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Abstract

The model of the global gyrokinetic particle-in-cell code ORB5 has

been extended for the study of pair plasmas. This has been done by

including the physics of the Debye shielding, by including the electron

polarization density, and by retaining the effects of the electron finite

Larmor radius. This model is verified against previous numerical results

for the cyclone base case tokamak scenario in deuterium plasmas, and

for local pair plasma simulations. The linear dynamics of temperature

gradient driven instabilities and geodesic acoustic modes is investigated.

Mass dependencies for different Debye lengths are studied.

1 Introduction

Pair plasmas consist of species with opposite charge but equal mass. This
mass equality removes the separation of temporal and spatial plasma phe-
nomena found in conventional electron-ion plasmas for the two species. Pair
plasmas promise fundamental new plasma physics and have thus enjoyed great
popularity since the 70s (Tsytovich & Wharton, 1978) especially in the theo-
retical and numerical domain. In 2012, concrete plans for the creation of a
low-energy, low-density, magnetized electron-positron laboratory plasma in a
stellarator have been published (Pedersen et al., 2012). In the meantime, the
magnetic dipole (Stoneking et al., 2018) has been identified as an equally con-
venient candidate for confining such plasmas, and efficient positron injection
and confinement in the latter geometry has been demonstrated (Saitoh et al.,
2015; Hergenhahn et al., 2018; Stenson et al., 2018; Horn-Stanja et al., 2018).
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With these recent advances from experiments, the theoretical interest in this
particular state of matter has been renewed (Helander, 2014; Mishchenko et al.,
2018a,b).

In general, micro-instabilities are present in nonuniform plasmas, tapping
the free energy of temperature and density gradients. Due to the nonlin-
ear interaction of these micro-instabilities turbulence forms and causes anoma-
lous transport of heat and particles, with consequent degradation of the con-
finement time. In Ref. Helander (2014), it has however been noted that the
slab branches of temperature gradient driven modes are stable in an equal-
temperature pair plasma. A destabilization of these modes can be caused
by introducing either a finite difference in the temperature of the two species
(Barnes et al., 2018), an ion contamination (Mishchenko et al., 2018b) or mag-
netic curvature (Helander, 2014). In the latter case, such unstable mode has
actually been observed numerically by local gyrokinetic simulations of the cy-
clone base case with GS2 (Kotschenreuther et al., 1995; Dorland et al., 2000)
while varying the mass ratios from 1/1836 to 1 (Pedersen et al., 2003). How-
ever, neither the linear spectrum nor the mode structure has been presented.
The cyclone base case describes a toroidal ion-temperature-gradient (ITG) in-
stability (Rudakov & Sagdeev, 1965) for a collisionless electron-ion plasma in
a tokamak geometry which is driven unstable by the curvature and gradient
drift of the ions in the presence of a temperature gradient. ITGs are known to
cause on the one hand turbulence and on the other hand a radial electric field
leading to E×B poloidal flows (zonal flows). Due to the curvature of the equi-
librium toroidal magnetic field these flows start to oscillate and form geodesic
acoustic modes (GAMs) (Winsor et al., 1968; Zonca & Chen, 2008). Although
an extensive effort of verification and benchmark of gyrokinetic codes on the
physics of GAMs has been done for conventional deuterium-electron plasmas
(see for example Biancalani et al., 2017), GAMs have never been studied in a
pair plasma, to the best of our knowledge, and in general their effect on plasma
turbulence and the zonal flows is an active field of research.

In this paper, a more detailed linear gyrokinetic study of pair plasmas will
be given to extend the current understanding of basic properties of pair plasmas
in magnetic geometries with finite shear and field lines covering the flux sur-
faces. In this work we have focused on the tokamak geometry, i.e. on a toroidal
geometry with axisymmetry. With typical cyclone parameters the dominant
instability is thus a toroidal ITG. Slab ITGs which are driven unstable by the
parallel ion dynamics are subdominant in this case, but could be of relevance in
other geometries, like, for example, stellarators. Note that only the stellarator
(Pedersen et al., 2012) and dipole geometry (Stoneking et al., 2018) are consid-
ered for a magnetized laboratory pair plasma. In the experiment, the thermal to
magnetic pressure ratio β should be tiny (as the target temperature is ∼ 1 eV,
and the density is ∼ 1013m−3), with the aim of getting a sustained steady state
where annihilation is negligible (Pedersen et al., 2012). With these parameters,
the Debye length becomes relatively large (3 orders of magnitude larger than the
gyroradius) and understanding its influence becomes crucial. The Debye shield-
ing should be accessible in the tokamak, too — a geometry which is intensively
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studied in gyrokinetic simulations and provides a destabilization mechanism due
to the magnetic curvature. A possible extension of the present work, which is
left as a future step, is the inclusion of three-dimensional effects in the mag-
netic equilibrium, which are proper, for example, of stellarator geometries. For
the simulations the global gyrokinetic particle-in-cell code ORB5 (Jolliet et al.,
2007; Bottino et al., 2011) has been used.

In order to enable pair plasma simulations with the ORB5 code, the under-
lying model (Tronko et al., 2016) had to be modified to account for the Debye
screening term relevant in pair plasmas. The details of the model are explained
in section 2. The new model has been benchmarked against a standard electron-
ion plasma scenario (Görler et al., 2016) as well as the previous work on pair
plasmas (Pedersen et al., 2003). The benchmark results are presented in sec-
tion 3. The linear transition from a standard benchmark case in ORB5 towards
a pair plasma is carried out in section 4. There we present the dependence on
the mass ratio, the Debye length and the toroidal mode number and in addition
give the mode structure for the strongest growing mode. Finally, we performed
Rosenbluth-Hinton tests (Rosenbluth & Hinton, 1998) for various mass ratios to
get insight into GAMs in pair plasmas. These results are discussed in section 5.
This work forms the basis for future turbulence studies in pair plasmas.

2 Model

We study drift micro-instabilities in pair plasmas confined in a tokamak geom-
etry. These micro-instabilities are generated as drift waves due to the plasma
non-uniformities, and in particular they become unstable due to the temper-
ature gradients. The micro-instabilities we are interested in have character-
istic frequencies much smaller than the gyro-frequency and small amplitudes.
Therefore, the gyrokinetic ordering is satisfied and the gyrokinetic description
(Brizard & Hahm, 2007) can be applied. The problems to be addressed numer-
ically include effects of equal masses of the species on the drift instabilities and
the role of the Debye length which is expected to be larger than the particle
gyro-radius in the pair plasma experiments (Pedersen et al., 2012). We employ
the global gyrokinetic particle-in-cell code ORB5.

The gyrokinetic Poisson equation for the fluctuating electrostatic potential
φ reads:

− ǫ0∇2φ−∇ ·
(

∑

s

qsn0s

Bωcs
∇⊥φ

)

=
∑

s

qsns (1)

with the index s = e, i for the species, q the charge, ωc the gyrofrequency, n0

the equilibrium density and n the gyrocenter density fluctuations. Introducing
the parameters:

λ2
D =

ǫ0Tref

nrefq2ref
, λ̂2

D = λ2
D/r2ref =

ǫ0B
2
ref

mrefnref

(2)
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with λD the Debye length and λ̂D the Debye length normalised to the reference
normalisation length (essentially a gyroradius), rref , we can rewrite the Poisson
equation in a normalised form:

− λ̂2
D∇̂2

⊥
φ̂− ∇̂ ·

(

∑

s

m̂sn̂0s

B̂2
∇̂⊥φ̂

)

=
∑

s

q̂sn̂s (3)

The normalised quantities are defined here as follows:

φ̂ =
qrefφ

Tref

, ∇̂⊥ = rref∇⊥ , n̂s = ns/nref , n̂0s = n0s/nref (4)

B̂ =
B

Bref

, m̂s =
ms

mref

, r2ref =
mrefTref

q2refB
2
ref

(5)

with the normalisation constants qref , mref , Tref , nref , and Bref properly cho-
sen. The distribution function is found from the drift- or gyro-kinetic equation:

∂f1s
∂t

+ Ż(0) ∂f1s
∂Z

= − Ż(1)∂F0s

∂Z
(6)

with Z being the gyrocenter phase-space coordinates and Ż the gyrocenter or-
bits (Brizard & Hahm, 2007). We distinguish between the perturbed Z(1) and
unperturbed Z(0) orbits. The gyrokinetic distribution function is also split into
the perturbed f1s and unperturbed F0s parts with F0s being a Maxwellian.

Note that a usual gyrokinetic model of ORB5 (Tronko et al., 2016) assumes
the Debye length to be much smaller than the ion gyroradius and thus neglects
the first term in equation 3. In this work, this assumption has been removed
in order to enable pair plasma simulations. As a result, an additional term,
proportional to the Debye length, appears in the polarization (Poisson) equation
of the model. In addition to this, the electron polarization density, usually
neglected in standard ORB5 simulations, has been included into the equations
and in the finite element based field solver module of the code. Relativistic
corrections are neglected here.

3 Benchmark studies for the modified code

3.1 Cyclone base case in collisionless deuterium plasmas

Recently a benchmark case based on the well established cyclone base case
(Dimits et al., 2000) has been proposed for global codes such as ORB5 (Görler et al.,
2016). It describes a collisionless deuterium plasma in the magnetic field of a
tokamak with circular concentric flux surfaces. In agreement with the reference,
a mass ratio ofme/mi = 5.446·10−4 was used (i.e. with electrons twice as heavy
as in reality) in order to reduce the computational effort. The minor and major
radius of the tokamak are a = 0.612m and R0 = 1.7m. The reference magnetic
surface is ρ0 = r0/a = 0.5. The guide magnetic field is B0 = 2T. The safety
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Figure 1: Left: Growth rate normalized to cs/R0 =
√

eTe/mi ∼ 190 kHz for
toroidal modes with n ∈ [5, 40] in the new code (blue triangles) for the test case
described in the main text. Right: Corresponding frequencies (blue triangles)
in the same normalization. The respective quantities from Görler et al. (2016)
are also shown by red circles for comparison.

factor is q0 = 1.41 and the magnetic shear is ŝ = 0.84. The profile of the safety
factor is chosen parabolic

q(r) = 0.86− 0.16
r

a
+ 2.52

r2

a2
. (7)

Via ρ∗ = rref/a = 1/180 the electron temperature (which is the reference
temperature) is fixed to Te = 2.14 keV. The ion temperature is chosen equal to
the electron temperature. The reference density is set to n0 = 4.66× 1019 m−3.
However, this density is normalized in the code and only enters via λ̂D. For
both species, the temperature gradient is defined by κτ = a/LT = 2.508, and
the density gradient by κn = a/Ln = 0.8028. Those quantities enter in the
driving terms of the evolution equation for the weights, i.e. in the right hand
side of the Vlasov equation 6 via the radial derivative of F0.

We chose this scenario to verify that ORB5 with the pair plasma implemen-
tation described in section 2 still gives the same result for conventional plasma
runs. The linear spectrum of the electrostatic case was simulated and compared
to the one provided in Görler et al. (2016). First, we used gyrokinetic ions and
adiabatic electrons. The time step was chosen as ∆t = 20Ω−1 with Ω the cy-
clotron frequency of the ion species. The number of markers was 1 × 107 for
n ≤ 20 or 1×108 for n > 20 with n ∈ [5, 40] the toroidal mode number. The grid
size is (Ns, Nχ, Nφ) = (128, 128, 128) (for radial, poloidal and toroidal direction,
respectively) for smaller and (128, 256, 128) for higher toroidal mode numbers,
respectively. The results for the growth rate and frequency in dependence on
the toroidal mode number are in good agreement with the values provided in
Görler et al. (2016) and are shown in figure 1. Second, we switched to fully
kinetic electrons. With a time step of ∆t = 0.4Ω−1 and n ∈ [15, 30], we again
found good agreement with Görler et al. (2016).
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Figure 2: Poloidal mode structure of the n = 20 mode for a plasma with
me/mi = 0.1 at t = 5000Ω−1. For more details see text.

3.2 Comparison to pair plasma results with GS2

The aim of this section is to benchmark our pair plasma calculations with ORB5
against previous results for pair plasmas with other codes. In 2003, some re-
sults on linear gyrokinetic simulations for pair plasmas with the local code
GS2 (Kotschenreuther et al., 1995; Dorland et al., 2000), including the mass
and density dependence, were published (Pedersen et al., 2003). Following the
reference, we used: the reference magnetic surface at ρ0 = r0/a = 0.5, safety
factor q0 = 1.4, magnetic shear ŝ = 0.8, magnetic field B0 = 1T and gradient
lengths a/Ln = a/LT = 1.08. We assumed electrostatic runs with fully kinetic
electrons with a reference temperature of Te = Ti = 2.14keV. We choose a
density of n0 = 4.66 × 1019m−3 which gives a Debye length smaller than the
reference gyroradius and thus Debye screening is unimportant. These parame-
ters result in ρ∗ = 1/130. We aimed for the reproduction of one point of Figure
4 from the reference and choose me/mi = 0.1. The ion mass is now equal to the
proton mass. We use the toroidal mode n = 20 as this was so far our strongest
growing mode. The time step is ∆t = 0.2Ω−1, the marker number is N = 107

and the poloidal resolution Nχ = 128.
Our calculations result in γ = 0.00127Ω and ω = 0.0021Ω. We need to

convert these into the units used in the reference.

Ω =

(

Ω
R

vti

)

vti
R

=

(

R

ρS

)

vti
R

=

(

R

aρ∗

)

vti
R

(8)

With the parameters given above we have the conversion Ω = 361.11 vti/R
which leads to γ = 0.459 vti/R, in reasonable agreement with the maximized
growth rate of γGS2 = 0.4 vti/R for that mass ratio from the reference. For
completeness, the frequency in this normalization is ω = 0.758 vti/R. The
corresponding poloidal mode structure is shown in figure 2.
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Before proceeding further, it is worth discussing about the value of the real
part of the frequency measured with ORB5 in this simulation. The real part is
not given in Pedersen et al. (2003), and therefore no comparison can be shown
here. Nevertheless, more general considerations can be done. In particular, note
that the model equations, i.e. Eq. 3 and Eq. 6, have a well defined symmetry
(see also Helander & Connor, 2016; Barnes et al., 2018) with respect to the
transformation exchanging the two species (and consequently the sign of the
electric field), and the sign of time (and consequently of the velocity). This is due
to the equal mass and opposite charge of the two species, and by the assumption
of equal density and temperature profiles. As a consequence, by applying this
transformation, what we will observe is still a possible solution of our model.
Therefore, we can state that, if an oscillation with a frequency z1 = ω + iγ
exists, also the oscillation with opposite frequency, i.e. z2 = −ω − iγ, should
be visible. A more dedicated analytical resolution of the dispersion relation of
temperature gradient driven modes in pair plasmas is given in Kennedy et al.

(2018), showing that, in the local limit, the real frequency of the temperature
gradient driven modes is null in pair plasmas. This is consistent with local
(i.e. flux-tube) simulations of GENE (Jenko et al., 2000), shown in the same
paper (Kennedy et al., 2018). Note that all simulations obtained with ORB5
are global, as no flux-tube version of ORB5 exists. Note also that ORB5 is
an initial-value code. Therefore, if two modes with opposite frequency exist,
the damped one will not be visible anymore after a sufficiently long time, and
only one finite frequency will be observed. In summary, we conjecture that the
finiteness of the measured frequency is due to global effects. This hypothesis
is supported by repeating some of our simulations with the local and global
versions of GENE, with the result that the local version gives zero frequency,
and the global version gives a finite frequency consistent with ORB5. A more
detailed study of the global effects in pair plasmas is outside the scope of this
paper, and comprehensive numerical studies with ORB5 and GENE will be
performed and discussed in a dedicated publication.

4 Cyclone base case for pair plasma

In a next step we study the transition towards a pair plasma. Main points of
interest are the dependence of the growth rate and frequency on the mass ratio,
the Debye length and the toroidal mode number. For simplicity, the equilibrium
is fixed to the parameters of the benchmark case presented in section 3.1. The
electrons are treated fully kinetically.

To realize this transition the mass ratio me/mi needs to be adjusted. Reduc-
ing the reference mass mi goes along with reducing ρ∗ which is computationally
too expensive. Instead we have chosen to increase me and thus to investigate a
heavy-mass pair plasma.
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Figure 3: Left: Mass dependence of the growth rate, normalized to cs/R0.
Right: Corresponding frequencies in the same normalization. The Debye length
is fixed to λ̂D = 0.01508

4.1 Mass scan for cyclone base case

To study the mass dependence, the mass of the electrons is increased from
5.446× 10−4mi to mi (recall mi=2mp with mp the proton mass).

The gyrokinetic theory should still hold for the following reason. It is known
that in the benchmark case ω scales as cs/R ∝

√

T/mi. Assuming this remains
valid when changing the mass ratio and keeping ρ∗ constant this is a me/mi

scaling as for the cyclotron frequency. Thus, if the relation ω << Ω is valid for
the normal mass ratio it is expected to remain valid for this study.

At initialization, the toroidal mode number n = 20 was chosen since this
was the strongest growing mode in the benchmark case with the conventional
mass ratio. The time step was set to ∆t = 0.2Ω−1 for mass ratios below or to
∆t = 20Ω−1 for mass ratios above 0.03, respectively. For the first study the
Debye length was fixed to λ̂D = 0.01508 and is thus smaller than the reference
gyroradius.

The numerical results of the mass scan are shown in table 1 and figure 3. For
the growth rate, we find a qualitative agreement with the result presented in
Pedersen et al. (2003). For the frequencies, we use the sign convention that the
positive frequencies correspond to the ion (positron) diamagnetic direction for
the mode rotation (as in ITG instabilities). We observe that the mode rotation
remains in the ion (positron) diamagnetic direction for all mass ratios, in the
regime of ion (positron) temperature gradient exceeding the density gradient
considered here. Note that, when the mass ratio tends to unity, the value of the
frequency becomes small but remains finite in the simulations performed with
ORB5, contrarily to simulations performed with the flux-tube version of GENE
where the frequency goes to zero for mi/me → 1 (see Kennedy et al., 2018). As
discussed in Sec.3.2, we consider this residual finite frequency in the mass scan
as due to global effects.

For mass ratios above 0.004, this scan was repeated for a Debye length
exceeding the reference gyroradius, namely λ̂D = 3 corresponding to a density
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mass ratio γ / (cs/R0) ω / (cs/R0)

0.000545 0.569 0.714
0.00109 0.546 0.759
0.00218 0.587 0.741
0.00436 0.605 0.777
0.00871 0.631 0.844
0.0174 0.619 0.913
0.0348 0.762 1.13
0.0436 0.848 1.19
0.167 1.56 1.13
0.333 1.70 0.856
0.5 1.65 0.672
0.75 1.47 0.398
1. 1.25 0.176

Table 1: Numerical results for the growth rate and frequency for different mass
ratios with fully kinetic electrons and toroidal mode number n = 20. The results
are normalized to cs/R0. The Debye length is fixed to λ̂D = 0.01508.

of n0 ∼ 1×1015m−3. For this case, the Debye screening term becomes significant
and reduced growth rates are observed. Furthermore, the frequency of the mode
remains unaffected for a broad range of mass ratios unless it approaches unity
where a sign flip is observed. Such flips in the sign of the frequency are known to
exist in pair plasmas investigated kinetically (see, for example Kennedy et al.,
2018), and explained as due to the dominance of one mode on the other in
terms of growth rates (whereas the frequencies are very similar and the phase
velocities are opposite). A comparison of the growth rates and frequencies for
the two cases is shown in figure 4.

4.2 Debye length scan for pair plasma in cyclone base case

With me = mi, the Debye length was increased from λ̂D = 0.0 to λ̂D = 5.0.
Since in electrostatic runs λ̂D is the only parameter in ORB5 depending on the
density, this effectively corresponds to a decrease in density. The number of
markers was set to N = 4× 105 for the ”ion species” and to N = 4× 106 for the
electrons, the time step was ∆t = 10Ω−1 and all other parameters were chosen
as before. The numerical results of the Debye length scan are shown in table
2 and figure 5. With larger Debye length the unstable mode is weakened and
eventually stabilized for λ̂D & 4.5 which again is in qualitative agreement with
the result in Pedersen et al. (2003). For the frequency, a sign flip is observed

for λ̂D > 1, i.e. as soon as the Debye length exceeds the reference gyroradius.
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Figure 4: Comparison of the numerical results for two different λ̂D. Left: Mass
dependence of the growth rate, normalized to cs/R0 (note the two scales). Right:
Corresponding frequencies in the same normalization.

Debye length γ / (cs/R0) ω / (cs/R0)

0.0 1.27 0.19
0.5 1.12 0.18
1.0 0.73 0.16
1.5 0.53 −0.38
2.0 0.41 −0.46
2.5 0.3 −0.48
3.0 0.21 −0.49
3.5 0.14 −0.49
4.0 0.08 −0.47
4.5 0.03 −0.42
5.0 ∼ 0.0 -

Table 2: Numerical results for the growth rate and frequency for different Debye
lengths with fully kinetic electrons and toroidal mode number n = 20. The
results are normalized to cs/R0. The mass ratio is fixed to me/mi = 1.
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Figure 5: Left: Dependence of the growth rate, normalized to cs/R0, on the
Debye length. Right: Corresponding frequencies in the same normalization.
The mass ratio is fixed to me/mi = 1.

mode number γ / (cs/R0) ω / (cs/R0)

5 0.239 −0.146
10 1.364 −0.110
15 1.489 0.053
20 1.245 0.189
25 0.839 0.455
30 0.644 −0.628
35 0.595 −0.831
40 0.524 −0.982

Table 3: Numerical results for the growth rate and frequency for different mode
numbers, the mass ratio is equal to 1 and λ̂D = 0.01508.

4.3 Linear spectrum for pair plasma in cyclone base case

In the cyclone base case for an electron-ion plasma the maximum growth rate
is observed for the n = 20 mode. In order to investigate if this remains valid for
a pair plasma with a mass ratio of 1 we initialized simulations with n ∈ [5, 40]

and Debye lengths of λ̂D = {0.01508, 3}, respectively. The poloidal resolution
of the runs was adjusted in order to fulfill Nχ ≥ nqmax±∆m with qmax ∼ 3 and
∆m = 5. The numerical results are summarized in table 3, table 4 and shown
in figure 6.

Clearly the peak position of the growth-rate spectrum is shifted for a pair
plasma with the exact peak position depending on the choice of the Debye
length. For λ̂D = 3, modes with n > 30 are stabilized. While for λ̂D = 0.01508
two sign flips are observed for the frequency, λ̂D = 3 shows the same sign for
the frequency for all investigated modes. Finally, we show in figure 7 the mode
structure of the strongest growing mode for the two investigated Debye lengths
which both still look comparable to the conventional ITG case.
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mode number γ / (cs/R0) ω / (cs/R0)

5 0.109 −0.147
10 0.277 −0.224
15 0.264 −0.362
20 0.204 −0.487
25 0.143 −0.635
30 0.041 −0.687

Table 4: Numerical results for the growth rate and frequency for different mode
numbers, the mass ratio is equal to 1 and λ̂D = 3.
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Figure 6: Growth rate and frequency spectrum for a pair plasma with cyclone
base case parameters for two different Debye lengths.
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t = 15000Ω−1 for λ̂D = 0.01508 (left) and λ̂D = 3 (right). Note the different
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Figure 8: Oscillation of the zonal component of the scalar potential, for a simula-
tion of a pair plasma, i.e. with kinetic electrons with me = mi (blue continuous
line) and for a simulation of a deuterium plasma with adiabatic electrons (red
dashed line).

5 GAMs for pair plasma

With a Rosenbluth-Hinton (RH) test, the acoustic response of a toroidal pair
plasma can be studied (Rosenbluth & Hinton, 1998). A RH test is a linear
numerical simulation where a radial electric field is initialized at t = 0 and the
oscillations of the zonal (i.e. axisymmetric) perturbations in time are investi-
gated. Here, collisionless electrostatic RH tests are performed with ORB5, with
different mass ratios. The magnetic geometry is the same as in section 4, but
we consider here flat q, Te, Ti and ne equilibrium profiles. The values of q and
Te are the ones measured at the reference magnetic surface of the cyclone base
case (namely at ρ0 = r0/a = 0.5). The value of the density is imposed by the

value of the Debye length, which is set to λ̂D = 0.01508 for the scans presented
in this section. The value of λ̂D has also been scanned from λ̂D = 0.01508 to
λ̂D = 3, with no significant difference in the results.
A typical RH test with ORB5 with mi = me has a grid size of (Ns, Nχ, Nφ) =
(64, 64, 4) and a time step of ∆t = 5Ω−1 (whereas smaller time steps are needed
for smaller values of me/mi). The initial perturbation of the zonal scalar po-
tential is of the form φ̄0 = sin(πρ) corresponding to krρi =

√
2ρ∗π ∼ 0.025.

Dirichlet boundary conditions are imposed at the inner and outer boundaries in
the radial domain.

The result of the RH test (see the blue line in figure 8, where the perturbed
zonal component of the scalar potential measured at ρ0 = 0.5 is depicted) shows
the same qualitative behaviour as in a deuterium-electron plasma. In particular,
the time evolution has two types of oscillations: (i) oscillations of the order of
the sound frequency, i.e. the GAMs, and (ii) high-frequency oscillations which
correspond to the ωH mode - the electrostatic version of the shear-Alfvén waves.
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mass ratio ωGAM / (cs/R0) γGAM / (cs/R0)

0.01 2.75 −0.24
0.043 2.80 −0.16
0.2 2.75 −0.20
0.5 2.60 −0.15
1. 2.35 −0.17

Table 5: Numerical result for the GAM frequency and damping rate for different
mass ratios.

In this paper, we focus on the GAMs (for a discussion of the latter see Lee, 1987;
Biancalani et al., 2014; Novikau et al., 2017). For comparison, the result from
a simulation of a deuterium plasma with adiabatic electrons is also shown in
figure 8, as a red dashed line. Note that both the frequency and the damping
rate are different for a pair plasma and a deuterium-electron plasma, but of the
same order of magnitude.

The dependence of the frequency and damping rate of the GAM on the mass
ratio is also investigated. The results are given in table 5 and shown in figure 9.
Different simulations (with different resolutions) have been performed for each
case, and the average result is shown in figure 9, together with the dispersion
around the average value, which is represented by the size of the crosses. Note
also that, within the same simulation, the measurement of the frequency and
damping rate can slightly change depending on the time window used for the
measurement. This also contributes to the size of the error bar shown in figure
9. The frequency decreases with increasing electron mass only when the latter
becomes comparable to the ion mass. This is due to the inertia of the plasma
where both, electrons and ions, have the same weight.

For the damping rate, a higher value of the simulations with kinetic electrons
is observed with respect to the simulations with adiabatic electrons, consistently
with Ref. Biancalani et al. (2014); Novikau et al. (2017); Zhang & Lin (2010).
No clear dependence on the electron mass is observed in this regime, where the
variations with me/mi are within the error bar. For comparison, the frequency
and damping rate in the simulation with adiabatic electrons are ω = 2.75 cs/R0

and γ = 0.095 cs/R0. Compared to the values obtained with adiabatic electrons,
the frequency of a pair plasma is smaller by a factor 0.85 and the damping rate
is larger by a factor of 1.74.

6 Summary

To summarize, we have introduced a new model in the global code ORB5 in
order to enable pair plasma simulations. This code was benchmarked against
the cyclone base case for conventional plasmas and previous pair plasma results
in a local geometry and reasonable agreement was found. The mass dependence
of the linear growth rate and frequency was studied for a Debye length smaller
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Figure 9: GAM frequency (left) and damping rate (right) vs mass ratio. The
red dashed line gives the gyrokinetic prediction for a deuterium plasma with
adiabatic electrons.

and greater than the reference gyroradius, respectively. While the results for
the growth rate look qualitatively similar they differ by a factor ∼ 10 showing a
weakening of the instability due to the Debye screening term. In a separate scan
of the Debye length we found an almost complete stabilization of a pair plasma
for a Debye length of λ̂D = 5. In an investigation of the linear spectrum we
found the peak location of the growth rate in a pair plasma shifted to a mode
number of n = 10− 15, somewhat smaller than for a conventional plasma. The
corresponding mode structure is, however, still comparable to the ITG one.

We concluded the linear investigation of pair plasmas with a study on GAMs.
While the oscillation of the initial perturbation is only affected by the mass ratio
close to unity, the damping rate was for all studied mass ratios significantly
stronger than in a conventional plasma.

As we have seen in these global simulations performed with ORB5, tem-
perature gradient driven modes are observed with small but finite frequency in
pair plasmas, contrarily to the studies performed with flux tube simulations of
GENE (Kennedy et al., 2018), where the real part of the frequency vanishes. It
is conjectured here that this is due to global effects. The detailed analysis of
the difference between global and local simulations is outside the scope of this
paper, and will be investigated in a dedicated publication.

Based on these results we will investigate how the linear characteristics
change by introducing a third species and if turbulence can be observed in
a pair plasma.

The authors would like to acknowledge useful discussions with P. Helander
and T. Sunn Pedersen. Numerical simulations were performed on the Marconi
supercomputer within the framework of the ORB5APEX project. JHS acknowl-
edges funding from the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation programme under grant agreement
No 741322.
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