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I. STABILITY OF THE RECTIFICATION TO
THE PHASE PARAMETER

It is important to show that the effect of the mobility
edge on the rectification is robust to changes of the quasi-
periodic potential phase parameter φ. We thus study the
rectification R versus α for φ = π (red �) in Fig. S1, and
the average rectification for φ chosen from a uniform dis-
tribution between π±π/20 (blue ◦) and π±π/10 (green
�). The average rectification is computed taking 100
samples of φ. We observe that, while noise in the value
of the phase φ lowers the rectification and makes the
jump close to α = 0 less steep, the average rectification
is robust even to variations of 10% of the mean value.

II. LOCALIZATION PROPERTIES OF THE
STEADY STATE

The link between rectification and localization is fur-
ther unravelled by examining more closely a represen-
tative case with λ = 0.9 and α = 0.9. In Fig. S2(a)
we report the inverse participation ratio I(k) for the en-
ergy eigenmodes, highlighting the mobility edge above
which I(k) becomes sizeable indicating localized eigen-

states. The NESS eigenmode occupation 〈η†kηk〉 for for-
ward and reverse bias is shown in Fig. S2(b)-(c). This
reveals that in reverse bias most of the occupied eigen-
states are the higher energy localized ones, while in for-
ward bias there is significant occupation of lower energy
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FIG. S1: (a) Rectification R as a function of α for φ = π
(red �), and average rectification sample over 100 samples of
the phase picked from φ ∈ π + π/20[−1, 1] (blue ◦) and φ ∈
π + π/10[−1, 1] (green �). Other parameters are L = 1000,
λ = 0.9, Th = Tc + 1000 and Tc = 0.1.
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FIG. S2: (a) Inverse participation ratio I(k) of the kth eigen-
mode of the Hamiltonian of Eq. (1) of the main paper. (b)-(c)

Occupation probability of the eigenmodes k, 〈η†kηk〉, versus
the mode number k ordered for increasing energy and for the
(b) forward (in a lin-lin plot) and (c) reverse bias (in a log-lin
plot). (d) Strength of the couplings |S`,k| of eigenmodes k to
the left bath, i.e ` = 1 (red �), and right bath, ` = L (yellow
◦). The inset magnifies a portion of the y-axis to better show
the coupling to delocalized modes. Common parameters are
φ = π, Th = 1000.1, Tc = 0.1, L = 1000, λ = 0.9 and α = 0.9.

delocalized eigenstates.

A deeper insight into the generation of such strong
rectification via the mobility edge can be obtained by
studying the strength of the coupling of each bath to the
various k modes, i.e. S`,k. In Fig. S2(d) we show |SL,k|
versus k (yellow ◦) and |S1,k| (red �). The inset is used
to zoom in on the vertical axis so as to show the mag-
nitude of |S1,k| for the delocalized modes. In Fig. S2(d)
we observe that for φ = π the bath at site L is almost
completely coupled only to one mode, which is localized
at that edge. In fact there is a sharp peak for a high−k
mode which almost reaches unity. This also implies that
the delocalized modes are very weakly coupled to this
bath. For the bath at the first site, instead, |S1,k| is much
more strongly coupled to delocalized modes. So the spa-
tial position of the localized modes affects the strength of
the coupling between a bath and the delocalized current-
carrying modes. When connecting this with Eq. (4) of
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FIG. S3: (a-c) Strength of the couplings |S`,k| of eigenmodes
k to the left bath, i.e ` = 1 (red �), and right bath, ` = L
(yellow ◦), for (a) φ = π, (b) 0 and (c) 1.07. The forward
current, when compared to the reverse current, is larger in
(a), lower in (b) and comparable in (c). Common parameters
are λ = 0.9 and α = 0.9. The black circles highlight the more
strongly coupled localized modes.

the main paper, we observe that the interplay between
the bosonic system and spin bath statistics, and the dis-
parity in coupling strengths to the delocalized modes of
the baths which together result in a significantly different
current in the two biases.

By tuning the phase φ it is possible to move the local-
ized modes and hence modify which bath is coupled to a
localized mode. In Fig. S3 we show the coupling of the
modes to the two baths |S`,k| for (a) φ = π, (b) φ = 0
and (c) φ = 1.07. The three panels show the couplings
to the bath at site ` = 1 (red �) and to the bath at site
` = L (yellow ◦). For Fig. S3(a) the current is stronger
in forward bias, and in fact the coupling to the delocal-
ized modes is stronger for the bath at site ` = 1, while
the bath at site ` = L there is a strong coupling to a
single localized mode (highlighted by the black ◦) giving
R � 1. In Fig. S3(b) the situation for the couplings is
inverted, so now there is a strong coupling to a single lo-
calized mode for the bath at site ` = 1 (see within black
◦) and the bath at site ` = L is more strongly coupled
to delocalized modes giving R � 1. In Fig. S3(c) the
coupling of localized and delocalized modes is similar for
both baths, and it results that rectification is R ≈ 1.

III. ROLE OF TEMPERATURE IN MODES
OCCUPATION

In Fig. S2 we have studied the occupation of the differ-
ent k eigenmodes of the Hamiltonian in the steady state
for a temperature difference ∆T = 1000. Here we show
how the occupation of the different modes is affected by
the temperature difference. To show the generality of
the effect we also consider different Hamiltonian param-
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FIG. S4: (a)-(f) Occupation probability of the eigenmodes

k, 〈η†kηk〉, versus the mode number k ordered for increasing
energy. We consider Th = 10.1 for the (a) forward and (b)
reverse bias. We consider Th = 100.1 for the (c) forward and
(d) reverse bias. We consider Th = 1000.1 for the (e) forward
and (f) reverse bias. (g) Inverse participation ratio I(k) of
the kth eigenmode of the Hamiltonian. Common parameters
are L = 1000, φ = π, Tc = 0.1, λ = 0.1 and α = 0.9.

eters, namely α = 0.9 and λ = 0.1. We study the oc-

cupation of all the modes 〈η†kηk〉 in Fig. S4 in forward
(a),(c),(e) and reverse (b),(d),(f) bias. The localization
of the modes is signalled by the modes’ inverse partici-
pation ratio I(k). For the parameters considered there
is a clear transition between delocalized and localized
modes around the mode k = 765. An increase in the hot
temperature Th is reflected in a larger occupation of the
localized modes (which are at higher energy) and a lower
occupation of the delocalized ones. This is particularly
evident in reverse bias.

IV. MASTER EQUATION AND ROLE OF
STATISTICS OF BATH IN RECTIFICATION

We consider the total Hamiltonian of system plus bath
at sites ` = {1, L} as

HT = H +
∑
`=1,L

(HsS,` +HS,`) , (S1)

where H is defined in the main paper, while the two spin
baths are identical, except for the temperature T`, and
have Hamiltonian HS,` =

∑
ν ενσ

z
ν,`/2, where σzν,` is the
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Pauli-z operator for the νth spin in the bath at site ` and
εν is its associated energy gap. The Hamiltonian that
couples the system to a spin bath is taken as HsS,` =∑
ν,` gν(a` + a†`)(σ

+
ν,` + σ−ν,`), where gν is the coupling

strength of νth spin in the bath to its respective boundary
site `, assumed to be identical for both, and σ±ν,` are its
corresponding raising and lowering operators.

In terms of the eigenoperators of the system Hamilto-
nian, we can write HsS,` =

∑
αω A`,α(ω) ⊗ B`,α, where

A`,α(ω) and B`,α respectively act on the system and on
the bath. The operator A`,α(ω) is chosen to satisfy

[H,A`,α(ω)] = −ωA`,α(ω) (S2)

Note that, after rotating wave approximation, α takes
two values with A`,1(ω) =

∑
k S`,kηkδω,+εk , A`,2(ω) =∑

k S
∗
`,kη

†
kδω,−εk , while B`,1 =

∑
ω g`,ωσ

+
ω,` and B`,2 =∑

ω g`,ωσ
−
ω,`. For the above thermal bath coupling, the

steady state can be obtained from the Lindblad dissipator
[1]

D`(ρ(t)) =
∑
ω,α

Γ`,α(ω)[A`,α(ω)ρ(t)A†`,α(ω)

−1

2
{A†`,α(ω)A`,α(ω), ρ(t)}], (S3)

with

Γ`,α(ω) =

∫ ∞
0

dt eiωtTrB [B†`,α(τ)B`,α(0)ρS,`]. (S4)

Here ρS,` = exp(−β`HS,`)/Z is the thermal state of the
bath coupled to site ` at inverse temperature β` = 1/T`
and Z = tr [exp(−β`HS,`)]. Thus,

Γ`,1(ω) = J`(ω)(1− nS(β`ω)). (S5)

where nS(β`ω) =
(
eβ`ω + 1

)−1
is the spin occupation

factor for the bath coupled to site `, and J(ω) =∑
ν |gν |2πδ(ω − εν) is the spectral density identical for

both baths. Similarly

Γ`,2(ω) = J(−ω)nS(−β`ω). (S6)

For any operator O the dissipator evolution is

D`(O) =
∑
εk

|S`,k|2J(εk)
[
nS(β`εk)

[
ηkOη

†
k −

1

2
{ηkη†k, O}

]
+(1− nS(β`εk))

[
η†kOηk −

1

2
{η†kηk, O}

]]
. (S7)

In the steady state limit,
∑
`D`(O) = 0, as expected.

Thus, the steady state single-particle density matrix

〈η†kηq〉 is

〈η†kηq〉 = δk,q

∑
` |S`,k|2nS(β`εk)∑

` |S`,k|2 [1− 2nS(β`εk)]
. (S8)

The thermal current is given by the energy exchange with
each bath which in steady state needs to be opposite.
Hence we get

J = Tr{HD1(ρ)} = −Tr{HDL(ρ)},
=
∑
εk>0

εk|S1,k|2|SL,k|2J(εk)

× nS(β1εk)− nS(βLεk)∑
` |S`,k|2(1− 2nS(β`εk))

. (S9)

Suppose we use bosonic bath instead of spins with a dif-
ferent system-bath coupling term HsB,` =

∑
ν gν(a` +

a†`)(bν,` + b†ν,`), in terms of bath bosonic creation b†ν,`
and annihilation bν,` operators for the νth mode of the
bath at site `. In this case the bath Hamiltonian is
given by HB,` =

∑
ν εν b†ν,`bν,`. Following the above

steps, we get Γ`,1(ω) = J(ω)[1 +nB(β`ω)] and Γ`,2(ω) =

J(−ω)nB(−β`ω), where nB(β`ω) =
(
eβ`ω − 1

)−1
is the

Bose-Einstein distribution. Hence, the occupation of
each k eigenmode when the system is coupled to the two
bosonic baths is

〈η†kηk〉 =

∑
` |S`,k|2nB(β`εk)∑

` |S`,k|2
, (S10)

and the steady state thermal current is

J = Tr{HD1(ρ)} = −Tr{HDL(ρ)},

=
∑
k

εk|S1,k|2|SL,k|2J(εk)∑
` |S`,k|2

×[nB(β1εk)− nB(βLεk)]. (S11)

Thus, it follows that a bosonic system connected to
bosonic baths gives no rectification, whereas a rectifying
effect can be obtained using spin baths.
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