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Abstract

Let k be a field. We show that the ring of invariants of every exponential map on k[x, y]
is generated by the image of x or y under a composition of triangular automorphisms. From
this we obtain two well-known theorems on k[x, y] with no restriction on the characteristic of
k: the Rentschler-Miyanishi Theorem and the Jung-van der Kulk Theorem.

1 Introduction
Throughout this paper k is a field, p ≥ 0 is the characteristic of k, and k∗ = k \ 0.

Let R = k[x, y] be a polynomial ring in two variables x and y. The 1942 theorem of Jung [8]
states that, when the characteristic of k is zero, the automorphism group of R is generated by
linear automorphisms and triangular automorphisms of R. In other words, all automorphisms of
R are tame. Many proofs of Jung’s Theorem have appeared over the decades. (See [6].) Jung’s
result was first extended to allow the prime characteristic case in 1953 by van der Kulk [9]. Apart
from the proof of van der Kulk, another approach to the prime characteristic case was given by
Makar-Limanov in [10]. (See [1] and [5] as well.) A well-known paper of Rentschler [15] used
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locally nilpotent derivations on R to provide a short proof of Jung’s Theorem. The main result,
now known as Rentschler’s Theorem, states that, assuming k has characteristic zero, every locally
nilpotent derivation of R is equivalent up to the conjugation by an automorphism to f(x) ∂

∂y for some
polynomial f(x). A prime characteristic version of Rentschler’s Theorem was given by Miyanishi
in [13]. Locally nilpotent derivations are less potent when the characteristic of k is prime, as
they no longer correspond to algebraic actions of the additive group k+ on SpecR. In the prime
characteristic case, Miyanishi instead considered locally finite iterative higher derivations.

In this paper, we use exponential maps which are equivalent to both k+-actions and locally
finite iterative higher derivations. (Both notions are defined below.) This approach leads to an
algebraic proof of the Rentschler-Miyanishi Theorem that is independent of characteristic. From
there we obtain the Jung-van der Kulk Theorem. The only other characteristic free proof of these
theorems which is known to us is based on the techniques developed in [10].

2 Exponential maps
Let A be a ring. Let δt : A → A[t] be a homomorphism. We say δ = δt is an exponential map on A
if

(i) ε0δt is the identity on A, where ε0 : A[t] → A is evaluation at t = 0, and

(ii) δsδt = δs+t, where δs : A → A[s] is extended to a homomorphism A[t] → A[s, t] by δs(t) = t.

Define the ring of δ-invariants to be the subalgebra

Aδ = {a ∈ A | δ(a) = a}.

Note that the standard inclusion of A in A[t] is an exponential map on A. We call an exponential
map nontrivial if it is not the standard inclusion.

If A is a k-algebra, we additionally require an exponential map to be a k-algebra homomorphism.
Exponential maps on a k-algebra A are equivalent to algebraic actions of the additive group k+ on
Spec(A). See [12] for details. If δ is an exponential map on A, the ring of δ-invariants coincides
with the ring of invariants of the corresponding k+-action.

If δ : A → A[t] is an exponential map on A, then for each a ∈ A we can write

δ(a) =

∞∑
i=0

δ(i)(a)ti.

The sequence of maps {δ(i)}∞i=0 is a locally finite iterative higher derivation on A. By definition,
this is a sequence of linear maps on A with all of the following properties:

(i) For each a ∈ A, the sequence {δ(i)(a)}∞i=0 has finitely many nonzero terms.

(ii) δ(0) is the identity map on A.

(iii) (Leibniz rule) For all integers n ≥ 0 and for all a, b ∈ A,

δ(n)(ab) =
∑

i+j=n

δ(i)(a)δ(j)(b).

2



(iv) (iterative property) For all nonnegative integers i and j,

δ(i)δ(j) =

(
i+ j

i

)
δ(i+j).

Note that δ(1) is a locally nilpotent derivation on A, meaning that for each a ∈ A there exists
sufficiently large n for which (δ(1))n(a) = 0. When the characteristic of k is zero, we have δ(i) =
1
i! (δ

(1))i for each i, so that δ = exp(tδ(1)) and Aδ = ker δ(1).
Locally nilpotent derivations gained prominence with Rentschler’s 1968 paper [15] and have been

an essential tool since. To work over a prime characteristic field, it is beneficial to use exponential
maps and locally finite iterative higher derivations in place of locally nilpotent derivations.

Suppose φ : A → B is an isomorphism of either rings or k-algebras and δ : A → A[t] is an
exponential map on A. Extend φ to an isomorphism A[t] → B[t] by φ(t) = t. Then φδφ−1 defines
an exponential map on B with Bφδφ−1

= φ(Aδ). Note also that (φδφ−1)(i) = φδ(i)φ−1 for all
integers i ≥ 0.

Given an exponential map δ : A → A[t] on A, we can define the δ-degree of an element a ∈ A by

degδ a = degt δ(a)

where degt 0 = −∞. Note that
Aδ = {a ∈ A | degδ a ≤ 0}.

In this paper we focus entirely on integral domains. If A is an integral domain, the function degδ
is a degree function on A, meaning for all a, b ∈ A it satisfies

(i) degδ(ab) = degδ a+ degδ b, and

(ii) degδ(a+ b) ≤ max{degδ a,degδ b}.

3 Exponential maps on integral domains
First we collect some useful information regarding exponential maps on integral domains. The first
two lemmas are commonly used and their proofs are omitted. Proofs are given in [3], for example,
where the degree function of an exponential map is a key ingredient. However, the results can be
found in earlier papers such as [14].

Lemma 3.1. If δ is a nontrivial exponential map on an integral domain A then

(a) Aδ is both factorially closed and algebraically closed in A.

(b) If a ∈ A and i ∈ Z with i ≥ 0, then degδ(δ
(i)(a)) ≤ degδ a − i. In particular, if a ̸= 0 then

δ(degδ a)(a) ∈ Aδ.

Lemma 3.2. If δ is a nontrivial exponential map on an integral domain A with characteristic p ≥ 0
and x ∈ A has the minimal positive δ-degree then

(a) For each i ∈ Z+ we have δ(i)(x) ∈ Aδ. Moreover, δ(i)(x) = 0 whenever i ≥ 2 is not a power
of p. In particular, if p > 0 then degδ x is a power of p.

(b) Let c = δ(degδ x)(x). Then A ⊆ Aδ[c−1, x] ⊂ F where F is the field of fractions of A.
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The next two lemmas provide useful extensions of Lemma 3.1(a).

Lemma 3.3. Let δ be an exponential map on an integral domain A with characteristic p ≥ 0. If
c1f

a + c2g
b ∈ Aδ \ 0 where a > 1, b > 1 ∈ Z and neither a nor b is a power of p, and c1, c2 ∈ Aδ \ 0

then f, g ∈ Aδ.

Proof. We assume δ is nontrivial since otherwise there is nothing to show. If p > 0, write a = pja1
and b = plb1 where j, l, a1, b1 ∈ Z+ with a1 > 1, b1 > 1, and p ∤ a1, p ∤ b1. Then c1f

a + c2g
b =

c1(f
pj

)a1 + c2(g
pl

)b1 . If we show that fpj

, gp
l ∈ Aδ \0, then the result follows since Aδ is factorially

closed by Lemma 3.1(a). Therefore we can assume neither a nor b is divisible by p.
It suffices to show f ∈ Aδ, again since Aδ is factorially closed. Suppose f /∈ Aδ. Let

m = min{i ∈ Z+ | δ(i)(f) ̸= 0 or δ(i)(g) ̸= 0}.

Since δ(i)(f) = δ(i)(g) = 0 for 1 ≤ i < m, according to the Liebniz rule we have

0 = δ(m)(c1f
a + c2g

b) = ac1f
a−1δ(m)(f) + bc2g

b−1δ(m)(g). (1)

Since p ∤ a and p ∤ b, it follows that both δ(m)(f) ̸= 0 and δ(m)(g) ̸= 0.
Let x ∈ A such that x has minimal positive δ-degree. Then A ⊆ Frac(Aδ)[x] by Lemma 3.2(b)

and we can view f and g as polynomials in x. Since c1f
a+ c2g

b ∈ Frac(Aδ) \ 0, we see that f and g
are relatively prime in Frac(Aδ)[x]. So from Equation (1), since a > 1 and b > 1, we have f | δ(m)(g)
and g | δ(m)(f) in Frac(Aδ)[x]. Therefore degδ f ≤ degδ(δ

(m)(g)) and degδ g ≤ degδ(δ
(m)(f)). So,

using Lemma 3.1(b), we have

degδ f ≤ degδ(δ
(m)(g))

≤ degδ g −m

≤ degδ(δ
(m)(f))−m

≤ degδ f − 2m.

This is only possible if f = 0, a contradiction.

Lemma 3.4. Let δ be an exponential map on an integral domain A with characteristic p ≥ 0. If
c1f

a + c2g
pj ∈ Aδ \ 0 where a > 1, j > 0 ∈ Z, p ∤ a, c1, c2 ∈ Aδ \ 0 and f is prime in A then

f, g ∈ Aδ.

Proof. We assume δ is nontrivial and p > 0 since otherwise there is nothing to show. If j > 1

and gp
j−1 ∈ Aδ \ 0, then g ∈ Aδ since Aδ is factorially closed by Lemma 3.1(a). Therefore we can

assume j = 1. It suffices to show f ∈ Aδ, again since Aδ is factorially closed. Suppose f /∈ Aδ. Let
m = min{i ∈ Z+ | δ(i)(f) ̸= 0}. We now examine how δ((a−1)m) acts on fa. By the Leibniz rule

δ((a−1)m)(fa) =
∑

i1+i2+···+ia=(a−1)m

δ(i1)(f)δ(i2)(f) · · · δ(ia)(f).

Since δ(0)(f) = f and δ(i)(f) = 0 for 0 < i < m, we have

δ((a−1)m)(fa) = afδ(m)(f)a−1 + f2h
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for some h ∈ A. Since c1f
a + c2g

p ∈ Aδ \ 0, we also have

c1δ
((a−1)m)(fa) = −c2δ

((a−1)m)(gp)

Now, δ(b)(gp) = (δ(
b
p )(g))p as the characteristic of A is p. (Of course δ(b)(gp) = 0 if b

p ̸∈ Z). Hence

c1(afδ
(m)(f)a−1 + f2h) = −c2(δ

((a−1)m/p)(g))p.

Therefore f divides δ((a−1)m/p)(g) in A since f is prime. So f2 divides δ((a−1)m/p)(g)p in A since
p ≥ 2. Therefore f2 divides fδ(m)(f)a−1 in A, and so f divides δ(m)(f) in A since f is prime.
But this implies degδ f ≤ degδ(δ

(m)(f)) which is only possible if f ∈ Aδ. This is a contradiction,
completing the proof.

4 Exponential maps and automorphisms of k[x, y]

We now turn our attention to the polynomial ring R = k[x, y]. We will use gradings and homoge-
nization techniques to further investigate exponential maps on R. Let a, b ∈ Z+ be relatively prime.
Define weights w(x) = a and w(y) = b and extend this to a degree function on R. This degree
function determines a grading on R. If r ∈ R, let gr r denote the homogeneous leading form of r.

Let δ : R → R[t] be a nontrivial exponential map on R. Define

w(t) = min

{
w(r)− w(δ(i)(r))

i

∣∣∣∣ r ∈ {x, y}, i ∈ Z+

}
(2)

Then we can extend w to a degree function on R[t] and we have w(δ(n)(r)tn) ≤ w(r) for all r ∈ R
and all integers n ≥ 0. For each r ∈ R define

S(r) = {n | w(δ(n)(r)tn) = w(r)}

and define gr δ on homogeneous elements by

(gr δ)(gr r) =
∑

n∈S(r)

gr(δ(n)(r))tn.

We can extend this linearly to obtain a map gr δ : R → R[t]. In fact gr δ is a nontrivial exponential
map on R which we call the homogenization of δ. Moreover, we have

gr(Rδ) ⊆ Rgr δ

where
gr(Rδ) = {gr r ∈ R | r ∈ Rδ}.

See Proposition 2.2 in [4] for a proof of these facts.

Lemma 4.1. Suppose R = k[x, y] is graded by w(x) = a and w(y) = b for some relatively
prime integers a, b ∈ Z+. Let δ be a nontrivial exponential map on R, and let gr δ denote the
homogenization of δ. Let f ∈ Rδ such that gr f /∈ k. Then either gr f = λ(x − µya)m or
gr f = λ(y − µxb)m for some λ, µ ∈ k with λ ̸= 0 and some m ∈ Z+.
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Proof. Write gr f = xiyjg(x, y) for some integers i, j ≥ 0 and some g(x, y) ∈ R which is homoge-
neous with respect to the grading on R and for which x ∤ g(x, y) and y ∤ g(x, y). If g(x, y) is not
constant, then

g(x, y) = λ
∏
l

(xb − µly
a)

where λ, µl ∈ k
∗, an algebraic closure of k. Note that gr δ extends to a nontrivial exponential map D

on S = k[x, y] with D(x) = (gr δ)(x) and D(y) = (gr δ)(y), and gr f ∈ SD. Furthermore, all factors
of gr f must belong to SD by Lemma 3.1(a). If g contains two distinct factors then x, y ∈ SD and
D is trivial. Hence g(x, y) = λ(xb − µya)m for some µ ∈ k

∗
,m ∈ Z+. Similarly D is trivial if any

two of the integers i, j, m are not equal to zero. Therefore either gr f = λxi, or gr f = λyj , or
gr f = λ(xb − µya)m.

Since gr f ∈ R it is clear that λ ∈ k. If p ∤ m then µ is also in k. To show that µ ∈ k if m ̸= 0
observe that D(xb − µya) = xb − µya. Hence D(j)(xb − µya) = 0 for all j > 0. Since y /∈ SD, there
exists some i ∈ Z+ such that D(i)(ya) ̸= 0. So

µ =
D(i)(xb)

D(i)(ya)
=

(gr δ)(i)(xb)

(gr δ)(i)(ya)
∈ k(x, y) ∩ k

∗
= k∗.

Therefore gr f = λ(xb − µya)m where λ, µ ∈ k with λ ̸= 0.
Finally, if both a > 1 and b > 1, then from Lemmas 3.3 and 3.4 we must have x, y ∈ Rgr δ which

again is not possible. Therefore either a = 1 or b = 1, completing the proof.

Theorem 4.2. Let k be a field, and let R = k[x, y]. Let δ be a nontrivial exponential map on R.
Let f ∈ Rδ \ k. Then there exists a finite sequence of automorphisms ∆1, . . . ,∆n ∈ Autk R such
that

1. For each i = 1, . . . , n, the automorphism ∆i is given by either

∆i(x) = x, ∆i(y) = y + µix
ci

or
∆i(x) = x+ µiy

ci , ∆i(y) = y

for some µi ∈ k and some ci ∈ Z+; and

2. α(f) ∈ k[x] or α(f) ∈ k[y], where α = ∆n · · ·∆1.

Furthermore, if α(f) ∈ k[x] (resp. k[y]), then Rαδα−1

= k[x] (resp. k[y]) and Rδ = k[α−1(x)] (resp.
k[α−1(y)]). Therefore Rδ = k[h] where h is the image of x or y under a composition of triangular
automorphisms.

Proof. If f ∈ k[x] or f ∈ k[y], then we are done. Now suppose f /∈ k[x] and f /∈ k[y]. Then
dx = degx f ̸= 0 and dy = degy f ̸= 0 where degx f is the degree of f relative to x and degy f
is the degree of f relative to y. Choose relatively prime integers a, b ∈ Z+ for which adx = bdy
and define weights w(x) = a and w(y) = b to obtain a grading on R. If w(f) > adx = bdy then
gr f must have both x and y as factors contrary to Lemma 4.1. Hence w(f) = adx = bdy and gr f
contains monomials xdx and ydy with nonzero coefficients. So according to Lemma 4.1 we have
gr f = λ(x − µya)m or gr f = λ(y − µxb)m for some λ, µ ∈ k∗ and m ∈ Z+. In the first case, if
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gr f = λ(x−µya)m, consider the automorphism β ∈ Autk R given by β(x) = x+µya and β(y) = y.
Then β(f) ∈ Rβδβ−1 and gr(β(f)) = λxm. Moreover, we have degy β(f) < dy while degx β(f) = dx.
Similarly in the second case, if gr f = λ(y − µxb)m, consider the automorphism γ ∈ Autk R given
by γ(x) = x and γ(y) = y + µxb. Then γ(f) ∈ Rγδγ−1 and gr(γ(f)) = λym. Moreover in this case,
degx γ(f) < dx while degy γ(f) = dy.

In either case, taking ∆1 = β or ∆1 = γ, we replace δ by ∆1δ∆
−1
1 and f by ∆1(f) ∈ R∆1δ∆

−1
1 \k

with smaller total degree. If ∆1(f) does not belong to k[x] or k[y], then we can repeat the process.
Since the total degree will decrease at each step, this process can be repeated only finitely many
times until we obtain an automorphic image of f which belongs to k[x] or k[y]. This proves items
(1) and (2).

For the remaining statement, suppose α(f) ∈ k[x]. (The case when α(f) ∈ k[y] is handled
analogously.) Since α(f) ∈ Rαδα−1 \ k as well, we conclude x ∈ Rαδα−1 by Lemma 3.1(a). If there
exists g ∈ Rαδα−1 \ k[x], then again using Lemma 3.1(a) we must have y ∈ Rαδα−1 . But this is not
possible since αδα−1 is nontrivial. Therefore Rαδα−1

= k[x]. Finally, since Rαδα−1

= α(Rδ), we
have Rδ = α−1(k[x]) = k[α−1(x)].

The following well-known description of the exponential maps of k[x, y] is due to Rentschler in
characteristic zero [15]. The prime characteristic case was established by Miyanishi in [13].

Theorem 4.3 (Rentschler, Miyanishi). Let k be a field with characteristic p ≥ 0, and let R = k[x, y].
Let Γ be the subgroup of Autk R generated by triangular automorphisms of the form

∆µ,c(x) = x, ∆µ,c(y) = y + µxc

with c ∈ Z, c ≥ 0, and µ ∈ k, and by the transposition τ(x) = y, τ(y) = x. Let δ : R → R[t] be
a nontrivial exponential map on R. Then there exists γ ∈ Γ such that γδγ−1(x) = x and y is an
element of minimal positive γδγ−1-degree, so that

γδγ−1(y) = y + f0(x)t+

n∑
i=1

fi(x)t
pi

for some n ∈ Z with n ≥ 0 and some f0(x), . . . , fn(x) ∈ k[x], with n = 0 if p = 0.

Proof. By Theorem 4.2 there exists γ ∈ Γ such that Rγδγ−1

= k[x] or Rγδγ−1

= k[y]. Composing
γ with τ if necessary, we can assume Rγδγ−1

= k[x]. Therefore γδγ−1(x) = x. Noting that γδγ−1

extends to an exponential map on k(x)[y] with ring of invariants k(x), necessarily y must be an
element of minimal positive γδγ−1-degree, and the result follows from Lemma 3.2(a).

The following well-known description of the automorphism group of k[x, y] is due to Jung in
characteristic zero [8] and van der Kulk in prime characteristic [9].

Theorem 4.4 (Jung, van der Kulk). Let k be a field, and let R = k[x, y]. Let Γ be the subgroup of
Autk R defined in Theorem 4.3. Then AutkR is generated by Γ along with the linear automorphisms
of the form x → λ1x, y → λ2y, where λ1, λ2 ∈ k∗. Therefore every automorphism of k[x, y] is tame.

Proof. Let R = k[x, y]. Let α ∈ Autk R. Let f = α(x) and g = α(y). Define an exponential
map δ : R → R[t] by δ(f) = f and δ(g) = g + t. Since R = k[f, g], we have Rδ = k[f ] using
Lemma 3.1(a). By Theorem 4.3 there exists an automorphism γ ∈ Γ such that Rγδγ−1

= k[x]
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and y is an element of minimal positive γδγ−1-degree. Furthermore, as in Theorem 4.2 we have
Rδ = k[γ−1(x)]. Thus f = µγ−1(x) + λ for some µ ∈ k∗ and λ ∈ k. So f = γ−1(µx+ λ).

Turning to γ(g), note that for each integer i ≥ 0 we have

(γδγ−1)(i)(γ(g)) = (γδ(i)γ−1)(γ(g)) = γδ(i)(g).

As δ(1)(g) = 1 and δ(i)(g) = 0 for i > 1, we therefore have

(γδγ−1)(γ(g)) = γ(g) + t.

But y is an element of minimal positive γδγ−1-degree, and so degγδγ−1(y) = 1 and

(γδγ−1)(y) = y + h(x)t

for some h(x) ∈ k[x]. Since (γδγ−1)(1)(y) = h(x) and (γδγ−1)(1)(x) = 0, we have

(γδγ−1)(1)(R) ⊆ h(x)R.

But
1 = (γδγ−1)(1)(γ(g)) ∈ h(x)R.

Therefore h(x) must be a unit in R. So we have h(x) = ξ ∈ k∗ and

(γδγ−1)(y) = y + ξt.

Moreover, we have γ(g) − ξ−1y ∈ Rγδγ−1

= k[x]. So γ(g) − ξ−1y = q(x) for some q(x) ∈ k[x].
Therefore g = γ−1(ξ−1y + q(x)).

Let β ∈ Autk R be the triangular automorphism given by β(x) = µx+λ and β(y) = ξ−1y+q(x).
We have now shown that f = γ−1β(x) and g = γ−1β(y). Thus α = γ−1β, proving that α is tame.

Note that β can be written as a composition β = γ3γ2β1 where β1 is the linear automorphism
given by β1(x) = µx, β1(y) = ξ−1y, and γ2, γ3 ∈ Γ are given by γ2(x) = x + µ−1λ, γ2(y) = y and
γ3(x) = x, γ3(y) = y + ξ−1q(x). This proves the claim.

5 A remark on the AK invariant
If A is a ring, we define the AK invariant of A to be the intersection of the rings of invariants over all
exponential maps on A. The AK invariant can sometimes be used to distinguish a k-algebra from
a polynomial ring over k, as any isomorphism of k-algebras restricts to an isomorphism of their AK
invariants. The first example of this was given in [11] to show that the Koras-Russell hypersurface
x+ x2y + z2 + t3 = 0 in C4 is not algebraically isomorphic to C3. This can be extended to prime
characteristic, as shown in [2]. More recently, Gupta used similar techniques in [7] to establish
the first counterexample to the Zariski Cancellation Problem. She showed that, when k has prime
characteristic p, the Asanuma hypersurface xmy + zp

e

+ t + tsp = 0 (where m, e, s ∈ Z+ such
that pe ∤ sp and sp ∤ pe) is not algebraically isomorphic to k3. In both results, the idea is to use
homogenization techniques to tease out information on the rings of invariants of exponential maps
on the coordinate ring. We note here that for each of these results, it is possible to streamline a
section of the proofs using Lemmas 3.3 and 3.4. Hopefully these lemmas will be useful in other
applications.
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