when no A-, B-, C-move is possible. If for every flat vertex v the restriction
f |St(v) is injective thenwe are donewith f ′ = f . If not, we are in a position to perform
an E-move or an F-move. Both decrease the area.

Applying iteratively the above procedure we finally obtain the desired singular
disc diagram f ′ : D′ → X . Assertions (1), (2), and (3) follow directly from the
construction. 
�

Remark 2.9 Observe that the assertion of the lemma is not true if the vertex is not
flat—the star of such vertex could be mapped onto the simplicial cone over a wedge
of two cycles.

Remark 2.10 We could reduce the number of moves for proving Theorem 2.6 or Theo-
rem 2.8 by allowing singular discs to be non-simplicial, as e.g. in [35, proof of Lemma
1.6]. We decided to stay in the realm of simplicial complexes.
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Fig. 4 E-move and F-move

3 Properties of metrically systolic complexes and groups

In this section we prove several properties of metrically systolic complexes and
groups. In particular, such properties hold for two-dimensional Artin groups, and—as
explained in Sect. 3.1 below—for all their finitely presented subgroups.

3.1 Finitely presented subgroups

In this section we show that being metrically systolic for groups is inherited by taking
finitely presented subgroups. It follows that all subsequent features (and the quadratic
isoperimetric inequality established above) of metrically systolic groups are valid
also for all their finitely presented subgroups. In particular, they hold for all finitely
presented subgroups of two-dimensional Artin groups.

Theorem 3.1 Finitely presented subgroups of metrically systolic groups aremetrically
systolic.

123



1324 J. Huang, D. Osajda

Proof In view of [31, Theorem 1.1] (compare also [49, Corollary 5.8]) it is enough to
show that the class of locally 2π -large complexes is closed under taking covers and
full subcomplexes.

Let ˜X → X be a cover of a locally 2π -large complex X . Then links in ˜X are
combinatorially isomorphic to links in X . It follows that such links equipped with a
metric induced by the isomorphism are 2π -large. Such metric on links is the angular
metric coming from themetric on ˜X inducedby the covering.Therefore, ˜X ismetrically
systolic.

Let X̄ be a full subcomplex of a metrically systolic complex X , equipped with a
subcomplex metric. Let C be a 2-full simple cycle in the link of a vertex of X̄ . By
fullness of X̄ , C is 2-full in X , hence its angular length is at least 2π . Therefore, the
angular length of C in X̄ is at least 2π as well. It follows that X̄ is locally 2π -large. 
�

3.2 Solvability of the Conjugacy Problem

In this section we show that the Conjugacy Problem is solvable for torsion-free
metrically systolic groups satisfying some additional technical assumption; see The-
orem 3.6. The proof is a typical argument for showing solvability of the Conjugacy
Problem in the non-positive curvature setting; see e.g. [6, pp. 445–446]

Below, and in further parts of the articlewe use the following convention concerning
quasi-isometries.

Definition 3.2 Assume K , L > 1. A (K , L)-quasi-isometric embedding is a map
f : (X , dX ) → (Y , dY ) between metric spaces such that

K−1dX (x, y) − L ≤ dY ( f (x), f (y)) ≤ KdX (x, y) + L,

for all x, y ∈ X .
A (K , L)-quasi isometry is a (K , L)-quasi-isometric embedding f : X → Y having

an L-coarse inverse f̄ : Y → X , that is, a (K , L)-quasi-isometric embedding such
that dX (x, f̄ ◦ f (x)) ≤ L for all x ∈ X , and dY (y, f ◦ f̄ (y)) ≤ L for all y ∈ Y .

For the rest of the section let G be a torsion-free group acting geometrically on
a metrically systolic complex X . We will use here the induced metric d in the one-
skeleton of X . By scaling the metric we may assume that all edges have length at most
1. Let S be a finite (symmetrized) generating set for G, and let � := Cay(G, S) be
the corresponding Cayley graph. Let dS be the word metric on G and (the 0-skeleton
of) �, and |g|S = dS(1G , g).

The following two lemmas are standard but we formulate them for the purpose
of refereeing to constants appearing later. The first one is just the Milnor-Schwarz
lemma.

Lemma 3.3 There exist K1, L1 > 1 such that for every vertex x ∈ X the orbit map
� : (G, dS) → X : g �→ gx is a (K1, L1)-quasi-isometry, and for every vertex v ∈ X
there exists g ∈ G such that d(v,�(g)) ≤ L1.

Let D be a planar CAT(0) 2-complex constructed from triangles isometric to trian-
gles in X . Let δ be a CAT(0) geodesic between two given vertices v, u in D. A path δ′
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in the 1-skeleton of D is approximating the geodesic δ if δ′ is contained in the union
of all edges and triangles intersecting δ, and δ′ is the shortest path with this property.
The following is a consequence of e.g. [6, Proposition I.7.31].

Lemma 3.4 There exist constants K2, L2 > 1 depending only on the geometry of X
(in fact, on the set of isometry types of triangles in X) such that K−1

2 |δ′|− L2 ≤ |δ| ≤
K2|δ′| + L2.

Let K := max{K1, K2} and L = max{L1, L2}. In particular, it means that the
assertions of Lemmas 3.3 and 3.4 hold when the corresponding constants Ki and Li

are replaced by K and L .

Lemma 3.5 Let g, h ∈ G be conjugate elements, such that, for every vertex v ∈ X,
the shortest path between v and gv consists of at least 4 edges. Then there exists an
element p ∈ G, conjugating them, that is, g = php−1, and such that |p|S ≤ A, where
A is a constant depending only on |g|S and |h|S (and on the action of G on X).

Proof For every generator s ∈ S, choose a geodesic 1-skeleton path q(s) in X , between
x and sx . Let p be an element conjugating g and h. We will show that starting with p
we may find a conjugator p′ with |p′|S ≤ A, where A is a constant depending only
on |g|S and |h|S .

Let αS, γS , and ηS be geodesics in � between 1G and, respectively p, g, and h. Let
s p1 · · · s pa , sg1 · · · sgb , and sh1 · · · shc be words in S defined by these geodesics. Let α be the
concatenationof pathsq(s p1 ), s p1 q(s p2 ), s p1 s

p
2 q(s p3 ) . . . , s p1 · · · s pa−1q(s pa ). Similarly, let

γ be the concatenation of paths q(sg1 ), sg1 q(sg2 ), sg1 s
g
2q(sg3 ) . . . , sg1 · · · sgb−1q(sgb ), and

let η be the concatenation of paths q(sh1 ), sh1q(sh2 ), . . . , sh1 · · · shc−1q(shc ). Consider the
cycle C based at x , being the concatenation of (in this order) γ, gα, pη, and α; see
Fig. 5.

By Lemma 3.3, there exist constants E1 and F1 depending only on |g|S and |h|S
(and the action of G on X ) such that |γ | ≤ E1, |η| ≤ F1, where | · | denotes the
d-length. In what follows we will consider constants depending on E1, F1, and K , L
leading, eventually, to a constant A as in the statement of the lemma.

Let f : D → X be a singular disc diagram for the cycle C . We create a singular
strip diagram f : D → X as follows. For every n ∈ Z let Dn be a copy of D, and let
f n be the simplicial map such that f n(v) := gn f (v), for every vertex v ∈ D—here
we identify Dn with D. In particular f 0 = f . Next, for every n, we identify the copy
of the path gα in Dn with the copy of the path α in Dn+1. This way we obtain a
singular strip D = ⋃

n∈Z Dn . We define the map f as the union of maps f n , for all n.
This way we obtain the singular strip diagram f : D → X for the pair of paths γ , pη,
where γ is the concatenation of paths gnγ , and pη is the concatenation of paths gn pη,
for all n ∈ Z; see Fig. 5. Observe that there is a 〈g〉-action on D: gnDm = Dn+m , and
that the map f is equivariant with respect to this action and the 〈g〉-action on X .

For every m �= n, and for each triple of pairwise adjacent vertices v1, v2, v3 in
D, the A-moves A(gmv1, gmv2, gmv3) and A(gnv1, gnv2, gnv3) may be performed
independently, since the shortest path between gmvi and gnv j has at least 3 edges.
Similarly, B-moves, C-moves, and D-moves may be performed independently for
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Fig. 5 Scheme for proving
Lemma 3.5

x

gx

px

gpx = phx

α

gα

γ pη

D = D0

D−1

D1

g−1x

β

gβ

distinct translates of the defining vertices. Thus, we may define an equivariant A-
move on u, v, w as the modification consisting of A-moves A(gnu, gnv, gnw), for
all n. Similarly we define equivariant B-move, equivariant C-move, and equivariant
D-move. As an equivariant analogue of Theorem 2.6 we claim that by performing a
finite number of equivariant moves the singular strip diagram f : D → X may be
modified to a CAT(0) nondegenerate reduced singular strip diagram f

′ : D′ → X for
the pair γ , pη.

Let β ′ be the CAT(0) geodesic in D
′
with endpoints x, px (that is, their preimages

in D
′
). Let dD′ denote the CAT(0) distance in D

′
. Since dD′(x, gx)

≤ |γ | ≤ E1, and dD′(x, hx) ≤ |η| ≤ F1, by the CAT(0) geometry, and the 〈g〉-
invariance of D

′
, we have

dD′(y, gy) ≤ max{E1, F1} =: E,

for every point y ∈ β ′.
Let β = (v0 = x, v1, . . . , vr = px) be a path in the 1-skeleton of D

′
with

endpoints x, px (that is, their preimages in D
′
) approximating the CAT(0) geodesic

in D
′
between x and px . Then gβ approximates gβ ′, and hence, for every vertex v of

β, we have

dD′(v, gv) ≤ dD′(v, y) + dD′(y, gy) + dD′(gy, gv) ≤ 1 + E + 1, (1)
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where y ∈ β ′ is a point closest to v. Using Lemma 3.4 we get

d(v, gv) ≤ K (E + 2) + L. (2)

For every i ∈ {1, . . . , r−1}we find gi ∈ G such that d(vi , gi x) ≤ L (see Lemma 3.3).
Additionally, we set g0 = 1G and gr = p. Then, by Lemma 3.3, for every i =
0, 1, . . . , r − 1 we have

dS(gi , gi+1) = dS(ggi , ggi+1) ≤ Kd(gi x, gi+1x) + K L

≤ K (d(gi x, vi ) + d(vi , vi+1) + d(vi+1, gi+1x)) + K L

≤ K (L + 1 + L) + K L =: L. (3)

By (1) and (2), we have

dS(gi , ggi ) ≤ Kd(gi x, ggi x) + K L

≤ K (d(gi x, vi ) + d(vi , gvi ) + d(gvi , ggi x)) + K L

≤ K (L + E + 2 + L) + K L =: ̂L. (4)

For every i we choose a dS-geodesic between gi andeqnarray gi+1. Let βS be their
concatenation. This is a path in � connecting 1G and p. By (3) and (4), for every
a ∈ βS , we have

dS(a, ga) ≤ dS(a, gi ) + dS(gi , ggi ) + dS(ggi , ga) ≤ 2L + ̂L =: ˜L,

where gi is the closest to a among gi ’s.
Now consider the quadrilateral Q in � formed by paths γS, βS, pηS, gβS . For

every vertex v on βS pick a geodesic γv between v ∈ βS and gv ∈ gβS . There
are at most A := |S|˜L+1 different up to G-action on � paths of length less than ˜L .
Hence if |βS|S > A then there are two vertices v, v′ ∈ βS such that the two paths
γv and γv′ are the same up to G. Cutting Q along such paths and gluing together
we obtain a quadrilateral Q′ formed by paths γS, β

′
S, pηS, gβ ′

S , and such that again
dS(a, ga) ≤ ˜L , for all a ∈ β ′

S . This way we construct a quadrilateral Q′′ consisting
of paths γS, β

′′
S , pηS, gβ ′′

S , with |β ′′
S |S ≤ A. Hence we obtain an element p′ ∈ G

conjugating g and h, with |p′|S ≤ A. 
�
Theorem 3.6 Let G be a torsion-free metrically systolic group such that for every
element g �= 1G of G if gn and gm are conjugated then n = m. Then the Conjugacy
Problem is solvable for G.

Proof Suppose G acts geometrically on a metrically systolic complex X . Let g =
php−1.By the assumptionon conjugates of g,wemayfindn such that the displacement
of gn is as large as in Lemma 3.5. Note that n does not depend on g, it only depends
on the number of elements in the orbit of G contained in a ball of X of given size.
Clearly gn = phn p−1. By Lemma 3.5 the displacement of p is bounded by value
depending only on displacements of g, and h, and the action of G on X . Hence there
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is a bound on the number of possible p’s. Note that this number is of the same order
as the number of words we need to search in the CAT (0) case. 
�

3.3 Spherical fillings

The following result is a direct analogue of [36, Theorem 9.2] and [26, Theorem 2.4]
concerning systolic complexes.

Theorem 3.7 Let X be a metrically systolic complex and f : S → X be a simplicial
map from a triangulation of the two-sphere. Then f can be extended to a simplicial
map F : B → X, where B is a triangulation of a 3-ball such that ∂B = S and B has
no internal vertices.

Proof The proof is a direct analogue of the proof of [26, Theorem 2.4]. It goes by the
induction on the area (number of triangles) of S. If the area is 4 (the smallest possible)
then S is the 2-skeleton of the tetrahedron and the result follows by flagness of X . For
larger area we consider the two following subcases.

Case 1: S is not flag. Then we proceed exactly as in the proof of [26, Theorem 2.4]: we
decompose S into two discs along an “empty” triangle, create two spheres of smaller
area and use the induction assumption.

Case 2: S is flag. Since the 2-sphere does not admit a metric of non-positive curvature
there exists a vertex v in S whose link, a cycle C , has angular length less than 2π .
We have the decomposition S = D1 ∪ D2, where D1 is the star of v and D2 is the
complement of the interior of D1. By Lemma 2.5 the cycle f |C has a singular disc
diagram D with no internal vertices. Let B1 be the simplicial cone over D with apex
v, and let F1 : B1 → X be the simplicial map such that F1(u) = f (u), for all vertices
u (it is well defined by flagness of X ). Then S2 = D2 ∪ D is a simplicial sphere of
area smaller than the one of S. Let f2 : S2 → X be the simplicial map coinciding
on vertices with f . Applying the inductive assumption we extend it to F2 : B2 → X ,
where B2 is a triangulation of the ball with no internal vertices satisfying ∂B2 = S2.
Finally we put B = B1 ∪ B2 and F = F1 ∪ F2. 
�

Januszkiewicz–Świa̧tkowski introduced in [36] the notion of constant filling radius
for k-spherical cycles, shortly SkFRC. This is a coarse feature of metric spaces saying,
roughly, that in large scale every k-sphere has a filling within its uniform neighbour-
hood. A direct consequence of Theorem 3.7 is the following.

Corollary 3.8 Metrically systolic complexes and groups are S2FRC, that is, they have
constant filling radius for 2-spherical cycles.

3.4 Morse Lemma for 2-dimensional quasi-discs

In this section we prove a Morse Lemma for 2-dimensional quasi-discs. It states,
roughly speaking, that, for a given cycle C in a metrically systolic complex, a quasi-
isometrically embedded disc diagram is contained in an a-neighbourhood of any other
singular disc diagram for C , with a independent of the size of the disc.
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Weuse the combinatorial metric on simplicial complexes. In particular, the distance
between adjacent vertices is 1. Let B(R, v) denote the (combinatorial) ball of radius
R centered at v, that is the full subcomplex of a simplicial complex spanned by
all vertices at distance at most R from v. Similarly, the sphere S(R, v) is the full
subcomplex spanned by all vertices at distance R from v. Let T (r , R; v) denote the
tube (annulus) of radii r , R around v, that is, the full subcomplex spanned by all
vertices u such that r ≤ d(v, u) ≤ R. Observe that for (L, A)-quasi-isometry f we
have f (T (r , R; v) ⊆ T (L−1r − A, LR + A; f (v)). Recall that the systolic plane,
denoted E

2�, is the triangulation of the Euclidean plane by regular triangles.

Theorem 3.9 (Morse Lemma for 2-dimensional quasi-discs)Let D be a combinatorial
ball in the systolic planeE

2�. Let f : D → X be a disc diagram for a cycleC in X being
an (L, A)-quasi-isometric embedding. Let g : D′ → X be a singular disc diagram for
C. Then im( f ) ⊆ Na(im(g)), where a > 0 is a constant depending only on L and A.

Proof There exist constants L ′ ≥ L and A′ ≥ A depending only on L, A such
that f : D → f (D) is an (L ′, A′)-quasi-isometry, and there is an (L ′, A′)-quasi-
isometry f̄ : f (D) → D(0) such that f̄ ◦ f and f ◦ f̄ are A′-close to identities. Let
K ≥ max{L ′, A′, 3}. We will further work with K instead of L, A—this will make
the computations easier. In particular (L ′, A′)—quasi-isometries are (K , K )-quasi-
isometries. We claim that a = K 20 satisfies the assertion of the lemma.

We proceed by contradiction. Suppose there is a vertex v ∈ im( f )\Na(im(g)).
Then clearly d(v,C) > a. Let v′ := f ( f̄ (v)). Then d(v, v′) ≤ K .

Let X1 = span( f (D)∩B(K 12; v)), and let X2 = span(g(D′)∪( f (D)−B(K 8, v)).
Let α = (v0, v1, . . . , vk) be a cycle in S(K 10, f̄ (v)) being a generator

of H1(S(K 10, f̄ (v)); Z). Observe that then α represents also a generator of
H1(T (K 5, K 15, f̄ (v)); Z). Let f (α) = ( f (v0), f (v1), . . . , f (vk)) be the cycle (pos-
sibly with f (vi ) = f (v j ) for some i �= j) being the image of α. Observe that, by
d(v, v′) ≤ K and K ≥ 3, we have

f (α) ⊆ T (K−1K 10 − K , K 11 + K , v′)
⊆ T (K−1K 10 − 2K , K 11 + 2K , v) ⊆ T (K 8, K 12; v).

Claim. The cycle f (α) is not null-homologous inside T (K 8, K 12; v) ∩ X1.
To prove the claim suppose, by contradiction, that f (α) is null-homologous in

T (K 8, K 12; v) ∩ X1. Then there exists a simplicial map

h : T → T (K 8, K 12; v) ∩ X1

from a simplicial 2-complex T to T (K 8, K 12; v) ∩ X1 sending the boundary cycle to
f (α). We define a map f̄ ◦ h : T → D as follows. For every vertex u ∈ T we send
it to f̄ ◦ h(u). An edge uw is sent to a geodesic between f̄ (u) and f̄ (w). A triangle
uwz is sent to a singular disc in D bounded by the chosen geodesic between images
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of vertices. Since

f̄ (T (K 8, K 12; v) ∩ X1) ⊆ T (K 7 − K , K 13 + K , f̄ (v))

⊆ T (K 6, K 14, f̄ (v)),

and since the image of every edge has diameter at most K , and similarly the image of
every triangle has diameter at most K , we have that the image of f̄ ◦ h is contained in
T (K 6−K , K 14+K , f̄ (v)). Furthermore, for every i , we have d(vi , f̄ ( f (vi ))) ≤ K ,
and d( f̄ ( f (vi )), f̄ ( f (vi+1))) ≤ K . Therefore, there exists a homotopy between α

and the image of f (α) by f̄ ◦ h within the 2K -neighborhood of α. It follows that α

is null-homologous within T (K 5, K 15; f̄ (v)) - contradiction concluding the proof of
the claim.

Let Y be a simplicial complex homeomorphic to an annulus (tube) in E
2 with

the inner boundary cycle isomorphic to the boundary cycle C of D, and admitting
a simplicial retraction on C . Observe that the boundary cycle of D′ is also C . Let
D = D ∪C Y be the complex obtained by gluing D and Y along C . Similarly, let
D′ = D′ ∪C Y . Both, D and D′ are non-singular discs, with isomorphic boundaries
C ′—the other boundary cycle of Y . Consider a triangulated sphere S := D ∪C ′ D′
obtained by the identification of the boundaries, and the map ψ : S → X being the
union of maps f , g, and the retraction maps sending copies of Y to their internal
cycles C . By Theorem 3.7 there exists a simplicial extension of ψ to a three-ball
without internal vertices. Hence [ψ] = 0 in H2(X1 ∪ X2; Z).

On the other hand the 1-cycle α is null-homotopic inside B(K 10, f̄ (v)) ⊆ D.
Hence there exists a simplicial disc D1 ⊆ B(K 10, f̄ (v)) providing the homotopy.
Similarly, there is a disc D2 ⊆ D − B(K 10, f̄ (v)) ∪C Y ∪C ′ D′ with boundary equal
α. Observe that ψ(D1) ⊆ X1, ψ(D2) ⊆ X2, and ψ(α) ⊆ X1 ∩ X2. Therefore, in the
Mayer-Vietoris sequence for the pair X1, X2 the boundary map

H2(X1 ∪ X2; Z) → H1(X1 ∩ X2; Z)

sends [ψ] to the nontrivial element represented by α. Hence the contradiction con-
cluding the proof of the lemma. 
�
Remark 3.10 In fact, a more general version of Lemma 3.9 could be proved following
the same lines. Namely, we could require that f : D → X is a disc diagram being a
quasi-isometry such that D is quasi-isometric to a ball in E

2�, rather than being the
ball itself. Since the original statement allows technically much simpler proof, and it
is the version that we subsequently use in [34], we decided to formulate it this way.

4 The complexes for 2-generated Artin groups

In this section, we focus on 2-generated Artin groups. We construct metric simplicial
complexes for them by modifying their Cayley complexes (see the “comments on the
proof” section in the Introduction for an intuitive explanation). Later in Sect. 5 we will
show these metric simplicial complexes are metrically systolic, and in Sect. 6 we will
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u5

d1

d2

d3

d4
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a a a

ab b b

b b b

a

b

Fig. 6 Precell �∗

glue them together to formmetrically systolic complexes for general two-dimensional
Artin groups.

4.1 Precells in the presentation complex

Let DAn be the 2-generator Artin group presented by 〈a, b | aba · · ·
︸ ︷︷ ︸

n

= bab · · ·
︸ ︷︷ ︸

n

〉.
Let Pn be the standard presentation complex for DAn . Namely the 1-skeleton of

Pn is the wedge of two oriented circles, one labeled a and one labeled b. Then we
attach the boundary of a closed 2-cell C to the 1-skeleton with respect to the relator of
DAn . Let C → Pn be the attaching map. Let X∗

n be the universal cover of Pn . Then
any lift of the map C → Pn to C → X∗

n is an embedding (cf. [33, Corollary 3.3]).
These embedded discs in X∗

n are called precells. Figure 6 depicts a precell �∗. X∗
n is

a union of copies of �∗’s. We pull back the labeling and orientation of edges in Pn to
obtain labeling and orientation of edges in X∗

n . We label the vertices of�∗ as in Fig. 6.
The vertices � and r are called the left tip and the right tip of �∗. The boundary ∂�∗
is made of two paths. The one starting at �, going along aba · · ·

︸ ︷︷ ︸

n

(resp. bab · · ·
︸ ︷︷ ︸

n

), and

ending at r is called the upper half (resp. lower half ) of ∂�∗. The orientation of edges
inside one half is consistent, thus each half has an orientation. We summarize several
basic properties of how these precells intersect each other. See [33, Section 3.1] for
proofs of these properties.

Lemma 4.1 Let �∗
1 and �∗

2 be two different precells in X∗
n . Then

(1) either �∗
1 ∩ �∗

2 = ∅, or �∗
1 ∩ �∗

2 is connected;
(2) if �∗

1 ∩�∗
2 �= ∅, �∗

1 ∩�∗
2 is properly contained in the upper half or in the lower

half of �∗
1 (and �∗

2);
(3) if �∗

1 ∩ �∗
2 contains at least one edge, then one end point of �∗

1 ∩ �∗
2 is a tip

of �∗
1, and another end point of �

∗
1 ∩ �∗

2 is a tip of �
∗
2, moreover, among these

two tips, one is a left tip and one is a right tip.

Lemma 4.2 Suppose there are three precells �∗
1, �

∗
2 and �∗

3 such that �∗
1 ∩ �∗

2 is a
nontrivial path P1 in the upper half of �∗

2, and �∗
3 ∩ �∗

2 is a nontrivial path P3 in the
lower half of �∗

2. Then �∗
1 ∩ �∗

3 is either empty or one point.

Corollary 4.3 Let �∗
1 and �∗

2 be two different precells in X∗
n . If �

∗
1 ∩ �∗

2 contains at
least one edge, and �∗

3 ∩ �∗
2 = �∗

1 ∩ �∗
2, then �∗

3 = �∗
1.
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Fig. 7 Cell �

Proof We apply Lemma 4.1 (3) to �∗
3 ∩ �∗

2 and �∗
1 ∩ �∗

2 to deduce that either �∗
1

and �∗
3 have the same left tip, or they have the same right tip. Thus �∗

1 = �∗
3. 
�

4.2 Subdividing and systolizing the presentation complex

We subdivide each precell in X∗
n as in Fig. 7 to obtain a simplicial complex X�

n . A cell
of X�

n is defined to be a subdivided precell, and we use the symbol � for a cell. The
original vertices of X∗

n in X�
n are called the real vertices, and the new vertices of X�

n
after subdivision are called interior vertices. The interior vertex in a cell � is denoted
o as in Fig. 7. (Here and further we use the convention that the real vertices are drawn
as solid points and the interior vertices as circles.)

Let� be the collection of all unordered pairs of cells of X�
n such that their intersec-

tion contains at least two edges (these intersections are connected by Lemma 4.1). For
each (�1,�2) ∈ �, we add an edge between the interior vertex of �1 and the interior
vertex of �2 (cf. Fig. 1). Denote the resulting complex by X ′

n . It is clear that DAn

acts on X ′
n . Let Xn be the flag completion of X ′

n . Then Xn is the simplicial complex
we will work with.
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Now we give an alternative, but more detailed definition of X ′
n . Pick a base cell

� in X�
n such that � ∈ � coincides with the identity element of DAn . Let �0 be the

collection of pairs of the form (�, u−1
i �), (�, d−1

i �) for i = 1, . . . , n−2 (here each
vertex of � can be identified as an element of DAn , and u

−1
i � means the image of �

under the action of u−1
i ). Then the following is proved in [33, Section 3.1].

Lemma 4.4 (1) �0 ⊂ �.
(2) Different elements in �0 are in different DAn-orbits.
(3) Every DAn-orbit in � contains an element from �0.

For each 1 ≤ i ≤ n− 2, we add an edge between o ∈ � and u−1
i o ∈ u−1

i �, and an
edge between o ∈ � and d−1

i o ∈ d−1
i �. Then we use the action of DAn to add more

edges in the equivariant way. The resulting complex is exactly X ′
n , by Lemma 4.4.

Definition 4.5 We assign lengths to edges of Xn . Edges between a real vertex and an
interior vertex have length 1. Edges between two real vertices have length equal to the
distance between two adjacent vertices in a regular (2n)-gon with radius 1.

Nowwe assign lengths to edges between two interior vertices. First define a function
φ : [0, π) → R as follows. Let�(ABC) be a Euclidean isosceles triangle with length
of AB and AC equal to 1, and ∠A(B,C) = α. Then φ(α) is defined to be the length
of BC . For 1 ≤ i ≤ n − 2, let ei be the edge between o and u−1

i o (or o and d−1
i o).

Then the length of ei is defined to be φ( i
2n 2π). Now we use the DAn action to define

the length of edges between interior vertices in an equivariant way.

Note that � ∩ u−1
i � and � ∩ d−1

i � have n − i edges. Thus we have the following
observation by using the DAn-action and Lemma 4.4.

Lemma 4.6 Suppose �1 ∩ �2 has m edges for m ≥ 2. Let oi ∈ �i be the interior
vertex for i = 1, 2. Then there is an edge between oi and o j in Xn whose length is
φ( n−m

2n 2π).

Lemma 4.7 The lengths of the three sides of each triangle in X (1)
n satisfy the strict

triangle inequality. Thus each 2-simplex of Xn can be metrized as a non-degenerate
Euclidean triangle whose three sides have length equal to the assigned length of the
corresponding edges.

Proof We only prove the case when this triangle is made of three interior vertices
{oi ∈ �i }3i=1. The other cases are already clear from the construction. By Lemma 4.2,
�1∩�2 and�1∩�3 are contained in the same half (say upper half) of�1, otherwise
�2 ∩ �3 is at most one vertex, which contradicts that o2 and o3 are joined by an
edge. We assume without loss of generality that �1 is the base cell �. By Lemma 4.1
(3), each of �2 and �3 contains exactly one tip of �1. We first consider the case
when �2 contains the left tip of �1 and �3 contains the right tip of �. Suppose
�2 ∩ �1 (resp. �3 ∩ �1) contains m2 (resp. m3) edges. Then by Lemma 4.1 (3),
�2 ∩ �3 contains m2 + m3 − n edges. By Lemma 4.6, length(o1o2) = φ( n−m2

2n 2π),

length(o1o3) = φ( n−m3
2n 2π), and length(o2o3) = φ(

n−(m2+m3−n)
2n 2π). Note that π >

n−(m2+m3−n)
2n 2π = n−m2

2n 2π + n−m3
2n 2π , thus we can place o2, o1, o3 consecutively in
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the unit circle such that they span a Euclidean triangle with side lengths as required.
Next we consider the case that both �2 and �3 contains the left tip of �1. We assume
without loss of generality that �1 ∩ �2 � �1 ∩ �3. Then, by Corollary 4.1 (3), the
left tip of�3 is contained in�2∩�3. Thus we can repeat the argument in the previous
case with �1 replaced by �3. The case when both �2 and �3 contain the right tip of
�1 can be handled similarly. 
�

From now on, we think of each 2-simplex of Xn as a Euclidean triangle with the
required side lengths. If three vertices x1, x2 and x3 span a 2-simplex in Xn , then we
use ∠x1(x2, x3) to denote the angle at x1 of the associated Euclidean triangle.

5 The link of Xn

In this section we study links of vertices in the complex Xn defined in the previous
section.

Choose a vertex v ∈ Xn , let �v be the link lk(v, X (1)
n ) of v in Xn , i.e. �v is the full

subgraph of X (1)
n spanned by vertices which are adjacent to v. For an edge v1v2 ⊂ �v ,

we define the angular length of this edge to be ∠v(v1, v2). This makes �v a metric
graph. We define angular metric on �v in the same way as in Sect. 2.1 and use the
notation from over there.

The main result of the section is the following proposition.

Proposition 5.1 Let v be a vertex of Xn.

(1) The angular lengths of the three sides of each triangle in �v satisfy the triangle
inequality.

(2) Let σ be a simple cycle in �v which is 2-full. Then length∠(σ ) ≥ 2π .

We caution the reader that each edge in �v has an angular length, and has a length
as defined in the previous section. Here we mostly work with angular length, but will
switch to length occasionally. In this section we study the structure of �v with respect
to the angular metric.

The proof of Proposition 5.1 is divided into two cases: the case of a real vertex v is
treated in Sect. 5.1 and the case of an interior vertex v is treated in Sect. 5.2. In each
case we first describe precisely the combinatorial and metric structure of the link and
then we study in details angular lengths of simple cycles in the link.

5.1 Link of a real vertex

The main purpose of this section is to prove Proposition 5.1 for a real vertex v.
Since the links of any two real vertices are isomorphic as metric graphs with the

angular metric, we can assume without loss of generality that v is the vertex l in the
base cell � (cf. Fig. 7).

In the following proof, we will assume u0 = d0 = � and un = dn = r . Recall that
each edge of Xn which belongs to X∗

n has an orientation and is labeled by one of the
generators a and b. We will first establish a sequence of lemmas towards the proof of
Proposition 5.1.

123



Metric systolicity and two-dimensional Artin groups 1335

The vertices of �v can be divided into two classes.

(1) Real vertices ai , ao, bi and bo, where ai and ao are the vertices in �v which
correspond to the incoming and outgoing a-edge containing v (bi and bo are
defined similarly).

(2) Interior vertices. There is a 1-1 correspondence between such vertices and cells
in Xn that contain �. Thus the interior vertices of �v are of form w−1o where
w is a vertex of ∂� (recall that we have identified vertices of X∗

n with group
elements of DAn , and � is identified with the identity element of DAn , so w−1o
means the image of o under the action of w−1). More precisely, interior vertices
of �v are {�−1o, r−1o, d−1

1 o, d−1
2 o, . . . , d−1

n−1o, u
−1
1 o, u−1

2 o, . . . , u−1
n−1o}.

The edges of �v can be divided into two classes.

(1) Edges between a real vertex and an interior vertex. These are exactly the edges
of �v which are in X�

n , and they are called edges of type I.
(2) Edges between two interior vertices. These are exactly the edges of �v which

are not in X�
n , and they are called edges of type II.

Note that there do not exist edges of �v which are between two real vertices.
Now we characterize all edges of type I. See Fig. 8 below for a picture of �v with

only edges of type I shown.

Lemma 5.2 (1) The collection of vertices in �v which are connected to bi

(resp. ai ) by an edge of type I is exactly {d−1
1 o, d−1

2 o, . . . , d−1
n o} (resp.

{u−1
1 o, u−1

2 o, . . . , u−1
n o}).

(2) The collection of vertices in �v which are connected to ao (resp. bo) by an edge
of type I is exactly {d−1

0 o, d−1
1 o, . . . , d−1

n−1o} (resp. {u−1
0 o, u−1

1 o, . . . , u−1
n−1o}).

(3) Each edge of type I has angular length equal to n−1
4n 2π .

Proof If a vertex in �v is adjacent to bi , then this vertex must be an interior vertex,
hence is of formw−1o for a vertexw ∈ ∂�. Note that if there is a vertexw′ ∈ ∂� such
that there is a b-edge pointing from w′ to w, then by applying the action of w−1 to the
triangle �(w′wo), we know w−1o and bi are adjacent. We can reverse this argument
to show that w−1o and bi are adjacent, then there is a b-edge in ∂� terminating at w.
It follows that bi is connected to w−1o if and only if u = d−1

i for 1 ≤ i ≤ n. Thus
the part of (1) concerning bi follows. We can analyze vertices to bo, ai and ao in a
similar way. Thus (1) and (2) follow. Note that the angular length of each edge of type
I is equal to half of the interior angle of a regular 2n-gon. Thus (3) follows. 
�

Lemma 5.3 (1) There is an edge of type II between d−1
i o and d−1

j o if and only if
1 ≤ | j − i | ≤ n − 2.

(2) There is an edge of type II between u−1
i o and u−1

j o if and only if 1 ≤ | j − i | ≤
n − 2.

(3) If 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1, then there is no edge between d−1
i o and

u−1
j o.

(4) Suppose 0 ≤ i < j ≤ n and j − i ≤ n − 2. Then the edge between d−1
i o and

d−1
j o has angular length = j−i

2n 2π .
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�−1o = d−1
0 o = u−1

0 o

ao

bo

d−1
1 o

d−1
2 o

d−1
3 o

d−1
n−2o

d−1
n−1o

u−1
1 o

u−1
2 o

u−1
3 o

u−1
n−2o

u−1
n−1o

bi

ai

r−1o = d−1
n o = u−1

n o

Fig. 8 Edges of type I in the link of a real vertex

(5) Suppose 0 ≤ i < j ≤ n and j − i ≤ n − 2. Then the edge between u−1
i o and

u−1
j o has angular length = j−i

2n 2π .

Proof First we claim the number of edges in d−1
i �∩d−1

j � equals to n− (| j − i |). We

assume without loss of generality that i < j . Then the number of edges in d−1
i � ∩

d−1
j � equals the number of edges in � ∩ did

−1
j �. By direct computation, we know

did
−1
j = u−1

j−i or d
−1
j−i . Moreover, the number of edges in � ∩ d−1

k � (or � ∩ u−1
k �)

equals n − k for any 1 ≤ k ≤ n − 1. Thus the claim follows.
There is an edge of type II between d−1

i o and d−1
j o if and only if d−1

i � ∩ d−1
j �

has at least two edges, thus (1) follows from the claim. (4) follows the claim and
Lemma 4.6. (2) and (5) can be proved in a similar way. To see (3), note that d−1

i �∩�

(resp. u−1
i � ∩ �) is contained in the upper half (resp. lower half) of �. Thus (3)

follows from Lemma 4.2. 
�
Corollary 5.4 (1) The angular lengths of the three sides of any triangle in �v satisfy

the triangle inequality.
(2) Let � be a 3-simplex in Xn which contains a real vertex. Then there exists a

(possibly degenerate) 3-simplex �′ in the Euclidean 3-space such that there is a
simplicial isomorphism � → �′ which preserves the lengths of edges.
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Proof Let � be a triangle in �v . Since no two real vertices in �v are adjacent, �

either has two interior vertices, or three interior vertices. In the former case, since the
angular length of any edge of type II is at most n−2

2n 2π (Lemma 5.3), it is less than the
summation of the angular length of two edges of type I (Lemma 5.2), we consequently
deduce that the triangle inequality holds.Moreover, (2) holds by triangle inequality and
that the summation of the angular length of two edges of type I in� is< π . In the latter
case, by Lemma 5.3 (3), the three vertices of� are either of form d−1

i o, d−1
j o, d−1

k o, or

of form u−1
i o, u−1

j o, u−1
k o. By Lemma 5.3 (4),∠v(d

−1
i o, d−1

j o)+∠v(d
−1
j o, d−1

k o) =
∠v(d

−1
i o, d−1

k o)when i < j < k. A similar equality holds with d replaced by u. Thus
(1) and (2) follow. 
�

We record a simple graph theoretic observation for later use.

Definition 5.5 A simple graph � is a tree of cliques if there are complete subgraphs
{�i }ki=1 such that

(1) � = ∪k
i=1�i ;

(2) for each 1 < m ≤ k, (∪m−1
i=1 �i ) ∩ �m is a complete subgraph.

Lemma 5.6 Let � be a tree of cliques. Then the following hold.

(1) Any simple n-cycle for n ≥ 4 in � is not 2-full.
(2) If � is a metric graph such that the three sides of each of its triangle satisfy the

triangle inequality then, for any edge w1w2 ⊂ �, the length of w1w2 is bounded
above by the length of any edge path from w1 to w2.

Proof For (1), we induct on the number k in Definition 5.5. Let ω ⊂ � be a simple n-
cycle. Ifω ⊂ ∪k−1

i=1�i , thenω is not 2-full by induction. Nowwe assumeω � ∪k−1
i=1�i .

Then there must be an edge e ⊂ ω such that e � ∪k−1
i=1�i . Let s, t be two vertices

of e. By Definition 5.5 (1), e ⊂ �k . Hence {s, t} ⊂ �k . If {s, t} ⊂ ∪k−1
i=1�i , then by

Definition 5.5 (2) and the assumption that � is simple, we know e ⊂ (∪k−1
i=1�i ) ∩ �k ,

which is a contradiction. So at least one of {s, t} is not contained in ∪k−1
i=1�i . Now we

assume s ∈ �k\(∪k−1
i=1�i ). Let t1 and t2 be two vertices in ω that are adjacent to s.

Since n ≥ 4, t1 and t2 have combinatorial distance ≥ 2 in ω. By Definition 5.5 (1),
the edge t1s is contained in one of the �i . Thus we must have t1s ⊂ �k . In particular
t1 ∈ �k . Similarly, t2 ∈ �k . Thus there is an edge between t1 and t2, and ω is not
2-full.

For (2), we can assume without loss of generality that w1w2 together with another
given edge path from w1 to w2 form a simple cycle. Thus it suffices to show that
for any simple cycle ω ⊂ �, the length of an edge e ∈ ω is bounded above by the
summation of the lengths of other edges in ω. Let n be the number of edges in ω. We
induct on n. The case n = 3 follows from the assumption. The case n ≥ 4 follows
from the induction assumption and from the fact that ω is not 2-full. 
�

Let�+
v be the full subgraph of�v spanned by {bi , ao, d−1

0 o, d−1
1 o, . . . , d−1

n o}. Let
�−

v be the full subgraph of �v spanned by {bo, ai , u−1
0 o, u−1

1 o, . . . , u−1
n o}.

Lemma 5.7 Each of �+
v and �−

v is a tree of cliques.

123



1338 J. Huang, D. Osajda

Proof We define the following sets of vertices of �+
v .

(1) V1 = {bi , d−1
n o, d−1

n−1o, . . . , d
−1
2 o};

(2) V2 = {bi , d−1
n−1o, d

−1
n−2o, . . . , d

−1
1 o};

(3) V3 = {ao, d−1
n−1o, d

−1
n−2o, . . . , d

−1
1 o};

(4) V4 = {ao, d−1
n−2o, d

−1
n−3o, . . . , d

−1
0 o}.

By Lemmas 5.2 and 5.3, each Vi spans a complete subgraph, which we denote by �i .
Moreover, �+

v = �1 ∪�2 ∪�3 ∪�4. Definition 5.5 (2) can be verified directly. Thus
�+

v is a tree of cliques. Similarly, �−
v is a tree of cliques. 
�

Lemma 5.8 Let σ ⊂ �v be a simple cycle such that σ � �+
v and σ � �−

v . Then
�−1o ∈ σ and r−1o ∈ σ . Consequently, if σ is 2-full simple n-cycle in �v for n ≥ 4,
then �−1o ∈ σ and r−1o ∈ σ .

Proof It follows from Lemmas 5.2 and 5.3 (3) that there are no edges between
a vertex in �+

v \{�−1o, r−1o} and a vertex in �−
v \{�−1o, r−1o}. Thus vertices of

�+
v \{�−1o, r−1o} and vertices of �−

v \{�−1o, r−1o} are in two different connected
components of �v\{�−1o, r−1o}. Since σ is a simple cycle, it follows that at least one
of the following three situations happens: (1) σ ⊂ �+

v ; (2) σ ⊂ �−
v ; (3) r

−1o ∈ σ

and �−1o ∈ σ . Thus the first statement follows. Lemmas 5.7 and 5.6 imply that (1)
and (2) are not possible, thus the second statement follows. 
�
Lemma 5.9 Any edge path in �v from r−1o to �−1o has angular length ≥ π .

Proof Let ω be an edge path from r−1o to �−1o. Since vertices of �+
v \ {�−1o, r−1o}

and vertices of �−
v \ {�−1o, r−1o} are in different components of �v \ {�−1o, r−1o},

there is a sub-pathω′ ⊂ ω traveling from r−1o to �−1o such thatω′ ⊂ �+
v orω′ ⊂ �−

v .
So it suffices to show any edge path ω in �+

v or �−
v from r−1o to �−1o has angular

length ≥ π . We only prove the case ω ⊂ �+
v since the other case is similar. Note

that ω has to pass through at least one vertex in {d−1
i o}n−1

i=1 , so we can divide into the
following four cases.

Case 1: If there exists 1 < k < n − 1 such that d−1
k o ∈ ω, then Lemma 5.6

(2), Lemma 5.7 and Lemma 5.3 imply that length∠(ω) ≥ ∠v(d−1
n o, d−1

k o) +
∠v(d

−1
k o, d−1

0 o) = n−k
2n 2π + k

2n 2π = π .

Case 2: If both d−1
1 o and d−1

n−1o are in ω, then Lemma 5.6 (2), Lemmas 5.7 and 5.3

imply that length∠(ω) ≥ ∠v(d−1
n o, d−1

n−1o)+∠v(d
−1
n−1o, d

−1
1 o)+∠v(d

−1
1 o, d−1

0 o) =
1
2n 2π + n−2

2n 2π + 1
2n 2π = π .

Case 3: Suppose among {d−1
i o}n−1

i=1 , only d
−1
1 o is insideω. Then wemust have bi ∈

ω (since there has to be a vertex in ω which is adjacent to r−1o). Thus length∠(ω) ≥
∠v(d−1

n o, bi ) + ∠v(bi , d
−1
1 o) + ∠v(d

−1
1 o, d−1

0 o) = n−1
4n 2π + n−1

4n 2π + 1
2n 2π = π .

Case 4: Suppose among {d−1
i o}n−1

i=1 , only d−1
n−1o is inside ω. This can be dealt in

the same way as the previous case. 
�
Proof of Proposition 5.1 (for real vertices) Proposition 5.1 (1) follows from Corol-
lary 5.4 and (2) follows from Lemma 5.8 and Lemma 5.9. 
�
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The following lemma will be used in Sect. 6.

Lemma 5.10 (1) d∠(ai , bi ) = d∠(ai , bo) = d∠(ao, bi ) = d∠(ao, bo) = n−1
2n 2π .

(2) d∠(ai , ao) = d∠(bi , bo) = π .

Recall that d∠ denotes the angular metric on �v .

Proof Note that all edges of type II are between two interior vertices, and there are
no edges between real vertices. Thus to travel from one real vertex to another real
vertex in �v , one has to go through at least two edges of type I. Then (1) follows from
Lemma 5.2 (3). Now we prove (2). Still, traveling from ai to ao has to go through at
least two edges of type I. However, one readily verifies that only two edges of type I
do not bring one from ai to ao. So we need at least one other edge. By Lemmas 5.2
and 5.3, an edge in �v has angular length at least 1

2n 2π . Thus d∠(ai , ao) ≥ π . On

the other hand, the distance π can be realized by ao → d−1
n−1o → r−1o → ai . Thus

d∠(ai , ao) = π . Similarly, we obtain d∠(bi , bo) = π . 
�
It is natural to ask when an edge path in �v from r−1o to �−1o has angular length

exactly = π . We record the following simple observation about such edge paths. The
following will be crucial for applications in [34].

Lemma 5.11 Suppose v is real and ω is an edge path in �v from r−1o to �−1o of
angular length π . Then either ω ⊂ �+

v or ω ⊂ �−
v . If ω ⊂ �+

v , then the following
are the only possibilities for ω:

(1) ω = r−1o → bi → d−1
1 o → d−1

0 o;
(2) ω = d−1

n o → d−1
n−1o → ao → �−1o;

(3) ω = d−1
i1

o → d−1
i2

o → · · · → d−1
ik

o, where n = i1 > i2 > · · · > ik = 0.

A similar statement holds for ω ⊂ �−
v .

Proof Note that ω is embedded, otherwise we can pass to a shorter path from r−1o to
�−1o, which contradicts Lemma 5.9. The statement ω ⊂ �+

v or ω ⊂ �−
v follows from

the fact that there are no edges between a vertex in �+
v \ {r−1o, �−1o} and a vertex in

�−
v \ {r−1o, �−1o}. Now we assume ω ⊂ �+

v .
If ω does not contain any real vertices, then we are in case (3), by Lemma 5.3 (4).

If ω contains a real vertex, then it contains at least two edges of type I. Note that the
angular length of ω with two edges of type I removed is π − n−1

2n 2π = 1
2n 2π , which

equals to the smallest possible angular length of edges in �v . Thus we are in cases (1)
or (2). 
�

5.2 Link of an interior vertex

In this section we prove Proposition 5.1 for an interior vertex v.
We assume without loss of generality that v is the interior vertex o of the base cell

�. Moreover, we assume v ∈ Xn for n ≥ 3, since the n = 2 case is clear. Vertices of
�v can be divided into the following two classes.
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v0 = v′
0

v1
v2

v3
v4

v5 v6

v′
1 v′

2 v′
3 v′

4 v′
5 v′

6

vn = v′
n

L2 L3 L4 R2R3R4

L′
2 L′

3 L′
4 R′

2R′
3R′

4

Fig. 9 The link of an interior vertex

(1) Real vertices. These are the vertices in ∂�.
(2) Interior vertices. They are the interior vertices of some cell �′ such that �′ ∩ �

contains at least two edges.

For the convenience of the proof, we name the vertices in ∂� differently in this
section. The vertices in the upper half (resp. lower half) of ∂� are called v0, v1, . . . , vn
(resp. v′

0, v
′
1, . . . , v

′
n) from left to right. Note that v0 = v′

0 and vn = v′
n .

Let P be the collection of subcomplexes of ∂� such that

(1) they are homeomorphic to the unit interval [0, 1];
(2) each of them has m edges where 2 ≤ m ≤ n − 1;
(3) each of them is contained in a half of ∂�, and has nontrivial intersection with

{�, r} ⊂ ∂�.

By Lemma 4.1 (3), for each interior vertex of�v , the intersection of the cell containing
this interior vertex and � is an element in P . This actually induces a one to one
correspondence between interior vertices of �v and elements of P by Corollary 4.3.
Thus we can name the interior vertices of �v as follows. If the intersection of the cell
which contains this interior vertex and � is a path in the upper half (resp. lower half)
of ∂� that starts at � and has i edges, then we denote this interior vertex by Li (resp.
L ′
i ). If the intersection of the cell which contains this interior vertex and � is a path in

the upper half (resp. lower half) of ∂� that ends at r and has i edges, then we denote
this interior vertex by Ri (resp. R′

i ). Note that i is ranging from 2 to n − 1; see Fig. 9.
Let �Li be the cell that contains Li . We define �L ′

i
,�Ri and �R′

i
similarly.

Now we characterize edges in �v . They are divided into three classes.

(1) Edges of type I. They are edges between real vertices of �v . Hence they are
exactly edges in ∂�. Each of them has angular length = 1

2n 2π .
(2) Edges of type II. They are edges between a real vertex and an interior vertex, and

they are characterized by Lemma 5.12 below.
(3) Edges of type III. They are edges between interior vertices of �v , and they are

characterized by Lemma 5.13 below.

We refer to Fig. 9 for a picture of �v . Edges of type I and some edges of type II are
drawn, but edges of type III are not drawn in the picture.
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Lemma 5.12 (1) The collection of vertices in ∂� that are adjacent to Li (resp. L ′
i )

is {v0, v1, . . . , vi } (resp. {v′
0, v

′
1, . . . , v

′
i }).

(2) The collection of vertices in ∂� that are adjacent to Ri (resp. R′
i ) is

{vn, vn−1, . . . , vn−i } (resp. {v′
n, v

′
n−1, . . . , v

′
n−i }).

(3) The angular length of any edge between Li and a real vertex of �v is
i
4n 2π . The

same holds with Li replaced by L ′
i , Ri and R′

i .

Proof Note that {v0, v1, . . . , vi } are the vertices of ∂�Li ∩ ∂�. Thus the part of (1)
concerning Li holds. We can prove the rest of (1), as well as (2), in a similar way.
For (3), pick vm with 0 ≤ m ≤ i , then ∠vm (Li , o) = n−i

2n 2π . Since �(vmLio) is an
isosceles triangle with vm being the apex, (3) follows. 
�
Lemma 5.13 (1) Li and L j (or Ri and R j , L ′

i and L ′
j , R

′
i and R′

j ) are connected by
an edge in �v if and only if | j − i | ≤ n − 2. Moreover, the length of this edge is
φ(

| j−i |
2n 2π) (see Definition 4.5 for φ).

(2) Li and R j (or L ′
i and R′

j ) are connected by an edge in�v if and only if i+ j−n ≥
2. Moreover, the length of this edge is φ(

2n−i− j
2n 2π).

(3) Li is not adjacent to any L ′
j or R

′
j . Ri is not adjacent to any L ′

j or R
′
j .

Note that claims (1) and (2) concern the length, not the angular length of the edge.

Proof We prove (1). Suppose without loss of generality that i < j . By Lemma 4.1
(3), the number of edges in �Li ∩ �L j is n − ( j − i). Thus Li and L j are adjacent if
and only if n − ( j − i) ≥ 2. Now the length formula in (1) follows from Lemma 4.6.
Other parts of (1) can be proved in a similar way. (2) can be deduced in a similar
way by noting that the number of edges in �Li ∩ �R j is i + j − n. (3) follows from
Lemma 4.2. 
�
Corollary 5.14 The angular lengths of the three sides of each triangle in �v satisfy
the triangle inequality.

Proof The case when the triangle contains a real vertex follows from Corollary 5.4
(2) (consider the 3-simplex of Xn spanned by this triangle and v). Now we assume the
triangle has no real vertices.

Case 1: the three vertices of the triangle are Li , L j and Lk with i < j < k. By
Lemma 4.6, the length of oLi is φ( n−i

2n 2π). By Lemma 5.13 (1), the length of Li L j is

φ(
j−i
2n 2π). Since n− j

2n 2π + j−i
2n 2π = n−i

2n 2π , we can arrange Li , L j , Lk, o in the unit
circle as in Fig. 10 left such that the distance between any two points in {Li , L j , Lk, o}
in the Euclidean plane equal to the length of the edge between them in Xn . In particular,
∠o(Li , L j ) + ∠o(L j , Lk) = ∠o(Li , Lk).

Case 2: the three vertices of the triangle are Li , L j and Rk with i < j . By
Lemma 5.13 (2), 2n−i−k

2n 2π < π and the length of Li Rk is φ( 2n−i−k
2n 2π). Thus

we can arrange Li , L j , o, Rk as in Fig. 10 right and argue as before. Then other cases
are similar. 
�

Let �+
v be the full subgraph of �v spanned by

{v0, v1, . . . , vn} ∪ {L2, L3, . . . , Ln−1} ∪ {R2, R3, . . . , Rn−1}.
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Fig. 10 Proof of Corollary 5.14: Case 1 on the left, Case 2 on the right

Let �−
v be the full subgraph of �v spanned by

{v′
0, v

′
1, . . . , v

′
n} ∪ {L ′

2, L
′
3, . . . , L

′
n−1} ∪ {R′

2, R
′
3, . . . , R

′
n−1}.

Lemma 5.15 Each of �+
v and �−

v is a tree of cliques.

Proof We only consider �+
v since �−

v is similar. We define a sequence of collections
of vertices of �+

v as follows. Let S1 = {L2, . . . , Ln−1}, Sn−1 = {Rn−1, . . . , R2}, and
Si = {Li+1, . . . , Ln−1, Rn−1, . . . , Rn−i+1} for 2 ≤ i ≤ n − 2. By Lemma 5.13, each
Si spans a clique. Moreover, any pair of adjacent interior vertices in �v are contained
in at least one of the Si .

For 1 ≤ i ≤ n, let Ki = {vi , vi−1}. For 1 ≤ i ≤ 2n−2, Vi = K�i/2�+1∪S�i/2� (e.g.
V1 = K1∪S1, V2 = K2∪S1, V3 = K2∪S2, V4 = K3∪S2, . . . , V2n−3 = Kn−1∪Sn−1,
V2n−2 = Kn ∪ Sn−1). By Lemma 5.12, each Vi spans a clique�i . Moreover, any edge
of �+

v is contained in at least one of the �i . Thus �+
v = ∪2n−2

i=1 �i . Note that for each
2 ≤ i ≤ 2n − 2, �i \ �i−1 has exactly one vertex, and this vertex is not contained in
∪i−1
m=1�m . Thus Definition 5.5 (2) holds, hence �+

v is a tree of cliques. 
�
Lemma 5.16 Let σ ⊂ �v be a simple cycle such that σ � �+

v and σ � �−
v . Then

v0 ∈ σ and vn ∈ σ . Consequently, if σ is a 2-full simple n-cycle in �v for n ≥ 4, then
v0 ∈ σ and vn ∈ σ .

Proof It follows from Lemmas 5.12 and 5.13 (3) that there are no edges between a
vertex in �+

v \ {v0, vn} and a vertex in �−
v \ {v0, vn}. Based on Lemma 5.15, the rest

of the proof is identical to the proof of Lemma 5.8. 
�
Lemma 5.17 Any edge path in �v from v0 to vn has angular length ≥ π .

Proof Let ω ⊂ �v be an edge path from v0 to vn . As in the proof of Lemma 5.9, we
only consider the case ω ⊂ �+

v .
Case 1: There are two adjacent vertices of ω such that one is L j and another

is Rk . Note that v0 is adjacent to L j , and Rk is adjacent to vn . As in the proof of
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Lemma 5.14, we arrange L j , o and Rk consecutively in a unit circle such that the
Euclidean distance between any of two points in {L j , o, Rk} equals to the length of the
edge in Xn between these twopoints.Consequently∠v(L j , Rk) = ∠E

o (L j , Rk),where
∠E denotes the angle in the Euclidean plane. We refer to Fig. 10 right. Recall that in
such an arrangement, ∠E

x (L j , o) = n− j
2n 2π , ∠E

x (o, Rk) = n−k
2n 2π and ∠E

x (L j , Rk) =
2n−k− j

2n 2π < π . By Lemma 5.12,∠v(v0, L j ) = j
4n 2π , thus∠v(v0, L j ) = ∠E

L j
(x, o).

Similarly, ∠v(Rk, vn) = ∠E
Rk

(x, o). Since ∠E
L j

(x, o) + ∠E
Rk

(x, o) + ∠E
o (L j , Rk) =

2π − ∠E
x (L j , Rk) > π . Hence ∠v(v0, L j ) + ∠v(L j , Rk) + ∠v(Rk, vn) > π . By

Lemma 5.6 (2), Corollary 5.14 and Lemma 5.15, we have length∠(ω) ≥ ∠v(v0, L j )+
∠v(L j , Rk) + ∠v(Rk, vn) > π .

Case 2: Suppose case (1) is not true and ω ∩ {L2, . . . , Ln−1} �= ∅. We suppose in
addition that after the last vertex of ω in {L2, . . . , Ln−1} (say Li ), ω still contains at
least one vertex from {R2, . . . , Rn−1}.

Then Li is followed by a sub-path ω′ of ω with ω′ ⊂ ∂�, and then a vertex Rk .
Suppose the first and the last vertices of ω′ are vm and vm′ respectively. Since Li

and vm are adjacent, we have m ≤ i by Lemma 5.12 (1). Similarly, m′ ≥ n − j . By
Lemmas 5.6 (2) and 5.15, length∠(ω) ≥ ∠v(v0, Li ) + ∠v(Li , vm) + length∠(ω′) +
∠v(vm′ , R j ) + ∠v(R j , vn). By Lemma 5.12,

∠v(v0, Li ) = ∠v(Li , vm) = i

4n
2π; ∠v(R j , vn) = ∠v(vm′ , R j ) = j

4n
2π.

We are done if i + j ≥ n. Now we assume i + j < n. Then m ≤ i < n − j ≤ m′ and
length∠(ω′) ≥ n− j−i

2n 2π . Hence we still have length∠(ω) ≥ π .
Case 3: Suppose case (1) is not true and ω ∩ {L2, . . . , Ln−1} �= ∅. We suppose in

addition that after the last vertex of ω in {L2, . . . , Ln−1} (say Li ), ω does not contain
any vertex from {R2, . . . , Rn−1}.

Then Li is followed by a sub-path ω′ of ω traveling from vm to vn . It follows that
length∠(ω) ≥ ∠v(v0, Li ) + ∠v(Li , vm) + length∠(ω′). By Lemma 5.12, m ≤ i and
∠v(v0, Li ) = ∠v(Li , vm) = i

4n 2π . It follows that length∠(ω′) ≥ n−m
2n 2π ≥ n−i

2n 2π ,
and hence length∠(ω) ≥ π .

Case 4: Suppose ω ∩ {R2, . . . , Rn−1} �= ∅ and ω ∩ {L2, . . . , Ln−1} = ∅. This is
similar to the previous case.

Case 5: The remaining case is that ω does not contain any interior vertices. Then
it is clear that length∠(ω) ≥ π . 
�
Proof of Proposition 5.1 (for interior vertices) In view of Corollary 5.14, it suffices to
prove any 2-full simplex n-cycle in �v with n ≥ 4 has angular length ≥ 2π . But this
follows from Lemmas 5.16 and 5.17. 
�

The following is an analog of Lemma 5.11 in the case of interior vertex. It will be
crucial for applications in [34].

Lemma 5.18 Suppose v is interior andω is an edge path in�v from v0 to vn of angular
length π . Then either ω ⊂ �+

v or ω ⊂ �−
v . If ω ⊂ �+

v , then the following are the
only possibilities for ω:
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(1) ω does not contain interior vertices, i.e. ω = v0 → v1 → · · · → vn;
(2) ω = v0 → v1 → · · · → vn−i1 → Ri1 → · · · → Rim → vn, where i1 > · · · >

im ≥ 2;
(3) ω = v0 → Li1 → · · · → Lim → vim → vim+1 → · · · → vn, where 2 ≤ i1 <

· · · < im;
(4) ω = v0 → Li1 → · · · → Lim → vim → vim+1 → · · · → vn−i ′1 → Ri ′1 →

· · · → Ri ′
m′ → vn, where 2 ≤ i1 < · · · < im, i ′1 > · · · > i ′m′ ≥ 2, and

im ≤ n − i ′1.
A similar statement holds when ω ⊂ �−

v .

Proof We argue as Lemma 5.11 to show that ω is embedded, and that ω ⊂ �+
v or

ω ⊂ �−
v . Now we assume ω ⊂ �+

v .
A left interior component of ω is a maximal connected sub-path of ω such that

each of its vertices is one of the Li . We define a right interior component in a similar
way. By case 1 of Lemma 5.17, there is at least one real vertex between a left interior
component and a right interior component.

We show there is at most one left interior component. Suppose the contrary is true.
Let Li be the first vertex of the last left interior component. The vertex in ω preceding
Li is a real vertex, which we denote by vi0 . Since ω is embedded, i0 > 0. Let ω′ be
the edge path consisting of the edge v0Li together with the part of ω from Li to vn .
By Lemma 5.17, length∠(ω′) ≥ π . Since ∠v(v0, Li ) = ∠v(vi0 , Li ) and vi0 �= v0,
length∠(ω′) < length∠(ω) = π , which leads to a contradiction.

The same argument also shows that if Li ∈ ω then the vertex of ω preceding Li

can not be some vi ′ with i ′ �= 0. Thus, if there were a left interior component, then the
vertex of ω following v0 would be contained in such component.

Suppose there is a left interior component. Let Li be the last vertex in this component
and let vi ′ be any real vertex in the sub-path of ω from Li to vn . Then i ′ ≥ i . To see
this, we suppose the contrary i ′ < i is true. Letω′ be the edge path consisting of v0Li ′ ,
Li ′vi ′ , and the part ofω from vi ′ to vn . By Lemmas 5.6 (2) and 5.15, the angular length
of the sub-path of ω from v0 to Li (from Li to vi ′ ) is ≥ ∠v(v0, Li ) (resp. ∠v(Li , vi ′)).
By Lemma 5.12 (3), ∠v(v0, Li ) > ∠v(v0, Li ′) and ∠v(Li , vi ′) > ∠v(Li ′ , vi ′). Thus
length∠(ω′) < length∠(ω) = π , which is contradictory to Lemma 5.17.

Weclaim that if there are two consecutive vertices Li and L j inω such thatω reaches
Li first, then i < j . To see this, note that by the proof of Corollary 5.14 (we can think
the center of the circle in Fig. 10 left is v0), ∠v(v0, Li ′)+∠v(Li ′ , L j ′) = ∠v(v0, L j ′)
for i ′ < j ′. Thus if i > j , then the concatenation of v0L j and the sub-path of ω from
L j to vn has angular length < length∠(ω) = π , which contradicts Lemma 5.17.

We can repeat the above discussion to obtain analogous statements for right interior
components. Then the lemma follows. 
�

6 The complexes for 2-dimensional Artin groups

In this section we finalize the proof of one of the main results of the article, namely
Theorem 1.2 from Introduction. More precisely, for any two-dimensional Artin group
A� we construct a metric simplicial complex X� , by gluing together complexes Xn for
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2-generated subgroups of A� . In Lemma 6.4 we prove that X� is simply connected,
and in Lemma 6.6 we show that links of vertices in X� are 2π -large. As an immediate
consequence we obtain the main result of this section:

Theorem 6.1 X� is metrically systolic. Consequently, each 2-dimensional Artin group
is metrically systolic.

Let A� be an Artin group with defining graph �. Let �′ ⊂ � be a full subgraph
with induced edge labeling and let A�′ be the Artin group with defining graph �′.
Then there is a natural homomorphism A�′ → A� . By [48], this homomorphism is
injective. Subgroups of A� of the form A�′ are called standard subgroups.

Let P� be the standard presentation complex of A� , and let X∗
� be the universal

cover of P� . We orient each edge in P� and label each edge in P� by a generator
of A� . Thus edges of X∗

� have induced orientation and labeling. There is a natural
embedding P�′ ↪→ P� . Since A�′ → A� is injective, P�′ ↪→ P� lifts to various
embeddings X∗

�′ → X∗
� . Subcomplexes of X∗

� arising in such way are called standard
subcomplexes.

A block of X∗
� is a standard subcomplex which comes from an edge in �. This edge

is called the defining edge of the block. Two blocks with the same defining edge are
either disjoint, or identical.

We define precells of X∗
� as in 4.1, and subdivide each precell as in Fig. 7 to obtain

a simplicial complex X�
� . Interior vertices and real vertices of X�

� are defined in a
similar way. We record the following simple observations.

Lemma 6.2 (1) Each element of A� maps one block of X�
� to another block with the

same defining edge;
(2) if g ∈ A� such that g maps an interior vertex of a block of X�

� to another interior
vertex of the same block, then g stabilizes this block;

(3) the stabilizer of each block of X�
� is a conjugate of a standard subgroup of A� .

Within each block of X�
� , we add edges between interior vertices as in Sect. 4.2.

Then we take the flag completion to obtain X� . By Lemma 6.2, the newly added edges
are compatible with the action of deck transformations A� � X�

� . Thus the action
A� � X�

� extends to a simplicial action A� � X� , which is proper and cocompact.
A block in X� is defined to be the full subcomplex spanned by vertices in a block of
X�

� . Two blocks of X� that have the same defining edge are either disjoint or identical.

Lemma 6.3 Any isomorphism between a block in X∗
� and the space X∗

n (cf. Sect. 4.1)
that preserves the labeling and orientation of edges extends to an isomorphismbetween
a block in X� and the space Xn (cf. Sect. 4.2).

Proof By our construction, it suffices to show that if two vertices v1 and v2 in a block
B ⊂ X∗

� are not adjacent in this block, then they are not adjacent in X∗
� . However,

this follows from a result of Charney and Paris ([21]) that B(1) is convex with respect
to the path metric on the 1-skeleton of X∗

� . 
�
Lemma 6.4 X� is simply connected.
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Proof Let f be an edge of X� not in X�
� . Then there are two cells �1 and �2 such

that f connects the interior vertices o1 ∈ �1 and o2 ∈ �2. By construction, �1 and
�2 are in the same block. Thus f and a vertex of�1 ∩�2 span a triangle. By flagness
of X� , f is homotopic rel its end points to the concatenation of other two sides of this
triangle, which is inside X�

� .
Now we show that each loop in X� is null-homotopic. Up to homotopy, we assume

this loop is a concatenation of edges of X� . If some edges of this loop are not in X�
� ,

then we can homotop these edges rel their end points to paths in X�
� by the previous

paragraph. Thus this loop is homotopic to a loop in X�
� , whichmust be null-homotopic

since X�
� is simply connected. 
�

Next, we assign lengths to edges of X� in an A�-invariant way.
Let B ⊂ X� be a block with its defining edge labeled by n. By Lemma 6.3, there

is a simplicial isomorphism i : B → Xn that is label and orientation preserving.
Note that all the edges between real vertices of Xn has the same length, which we
denote p. We define the length of an edge e ⊂ B to be length(i(e))/p. Then, for each
vertex b ∈ B, the isomorphism lk(b, B(1)) →lk(i(b), X (1)

n ) induced by i preserves
the angular lengths of edges. In particular, Proposition 5.1 holds for B.

We repeat this process for each block of X� . Each edge of X� belongs to at least
one block, so it has been assigned at least one value of length. If an edge belongs to
two different blocks, then both endpoints of this edge are real vertices, hence all values
of lengths assigned to this edge equal to 1 by the previous paragraph. In summary,
each edge of X� has a well-defined length. Moreover, such assignment of lengths is
A�-invariant by Lemma 6.2.

Lemma 6.5 Each simplex of X� is contained in a block.

Proof Suppose there is an interior vertex v of the simplex �. Let � be the cell con-
taining v and B be the unique block containing v. Then any real vertex of X� adjacent
to v is contained in � and any interior vertex of X� adjacent to v is contained in B.
Since B is a full subcomplex, we have � ⊂ B. If � does not contain any interior
vertices, then � is a point, or an edge, and the lemma is clear. 
�

In particular, each triangle of X� is contained in a block, its side lengths satisfy the
strict triangle inequality by Lemma 4.7. We define the angular metric on the link of
each vertex of X� as before.

Lemma 6.6 Let v ∈ X (1)
� be a vertex and let �v = lk(v, X (1)

� ).

(1) The angular lengths of the three sides of each triangle in �v satisfy the triangle
inequality.

(2) �v is 2π -large.

Proof The 3-simplex spanned by v and a triangle in�v is inside a block by Lemma 6.5.
Then (1) follows from Corollaries 5.4 and 5.14.

Now we prove (2). If v is an interior vertex, then there is a unique block B ⊂ X�

containing this vertex, and any other vertex in X (1)
� adjacent to v is contained in this
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block. Since B is a full subcomplex of X� , lk(v, X (1)
� ) =lk(v, B(1)), which is 2π -large

by Proposition 5.1.
Weassumev is a real vertex. Letω be a2-full simplen-cycle in lk(x, X (1)

� ) forn ≥ 4.
If ω is contained in a block, then we know that length∠(ω) ≥ 2π by Proposition 5.1.
The case when ω is not contained in a block follows from Lemma 6.7. 
�
Lemma 6.7 Let v ∈ X� be a real vertex and let �v = lk(v, X (1)

� ). Let ω be a simple
cycle with angular length ≤ 2π in the link of v. Then exactly one of the following four
situations happens:

(1) ω is contained in one block;
(2) ω travels through two different blocks B1 and B2 such that their defining edges

intersect in a vertex a, and ω has angular length π inside each block; moreover,
there are exactly two vertices in ω∩ B1∩ B2 and they correspond to an incoming
a-edge and an outgoing a-edge based at v;

(3) ω travels through three blocks B1, B2, B3 such that the defining edges of these
blocks form a triangle �(abc) ⊂ � and 1

n1
+ 1

n2
+ 1

n3
= 1 where n1, n2 and n3

are labels of the edges of this triangle; moreover, ω is a 6-cycle with its vertices
alternating between real and fake such that the three real vertices inω correspond
to an a-edge, a b-edge and a c-edge based at v;

(4) ω travels through four blocks such that the defining edges of these blocks form a
full 4-cycle in �; moreover, ω is a 4-cycle with one edge of angular length π/2
in each block.

Note that in cases (2), (3) and (4), ω actually has angular length 2π .

Proof Note that each interior vertex of �v is contained in a unique block. Since each
edge of �v contains at least one interior vertex (otherwise we would have a triangle in
X� with all its vertices being real, which is impossible), each edge of �v is contained
in a unique block. Thus, there is a decomposition ω = {ωi }i∈Z/nZ such that

(1) each ωi is a maximal sub-path of ω that is contained in a block (we denote this
block by Bi );

(2) ωi ∩ ωi+1 is made of one or two real vertices.

Let {vi }i∈Z/nZ be real vertices in ω such that the endpoints of ωi are vi and vi+1. It
follows from Lemma 5.10 that length∠(ωi ) ≥ π/2. Thus n ≤ 4. The case n = 4 leads
to case (4) in the lemma. It remains to consider the case n = 3 and n = 2.

Each vi arises from an edge between x and vi . This edge is inside X∗
� , hence it is

labeled by a generator of A� , corresponding to a vertex zi ∈ �. Since vi corresponds
to either an incoming, or an outgoing edge labeled by zi , we will also write vi = zii
or vi = zoi . Let ei be the defining edge of Bi . Then

zi+1 ∈ ei ∩ ei+1. (5)

If n = 2, then (5) implies that z0 = z1. Thus Lemma 5.10 (2) implies that
length∠(ωi ) ≥ π for i = 0, 1. Thus case (2) in the lemma follows.

Suppose n = 3. Recall that two blocks of X� with the same defining edge are
either disjoint or identical. Thus ei �= ei+1 (otherwise both ωi and ωi+1 are contained
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in Bi ). By (5), either z0 = z1 = z2, or e0, e1 and e2 span a triangle � in �. The
former case is not possible because of the parity. Let ni be the label of ei . Note
that zi �= zi+1 for each i . Hence length∠(ωi ) ≥ ni−1

2ni
2π by Lemma 5.10 (1). Thus

length∠(ω) ≥ (3− 1
n0

− 1
n1

− 1
n2

)π ≥ 2π , where the last inequality follows from the
fact that A� is 2-dimensional. Case (3) in the lemma follows. 
�

7 Ending remarks and open questions

7.1 Open questions

The class of metrically systolic complexes contains the class of all 2-dimensional
CAT (0) piecewise Euclidean simplicial complexes and the class of systolic com-
plexes. This motivates the following natural questions.

Question 7.1 Let G be a metrically systolic group. Is every abelian subgroup of G
quasi-isometrically embedded? Are solvable subgroups of G virtually abelian?

At least we know the answer is positive for 2-dimensional Artin groups. A proof is
given in Sect. 7.2. See [6, Chapter II.7] and [41] for results in the CAT(0) and systolic
settings.

Question 7.2 Let G be a metrically systolic group. Is the centralizer of any infinite
order element in G abstractly commensurable with Fk × Z? Here Fk is the free group
with k generators and F0 denotes the trivial group.

The answer is affirmative for systolic groups [41].

Question 7.3 Are metrically systolic groups semihyperbolic? Biautomatic?

Biautomaticity for systolic groups has been established by Januszkiewicz-
Świa̧tkowski [35,46].

Question 7.4 Does every finite group acting on a metrically systolic complex fix a
point?

A fixed point theorem for CAT(0) spaces follows from convexity of the distance
function [6, Chapter II.2]. A fixed point theorem for systolic complexes has been
proven in [19].

Question 7.5 Let X be ametrically systolic complex. Is X contractible?Does X satisfy
Sk FRC in the sense of [36] for all k ≥ 2?

It is proved in Sect. 3.3 that X has trivial second homotopy group and X is S2FRC .
It is proved in [17,36] that the answer to Question 7.5 is affirmative for systolic
complexes.

Question 7.6 Is there a notion of boundary for metrically systolic complexes which
generalizes both the C AT (0) case and the systolic case?

See [6, Chapter II.8] for the definition of CAT (0) boundaries and [40] for the
definition of boundaries of systolic complexes.
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7.2 Abelian and solvable subgroups

For each Artin group A� , Charney and Davis [13] defined an associated modified
Deligne complex D� . Now we recall their construction in the 2-dimensional case.
Vertices of D� are in one to one correspondence with left cosets of the form gA�′ ,
where g ∈ A� and �′ is either the empty-subgraph of � (in which case A�′ is the
identity subgroup), or a vertex of �, or an edge of �. The rank of a vertex gA�′ is
the number of vertices in �′. Note that the set V of the vertices has a partial order
induced by inclusion of sets. A collection {vi }ki=1 ⊂ V spans a (k − 1)-dimensional
simplex if {vi }ki=1 form a chain with respect to the partial order. It is clear that D� is
a 2-dimensional simplicial complex, and A� acts on D� without inversions, i.e. if an
element of A� fixes a simplex of D� , then it fixes the simplex pointwise.

We endow D� with a piecewise Euclidean metric such that each triangle
�(g1, g2As, g3Ast ) is a Euclidean triangle with angle π/2 at g2As and angle π

2n
at g3Ast with n being the label of the edge st of �. By [13, Proposition 4.4.5], D� is
CAT (0)with such metric. As being observed in [22, Lemma 6], the action A� � D�

is semisimple.

Theorem 7.7 Let A� be a 2-dimensional Artin group. Then every abelian subgroup
of A� is quasi-isometrically embedded.

Proof Let A ⊂ A� be an abelian subgroup. By [13, Theorem B] and [13, Corol-
lary 1.4.2], the presentation complex of A� is a K (A�, 1) space. Thus A is a free
abelian with rank≤ 2. First we assume A ∼= Z. Since A� � D� is semisimple, by [6,
Chapter II.6], either A acts by translation on a CAT (0) geodesic line � ⊂ D� , or A
fixes a point x ∈ D� . In the former case, we conclude A is quasi-isometrically embed-
ded by noting that any orbit map from A� to D� is coarsely Lipschitz. In the later case,
since A� acts on D� without inversions, A fixes a vertex in D� . Thus, up to conjuga-
tion, we may assume that A is contained in a standard subgroup A�′ with �′ being a
vertex or an edge. Any dihedral Artin group isCAT (0) [7], so A is quasi-isometrically
embedded in A�′ (alternatively, dihedral Artin groups are C(4)-T(4) [43], hence they
are biautomatic [28]). By [21, Theorem 1.2], A�′ is quasi-isometrically embedded in
A� . Hence A is quasi-isometrically embedded in A� .

Now we assume A ∼= Z⊕Z. By [6, Theorem II.7.20], either there is an A-invariant
flat plane P ⊂ X� uponwhich A acts geometrically, or there is an A-invariantCAT (0)
geodesic line � ⊂ X� upon which A acts cocompactly, or A fixes a point. The first and
the third case can be handled in a similar way. Now we assume the second case. There
is a group homomorphism h : A → R by considering translation length of elements
of A along �. Since A acts on D� by cellular isometries, there exists ε > 0 such that
any element of A with nonzero translation length has translation length > ε. Hence
h(A) ∼= Z. Thus by passing to a finite index subgroup of A, we assume A = 〈a1, a2〉
such that a1 fixes a point in � and a2 has nonzero translation length.

Let p : A� → � be the composition of an orbit map from A� to D� and the
CAT (0) nearest point projection from D� to �. Then there exists L > 0 such that
p is L-Lipschitz. Suppose the translation length of a2 is L ′. For i = 1, 2, suppose
〈ai 〉 → A� is an Li -bi-Lipschitz embedding. For k = n1a1 + n2a2 ∈ A, let ‖k‖∞ =
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max{|n1|, |n2|}. Let ∗ be the identity element in A� and let dA� denote the wordmetric
on A� with respect to the standard generating set. If |n1| ≥ 2L1L2|n2|, then

dA� (k, ∗) ≥ |n1|
L1

− L2n2 ≥ |n1|
2L1

≥ 1

2L1
‖k‖∞.

If |n1| < 2L1L2|n2|, then

dA� (k, ∗) ≥ L−1d�(p(n1a1 + n2a2), p(∗)) = L−1d�(p(n2a2), p(∗))

≥ L−1L ′|n2| >
L ′

2LL1L2
‖k‖∞.

Now we conclude from the above two inequalities that A → A� is a quasi-isometric
embedding. 
�
Corollary 7.8 Nontrivial solvable subgroups of 2-dimensional Artin groups are either
Z or virtually Z

2.

Proof Observe that, by Theorem 7.7 A� is translation discrete, and by [20, Theo-
rem 3.4] solvable subgroups of finite cohomological dimension in translation discrete
groups are virtually Z

n . Since, by [13, Theorem B] and [13, Corollary 1.4.2] the
cohomological dimension is in our case at most 2 we have the assertion. 
�
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