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Abstract 

Abstract 

At all times, innovative materials have helped to expand the boundaries of technologies. Given 

the never-ending technological progress, there is an undisputable need for new perspective 

materials. One of these promising materials is graphene. Its unique electronic properties have 

given hope for its application in the electronics, optoelectronics and other technologies. 

Moreover, the advances in the production methods of graphene have introduced others 

promising materials, such as graphene nanoribbons. In this work, we study the carrier 

conduction in graphene and graphene nanostructures as perspective materials for the next 

generation of electronics. To this end, we employ THz time domain spectroscopy. Because of 

the low photon energy of THz radiation, it is particularly sensitive to the electronic 

conductivity, which is dominated by charge carriers with low excitation energies. In addition, 

THz time domain spectroscopy allows measuring conductivity in broad frequency range and 

in a contact-free manner. 

In the first part, we study ultrafast carrier dynamics in a single layer graphene, produced by 

chemical vapor deposition (CVD). We show that the doped graphene excited with the high-

field THz pulse or with the optical pulse exhibit the reduction of its conductivity in THz range. 

Using a simple thermodynamic picture, we can describe qualitatively and quantitatively the 

THz conductivity of graphene in this excited state. According to this picture, the energy of the 

THz field or an optical pulse converts efficiently and quasi-instantaneously into the internal 

energy of the entire electron population, thus leading to the elevation of its temperature. In this 

state, carriers have reduced intra-band conductivity due to the decreased chemical potential, 

which is a result of the conservation of energy and particle number. 

In the second part, we have investigated ultrafast charge carrier dynamics in graphene with 

periodic folds. In CVD-grown graphene, folds occur randomly. In our samples, these folds 

have been introduced in the ordered, periodic manner using the novel transfer-printing method 

- GraFold – developed by the group of Prof. G. S. Duesberg in Trinity College, Dublin. We 

have not observed any tangible change in the background conductivity of the sample. 

Although, the studies in the optically excited state have demonstrated that the negative 

photoconductivity in the direction perpendicular to folds is in ca. 1.5 times less than in the 
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direction parallel to them. One cannot simply explain this initial result just by the filling factor 

of the folds, which is less than 5%. A possible explanation could be that in photo-excited state 

this sample exhibit the anisotropic potential landscape that leads to the observed anisotropy of 

the photoconductivity. 

In the third part, we have studied the conductivity in the bottom-up synthesized graphene 

nanoribbons (GNRs). Using THz studies and transport calculations, we have shown that the 

edge structure of GNRs play a crucial role in their conductive properties. In particular, we 

have demonstrated that in GNRs with similar optical properties and band structures, but 

different edge structures, display different scattering times of the conductive carriers. 

Moreover, simple alkyl chains, which are usually decorating edges of chemically grown 

GNRs, also show minor influence on the carrier transport. 
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1 Introduction 

 

Chapter 1 

Introduction 

 

The understanding of the dynamics of charge carriers in materials is vital for the fundamental 

knowledge as well as for technological applications. The way of how electrons lose their 

energy and momentum to their surroundings crucially defines the performance of for example 

electronics and solar cells [1]. 

The preparation of the first graphene film in 2004 by Novoselov and coworkers [2] has 

foreshadowed the launch of the new highly growing branch of the science of 2D materials [3]–

[5]. Resulting from the linear band dispersion, the unique electron transport and optical 

properties of graphene [6], [7] have given hope for its application in a post-silicon generation 

of electronics [8] and photonics [9]. It has also been shown that graphene is a perspective 

material for THz physics that can act as an efficient frequency up-converter in the THz range 

[10], [11].  

Since graphene is 2D material, folds or wrinkles can naturally form in this material. It is 

especially relevant in the large-area graphene samples that are obtainable by chemical 

synthesis. The group of Professor Georg Duesberg in Trinity College Dublin has invented the 

transfer-printing approach of controllable folding in graphene in a patterned manner – so-

called GraFold. It is of great importance to study the impact of such patterned formations on 

the conductive properties of graphene since such a novel approach as GraFold potentially 

paves the way towards the printable graphene circuits. 

In the context of recent advances in the chemical synthesis of low dimensional graphene 

structures [12], nanometer-sized graphene ribbons come into focus. Given their 1D nature and 

the large bandgap, resulting from the quantum confinement, graphene nanoribbons are seen as 

promising materials for the future channel materials in field effect transistors. The bottom-up 

approach provides nanoribbons with controllable widths, edge structures, and 
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functionalization. We also study the impact of the edge structure on the conductive properties 

of graphene nanoribbons in this work. 

In view of their technological potential for future electronics, the dynamics of charge carriers 

in graphene, folded graphene and graphene nanoribbons are studied in this work. The tool of 

choice that we have used to this end is the THz time-domain spectroscopy that employs short 

THz pulses to probe the conductive charges in these materials. Due to the very low photon 

energy of THz radiation, i.e., the electromagnetic wave of 1 THz frequency corresponds to the 

photon energy of 4.1 meV, it can only induce excitations with low transitions energies. 

Therefore, THz radiation is particularly sensitive to the electronic conductivity as it is 

dominated by the charge carriers with low excitation energies, for instance, intraband 

transitions of conductive electrons and holes in the region near the Fermi level. Another 

advantage of using THz spectroscopy is the fact that short probing THz pulses comprise a 

bandwidth of frequencies (in this work it is usually 0.3 – 2.5 THz), thus allowing to retrieve 

conductive properties in a broad frequency range. In the perspective of the pulsed nature of 

the THz spectrometry, it is also possible to study the conductivity dynamics upon the system 

has been perturbed, for instance, by an optical pulse. 

Moreover, there are other interesting excitations corresponding to the variety of ultrafast 

phenomena taking place in condensed matter that also lie in the THz frequency range. For 

instance, molecular vibrations and phonons of the lattice [13], as well as the spin oscillations 

[14], can interact effectively with electromagnetic waves of THz frequencies. 

This thesis is organized as follows: 

In Chapter 2, the basic physics of graphene and graphene nanoribbons is presented. Also, we 

describe some conductivity models that we used in this work. 

In Chapter 3, we will describe the basic principles behind the THz generation and detection. 

The layout of the THz spectrometer will also be introduced together with types of the 

experiments one can convey on this setup. The mathematical formulas for the retrieving optical 

properties from the obtainable on this spectrometer signals are also presented in this chapter. 

In Chapter 4, we present experimental studies of the THz photo-physics in graphene. We will 

demonstrate that the carrier dynamics in graphene is governed by the thermodynamic state of 

the charge carrier system by introducing the thermodynamic model of conductivity in 

graphene. 
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Chapter 5 is dedicated to studies of the impact of the periodic folding in graphene on its 

conductive properties. Given the 2D nature of graphene, folding is its inevitable ‘property’ 

that takes place naturally. Here we introduce the invented by the group of Prof. G. Duesberg 

from Trinity College Dublin approach for the controllable creation of folds in graphene – 

GraFold. We also show the THz conductivity studies of such samples. 

In Chapter 6, we investigate the THz conductivities in graphene nanoribbons with different 

edge structures. We will try to answer how the edge structure influences the conductive 

properties of graphene nanoribbons with resembling optical fingerprints. 
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2 Theoretical background 

 

Chapter 2 

Theoretical background 

 

The initial theoretical studies have predicted that graphene (and any 2D crystal) would be 

thermodynamically unstable [4]. In 2004, Konstantin Novoselov and Andre Geim obsoleted 

this common knowledge by the experimental discovery of graphene [2] and other free-standing 

2D atomic crystals [3]. These works have demonstrated unique transport (high mobility) and 

optical properties (uniform optical absorption) of graphene that stems from its unique conical 

band structure. In this chapter, we review the fundamental electronic properties of graphene 

as well as graphene nanoribbons (GNRs). Also, we introduce the charge carrier transport 

models we encounter during this work. 

2.1 Fundamentals of graphene 

Here we summarize the lattice and electronic structure of graphene and some of its 

optoelectronic properties following refs. [14]–[17]. 

Graphene is a two-dimensional (2D) lattice of carbon atoms arranged in a hexagonal 

(honeycomb) structure, as shown in Figure 2.1a. The structure represents a triangular lattice 

with a basis of two atoms per unit cell. Alternatively, one can see it as composed of the two 

triangular sub-lattices, marked as 𝐴 and 𝐵. The lattice primitive vectors can be written as (in 

the coordinate system shown in Figure 2.1a) 

 𝑎⃗1 =
𝑎

2
(3, √3),    𝑎⃗2 =

𝑎

2
(3, −√3) (2.1) 

where 𝑎 ≈ 1.42 Å is the carbon-carbon distance. Using equation 𝑏⃗⃗𝑖 ∙ 𝑎⃗𝑗 = 2𝜋𝛿𝑖𝑗 one can find 

the reciprocal-lattice vectors to be: 
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 𝑏⃗⃗1 =
2𝜋

3𝑎
(1, √3),    𝑏⃗⃗2 =

2𝜋

3𝑎
(1, −√3) (2.2) 

The resulting reciprocal lattice of graphene is therefore also a honeycomb structure rotated by 

90° relative to the real-space lattice. The Brillouin zone (BZ) of graphene is shown in Figure 

2.1b. 

The building blocks of graphene lattice - carbon atoms - have four valence electrons. Three of 

these electrons form 𝑠𝑝2 bonds between neighboring carbon atoms. The residual 𝑝𝑧 orbital 

overlaps with 𝑝𝑧 orbitals of the neighboring atoms forming a weak 𝜋-bonds with bonding (𝜋) 

and anti-bonding (𝜋∗) states. These states form the conduction and valence bands of the 

graphene by merging of 𝑝𝑧 orbitals of all carbon atoms in the lattice. One carbon atom gives 

one electron to fill these bands. Thereby, intrinsic graphene has a fully occupied valence band 

and a completely empty conduction band [14]–[16] or in other words the Fermi level lies 

between these bands. 

The electronic band structure of graphene was first calculated by Wallace in 1947 [18] within 

the tight-binding framework. The tight-binding Hamiltonian for electrons in graphene 

considering electron hopping to the nearest-neighbor atom (and with on-site energy set to zero) 

has the form 

(a) (b) 

 

Figure 2.1: Honeycomb lattice (a) and its Brillouin zone (b). The lattice structure of graphene, made 

out of two interpenetrating triangular lattices (𝑎⃗1 and 𝑎⃗2 are the lattice primitive vectors). The 

corresponding Brillouin zone shows similar honeycomb structure. 
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 𝐻̂ = −𝑡 ∑(𝑎𝑖,𝜎
† 𝑏𝑗,𝜎 + ℎ. 𝑐. )

𝑖,𝑗,𝜎

 (2.3) 

where 𝑎𝑖,𝜎 (𝑎𝑖,𝜎
† ) annihilates (creates) electron with spin 𝜎 (𝜎 =↑, ↓) on site 𝑖 of sublattice 𝐴 

and 𝑏𝑗,𝜎 (𝑏𝑗,𝜎
† ) annihilates (creates) electron on site 𝑗 of sublattice B. The nearest-neighbor 

hopping energy 𝑡 (hopping between different sublattices) amounts to ≈ 2.8 eV. 

The energy bands derived from this Hamiltonian have the form [18] 

 

ℰ±(𝑘⃗⃗) = ±𝑡√3 + 𝑓(𝑘⃗⃗), 

𝑓(𝑘⃗⃗) = 2 cos(√3𝑘𝑦𝑎) + 4 cos (
√3

2
𝑘𝑦𝑎) cos (

3

2
𝑘𝑥𝑎) 

(2.4) 

where the plus sign applies to the upper (𝜋∗ or conduction) and the minus sign the lower (𝜋 or 

valance) band. It is clear that the dispersion is symmetric around zero energy. In Figure 2.2, 

we show the band structure of graphene given by (2.4). In the same figure, we also show a 

zoom-in of the band structure near the point where conduction and valence band touch each 

other. This is the so-called Dirac point that is located in the point 𝐾 at the corner of the 

 

Figure 2.2: The electronic dispersion of the honeycomb lattice calculated within tight-binding 

approximation. (left) Energy spectrum (in units of 𝑡). (right) Zoom in of the energy bands close to 

one of the Dirac points. The valence and conduction band are shown in blue and yellow 

correspondingly. This graph is obtained by plotting Eq. (2.4) in Wolfram Mathematica 11. 
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graphene BZ. There are two physically inequivalent Dirac points in BZ (Figure 2.1b) and the 

following two vectors give their positions in the space of wave vectors: 

 𝐾⃗⃗⃗ =
2𝜋

3𝑎
(1,

1

√3
),    𝐾⃗⃗⃗′ =

2𝜋

3𝑎
(1, −

1

√3
) (2.5) 

Dirac points are of particular importance for the physics of graphene since the dispersion of 

electrons has a peculiar conical shape in the low energy limit near these points (zoom-in shown 

in Figure 2.2). The mathematical expression for this conical dispersion near Dirac points can 

be obtained by Taylor expansion of the full band structure (2.4) by substituting 𝑘⃗⃗ = 𝐾⃗⃗⃗ + 𝑞⃗, 

with |𝑞⃗| ≪ |𝐾⃗⃗⃗| [18], this results in: 

 ℰ±(𝑞⃗) = ±ℏ𝜐𝑔|𝑞⃗| + 𝑂[(𝑞/𝐾)2], (2.6) 

where 𝑞⃗ is the wave vector measured relatively to the Dirac point and 𝜐𝑔 is the group velocity 

of the electron, given by 𝜐𝑔 = 3|𝑡|𝑎/(2ℏ), with a value of ≈ 1 × 106 m s⁄ . Since one gets the 

same expression for the energy of electrons near 𝐾′, then one can say that electrons near Dirac 

points are degenerate with the degeneracy of 2, this is so called valley degeneracy. 

Subsequently, we will use simply 𝑘⃗⃗ to denote the wavevector measured relatively to the 𝐾 (or 

𝐾′) point in graphene, unless it is stated otherwise. 

The most striking difference between electron with the conical dispersion (2.6) and the free 

electron is that its group velocity does not depend on the energy or momentum (or rather quasi-

momentum since we are speaking about electrons in the crystal lattice). Indeed, the dispersion 

law of a free electron is proportional to the square of its momentum: ℰ(𝑘⃗⃗) = (ℏ𝑘)2 (2𝑚)⁄ , 

where 𝑚 is the mass of electron. Thereby for free electrons, we have 𝜐𝑔 = ℏ𝑘 𝑚⁄ = √2ℰ/𝑚 

and hence the group velocity changes substantially with energy. While in graphene, this value 

is constant and in the literature it usually referred to as Fermi velocity of graphene, i.e., 𝜐𝑔 ≡

𝜐ℱ. 

The dispersion relation also defines a density of states, and one can show that the density of 

states near Dirac points in graphene is a linear function of energy. Indeed, using the transition 

from the integration over the space of wavevectors to the integration over energies (for an 

arbitrary function 𝒬(𝑘⃗⃗)) one can derive the density of states for the electrons in the crystal. 

This transitions can be often found in the text books on solid state physics [19] and has the 

form:  
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 𝜈 ∫
𝑑𝑘⃗⃗

(2𝜋)𝑛
𝒬(𝑘⃗⃗) =  ∫ 𝑑ℰ𝑔(ℰ) 𝒬 (𝑘⃗⃗(ℰ)), (2.7) 

here 𝑛 is the dimensionality of the space, 𝜈 is the degeneracy of states and 𝑔(ℰ) is the density 

of states. For the conduction band in graphene near Dirac points, we write the integral in (2.7) 

as (we omit the function 𝒬(𝑘⃗⃗) to write it in the compact form): 

 
𝜈 ∫

𝑑𝑘⃗⃗

(2𝜋)2
= 𝜈 ∫

𝑘𝑑𝑘

2𝜋
= 𝜈 ∫

ℰ
ℏ𝜐ℱ

𝑑 (
ℰ

ℏ𝜐ℱ
)

2𝜋
= ∫ 𝑑ℰ

𝜈ℰ

2𝜋(ℏ𝜐ℱ)2
=  ∫ 𝑑ℰ𝑔(ℰ). 

(2.8) 

Thereby we get the expression for the density of states 𝑔(ℰ) = 𝜈|ℰ|/2𝜋(ℏ𝜐ℱ)2, here 𝜈 is the 

degeneracy. In graphene, it equals 4 as a result of degeneracies of the spins and valleys. The 

absolute value of energy means that the same expression can be obtained for the negative 

energy, i.e., for the valence band. Thus, one finally writes the expression for the density of 

states near Dirac points in graphene: 

 𝑔(ℰ) = 2|ℰ|/𝜋(ℏ𝜐ℱ)2 (2.9) 

The dispersion (2.6) is akin to that of the ultra-relativistic massless particles like photons (ℰ =

𝑝𝑐 ≡ ℏ𝑘𝑐) with only one difference of the speed of light being equal to the Fermi velocity of 

graphene. A particle being ultra-relativistic implies that its energy comes mostly from its 

momentum (not the rest mass) or in the case of the massless particles exclusively due to it. 

Thereby, in the vicinity of 𝐾 and 𝐾′ points in wave vector space one can rewrite the tight-

binding Hamiltonian in the low-energy approximation as Dirac Hamiltonian: 

 𝐻̂𝒟 = ℏ𝜐ℱ (
0 𝑘𝑥 − 𝑖𝑘𝑦

𝑘𝑥 + 𝑖𝑘𝑦 0
) = ℏ𝜐ℱ𝜎⃗ ∙ 𝑘⃗⃗ = 𝜐ℱ𝜎⃗ ∙ 𝑝 (2.10) 

where 𝜎⃗ is a 2D vector of Pauli matrices. The eigenfunctions of this Hamiltonian in wave 

vector space read: 

 𝜓ℎ,𝑒(𝑘⃗⃗) =
1

√2
(

𝑒𝑖𝜃
𝑘⃗⃗⃗

/2

±𝑒−𝑖𝜃
𝑘⃗⃗⃗

/2) (2.11) 

where 𝜃𝑘⃗⃗ = arctan(𝑘𝑦/𝑘𝑥) is the polar angle of the vector 𝑘⃗⃗. The minus (plus) stands for the 

state in the valence (conduction) band, i.e., hole (electron) state. The latter expression is for 

the states near the point 𝐾′, the expression for the states near the point 𝐾 can be obtained by 
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complex conjugation of Eq. (2.11). The Dirac approximation shown above is valid for energies 

|ℰ| ≲ 0.5𝑡 ≈ 1.4 eV and thereby provides an excellent framework to describe transport and 

optical phenomena in graphene. 

As an example, one can show using the expression of eigenstates (2.11) that graphene has a 

uniform inter-band optical conductivity, which has also been experimentally observed [6]. 

Following ref. [17], we introduce the optical light via the vector potential 𝐴(𝑡) = 𝐴𝑒−𝑖𝜔𝑡, i.e. 

 𝐸⃗⃗(𝑡) = −
1

𝑐

𝜕𝐴

𝜕𝑡
=

𝑖𝜔

𝑐
𝐴. (2.12) 

Thus, the resulting Dirac Hamiltonian in the presence of an electric field of an incident light 

reads as 

 𝐻̂ = 𝜐ℱ𝜎⃗ (𝑝 −
𝑒

𝑐
𝐴) = 𝐻̂𝒟 + 𝑉̂, (2.13) 

where 

 𝑉̂ = −
𝜐ℱ𝑒

2𝑐
𝜎⃗𝐴 = −

𝑖𝑒𝜐ℱ

2𝑐
𝜎⃗𝐸⃗⃗ (2.14) 

is the Hamiltonian of the electron-photon interaction. The factor 1 2⁄  in the Eq. (2.14) is 

required since the common expression for the complex-valued oscillating electric field is 

 𝐸⃗⃗(𝑡) = 𝑅𝑒(𝐸⃗⃗𝑒−𝑖𝜔𝑡) =
1

2
(𝐸⃗⃗𝑒−𝑖𝜔𝑡 + 𝐸⃗⃗∗𝑒𝑖𝜔𝑡) (2.15) 

and we take only the first term. This interaction induces transitions from the valence band into 

the conduction band for the states with the same wave vector 𝑘⃗⃗. The matrix element describing 

this process is 

 ⟨𝜓ℎ(𝑘⃗⃗)|𝑉̂|𝜓𝑒(𝑘⃗⃗)⟩ =
𝑒𝜐ℱ

2𝜔
(𝐸𝑦 cos 𝜃𝑘⃗⃗ ∓ 𝐸𝑥 sin 𝜃𝑘⃗⃗). (2.16) 

Here minus (plus) correspond to 𝐾 (𝐾′) valley. The averaging of the square of this matrix 

element over possible momentum angles gives 

 
|𝑀|2 = |⟨𝜓ℎ(𝑘⃗⃗)|𝑉̂|𝜓𝑒(𝑘⃗⃗)⟩|

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝑒2𝜐ℱ
2

8𝜔2 |𝐸⃗⃗|
2

, 
(2.17) 

here we assume that the field lies in the plane of the graphene, i.e., the photon propagates 

perpendicular to the graphene plane. The probability of the absorption per unit of time can be 

obtained from the lowest order of perturbation theory [20]: 
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 𝑃 =
2𝜋

ℏ
|𝑀|2𝑔 (

ℏ𝜔

2
), (2.18) 

here 𝑔(ℰ) is the density of states (2.9) taken at ℰ = ℏ𝜔 2⁄  which is obvious from the Figure 

2.3. By substituting Eq. (2.9) and (2.17) in (2.18) one obtains 

 𝑃 =
𝑒2

4ℏ2𝜔
|𝐸⃗⃗|

2
 (2.19) 

Thus, the absorption energy per unit of time reads: 

 𝑊𝑎 = 𝑃ℏ𝜔 =
𝑒2

4ℏ
|𝐸⃗⃗|

2
 (2.20) 

The flux of the incident light is [21] 

 𝑊𝑖 =
𝑐

4𝜋
|𝐸⃗⃗|

2
 (2.21) 

Finally, one can calculate the absorption coefficient in graphene: 

 𝜂 =
𝑊𝑎

𝑊𝑖
=

𝜋𝑒2

ℏ𝑐
≈ 2.3% (2.22) 

The value of the optical absorption coefficient in graphene is frequency independent for 

photon energies within the boundaries of the Dirac approximation we used earlier, i.e.,  

ℏ𝜔 ≲ 𝑡 ≈ 2.8 eV. We note, that for the case of the non-intrinsic graphene with non-zero 

chemical potential the vertical optical transitions are forbidden for the photon energies lower 

than the double chemical potential (ℏ𝜔 < 2𝜇), so-called Pauli blocked. That takes place due 

to either an occupied state in the conduction band or an empty state in the valence band. 

 

Figure 2.3: (left) The diagram showing the direct optical transition in graphene electronic structure 

near the Dirac point. (right) the occupancy of the states at absolute zero and at the room temperature. 
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Moreover, for sufficiently high finite temperatures, when the smearing of the Fermi edge is 

substantially broad in the band, the occupancy of the states has to be taken into account (see 

Figure 2.3). Nonetheless, graphene shows this uniform value for the broad range of photon 

energies in the visible frequency range at room temperatures, making this material extremely 

attractive for the photo-physics applications. In addition, one has to keep in mind that the 

absorption of 2.3% is provided by the one atom-thick material, which is a huge number. 

In conclusion, we have reviewed the major electronic properties of graphene. The honeycomb 

symmetry of the graphene lattice provides the unique physics of the electrons in this material 

that can be approximated with the picture of massless Dirac fermions. The linear dispersion 

law and massless nature of the electrons in graphene are the most distinguishing features of it 

that leads to its unique optical and transport properties. 

2.2 Basics of graphene nanoribbons 

Due to the linear and gapless electronic band structure and the resulting unique electronic and 

optical properties of graphene, it has found a lot of applications in optoelectronics [9], [22]. 

Owing to its unique conical band structure, the charge carriers in graphene behave akin to 

massless particles giving rise to exceptionally high DC (direct current) charge carrier 

mobilities up to 350,000 𝑐𝑚2𝑉−1𝑠−1 [23]. As it has been already mentioned in the previous 

section, the conical and gapless electronic band structure results in a broadband absorption 

spectrum [24], [25] making graphene advantageous for numerous applications. However, the 

absence of the gap in the band structure of graphene hinders its applications in such fields as, 

e.g., photovoltaics [26] or field effect transistors [27], [28], which could otherwise benefit 

from its transport properties. 

On the other hand, nanometer-wide graphene structures, such as graphene nanoribbons 

(GNRs) [14] or carbon nanotubes (CNTs) [29], undergo bandgap opening as a result of 

quantum confinement of the electrons [14], [30]. 

Well-known CNTs have been under intense study after the work by Iijima that had been 

published in 1991 [31]. This work served as a take-off for the big branch of science and 

technology, and the worldwide scientific community recognized this work as the first 

discovery of CNTs. The curious historical remark is that the first pictures of CNTs were 
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published in 1952 (almost 40 years earlier than Iijima’s work!), but it did not get international 

publicity as the work was published in a Soviet journal [32]. 

The CNT is essentially a rolled graphene sheet [4]. It is rolled up in such a way that graphene 

lattice vector 𝑐  =  𝑛1𝑎⃗1 + 𝑛2𝑎⃗2 becomes the circumference of the tube (Figure 2.4a). This 

                     (a) 

 
                    (b) 

 

Figure 2.4: (a) A piece of a honeycomb lattice displaying possible armchair and zigzag edges 

together with the lattice vectors 𝑎⃗1, 𝑎⃗2 and the chiral vector 𝑐 = 𝑛1𝑎⃗1 + 𝑛2𝑎⃗2 of the (4, 6) tube. (b) 

The band structures of (17, 0), (12, 0) and (10, 10) tubes. The first and the second CNTs are rolled 

up along 𝑎⃗1, i.e., alongside the zigzag edge, resulting in a semiconductor and a semimetal type of 

band structure respectively, with the band gap (and band crossing in the semimetal) located in the 𝛤 

point. The third CNT is rolled up along the armchair edge with the band crossing in 𝑘⃗⃗𝑧 = 2𝜋 3𝑎⁄  

and displays a semimetal type of band structure. The data have been obtained using an online tool 

located at https://nanohub.org/resources/cntbands-ext [165], [166]. The calculations use the tight 

binding approximation that accounts electron hopping only to the nearest neighbor atoms, with 

hopping energy of 3 eV and carbon-carbon spacing of 1.42Å. 
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circumferential vector 𝑐, which is usually denoted by the pair of integers (𝑛1, 𝑛2) is called the 

chiral vector and uniquely defines a particular tube as well as its properties, e.g., the band 

structure [29] (Figure 2.4b). 

GNRs are another example of the graphene nanostructures. Unlike CNTs, where 

circumferential vector or chirality defines the electronic properties, the width and especially 

the edge structure of the GNR play a crucial role in its electronic properties [33]. For instance, 

a GNR with a zigzag edge (Figure 2.4a, highlighted with red) or simply ZGNR (Figure 2.5a) 

has semi-metallic band structure (no bandgap) that persist until a relatively wide width of the 

GNR. Naturally, in the limit of infinitely wide ZGNR, it approaches the band structure of 

graphene – which is also a semi-metal. Importantly, the charge density is strongly localized 

near the zigzag edge due to a flat band (Figure 2.5b) that creates a peak in the density of states. 

This non-negligible edge state can survive even in GNRs with less developed zigzag edges 

[33]. This fact highlights the crucial and definitive role of the edge in GNRs electronic 

properties. On the other hand, a GNR with an armchair edge (Figure 2.4a, highlighted in green) 

or AGNR is semiconductor-like with a non-vanishing band gap in the dispersion (Figure 2.5b). 

(a) (b) 

 

 

Figure 2.5: An example of two types of GNRs – armchair, and zigzag. (a) The lattice structure of 

7AGNR and 7ZGNR. (b) Their corresponding band structures. The data were obtained using an 

online tool located at https://nanohub.org/resources/cntbands-ext [165]. The calculations use the 

tight binding approximation accounting only the nearest neighbor hopping (with energy of 3 eV) 

and carbon-carbon spacing of 1.42Å. 
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However, the bandgap, in this case, reduces with the increasing width of the GNR – and once 

again it collapses to the gapless and linear graphene band structure in the limit of very wide 

GNR. 

In general, one cannot say straightaway what band structure, i.e., metal- or semiconductor-

like, characterizes any particular GNR structure. Figure 2.6 shows several GNRs with different 

edge structures and widths together with the optical density (OD) measured in these structures. 

The OD here gives an approximate experimental indication of the bandgap widths. In the 

general case, one has to resort to numerical calculations of the band structure. 

The gap and specifically the curvature of the bands in GNRs (and in CNTs as well) renders 

the conduction properties of the carriers as that of massive particles. The consequences of this 

are observed in OD spectra (Figure 2.6, right) that is dominated with a characteristic exciton 

peak – a bound electron-hole pair. The massive particles tend to bind more. Particularly for 

excitons, the mass of a charge defines the binding energy [34], i.e., 𝐸𝐵 = 𝜇𝑒4 2ℏ2𝜖2⁄ , here 𝜇 

is the reduced mass of an electron-hole pair. 

The field of the study of GNRs is very rapidly growing, and substantial progress has been 

achieved in its fabrication methods. It has started from the top-down approaches like the actual 

slicing of the graphene monolayer into GNRs using lithography [35], [36], or unzipping of 

carbon nanotubes [37], [38] and culminated in the bottom-up chemical synthesis of GNRs 

 
 

 

4CGNR 6CGNR-edge 

 
 

6CGNR-cove p-AGNR 

Figure 2.6: (left) Four different chemically synthesized GNRs with various edge structure, widths, 

and alkyl chain position. (right) Optical densities of GNRs samples shown in the left. 

Characterization has been performed on the suspensions of GNRs in 1,2,4-Trichlorobenzene. 

Adapted with permission from J. Am. Chem. Soc. 2017, 139, 7982−7988 [129]. Copyright (2017) 

American Chemical Society. 
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[12], [39], [40]. The pioneer of the latter approach is the group of Prof. Müllen from the Max 

Planck Institute for Polymer Research in Mainz, and they are our close collaborators who have 

provided us with the samples. 

The bottom-up chemical synthesis has a series of benefits. It allows producing a macroscopic 

amount of identical GNRs with a defined edge structure that is determined by the chemical 

synthesis protocol. Thus, it is possible to engineer a particular type of GNR where, for instance, 

the width of a nanoribbon can be controlled with atomic precision, whereby the electronic 

bandgap and related optical properties can be tuned. Moreover, the edge structure can also be 

customized, providing a way towards predictable band structure of the GNR. 

One synthesizes GNRs in a liquid thus the final product is a dispersion of the GNRs in a 

solvent. Due to this specificity, these GNRs have functional alkyl chains attached to the 

specific atom sites, in an ordered and periodic manner (Figure 2.6, left). These chains render 

the solubility of the GNRs, and one can choose a specific chain. 

2.3 Conductivity models 

In this thesis, we investigate the conductivity of an ensemble of carriers. It is vital to 

understand the basic mechanisms behind these processes. In this part, we will describe the 

most common conductivity models that apply to the investigated materials. We note that some 

of these models have a phenomenological interpretation, i.e., the model describes the observed 

phenomena without the necessity to rely on the corresponding fundamental microscopic origin 

of the processes. 

2.3.1 The Drude model 

The simplest model that describes the complex-valued conductivity of the charge carriers in 

the presence of an accelerating electric field is the Drude model. The model or rather its version 

that was initially proposed by Paul Drude in 1900 [41], [42] describes the conductivity of 

electron gas in metal and regards it as a classical gas (i.e., the Maxwell-Boltzmann distribution 

describes its equilibrium state) of charged particles experiencing a diffusive motion. Here we 

will describe it in a more general way as with time it proved to be relevant to numerous types 

of materials. This part summarizes the material presented in Ref. [19], [43]. 
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The Drude model bears close similarity to the classical kinetic theory of gases. Thereby, the 

major assumptions of the Drude model are: 

 Between collisions, an electron (and generally speaking a charge carrier) does not interact 

with the lattice and other electrons. These are known as free electron and independent 

electron approximations. 

 Collisions are instantaneous events that abruptly alter the velocity of an electron. 

 An electron experiences a collision with the rate of 1/𝜏. The time 𝜏 is known as the 

relaxation time or the mean free time and it is taken to be independent of electron’s position 

and velocity. 

 Electrons are assumed to achieve thermal equilibrium with their surroundings only through 

collisions. 

Following these assumptions, one can say that once an external driving field 𝐸⃗⃗ is removed, the 

system (a metal) reaches its equilibrium i.e., the state with zero average momentum 〈𝑝〉 = 0 

of electrons, within the average time 𝜏. The rate equation describing this process is 

 𝑑〈𝑝〉(𝑡)

𝑑𝑡
= −

〈𝑝〉(𝑡)

𝜏
 

(2.23) 

In the presence of the external (in general time-dependent) electric field 𝐸⃗⃗(𝑡), the equation of 

motion reads as 

 
𝑑〈𝑝〉(𝑡)

𝑑𝑡
= −

〈𝑝〉(𝑡)

𝜏
− 𝑒𝐸⃗⃗(𝑡) (2.24) 

The current density of these moving electrons is given by 𝐽(𝑡) = −𝑁𝑒〈𝑝〉(𝑡)/𝑚, where 𝑁 is 

the electron density; 𝑚 is the electron mass, and −𝑒 is its charge. For the external electric field 

oscillating with angular frequency 𝜔, i.e., 𝐸⃗⃗(𝑡) = 𝐸⃗⃗0𝑒−𝑖𝜔𝑡, the resulting solution of the 

equation of motion gives the expression for the frequency dependent complex conductivity 

(also referred to as Drude conductivity, see Figure 2.7):  

 𝜎̂𝐷𝑟𝑢𝑑𝑒(𝜔) =
𝐽

𝐸⃗⃗
=

𝑁𝑒2𝜏

𝑚
∙

1

1 − 𝑖𝜔𝜏
 (2.25) 

Within the Drude picture, electrons move in the crystal with average thermal velocity 〈𝜐𝑡ℎ〉, 

which can be evaluated from the Maxwell-Boltzmann distribution as 〈𝜐𝑡ℎ〉 = √3𝑘𝐵𝑇 𝑚⁄  
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(mean square velocity [44]). The mean free path of electrons between two consecutive 

collisions can be then evaluated as 𝑙 = 〈𝜐𝑡ℎ〉𝜏. 

Later Sommerfeld refined this picture [45]. Within this framework, electrons obey not classical 

but quantum statistics, i.e., Fermi-Dirac distribution. Resulting conductivity of a metal is then 

due to electrons located in the phase space near the Fermi surface. Other electrons lying deeper 

below the Fermi level stay unperturbed by the external electric field. Even though electrons in 

this picture are quantum particles, not classical ones, the frequency dependent conductivity 

has the same expression (2.25). The only difference is that the free path of an electron has to 

be evaluated now as 𝑙 = 𝜐ℱ𝜏.  

The impact of the periodic structure of the material (i.e., the conductivity of Bloch electrons), 

broadly speaking, can be incorporated in the term of the effective mass. Thereby, one can write 

the complex Drude conductivity (sometimes it is also called Drude-Sommerfeld) as 

 𝜎̂𝐷𝑟𝑢𝑑𝑒(𝜔) =
𝑁𝑒2𝜏

𝑚∗
∙

1

1 − 𝑖𝜔𝜏
 (2.26) 

This equation works well for semiconductors (like GNRs) where effective mass appears 

naturally for the conductive charges near the band extrema which are described by quasi-free 

electron dispersion law ℰ(𝑝) = 𝑝2 (2𝑚∗)⁄ . The electrons in graphene have a different 

dispersion. Thereby the derivation of the conductivity in graphene demands a more general 

 

Figure 2.7: Drude conductivity as a function of normalized frequency (i.e., angular frequency times 

scattering time). The real and the imaginary part cross each other at the point 𝜔𝜏 = 1. 
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approach – semi-classical theory. This nevertheless leads to a qualitatively similar spectral 

shape of the conductivity as in (2.25) or (2.26).  

2.3.2 Semi–classical theory of the conductivity 

The semi-classical approach is a more general way to describe electron dynamics in the crystal. 

It treats electron of the crystal as Bloch electrons while describes the current-driving 

electromagnetic field classically. 

The Bloch theory extends the free electron theory of Drude and Sommerfeld to the case where 

the periodic potential of the lattice is present. The momentum of the Bloch electron is the 

quasi-momentum – it corresponds to a wave vector in the first BZ. The dispersion of the 

electron now has no quadratic dependency on its quasi-momentum (except in some cases) like 

in free-electron case, for instance in graphene it has a linear form near 𝐾 and 𝐾′ points. 

The semi-classical Boltzmann equation [19], [44] for the AC (alternating current) conductivity 

of the isotropic and three-dimensional medium (in the relaxation time approximation) reads: 

 𝜎̂(𝜔) = 𝜈𝑒2 ∫
𝑑𝑘⃗⃗

(2𝜋)3
∙

𝜐2(𝑘⃗⃗)

3
∙

1

1 𝜏 (ℰ(𝑘⃗⃗))⁄ − 𝑖𝜔
∙ (−

𝜕𝑓(ℰ)

𝜕ℰ
) (2.27) 

where 𝜈 is the degeneracy, 𝜐⃗(𝑘⃗⃗) is the carrier band velocity, 𝜏 (ℰ(𝑘⃗⃗)) is the energy-dependent 

relaxation time, 𝑓 is the Fermi distribution function. The carrier nature now expressed via its 

dispersion ℰ(𝑘⃗⃗), in particular, the carrier velocity is calculated now as 𝜐⃗(𝑘⃗⃗) = ℏ−1 𝜕ℰ(𝑘⃗⃗) 𝜕𝑘⃗⃗⁄ . 

The number three in the denominator under the squared velocity reflects the isotropic nature 

of the three-dimensional medium. 

We would like to note the importance of the negative derivative of the Fermi–Dirac 

distribution function in (2.27). This function is a peak shape function (Figure 2.8) that peaks 

at the Fermi level with a width of a few times 𝑘ℬ𝑇 (at finite temperatures). It takes practically 

zero value outside of this finite region thereby once again highlighting the fact that only 

electrons with energies near Fermi level contribute to the conductivity of the material. 

One can show that in the approximation of free electrons the expression (2.27) can be reduced 

to the classical Drude-Sommerfeld expression for three-dimensional metals. In this case  

𝜐2 =  2ℰ/𝑚 and using substitution (2.7), one can rewrite (2.27) as 
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 𝜎̂(𝜔) =
2𝑒2

3𝑚
∫ 𝑑ℰ𝑔(ℰ) ∙ ℰ ∙

1

1 𝜏(ℰ)⁄ − 𝑖𝜔
∙ (−

𝜕𝑓(ℰ)

𝜕ℰ
) (2.28) 

In the Sommerfeld picture of metals, the Fermi level (measured from the bottom of the 

conduction band) ranges from a few to tens of electron-volts. Thus, at room temperature 

(𝑘ℬ𝑇 = 0.026 eV), the edge of the Fermi distribution can be approximated as a step and 

thereby −𝜕𝑓(ℰ)/𝜕ℰ ≈ 𝛿(ℰ − ℰℱ), where ℰℱ is the Fermi level. This allows us to evaluate the 

integral (2.28): 

 𝜎̂(𝜔) =
2𝑒2

3𝑚
𝑔(ℰℱ) ∙ ℰℱ ∙

1

1 𝜏(ℰℱ)⁄ − 𝑖𝜔
 (2.29) 

The density of states for the free fermions evaluated at the Fermi level is 𝑔(ℰℱ) =

(3/2)𝑁/ℰℱ. Thus, the expression for the conductivity simplifies to the familiar Drude model: 

 𝜎̂(𝜔) =
𝑁𝑒2

𝑚
∙

1

1 𝜏(ℰℱ)⁄ − 𝑖𝜔
 (2.30) 

The carriers in graphene are 2D massless Dirac fermions, i.e., they have linear dispersion 

ℰ(𝑘⃗⃗) = ℏ𝜐ℱ|𝑘⃗⃗|. The notable difference of carriers in graphene from the massive carriers is 

that their velocity magnitude is independent from their momentum  

 

Figure 2.8: The equilibrium distribution function of particles obeying the Fermi–Dirac statistics (red 

line) and its negative derivative with respect to energy (blue line, normalized to 1 ℰℱ⁄ ). The plotted 

functions correspond to the state with 𝑘ℬ𝑇 ℰℱ⁄ = 0.1 
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𝜐⃗(𝑘⃗⃗) = ℏ−1 𝜕ℰ(𝑘⃗⃗) 𝜕𝑘⃗⃗⁄ = 𝜐ℱ 𝑘⃗⃗/|𝑘⃗⃗|. As it was stated before, this assumption is valid for the 

carriers in the vicinity of Dirac points. The semi-classical Boltzmann equation for the AC 

conductivity in graphene reads as: 

 

𝜎̂(𝜔) = 𝜈𝑒2 ∫
𝑑𝑘⃗⃗

(2𝜋)2
∙

𝜐2(𝑘⃗⃗)

2
∙

1

1 𝜏 (ℰ(𝑘⃗⃗))⁄ − 𝑖𝜔
∙ (−

𝜕𝑓(ℰ)

𝜕ℰ
) =

=
𝜈𝑒2𝜐ℱ

2

2
∫

𝑑𝑘⃗⃗

(2𝜋)2
∙

1

1 𝜏 (ℰ(𝑘⃗⃗))⁄ − 𝑖𝜔
∙ (−

𝜕𝑓(ℰ)

𝜕ℰ
) 

(2.31) 

The two in the denominator under the squared velocity reflects the two-dimensional nature of 

graphene.  

In general, one cannot simplify the Fermi distribution in graphene as a step function as the 

Fermi level is comparable with the thermal energy. To calculate this integral one has to use 

the explicit expression of Fermi-Dirac distribution and to have knowledge of the energy 

dependence of the scattering time. The latter is often not that explicit. For now, we calculate 

the conductivity in graphene assuming that the scattering time is a constant or changes subtly 

for the carrier energies around chemical potential. To this end, we perform the integration in 

(2.31) by replacing the integral over momentum with the integral over energy using identity 

(2.7) and the expression for the density of states in graphene (2.9). The negative derivative of 

the Fermi-Dirac distribution reads as: 

 −
𝜕𝑓(ℰ)

𝜕ℰ
= −

𝜕

𝜕ℰ

1

exp (
ℰ − 𝜇
𝑘ℬ𝑇

) + 1
=

1

𝑘ℬ𝑇
∙

exp (
ℰ − 𝜇
𝑘ℬ𝑇

)

(exp (
ℰ − 𝜇
𝑘ℬ𝑇

) + 1)
2 (2.32) 

where 𝜇 is the chemical potential and 𝑘ℬ is Boltzmann constant. Using (2.32) and performing 

the integration over the energies one can finally write the conductivity in graphene as 

 𝜎̂(𝜔) =
2𝑒2

𝜋ℏ2
∙ 𝑘ℬ𝑇 ∙ ln (2 cosh (

𝜇

2𝑘ℬ𝑇
))

1

1 𝜏⁄ − 𝑖𝜔
 (2.33) 

The latter expression repeats the spectral shape of the complex Drude conductivity with the 

only difference in the pre-factor. In the limit of the thermal energy being lower than the 

chemical potential, i.e., a degenerate electron gas, this pre-factor simplifies to 𝜇𝑒2 𝜋ℏ2⁄ . Given 

that in graphene 𝜇 = ℏ𝜐ℱ√𝜋𝑁, one can thus say that the conductivity is proportional to √𝑁. 
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This differs from the normal Drude conductivity (2.25) of a 3D metal where it is a linear 

function of the carrier density 𝑁. 

Often in the literature, the value (2𝑒2 ℏ2⁄ ) ∙ 𝑘ℬ𝑇 ∙ ln(2 cosh(𝜇 2𝑘ℬ𝑇⁄ )) is called the Drude 

weight 𝒟 [46]–[48]. It is temperature and chemical potential dependent or simply temperature 

dependent (as the chemical potential is also temperature dependent) as it is shown in Figure 

2.9. This fact highlights the importance of the electron temperature for the conductivity 

properties of graphene. One finally writes the complex conductivity in graphene in a compact 

form: 

 𝜎̂(𝜔, 𝑇) =
𝒟(𝑇)

𝜋
∙

1

1 𝜏⁄ − 𝑖𝜔
 (2.34) 

2.3.3 The conductivity of quasi-free electrons – Drude-Smith model 

In the previous sections, we have described the conductivities of the carriers in a continuous 

medium within the assumption that upon every scattering event the momentum is random. 

These models do not account for the possible persistence of the momentum that takes place at, 

for instance, crystal boundaries. A criterion for this to occur is that the carrier mean-free path 

𝑙 becomes greater than the dimension 𝐿 of the material, i.e. 𝜐ℱ𝜏 > 𝐿. In cases when this process 

dominates the carrier dynamics, one should employ models accounting for this process. 

 

Figure 2.9: Normalized Drude weight as a function of normalized to the Fermi energy temperature 

in graphene. 
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An extension to the Drude model accounting for the restricted motion of the carriers has been 

proposed by Smith [49], in which a carrier retains part of its initial velocity upon scattering. 

Smith’s generalization of the Drude model is given by: 

 𝜎̂𝐷𝑆(𝜔) = 𝜎̂𝐷𝑟𝑢𝑑𝑒(𝜔) (1 + ∑
𝑐𝑝

(1 − 𝑖𝜔𝜏)𝑝

∞

𝑝=1

) (2.35) 

The coefficient 𝑐𝑝 represents here the fraction of the electron’s original velocity that is retained 

after the 𝑝-th collision. For elastic collisions the parameter 𝑐𝑝 is the expectation value 〈cos 𝜃〉, 

for scattering angle 𝜃. If the carrier’s momentum is randomized then 𝑐𝑝 = 0, while if it is 

completely backscattered then 𝑐𝑝 = −1. It is commonly assumed that the persistence of 

velocity is retained only for the first scattering event so the infinite summation is truncated at 

the first term (𝑝 = 1), for the sake of simplicity here one writes 𝑐1 simply as 𝑐. Figure 2.10 

shows the Drude-Smith (DS) conductivity predicted by expression (2.35) for a variety of 

values of the backscattering parameter 𝑐. 

  

 

Figure 2.10: Drude-Smith complex-valued conductivity as a function of normalized frequency (i.e., 

angular frequency times scattering time) for a few values of the backscattering parameter 𝑐. Solid 

and dotted lines correspond to the real and imaginary parts of the conductivity, respectively. Notably, 

Drude-Smith conductivity reduces to Drude conductivity of free carriers with parameter 𝑐 = 0. 
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3 Terahertz time-domain spectroscopy 

 

Chapter 3 

Terahertz time-domain spectroscopy 

 

Terahertz spectroscopy is ideally suited for measurements of the ultrafast dynamics in three 

subsystems of a solid: charges (free, bound), lattice (phonon modes) and the spin – because 

characteristic time scales of these phenomena lie in the sub-picosecond time scale. The THz 

range is loosely defined between 100 GHz and 30 THz [50], thus in this frequency range one 

can perform the spectroscopy in the unique regime of 𝜔𝜏 ≈ 1, where 𝜔 is the angular 

frequency of the electromagnetic wave, and 𝜏 is the ultrafast (sub-)picosecond dynamics of 

charge, lattice, and spin. 

Historically, the development of the technology of THz sources and detectors had two major 

approaches – from the optics side, descending from higher frequencies – and the electronics 

side, climbing up from lower frequencies. Unfortunately, the performance in both cases was 

unsatisfactory and demanded complex technology. In the electronics, for instance, with 

reaching that high frequency it becomes not beneficial exploiting waveguides as 

electromagnetic radiation experiences inevitable losses. Thus, it requires using the expensive 

waveguides of the highest quality. Using the incoherent optical detectors for THz radiation is 

also cumbersome as it requires using cryogenic temperatures to minimize the loss of the 

detecting THz radiation in the thermal noise (1 THz corresponds to the photon energy of only 

4.1 meV, much lower than thermal energies at room temperature, for which 𝑘𝐵𝑇 ≅ 26 meV). 

The THz spectroscopy boom was spurred by the development of laser-based ultrafast coherent 

sources and invention of the coherent detection scheme, which we will explain further in the 

text. 

THz time-domain spectroscopy (THz-TDS) is based on the generation and coherent detection 

of freely propagating short electromagnetic pulses of THz radiation, which are used for 

probing a material of interest. The probe THz pulse is essentially an electromagnetic surge of 

few picoseconds long and typically containing frequencies in the 0.1-3 THz range, see Figure 
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3.1. The pulse is sensitive to mobile charge carriers as well as quasi-free charges like bound 

excitons and polar phonon modes. THz spectroscopy provides access to electronic properties 

on the sub-picosecond timescales without applying physical contacts to the samples (since it 

employs free propagating pulses). The latter is particularly beneficial for studies of the 

nanostructured systems such as GNRs, where applying contacts would inevitably modify the 

intrinsic electronic properties of GNRs. Another advantage of THz spectroscopy is that the 

employed coherent detection scheme allows recording the strength of electric field of the THz 

waveform in time, thus providing information not only on the amplitude of transmitted probe 

pulse but also on its phase. Applying a Fourier transformation to these recorded traces in the 

time domain allows extracting electronic properties of the samples as a function of frequency. 

The Fourier transformation implies that the reported properties are complex valued. There are 

three equivalent ways to represent this information in the form of complex-valued refractive 

index 𝑛̂(𝜔), the permittivity 𝜀̂(𝜔) and the conductivity 𝜎̂(𝜔), where 𝜔 = 2𝜋𝑓 is the angular 

frequency of the oscillation probe field (𝑓 here is the ordinary frequency measured in THz). 

All these three quantities are related as [43] 

 

𝜀̂(𝜔) = 𝑛̂2(𝜔), 

𝜎̂(𝜔) = −𝑖𝑛̂2(𝜔)𝜀0𝜔 = −𝑖𝜀̂(𝜔)𝜀0𝜔 

(3.1) 

where 𝜀0 is the vacuum permittivity, thus they represent essentially the same information about 

optical (or optoelectronical) properties of the material and can be used interchangeably. For 

instance, the complex refractive index which reads as 𝑛̂(𝜔) = 𝑛(𝜔) + 𝑖𝜅(𝜔) comprises the 

real part 𝑛(𝜔), indicating the phase velocity of the propagating probe field, and the imaginary 

 

Figure 3.1: The electric field in THz pulse in time-domain together with its phase and frequency 

spectra. The data have been obtained in ZnTe-based setup employing optical-rectification for the 

pulse generation and free-space electro-optic sampling for its detection. 
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part 𝜅(𝜔) (also known as extinction coefficient) indicating the amount of attenuation when 

the electromagnetic wave propagates through the material. In this thesis, the data obtained with 

the THz probe is primarily expressed in the form of the complex valued conductivity 𝜎̂ = 𝜎1 +

𝑖𝜎2. The real part 𝜎1 defines the absorption of the electromagnetic wave in the medium. 

According to the Ohm’s law, the real part of conductivity correlates the conduction current 

density with the electric field, i.e., 𝑗 = 𝜎1𝐸. The imaginary part 𝜎2 is the measure of the phase 

of the total oscillating current (conduction plus polarization current), relative to that of the 

driving oscillating field. 

In the following sections, we describe the basics of the coherent THz generation and detection 

as well as the experimental setup used in this thesis. 

3.1 Terahertz generation and detection 

The generation and coherent detection of broadband THz pulses employ ultrashort (sub 100 

fs) near-infrared pulses. All measured data presented in this dissertation were obtained in the 

experiments where we utilized nonlinear optical effects for generation and detection of THz 

pulses. The generation is based on the frequency down-conversion using the second-order 

nonlinear effect known as optical rectification. For detection, we employ the electro-optic 

(EO) sampling which is based on the phenomenon called the Pockels effect.  

There are other techniques utilized for THz generation such as a photoconductive antenna 

(known as Auston switch) or air-plasma source. There is also a novel approach converting 

ultrafast spin currents into ultrafast THz-emitting conduction current in 

ferromagnetic/nonmagnetic metal nanostructures [51]. All of them have their pros and cons, 

but nonlinear crystals demand a minimum to begin with, as they do not involve using complex 

electrical equipment to drive those sources and detectors. 

In the following two subsections, we describe the basic concepts of THz generation with 

optical rectification and detection employing EO sampling. 

3.1.1 Optical rectification 

In this section, we introduce the optical rectification that is utilized for THz pulse generation. 

To make this phenomenon easier to comprehend we will show its derivation in a simplified 

form. Optical rectification is a process which is investigated in nonlinear optics – the study of 
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the phenomena taking place as a result of the modification of the optical properties of a 

material by the presence of light (or an electromagnetic wave in a broader sense) of higher 

intensity. To make it clear what nonlinearity means, let us consider how the polarization 𝑃(𝑡) 

of a material depends on the optical field strength 𝐸(𝑡). Usually, the optical response of the 

material in the general case can be described by expressing its polarization as a power series 

(so-called perturbative representation) in the applied field strength as 

 
𝑃(𝑡) = 𝜀0(𝜒(1)𝐸(𝑡) + 𝜒(2)𝐸2(𝑡) + 𝜒(3)𝐸3(𝑡) + ⋯ )

= 𝑃(1)(𝑡) + 𝑃(2)(𝑡) + 𝑃(3)(𝑡) + ⋯. 
(3.2) 

The quantity 𝜒(1) is known as the linear susceptibility, while 𝜒(2) and 𝜒(3) are the second- and 

third-order nonlinear susceptibilities, respectively. As is clear from the naming above, in the 

case of conventional linear optics, one has to consider only the first term, whilst nonlinear 

optics deals with higher-order terms. According to ref. [52], an order-of-magnitude estimate 

of these quantities in the common case is as follows. The lowest nonlinear term 𝑃(2) is 

comparable to the linear response 𝑃(1) when the applied field strength 𝐸 is of the order of the 

characteristic atomic electric field strength 𝐸at = 𝑒 (4𝜋𝜖0𝑎0
2)⁄ ≈ 5.14 × 1011 V/m (where 𝑎0 

is the Bohr radius of the hydrogen atom). Thus, the second order susceptibility 𝜒(2) will be of 

the order of 𝜒(1) 𝐸at⁄ ≈ 1 𝐸at⁄ ≈ 1.94 × 10−12 m/V. Similarly, one can expect 𝜒(3) to be of 

the order 𝜒(1) 𝐸at
2⁄ ≈ 3.78 × 10−24 m2 V2⁄ . Thereby high order terms become important in 

the case when sufficiently strong electric fields are present in the material. For the sake of 

simplicity, the polarization and field in Eq. (3.2) have been taken as scalar quantities. In 

general, they have to be considered as three-dimensional vector quantities and in such a case 

𝜒(1) is a second-rank tensor, 𝜒(2) is a third-rank tensor, and so on. We stick to this simple 

scalar form, as it is useful to grasp what the optical rectification is. The optical rectification is 

a second-order nonlinear process, and thus we have to consider the second-order term, i.e., 

𝑃(2)(𝑡), which we denote as 𝑃𝑁𝐿(𝑡). Now, let us consider the case of a continuous-wave laser 

beam incident on a crystal with non-zero second-order susceptibility 𝜒(2), i.e., on a crystal 

without inversion symmetry. This beam is essentially a monochromatic electromagnetic wave 

with the electric field given by: 

 𝐸𝐶𝑊(𝑡) = 𝐸0𝑒−𝑖𝜔𝑡 + 𝐸0
∗𝑒𝑖𝜔𝑡 (3.3) 

This electric field creates the nonlinear polarization 𝑃𝑁𝐿 = 𝜀0𝜒(2)𝐸𝐶𝑊
2 (𝑡). Substituting the 

electric field in the last expression with Eq. (3.3) gives 
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 𝑃𝑁𝐿(𝑡) = 2𝜀0𝜒(2)𝐸0𝐸0
∗ + (𝜀0𝜒(2)𝐸0

2𝑒−2𝑖𝜔𝑡 + c. c. ). (3.4) 

This nonlinear polarization consists of a static contribution (the first term) and a contribution 

which oscillates at double frequency of the incident wave, i.e., 2𝜔. The first term in this 

expression represents a static polarization 𝑃𝑂𝑅 = 2𝜀0𝜒(2)𝐸0𝐸0
∗ created across the crystal and 

it is responsible for a process named optical rectification. The second term governs a process 

called second harmonic generation. 

Before we proceed further, it is worth discussing why the polarization is so important. The 

reason that the polarization plays a crucial role in nonlinear optics is that a time-varying 

polarization can create new components of electromagnetic field essentially appearing as a 

new source. This phenomenon is governed by a wave equation which has the form 

 ∇2𝐸 −
𝑛2

𝑐2

𝜕2𝐸

𝜕𝑡2
=

1

𝜀0𝑐2

𝜕2𝑃𝑁𝐿

𝜕𝑡2
. (3.5) 

Here 𝜕2𝑃𝑁𝐿 𝜕𝑡2⁄  is the source term, 𝑛 is the linear refractive index and 𝑐 is the speed of light 

in vacuum. This equation can be interpreted as a nonhomogeneous wave equation in which 

(nonlinear) polarization 𝑃𝑁𝐿 drives the electric field 𝐸. Since 𝑃𝑁𝐿 is proportional to the relative 

displacement of bound charges in the medium then 𝜕2𝑃𝑁𝐿 𝜕𝑡2⁄  is a measure of the acceleration 

of these charges, thus this equation is in line with the Larmor’s law of classical 

electromagnetism which states that accelerating charges radiate electromagnetic waves. 

Now, going back to our point, as it was mentioned in the case of the continuous 

electromagnetic wave incident on a medium with non-zero second-order susceptibility, the 

optical rectification creates a static polarization, which thus cannot produce a new 

electromagnetic wave. However, things change when one employs pulsed electromagnetic 

waves like the output of femtosecond lasers. Assume that now we have a laser pulse with the 

electric field which can be described in time as a monochromatic wave modulated by a 

Gaussian envelope function with FWHM duration 𝜏: 

 𝐸𝑝𝑢𝑙𝑠𝑒(𝑡) ∝ 𝐸0 exp (−4 ln(2)
𝑡2

𝜏2) (𝑒−𝑖𝜔𝑡 + c. c. ). (3.6) 
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This electric field creates in the medium a nonlinear polarization  

𝑃𝑁𝐿(𝑡) = 2𝜀0𝜒(2)𝐸𝑝𝑢𝑙𝑠𝑒(𝑡)𝐸𝑝𝑢𝑙𝑠𝑒
∗ (𝑡) which can be rewritten as 𝑃𝑁𝐿(𝑡) = 𝑃𝑂𝑅(𝑡) ∝

exp(− 𝑡2 𝜏2⁄ ). This polarization is time dependent and its evolution in time is governed by 

the envelop function of the incident generating pulse. The ‘non-static’ polarization 𝑃𝑂𝑅(𝑡) 

essentially performs like a time-dependent dipole, which according to classical 

electrodynamics emits an electromagnetic field (in the far field): 

 

𝐸𝑇𝐻𝑧(𝑡) ∝
𝜕2

𝜕𝑡2
𝑃𝑂𝑅(𝑡) ∝

𝜕2

𝜕𝑡2
exp(− 𝑡2 𝜏2⁄ ) =

=
2

𝜏4
(−2𝑡2 − 𝜏2)exp(− 𝑡2 𝜏2⁄ ). 

(3.7) 

The ‘THz’ subscript in the formula above is there for the following reason. If we transform 

the time domain expression for 𝐸𝑇𝐻𝑧(𝑡) in the frequency domain using Fourier transformation 

then it can be shown that this electromagnetic wave indeed contains frequencies in the THz 

range, 

 𝐸𝑇𝐻𝑧(𝑓) ∝ 𝑓2 exp(−(𝜋𝜏𝑓)2). (3.8) 

The generating laser pulses employed in this work have the sub 100 fs duration, thereby if we 

consider for instance a 50 fs long laser pulse then according to (3.8) the spectrum of the field 

𝐸𝑇𝐻𝑧(𝑓) spans between 0 and 20 THz and has a maximum around 6 THz. Figure 3.2 illustrates 

this example. 

The simplified picture above overestimates the actual frequency range attainable in the 

laboratory setups, as it does not account for a variety of intricacies taking place during THz 

 

Figure 3.2: THz pulse in time-domain and its spectra generated by 50 fs long electromagnetic pulse 

within the qualitative theory of optical rectification described in the text. 
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generation via optical rectification. The most impactful one is the phase mismatch between the 

laser beam 𝐸𝑝𝑢𝑙𝑠𝑒(𝑡) propagating through the nonlinear medium and the generated THz pulse 

𝐸𝑇𝐻𝑧(𝑡) [53]. This process can be simply described as follows. The propagating laser pulse 

induces the nonlinear polarization at every point of its path through the medium, thus creating 

multiple sources that emit THz electromagnetic waves with different phases. The laser pulse 

propagates with the optical group velocity in the nonlinear crystal, corresponding to its 

wavelength (e.g., 800 nm). At the same time, the THz radiation generated in the crystal, 

propagates with its own phase velocity corresponding to the specific THz frequency, which is 

usually lower than the group velocity of the generation laser pulse, creating the phase 

mismatch between the transient polarization source (generation laser pulse) and the generated 

THz waves. Upon certain (co-)propagation distance, this leads to negative interference of these 

THz waves that substantially reduces the output bandwidth of the resulting THz pulse. For 

instance, the setup used in this work utilizes zinc telluride (ZnTe) crystal for THz generation 

that usually produces a pulse with a spectrum spanning from 0.2 to 2.5 THz (see Figure 3.1). 

Additionally, the relative alignment of the polarization and wave vector of generating laser 

pulse to the crystal axes strongly affect the output magnitude of the THz field. Again, for the 

example of the ZnTe, the propagation along [001] direction leads to no optical rectification, 

while the most efficient generation is achieved when laser propagates along of the [110] axis 

(thus in THz literature it is usually referred as (110) ZnTe as the crystal plate is cut along (110) 

 

Figure 3.3: Schematic of THz pulse generation via optical rectification of a near IR optical pulse in 

a ZnTe crystal. 
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plane). In this configuration, the output intensity of the THz is further dependent on the angle 

between field polarization of the generating pulse and [001] axis (see Figure 3.3 and Figure 

3.4) as 

 𝐼𝑇𝐻𝑧(𝜃) ∝ sin2 𝜃 (4 − 3 sin2 𝜃). (3.9) 

The maximum output emission is achieved when 𝜃 = arcsin √2/3 ≈ 54.7°, this is illustrated 

in the Figure 3.4. This corresponds to the cases when the polarization of the generating laser 

pulse is aligned along the axes [1̅11] or [11̅1] (see Figure 3.3). 

3.1.2 Free-space electro-optic sampling 

In this section, we introduce the underlying principles of the coherent detection scheme used 

in this work known as free-space EO sampling. This phenomenon is based on the Pockels 

effect – a second-order nonlinear effect taking place in the detection crystal when both THz 

wave and optical sampling pulse are presented. Similar to the optical rectification it stems from 

the second-order nonlinear susceptibility. Simply, this effect is the birefringence induced by 

the electric field of the THz pulse. 

In a general case, the induced birefringence depends intricately on the relative alignment of 

the polarization of the sampling optical and the THz pulses, as well as their orientation to the 

 

Figure 3.4: The THz field magnitude as a function of the angle between [001] crystal axis and the 

polarization direction of the sampling near IR pulse (see Figure 3.3). 
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crystallographic axes of the detection crystal. Here we describe the detection scheme utilized 

in this thesis which employs (110) ZnTe plate as a detecting crystal (the same as the generation 

crystal). In this case, the field-induced birefringence reaches a maximum when both the 

polarized optical sampling pulse and THz pulses co-propagate perpendicular to the (110) 

plane and with their polarizations being perpendicular to the [001] axis as shown in Figure 

3.5. Here, we define the laboratory frame with 𝑥 and 𝑦 axes parallel to [001] and [1̅10] axes 

respectively (see Figure 3.5). 

The induced by the presented THz field fast and slow optical axes 𝑥′ and 𝑦′ form a new frame 

which is rotated in the crystal plane (110) clockwise from the laboratory one at the angle of 

𝜋/4. The corresponding induced optical refractive indices 𝑛𝑓 and 𝑛𝑠 of the fast and slow axes 

respectively can be written as 

 𝑛𝑓,𝑠 ≈ 𝑛0 ∓
1

2
𝑛0

3𝑟41𝐸𝑇𝐻𝑧 = 𝑛0 ∓ 𝛿𝑛. (3.10) 

Here 𝑛0 = 2.85 [54] is the refractive index of the ZnTe at the optical frequency and 𝑟41 =

4.1 pm/V [55] is the EO coefficient of the ZnTe crystal. Therefore, the fast and slow field 

components of the propagating optical pulse travel with different phase velocities. Because of 

the difference in phase velocity, one component is retarded relative to the other. This phase 

retardation changes the polarization state of the so-called emerging optical beam – the one 

appearing after the crystal. 

 

Figure 3.5: Schematic of electro-optic sampling. A THz pulse and optical pulse co-propagate 

through a ZnTe crystal. The presence of the THz field induces birefringence in the crystal, which 

changes the polarization of the optical pulse. 
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To quantify this phenomenon, we will use the Jones matrix calculus [56]. This approach is a 

powerful method in which the electric field vector (or state of polarization) is represented by 

a two-element column vector, while a 2 × 2 matrix represents each birefringent crystal plate. 

Thus, one describes the transmission of light by the multiplication of the input vector with this 

matrix.  

The optical electric field vector of the sampling pulse (Figure 3.5) in the laboratory frame 

reads as 

 (
𝐸𝑥

𝐸𝑦
) = 𝐸0 (

0
1

) (3.11) 

Because the THz induced optical axes oriented at the angle of 𝜋/4 in our laboratory frame, 

then the transformation of the polarized optical light propagating through ZnTe plate in this 

frame can be written as 

 (
𝐸′𝑥

𝐸′𝑦
) = 𝑅 (−

𝜋

4
) 𝑊0𝑅 (

𝜋

4
) (

𝐸𝑥

𝐸𝑦
) (3.12) 

Here 𝑅(𝜓) is the matrix of the clockwise frame rotation at the angle 𝜓 and 𝑊0 is the Jones 

matrix for a birefringent ZnTe plate which read as 

 𝑅(𝜓) = (
cos 𝜓 sin 𝜓

− sin 𝜓 cos 𝜓
),   𝑊0 = (𝑒𝑖𝑛𝑓𝑘𝐿 0

0 𝑒𝑖𝑛𝑠𝑘𝐿
) (3.13) 

Here 𝑘 = 𝜔/𝑐 is the optical wave number and 𝐿 is the thickness of the ZnTe detection crystal. 

Thus, the emergent optical beam in the laboratory frame writes as 

 (
𝐸′𝑥

𝐸′𝑦
) =

𝐸0

2
(𝑒𝑖𝑛𝑓𝑘𝐿 − 𝑒𝑖𝑛𝑠𝑘𝐿

𝑒𝑖𝑛𝑓𝑘𝐿 + 𝑒𝑖𝑛𝑠𝑘𝐿
) = 𝐸0𝑒𝑖𝑛0𝑘𝐿 (

−𝑖 sin 𝛿𝜑
cos 𝛿𝜑

) (3.14) 

where 𝛿𝜑 = 𝑘𝐿𝛿𝑛 = 𝑘𝐿𝑛0
3𝑟41𝐸𝑇𝐻𝑧/2. The right hand side of expression (3.14) contains a 

Jones vector of the elliptically polarized light with orthogonal components being dependent 

on the phase factor 𝛿𝜑 which depends linearly on the applied THz field. Thus, this phase factor 

makes possible measuring experimentally the applied THz field in the following genuinely 

simple way. The layout of the detection scheme is presented in Figure 3.6. 

In this approach, coupled photodiodes detect the incident THz field by comparing the state of 

the polarization of the optical sampling beam in the case when THz field is absent and, in the 

case when it is present in the detecting crystal. In the former case, ZnTe crystal acts as a 
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common phase retardation plate. Thus, the propagating sampling pulse acquires additional 

phase without changing its polarization: 

 (
𝐸′𝑥

𝐸′𝑦
) = 𝐸0𝑒𝑖𝑛0𝑘𝐿 (

0
1

) (3.15) 

In the latter case (with a THz pulse in the detecting crystal), the sampling pulse becomes 

elliptically polarized (Eq. 3.14). 

The detecting laser pulse, upon its propagation through the ZnTe crystal, travels through the 

quarter-wave plate and the Wollaston beam splitter or prism (see Figure 3.6). The former 

brings additional phase retardation to the optical field components, essentially transforming 

linearly polarized light into circularly one. The Wollaston prism splits these components into 

two separate channels that are detected in the balanced photo-detector. Using the Jones 

calculus, one writes the Jones vectors of the optical field upon quarter-wave plate as 

 𝐸⃗⃗′′ = (
𝐸′′𝑥

𝐸′′𝑦
) =

𝐸0𝑒𝑖𝑛0𝑘𝐿

√2
(

−𝑖 cos 𝛿𝜑 − 𝑖 sin 𝛿𝜑
cos 𝛿𝜑 − sin 𝛿𝜑

) (3.16) 

The Wollaston prism sends the 𝑥-component and the 𝑦-component of this vector in two 

separate photodiodes of the detector. The intensity incident upon each photodiode is 

proportional to the square of the electric field. Using Eq. (3.16), we get 

 

Figure 3.6. Schematic diagram of a typical setup for free-space EO sampling. Probe polarizations 

with and without a THz field are depicted before and after the polarization optics. 
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 𝐼𝑥,𝑦 =
𝐼0

2
(1 ∓ sin 2𝛿𝜑) ≈

𝐼0

2
(1 ∓ 2𝛿𝜑) =

𝐼0

2
(1 ∓ ∆𝜑) (3.17) 

Here 𝐼0 is the intensity of the original optical sampling pulse. We use the small signal 

approximation, in which ∆𝜑 = 2𝛿𝜑 ≪ 1, that is true for most cases of EO sampling. For 

instance, in the case of ZnTe crystal of 1mm thick, this approximation is valid for the field 

strengths in the THz pulse that are much less than 27 kV/cm. The difference in intensities on 

the two photodiodes is then 

 ∆𝐼 = 𝐼𝑦 − 𝐼𝑥 = 𝐼0∆𝜑 = 𝐼0𝑘𝐿𝑛0
3𝑟41𝐸𝑇𝐻𝑧 ∝ 𝐸𝑇𝐻𝑧 (3.18) 

In a realistic situation, the temporal and spectral resolution of EO sampling is limited by three 

factors: (i) finite pulse duration of optical probe, (ii) dispersion of nonlinear susceptibility, and 

(iii) mismatch between the optical group and THz phase velocity [53], [57]. 

3.2 Experimental setup 

The experimental setup used in this thesis is shown schematically in Figure 3.7. A titanium-

sapphire mode-locked laser drives the setup. The output of the laser is 40 fs short pulses of 

800 nm wavelength. The output splits into three parts: two of them are used to generate and 

detect THz pulses, and the third to excite (pump) the sample under study. The radiation in the 

pump beam can be up-converted from the default photon energy of 1.55 eV to 3.1eV using 

frequency doubling nonlinear crystal, usually beta-barium-borate (BBO) or bismuth-borate 

(BIBO). The latter has better conversion efficiency and damage threshold compared to the 

former. Some experiments demand using the pump light of the various colors within ultraviolet 

(UV), visible and infra-red (IR) ranges. To this end, the pump beam is replaced with the output 

of the optical-parametric amplifier that is also driven by the same Ti-sapphire laser. 

One detects the electric field in the THz pulses by delaying the optical sampling pulse using a 

motorized optical delay stage I (see Figure 3.7). Changing the delay of the sampling pulse with 

respect to the arrival of the THz pulse at the detecting crystal allows mapping out the temporal 

profile of the THz pulse. This is performed through several detection cycles of the electric 

field in a series of THz pulse replicas. To clarify this, the one point (i.e., the amplitude of the 

electric field) in the THz pulse waveform is acquired in one event of co-propagation of 

sampling and THz pulses. Then one moves the delay stage I on a specific amount thus delaying 

the arrival of the sampling pulse and once more performs the detection cycle on another THz 
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pulse. At this moment, another point in the THz pulse is recorded. By repeating these steps 

one after another, the whole THz pulse is thus recorded. This scheme imposes stability 

requirements on the output of the laser to ensure that every laser pulse generates the same THz 

pulse. 

We also use a motorized delay stage II (see Figure 3.7) to control the delay of the pump pulse 

to resolve in time the THz response of the photo-excited samples. 

The detector is based on the EO sampling technique described in the previous section. The 

signal read-out from the balance diodes of the EO detector is performed via a lock-an 

amplifier. The principle of its work is as follows. A lock-in amplifier performs a multiplication 

of its input signal with a reference one and then applies an adjustable low-pass filter to the 

result. Thereby it isolates the signal at the frequency of interest from all other frequency 

components. To this end, one modulates the input signal at the frequency of the reference 

signal. In the setup, this is implemented by using optical choppers for the laser pulses, which 

also set the reference lock-in signal. One utilizes chopper I to record THz signals and chopper 

II to record modulations of THz signal due to the pump of the sample (see Figure 3.7). By that 

means, one can also detect weak signals on high-noise backgrounds. 

In the following subsections, we are going to introduce the types of experiments, which can 

be performed on the described THz setup together with the methods of retrieving the optical 

constants from the measured signals. 

 

 

Figure 3.7: A general layout of the THz setup employed in this work. The optical pulse utilized for 

the sample excitation (pump) comes from the same laser driving THz spectrometer or from an optical 

parametric amplifier. 
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3.2.1 Terahertz time-domain spectroscopy  

In this experiment, one studies the THz response of a sample in equilibrium (without 

excitation). The output is usually a complex-valued refractive index or its other forms 

mentioned at the beginning of this chapter. One chooses the most suitable one to describe the 

observed response. In this chapter, we briefly describe the experimental procedure and the 

mathematical approach of deriving the optical constants from this experiment in the most 

common and relevant cases for this work. 

In the experiment, we measure the THz pulse transmitted through the material of interest and 

compare it with the reference signal. The latter can be a THz pulse propagating through the 

reference material or just a THz pulse freely propagating through the air. 

In the following, we will consider two types of samples one studies in this mode which are a 

parallel plate or a slab of the material of interest with finite thickness, and a thin film on the 

substrate. We also provide the formulas for deriving optical constants from the measured 

reference and sample THz signals. 

Thick plane-parallel slab 

In the first case, we will consider the propagation of a linearly polarized THz signal through 

the plane-parallel slab of the dispersive material, i.e., the medium with frequency-dependent 

complex-valued refractive index (dielectric function, conductivity). Figure 3.8 depicts the 

propagation of a THz pulse through the free space (dry air or dry nitrogen), the so-called 

reference signal, and the same THz pulse propagating through the sample with a complex 

refractive index 𝑛̂𝑥(𝜔) = 𝑛𝑥(𝜔) + 𝑖𝜅𝑥(𝜔). In order to derive this optical property of the 

sample from the measured time-domain signals, one has to work in the frequency domain. 

Thus, the Fourier transformation is applied to time-domain signals, and these data are used to 

obtain optical constants. We will use subscript zero to denote air surrounding the sample, and 

𝑥 for the sample itself. In the following equations, all the parameters are assumed to be 

frequency-dependent. 

The detected reference signal 𝐸̂𝑟𝑒𝑓 and the sample signal 𝐸̂𝑠𝑎𝑚, according to the Figure 3.8, 

reads [58]: 
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𝐸̂𝑟𝑒𝑓 = 𝐸𝑖𝑛𝑐 ∙ 𝑒𝑖𝜔𝑟/𝑐 = 𝐸𝑖𝑛𝑐 ∙ 𝑒𝑖𝜙𝑓𝑟𝑒𝑒  

𝐸̂𝑠𝑎𝑚 = 𝐸𝑖𝑛𝑐 ∙ 𝑒𝑖𝜔(𝑟−𝑑) 𝑐⁄ ∙ 𝑡̂0𝑥 ∙ 𝑒𝑖𝑛̂𝑥𝜔𝑑 𝑐⁄ ∙ 𝑡̂𝑥0 ∙ 𝑀𝑅̂𝑥 = 𝐸𝑠𝑎𝑚 ∙ 𝑒𝑖𝜙𝑠𝑎𝑚𝑝𝑙𝑒  

(3.19) 

where 𝑀𝑅̂𝑥 is a factor that accounts for multiple reflections in the sample slab, which is given 

by [1] 

 𝑀𝑅̂𝑥 = [1 + 𝑟̂0𝑥 ∙ 𝑟̂𝑥0 ∙ 𝑒2𝑖𝑛̂𝑥𝜔𝑑/𝑐]
−1

 (3.20) 

and 𝑡̂𝑥𝑦 and 𝑟̂𝑥𝑦 are Fresnel field transmission and reflection coefficients. Which are given in 

the case of a normal incidence on the plane boundary between material 𝑥 and 𝑦 by [43]: 

 𝑡̂𝑥𝑦 =
2𝑛̂𝑥

𝑛̂𝑦 + 𝑛̂𝑥
,    𝑟̂𝑥𝑦 =

𝑛̂𝑦 − 𝑛̂𝑥

𝑛̂𝑦 + 𝑛̂𝑥
 (3.21) 

The order of indices in (3.21) implies that an electromagnetic wave propagates from medium 

𝑥 into the medium 𝑦. The factor 𝑀𝑅̂𝑥 plays a role when the sample in Figure 3.8 is thin enough 

that the first transmitted THz pulse overlaps in time with the subsequent reflected echoes. 

Further, we deal with the thick enough samples thereby this factor simply equals one. 

From this point, there are two ways to proceed further. In the simplest case of low absorptive 

medium (i.e., 𝑛 ≫ 𝑘), we can assume that transmission coefficients are real and are defined 

 

Figure 3.8: Optical paths of the reference and sample signal in the air and a plane-parallel slab. 
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only by the real part of the refractive index, i.e., 𝑛̂𝑥 = 𝑛𝑥 in eq. (3.21). The extinction 

coefficient can be rewritten with the power absorption coefficient 𝛼𝑥 as 𝜅𝑥 = 𝛼𝑥𝑐/2𝜔 and 

taking into account the eq. (3.21) we can write the ratio of the electric fields 𝐸̂𝑠𝑎𝑚 and 𝐸̂𝑟𝑒𝑓 

from the eq. (3.19) in the following form: 

 
𝐸̂𝑠𝑎𝑚

𝐸̂𝑟𝑒𝑓

=
4𝑛𝑥

(1 + 𝑛𝑥)2
𝑒−

𝛼𝑥
2

𝑑𝑒𝑖(𝑛𝑥−1)𝜔𝑑 𝑐⁄ =
𝐸𝑠𝑎𝑚

𝐸𝑖𝑛𝑐
𝑒𝑖(𝜙𝑠𝑎𝑚𝑝𝑙𝑒−𝜙𝑓𝑟𝑒𝑒) (3.22) 

Thus, from the measured phase difference of the sample and reference pulses one can obtain 

the frequency dependent refractive index as (using 𝜔 = 2𝜋𝑓) [59]: 

 𝑛𝑥 =
𝜙𝑠𝑎𝑚𝑝𝑙𝑒 − 𝜙𝑓𝑟𝑒𝑒

2𝜋𝑓
𝑐

𝑑
+ 1 (3.23) 

Using this frequency dependent refractive index obtained via (3.23) one can now calculate the 

absorption coefficient in the sample as [59]: 

 𝛼𝑥 = −
2

𝑑
ln (

𝐸𝑠𝑎𝑚

𝐸𝑖𝑛𝑐

(1 + 𝑛𝑥)2

4𝑛𝑥
) (3.24) 

In the case when the sample has appreciable THz absorption, i.e., the refractive index cannot 

be approximated only by its real part, the ratio 𝐸̂𝑠 𝐸̂𝑟⁄  takes form: 

 
𝐸̂𝑠𝑎𝑚

𝐸̂𝑟𝑒𝑓

=
4𝑛̂𝑥

(1 + 𝑛̂𝑥)2
𝑒𝑖(𝑛̂𝑥−1)𝜔𝑑/𝑐 . (3.25) 

This is a transcendental equation with the complex refractive index acting as a variable. To 

obtain the refractive index, one has to minimize numerically the difference between 

expressions in the left-hand side of the (3.25) (which is the ratio of Fourier transforms of 

measured signals, i.e., experimental data) and the right-hand side. Nonetheless, a good starting 

point for the numerical solution can be the refractive index and the absorption coefficient 

(which essentially can be written as a complex refractive index) obtained using (3.23) and 

(3.24). We are not going to describe numerical algorithms employed for this purposes as there 

is plenty of close-end mathematical software aimed for this and demanding minimum 

programming skills [60], [61]. 
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Thin film on a dielectric substrate 

Here we come to the second major case of the samples. These are thin films on an insulating 

substrate. Thin in a sense that their thickness is much smaller than the wavelengths of any 

spectral component of the probing THz pulse. Nevertheless, there is not so much difference in 

the experiment, despite that one has to measure the reference signal on a blank substrate, i.e., 

the supporting substrate only, without a thin film sample on it. Firstly, we consider the general 

case of a sample of finite thickness 𝑑 on a substrate. Then we introduce the thin film 

approximation to obtain the mathematical formulas for retrieving the optical properties of thin 

film samples on a substrate from the measured THz signals. 

We start, as in the former case, with a linearly polarized THz pulse normally propagating 

through the sample and the reference substrate as it is shown in Figure 3.9. We use zero 

subscripts for the surrounding air, 𝑥 for the sample and 𝑠 for the supporting substrate. 

Following the same procedure as in the first example, we write down the detected reference 

and sample signals, according to Figure 3.9 they are [58]: 

 

Figure 3.9: The layout of the propagation of the reference and the sample signals through air and a 

film on a substrate. 
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𝐸̂𝑟𝑒𝑓 = 𝐸̂𝑖𝑛𝑐 ∙ 𝑒𝑖𝜔(𝑟−𝐿)/𝑐 ∙ 𝑡0𝑠 ∙ 𝑒𝑖𝑛𝑠𝜔𝐿 𝑐⁄ ∙ 𝑡𝑠0 

𝐸̂𝑠𝑎𝑚 = 𝐸̂𝑖𝑛𝑐 ∙ 𝑒𝑖𝜔(𝑟−𝑑−𝐿) 𝑐⁄ ∙ 𝑡̂0𝑥 ∙ 𝑀𝑅̂𝑥 ∙ 𝑒𝑖𝑛̂𝑥𝜔𝑑 𝑐⁄ ∙ 𝑡̂𝑥𝑠 ∙ 𝑒𝑖𝑛𝑠𝜔𝐿 𝑐⁄ ∙ 𝑡𝑠0 

(3.26) 

Thereby the ratio of the sample signal to the reference one reads as (using the expression (3.20) 

for the multiple reflections in the sample film): 

 𝑇̂ =
𝐸̂𝑠𝑎𝑚

𝐸̂𝑟𝑒𝑓

=
𝑒−𝑖𝜔𝑑 𝑐⁄

𝑡0𝑠
∙

𝑒𝑖𝑛̂𝑥𝜔𝑑 𝑐⁄ ∙ 𝑡̂0𝑥 ∙ 𝑡̂𝑥𝑠

1 + 𝑟̂0𝑥 ∙ 𝑟̂𝑥𝑠 ∙ 𝑒2𝑖𝑛̂𝑥𝜔𝑑/𝑐
 (3.27) 

Taking into account expressions for Fresnel coefficients (Eq. (3.21)) and Euler representation 

of the complex exponent, we can rewrite the latter formula as (the refractive index of air is 

taken as 1): 

 𝑇̂ =
𝑛̂𝑥(1 + 𝑛𝑠) ∙ 𝑒−𝑖𝜔𝑑 𝑐⁄

𝑛̂𝑥(1 + 𝑛𝑠) ∙ cos(𝑛̂𝑥𝜔𝑑/𝑐) − 𝑖(𝑛̂𝑥
2 + 𝑛𝑠) ∙ sin(𝑛̂𝑥𝜔𝑑/𝑐)

 (3.28) 

Now we apply the thin film approximation, i.e., the thickness of the material is smaller than 

the effective THz wavelength or 𝑑/𝜆 ≪ 1. Thereby we can simplify the latter expression as: 

 𝑇̂ ≅
𝑛̂𝑥(1 + 𝑛𝑠) ∙ 1

𝑛̂𝑥(1 + 𝑛𝑠) ∙ 1 − 𝑖(𝑛̂𝑥
2 + 𝑛𝑠) 𝑛̂𝑥𝜔𝑑 𝑐⁄

=
1 + 𝑛𝑠

1 + 𝑛𝑠 − 𝑖(𝑛̂𝑥
2 + 𝑛𝑠) 𝜔𝑑 𝑐⁄

 (3.29) 

One can derive from this equation the analytical expression for the refractive index 𝑛̂𝑥, but we 

are going to make one extra approximation which is the most relevant for the measured data 

in this work. We assume that our film is highly conductive, i.e., |𝑛̂𝑥| ≫ 1 [43]. Thus, using 

𝑛̂𝑥
2 + 𝑛𝑠 ≈ 𝑛̂𝑥

2 we can write: 

 
𝑇̂ =

1 + 𝑛𝑠

1 + 𝑛𝑠 − 𝑖 𝑛̂𝑥
2𝜔𝑑 𝑐⁄

 (3.30) 

The last expression we can rewrite in terms of conductivity using 𝑛̂𝑥
2𝜔 𝑐⁄ = 𝑖𝑍0𝜎̂ as: 

 𝑇̂ =
1 + 𝑛𝑠

1 + 𝑛𝑠 + 𝑍0𝜎̂𝑑
 (3.31) 

Thereby the conductivity of the thin film of the thickness 𝑑 on an insulating substrate with the 

refractive index 𝑛𝑠 reads as: 

 𝜎̂ =
1 + 𝑛𝑠

𝑍0𝑑
(

1

𝑇̂
− 1) (3.32) 
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here 𝑍0 = (𝜀0𝑐)−1 ≈ 377Ω is the impedance of free space. This is the well known Tinkham 

equation [62] for a thin conductive film on a substrate. 

3.2.2 Optical–pump terahertz–probe spectroscopy 

THz time-domain spectroscopy described above studies the samples in equilibrium, but where 

this technique really reveals its potential is in its extended version that is called time-resolved 

THz spectroscopy (TRTS). In this experiment, an electromagnetic pulse sets the sample out of 

the thermal equilibrium, which then probed with the THz pulse. In this work, we employ 

optical pulses to excite samples. Therefore, the method is often called optical-pump THz-probe 

(or OPTP) spectroscopy. In this technique, an optical pulse firstly excites a sample. Then the 

THz pulse probes the electrodynamic response of the sample with a certain delay time 𝜏 upon 

photoexcitation. The parameter 𝜏 is adjustable because of the motorized delay stage II (see 

Figure 3.7) used in the setup (this is where time-resolution comes from). Thereby one can 

study the evolution of the THz response of a sample as a function of the pump-probe delay. 

The THz pulse is usually much longer (1-2 ps) than the optical one (<100 fs) and it is sampled 

in time-domain as well. The latter brings yet another time parameter (called 𝑡, enabled by 

delay stage I, Figure 3.7) into consideration. Varying one parameter or another allows 

obtaining different information. We discuss the different cases in the following sections. 

 

Figure 3.10: Relative change of the probing THz pulse maxima versus pump-probe delay time. 

Positive photoconductivity is typical for undoped semiconductors (green line) – pure Silicon. 

Negative photoconductivity is inherent for metal-like conductivity (blue line) – CVD graphene on a 

fused silica substrate. 

 

-2 0 2 4 6

-1

0

1


E

/E
 (

a
.u

.)
 

 -



pump-probe delay (ps)



44 

 

1D spectroscopy 

In this thesis a 1D scan refers to the time-resolved experiment where one obtains a time 

evolution of the THz transmission (or absorption) as a function of the pump-probe delay time 

𝜏. To this end, one fixes the THz sampling time 𝑡 and scans over pump-probe time 𝜏. Fixing 

the THz sampling time at two different positions as it is shown in Figure 3.11 allows recording 

the time evolution of different components of the complex photoconductivity. 

In the first, one fixes the sampling time at the maximum amplitude of the probing THz pulse 

(𝑡 = 𝑡𝑚𝑎𝑥, Figure 3.11). Next, to achieve a better signal to noise ratio, one measures and 

compares not the absolute values of the transmitted THz field but rather its change. It is done 

by using an optical chopper II in the pump beam (see Figure 3.7), while chopper I that 

modulates THz generation is stopped (or removed). Thus, one measures ∆𝐸𝑡𝑚𝑎𝑥
(𝜏) which is, 

in the limit of small differential signals, related to the real part of the photoconductivity [63]. 

A typical 1D scan measured at the peak of probe THz pulse is shown in Figure 3.10. This 

figure shows two prominent examples of the pump-induced change in THz transmission. It 

 

Figure 3.11: By fixing sampling time at the peak of the probing THz pulse, the recorded photoinduced 

change ∆𝐸𝑡𝑚𝑎𝑥
(𝜏) will give information about the real part of the photoconductivity. When one sets 

the sampling time at the zero crossing after the peak, ∆𝐸𝑡𝑐𝑟𝑜𝑠𝑠
(𝜏) will be proportional to the time 

delay of the probing THz beam thus providing information about the imaginary part of the 

photoconductivity. 
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shows the responses of the high-resistivity silicon and doped CVD-grown graphene. The 

former has a positive sign (so-called positive photoconductivity) as a result of increased 

conductivity due to the creation of free charge carriers in the conduction and valence bands. 

In the latter case, as we will explain later, the photoexcitation changes the thermal distribution 

of the existent free carriers which leads to the induced THz transparency, i.e., the doped 

graphene in the photoexcited state is less conductive than the one in the equilibrium (also 

known as negative photoconductivity). The long-living photoconductivity signal of the silicon 

reflects the long lifetime of the photoexcited carriers as a result of the indirect band-gap nature 

of the material, i.e., it is a slow three-body process as the recombination of the carriers involves 

phonons carrying a necessary momentum. In contrast, graphene recovers its equilibrium 

within several picoseconds because of the strong coupling of the carriers to phonon modes. 

Another way to perform 1D pump-probe scans is by fixing the THz sampling time at the point 

where the probe field crosses zero (𝑡 = 𝑡𝑐𝑟𝑜𝑠𝑠, Figure 3.11). Given that, near the zero crossing, 

one can approximate the field as a linear function of time, the value of ∆𝐸𝑡𝑐𝑟𝑜𝑠𝑠
(𝜏) measured 

here is proportional to the delay of the probing THz waveform, and thus to the imaginary 

component of the conductivity [64]. 

2D spectroscopy 

Measuring 1D dynamics described in the previous section sometimes is not enough to describe 

the whole response of the system upon photoexcitation. The extension of this method is a so-

called 2D scanning, in which one measures not only time-resolved (averaged) THz 

transmission dynamics but also the full THz pulse thus allowing obtaining the full 

photoconductivity spectra at every pump-probe delay if it is necessary. 

There are several ways to perform these kinds of experiments. Primarily it is defined by the 

1D time dynamics. To elaborate on this, we will consider the most relevant cases. 

The simplest case is the 2D spectroscopy of the silicon response upon photoexcitation (green 

line in Figure 3.10). The 1D dynamics shows little time dependence over the picosecond range 

as it is shown in Figure 3.12. Essentially, we can consider it as a constant. Then to measure 

the frequency response, one has to fix the pump-probe delay time 𝜏 (via delay stage II, Figure 

3.7) away from the pump-pulse arrival time and measure the transmitted THz field by 

sweeping the sampling time 𝑡 (via delay stage I, Figure 3.7). Similarly, as in the 1D case, one 

measures not just the transmitted THz pulses but the induced change of the THz pulse by using 
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only the optical chopper II in the pump beam, while the chopper I is stopped or removed. This 

approach increases the signal to noise level and makes possible measuring the THz pulse 

modulation down to tenths of a percent. 

As an example, the photoconductivity spectrum of a thin film on a substrate with a slow 

photoresponse can be calculated as [65], [66]: 

 Δ𝜎̂(𝜔) =
1 + 𝑛𝑠

𝑍0𝑑
∙

Δ𝐸̂𝑠𝑎𝑚(𝜔)

𝐸̂𝑟𝑒𝑓(𝜔)
 (3.33) 

Here Δ𝐸̂𝑠𝑎𝑚(𝜔) is the Fourier transform of the differential time signal and 𝐸̂𝑟𝑒𝑓(𝜔) is the 

Fourier transform of the THz probe pulse transmitted through the unexcited sample. 

In the case when 1D dynamics evolve in a picosecond range, like for graphene (blue line in 

Figure 3.10), one cannot measure full response just simply fixing pump-probe delay time and 

scanning only the sampling beam. The reason for that is that THz pulse itself evolves within 

 

Figure 3.13: The state of the sample changes faster than the length of the probing pulse. 

 

 

Figure 3.12: The state of the sample does not change on a time scale comparable with the temporal 

length of the probing THz pulse. 
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the range of several picoseconds (see Figure 3.13). Thereby the front part (before the 

maximum of the THz pulse) of the probing THz pulse travels through the sample in the 

equilibrium while the tail of the pulse at every time goes through the sample with non-constant 

photoresponse. The detected THz pulse with such a complex history of the sample makes the 

retrieving of the optical constants extremely complex. This difficulty can be circumvented 

experimentally as follows. One fixes the relative delay between the optical pump and EO 

sampling pulses. In the next, THz pulse is recorded by scanning both of the pump (delay stage 

II) and the sampling pulses (delay stage I) together with respect to the THz pulse. Thereby, 

the detected THz wave experiences the same pump-probe delay at every point with respect to 

the pump pulse [66]. We have used the latter approach for all frequency-resolved 

measurements in optically excited samples presented in this thesis. The conductivity spectrum 

can be derived following the same procedure and using, for instance, the thin-film formula 

(Eq. 3.33). 

Suspension of photoactive particles in a dielectric liquid. 

In this section, we will present the procedure for the photoconductivity spectrum extraction 

from the 2D experiment on a suspension of photoactive particles in a dielectric liquid. 

Generally, this procedure can be complicated due to non-uniform excitation profile. In this 

work, we performed experiments on suspensions of GNRs. To avoid these complications, we 

kept concentration at values where excitation profile could be treated as homogenous 

throughout the whole sample depth. 

The schematic diagram of the sample is presented in Figure 3.14. The sample is the 

arrangement of layers with different refractive indices. The THz pulse propagates from the 

 

Figure 3.14: Schematic diagram of the optical cuvette with the suspension of photoactive entities (for 

instance, GNRs in 1,2,4-Trichlorobenzene). The optical pulse excites the sample uniformly 
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volume of air  (refractive index is one) through the first optical window of the cuvette with a 

refractive index 𝑛𝑤, then the photoactive region of thickness 𝑑 with the refractive index 𝑛𝑥 in 

the unexcited state and with the refractive index 𝑛̂𝑥
∗  when it is excited, then it propagates 

through another window and eventually again into the air. Thereby we can write the ratio of 

the sample signal to the reference one, i.e., THz probe signal transmitted through the excited 

and unexcited sample [66]: 

 𝑇̂ =
𝐸̂𝑠𝑎𝑚

𝐸̂𝑟𝑒𝑓

=
𝑡̂𝑤𝑥

∗ ∙ 𝑡̂𝑥𝑤
∗

𝑡𝑤𝑥 ∙ 𝑡𝑥𝑤
𝑒𝑖(𝑛̂𝑥

∗ −𝑛𝑥)𝜔𝑑 𝑐⁄  (3.34) 

In the unexcited state, it is assumed that the refractive index of sample comes solely from the 

solvent, thereby we use substitution 𝑛 = 𝑛𝑥. Using equations for Fresnel coefficients (3.21), 

one can rewrite the latter expression as: 

 𝑇̂ =
𝐸̂𝑠𝑎𝑚

𝐸̂𝑟𝑒𝑓

= (1 +
∆𝑛̂

𝑛
) (1 +

∆𝑛̂

𝑛𝑤 + 𝑛
)

−2

(1 + 𝑒
𝑖∆𝑛̂𝜔𝑑

𝑐 ) (3.35) 

 

Figure 3.15: Example of the reference signal (𝐸𝑟𝑒𝑓(𝑡), black line) transmitted through a material in 

the equilibrium. The probe signal (𝐸𝑠𝑎𝑚(𝑡), red line) transmitted through the same material excited 

with the optical pulse. The differential signal (green), i.e., ∆𝐸(𝑡) = 𝐸𝑟𝑒𝑓(𝑡) − 𝐸𝑠𝑎𝑚(𝑡). In the OPTP 

experiment one usually records only 𝐸𝑟𝑒𝑓(𝑡) and ∆𝐸(𝑡).  
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Here we have defined ∆𝑛̂ = 𝑛̂𝑥
∗ − 𝑛𝑥 = 𝑛̂𝑥

∗ − 𝑛. We expect that the contribution to the 

refractive index upon photoexcitation comes solely from the photo-carriers in the incursions 

(i.e., GNRs) while the solvent is photo-inert. In general, the latter expression is a 

transcendental equation and has to be solved numerically. In practice, we deal with 

substantially weak refractive index modulations, thus this expression can by simplified via 

Taylor expansion as 

𝑇̂ =
𝐸̂𝑠𝑎𝑚

𝐸̂𝑟𝑒𝑓

≈ (1 +
∆𝑛̂

𝑛
) (1 − 2

∆𝑛̂

𝑛𝑤 + 𝑛
) (1 +

𝑖∆𝑛̂𝜔𝑑

𝑐
) ≈

≈ 1 +
∆𝑛̂

𝑛
− 2

∆𝑛̂

𝑛𝑤 + 𝑛
+

𝑖∆𝑛̂𝜔𝑑

𝑐
= 1 + ∆𝑛̂ (

𝑛𝑤 − 𝑛

𝑛𝑤 + 𝑛
+

𝑖𝜔𝑑

𝑐
) 

(3.36) 

In the experiment, one measures not the probe THz pulse transmitted through the excited 

sample but rather the differential time signal (see Figure 3.15). One does that for the reasons 

that the actual modulations caused by the photoexcitation could be so subtle that makes it 

impractical to extract any valuable information from the measured data. Hence, the latter 

expression transforms into: 

 𝑇̂ =
𝐸̂𝑠𝑎𝑚

𝐸̂𝑟𝑒𝑓

=
𝐸̂𝑟𝑒𝑓 + ∆𝐸̂

𝐸̂𝑟𝑒𝑓

= 1 +
∆𝐸̂

𝐸̂𝑟𝑒𝑓

 (3.37) 

where ∆𝐸̂ is the complex valued Fourier transform of the differential time signal. Eventually 

one can write a linear expression for the induced refractive index as 

 ∆𝑛̂(𝜔) = (
𝑛𝑤 − 𝑛

𝑛𝑤 + 𝑛
+

𝑖𝜔𝑑

𝑐
)

−1 ∆𝐸̂(𝜔)

𝐸̂𝑟𝑒𝑓(𝜔)
 (3.38) 

This expression can be used now to obtain the complex-valued photoconductivity of the 

sample. Using expression (3.1) the photoconductivity can be found as a difference between 

conductivities in the excited and unexcited state: 

 ∆𝜎̂(𝜔) = −(𝜀∗ − 𝜀)𝑖𝜔𝜀0 = (𝑛2 − (𝑛 − ∆𝑛̂(𝜔))
2

)
𝑖𝜔

𝑍0𝑐
 (3.39) 

Here we used the identity 𝜀0 = 1/𝑍0𝑐. 

Thus, one can extract the complex photoconductivity in a suspension from measured reference 

THz signal and the photoinduced modulation therein using knowledge of the refractive indices 

of the cuvette’s windows and the solvent. 
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4 Terahertz spectroscopy of Graphene 

 

Chapter 4 

Terahertz spectroscopy of graphene 

 

The material presented in this chapter is a result of the combined works of the author with 

Søren Jensen, Zoltán Mics, Klaas-Jan Tielrooij that have been published in Refs. [67]–[69]. 

As a part of this work, the author preformed 2D THz experiments on graphene as well as 

retrieved photoconductivities from the measured data. Søren Jensen and Zoltán Mics have 

performed 1D THz measurements and nonlinear THz studies respectively. Klaas-Jan Tielrooij 

and Zoltán Mics have done the modeling. 

In this chapter, we show that the linear band structure in graphene plays a crucial role in its 

conductivity dynamics. We introduce a simple thermodynamic model, which can adequately 

describe the transient conductivity of graphene upon either optical excitation or during its 

interaction with a high-field THz pulse. 

4.1 Terahertz conductivity of graphene 

Here we start with describing the conductivity of graphene that appears as an output of THz 

TDS experiment. In this experiment, the propagating probing THz pulse interacts only with 

the carriers in graphene with energies around Fermi level – so-called free carrier absorption, 

thus providing information about conductivity in graphene in the THz frequency range. 

We make a little digression here, as it is of importance to discuss graphene samples we studied 

in this work. One can list three major types of graphene that are usually defined by the 

production method. 

The first one, and probably the historically most important one, is graphene produced using 

the scotch-tape method (or exfoliation) [2]. This type is the purest possible graphene that could 

be mechanically transferred to another substrate or even could be freestanding [70]. The first 

significant discoveries were made particularly on this kind of graphene [4]. The disadvantage 
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of the scotch-tape graphene, specifically for the THz experiments, is the size of the films, 

which are usually in the micrometer region or even less. Since the THz measurements are 

usually performed in the transmission mode where the THz beam is focused on a sample, the 

size of the material should exceed the focal spot size of the probing beam, which is usually of 

sub-mm range. Thereby that makes THz spectroscopy challenging if not completely 

impossible due to these limitations. 

Another type is the epitaxial graphene that is obtainable by reducing the silicon on the surface 

of the silicon carbide [71]. This method produces already large-scale samples (as large as the 

source silicon carbide substrate), but still, the final product sometimes is a stack of graphene 

layers. These layers have different properties from layer to layer, as the property of any 

graphene layer is defined by its vicinity to the substrate, e.g., the chemical composition of a 

layer eventually reaches that of silicon carbide the closer the layer gets to the substrate [72]. 

This type of graphene is not transferable. Thus it always comes on the silicon carbide substrate. 

Despite having a large area, the epitaxial graphene appears to be not the best candidate for the 

THz experiment as one measures not the single layer of graphene but the stack of layers and 

the film comes with a photoactive substrate that also places a limitation for the OPTP 

experiments. 

Finally, we come to the last major type, CVD (chemical vapor deposition) graphene that is 

synthesized from the gas phase on a target substrate [73]. This method provides a large area 

monolayer of graphene that is easily transferable to another substrate. The CVD graphene on 

the substrate is usually doped because of interaction with the substrate and the adsorption of 

the environmental gases [74]. The latter makes this kind of graphene extremely sensitive to 

the interaction with light that can lead to the carrier concentration change [75]. The carrier 

concentration could also be tuned in a gated sample where one tunes chemical potential by 

applying a static voltage between the gate and graphene [2]. 

In this work, all measurements have been performed on the CVD graphene (provided by the 

group of Prof. Müllen), since this method allows growing largescale films that are ideally 

suitable for the THz measurements. Our samples have been transferred on the photoinactive 

fused silica (or quartz) substrate. 

Initially, the free carrier absorption in graphene (or intra-band response) has been measured 

using broadband Fourier-transform IR spectroscopy (FTIR) [46] in a back-gated sample. It has 

been proved that the optical conductivity of doped graphene in the THz frequency range indeed 
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follows the Drude form (Eq. (2.34)) together with its square root dependence on the carrier 

concentration. 

Even though the FTIR spectroscopy is a powerful tool, which provides a broad spectral range, 

it lacks the phase sensitivity as typically only power transmission, or reflection spectra are 

recorded. In contrast, as it was already stated, the THz-TDS enables phase-resolved 

measurements of the complex-valued optical conductivity. The first such experiments, probing 

the free electron conductivity of large-area CVD graphene [76], [77], revealed little spectral 

dispersion of the conductivity in the range 0.3 – 1.7 THz. Following Eq. (2.34), one can say 

that this is caused by a very short electron momentum scattering time 𝜏 = 1 𝛾⁄ < 10 fs, as a 

result of the influence of defects. Over time, however, the CVD technology has improved, 

yielding very high-quality samples with electron momentum scattering times on the order 𝜏 =

10 − 70 fs [65], [78]–[80], and even as high as 𝜏 = 140 fs [68], which corresponds to mean 

free paths of 𝜆 = 𝜈𝐹𝜏 = 140 nm. A typical THz conductivity spectrum of a doped CVD-

 

Figure 4.1: The complex-valued conductivity of CVD-grown graphene on the fused silica substrate 

measured in the units of 𝐺0 = 𝑒2/4ℏ. Blue points correspond to real conductivity and red ones to the 

imaginary one. Lines fit the Drude conductivity (Eq. (2.34)). The sample was covered with the 

poly(methyl methacrylate) or simply PMMA that normally used as a scaffold for the graphene 

transfer procedure. The PMMA, in this case, provided some protection from the environment and 

‘aging’. Nevertheless, the data show several artifacts around 0.7 THz and 1.7 THz. The former is 

perhaps due to oscillatory modes in PMMA itself. The latter usually comes from the oscillatory mode 

in water that is either present in the environment or trapped under the PMMA layer. 
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grown graphene is presented in Figure 4.1, showing an appreciable dispersion of the complex-

valued conductivity because of relatively long scattering time 𝜏 = (33 ± 8) fs. The value has 

been obtained by fitting the data to the Drude model Eq. (2.34). 

The quality of the graphene film plays a foremost role in its conductivity properties, especially 

in CVD type graphene, since this graphene has inherent artifacts like cracks or wrinkles, which 

for instance appear during the transfer. Thereby the response can vary from theoretically 

predicted Drude behavior down to the Drude-Smith one [81], the latter is a signature of the 

persistent backscattering in the carrier movement. 

4.2 Nonlinear terahertz conductivity of graphene — 

Thermodynamic model 

In the THz-TDS experiment on graphene, one probes the linear intra-band response of 

graphene, and we have shown above that the Drude conductivity well approximates that 

response. Despite the low photon energy of the THz wave (approximately 4 meV), a THz pulse 

can carry an immense field strength thus allowing the study of highly nonlinear phenomena. 

With the advent of sources of intense THz pulses, these kinds of experiments became possible 

[82]. We avoid the descriptions of these techniques as there are no principle differences in the 

experimental setup compared to the one introduced in the previous chapter. Moreover, there 

are plenty of reviews covering this field [83]. The more important subject here is what 

observations we have obtained in the strong field THz-TDS experiment on graphene and the 

physical picture we have introduced to describe them. 

In the works by Hwang et al. (Ref. [84]) and Paul et al. (Ref. [85]) the interaction of doped 

graphene with strong THz fields (𝐸𝑇𝐻𝑧 > 10 kV/cm) has been shown to result in a significant 

(> 15%) THz transmission enhancement. This is the consequence of a reduction of the carrier 

intra-band conductivity that is taking place in single-layer CVD graphene [85], [86] in the 

course of the interaction with the strong electric field of a THz pulse. The time-resolved 

dynamics of this conductivity reduction has been also explored using time resolved THz-

pump/THz-probe spectroscopy [84]. Following ref. [84], a high-field THz pump pulse causes 

a decrease in the conductivity that occurs within approximately 1 𝑝𝑠 (essentially the duration 

of the THz pulse). The induced reduction subsequently recovers within 2 −  3 𝑝𝑠. This 

conductivity reduction is believed to be a result of the heating of charge carriers by the strong 
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THz pulses, which resembles that of conventional doped semiconductors [87], [88], which 

also originates from the intra-band electron heating in strong THz fields. The work by Tani et 

al. (Ref. [89]) supports this picture by observation of decreased optical density of near-IR 

pulse in CVD graphene excited by the intense THz pulse, which originates from an increased 

population of high-energy levels by hot electrons. In our lab, we have also observed the THz 

conductivity reduction in a single layer CVD graphene (see. Figure 4.2) with increasing THz 

field. In the following, we introduce a fairly simple model that nevertheless well describes the 

observed conductivity spectra. 

We first outline the energy flow in the interaction between the electric field of a THz pulse 

and the free charge carriers in graphene. The primary energy transfer from the THz pulse to 

the electronic population in graphene occurs via the conductivity mechanism, as the real part 

of the conductivity (𝜎1) of the material is directly proportional to its power absorption 𝛼 =

4𝜋𝜎1𝜇1 𝑛𝑐⁄  [43]. The incident field 𝐸𝑇𝐻𝑧 acts on the free carriers at the states near the Fermi 

level and drives a THz current 𝑗 = 𝜎 ∙ 𝐸𝑇𝐻𝑧 that initially keeps the transferred energy. 

The linear dispersion of electrons near Dirac points facilitates the efficient process of electron-

electron scattering as the energy and momentum conservation can be easily fulfilled in the 

 

Figure 4.2: Frequency-dependent conductivity spectra of graphene, measured at selected peak THz 

field strengths in the range of 2.3–36 kV/cm (symbols). The data fit the equation (4.1) (solid lines) 

at the indicated in the figure temperatures in the assumption of electron momentum scattering only 

due to long-range Coulomb impurities. The dotted lines correspond to the calculation for the short-

range disorder momentum scattering scenario. The error bars are the standard deviations in the 

measurements. Adapted with permission from Nat. Commun. 2015, 6, 7655 [68]. Copyright (2015) 

Nature Publishing Group. 
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event of scattering [68] (see Figure 4.3). This results in an efficient and fast exchange of energy 

and momentum within the entire electron population in graphene [90]. The current induced by 

THz pulse deposits its energy into the electronic system of graphene and sets it out of the 

equilibrium that is followed by the process of thermalization. Because of the efficient process 

of electron-electron interaction, thermalization occurs over less than 50 fs [91]–[93], which is 

much faster than the period of field oscillations in THz pulse (in the range of ~1ps). Hence, 

the establishment of the thermalized population of carriers in graphene can be considered 

instantaneous on the picosecond timescale. Therefore, the energy of the THz field coupled to 

graphene via the conductivity mechanism is quasi-instantaneously converted into the internal 

energy of the thermalized electron population at elevated temperature 𝑇𝑒𝑙. 

To avoid confusion, the thermalized electron population here refers to one described by the 

Fermi-Dirac distribution with a specific temperature and chemical potential. The electron 

distribution, in turn, may be out of thermal equilibrium with the crystal lattice of graphene. 

The process of establishing the thermal equilibrium between these two systems we refer to as 

a cooling. 

The carrier cooling occurs via phonon emission on a significantly longer (several picoseconds) 

timescale [94] than the duration of the THz pulse. Thus, the electron system accumulates the 

internal energy during the interaction of the electric field of the THz pulse with graphene. As 

a result, the electron population in graphene on the THz timescale can be well described as 

 

Figure 4.3: Dirac cone showing exchange of energy and momentum of two electrons in the 

conduction band. 
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thermalized electron gas in which any kind of supplied energy is simply adding to the 

population of electrons and the Fermi-Dirac distribution 𝑓(𝜇, 𝑇𝑒𝑙 , ℰ) with the instantaneous 

temperature 𝑇𝑒𝑙 describing their population at all times. Thereby we can write the expression 

for the conductivity of graphene with a given temperature of electrons and corresponding 

chemical potential (by applying transition (2.7) to conductivity from the Boltzmann transport 

equation (2.31)) as 

 𝜎̂(𝜔) =
𝑒2𝜐ℱ

2

2
∫ 𝑑ℰ ∙ 𝑔(ℰ) ∙ ℰ ∙

1

1 𝜏(ℰ)⁄ − 𝑖𝜔
∙ (−

𝜕𝑓(𝜇, 𝑇𝑒𝑙 , ℰ)

𝜕ℰ
)

∞

0

 (4.1) 

here 𝜏(ℰ) is the energy-dependent carrier momentum scattering time. 

Before the excitation by the THz pulse, the carriers in graphene are in the thermal equilibrium 

with the environment. Thus, the Fermi distribution at room temperature (𝑇0) describes the 

population of electrons in graphene. All experiments discussed in this work were performed 

at the room temperature unless it is otherwise stated. After the interaction with the THz pulse, 

the distribution of carriers changes as the carrier temperature elevates. The THz excitation of 

the carrier system is then accounted for by simply adding a portion of heat 𝛿𝑄 (absorbed from 

the THz field) to the internal energy of the electron gas. One writes this as: 

(a) (b) 

 
 

Figure 4.4: The increase of the carrier temperature leads to the decrease of the chemical potential 

because of constant carrier concentration. (a) Upper plot: comparison of the ‘heated up’ electron 

populations with the fixed chemical potential (dotted red line) and that satisfying the constant carrier 

concentration (solid red line), i.e., the area under the blue and red solid curves are equal. Bottom plot: 

the Fermi-Dirac distributions of the populations shown in the upper plot. (b) The illustration of the 

resulting decrease of the Drude weight in favor of the opening more inter-band transitions, i.e., 

conservation of the spectral weight. 
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 𝑊0 + 𝛿𝑄 = ∫  𝑑ℰ ∙ 𝑔(ℰ) ∙ ℰ ∙ 𝑓(𝜇∗, 𝑇∗, ℰ)

∞

0

 (4.2) 

where 𝑊0 = ∫ 𝑑ℰ ∙ 𝑔(ℰ) ∙ ℰ ∙ 𝑓(𝜇0, 𝑇0, ℰ) 
∞

0
 is the internal energy of the carrier system at 

room-temperature prior to the interaction with the THz field. This condition, in conjunction 

with the conservation of carrier density in the conduction band, i.e., 

 𝑁0 = ∫ 𝑑ℰ ∙ 𝑔(ℰ) ∙ 𝑓(𝜇0, 𝑇0, ℰ)

∞

0

= ∫ 𝑑ℰ ∙ 𝑔(ℰ) ∙ 𝑓(𝜇∗,  𝑇∗, ℰ)

∞

0

, (4.3) 

importantly implies that the chemical potential decreases with increasing carrier temperature 

and concomitant broadening of the Fermi-Dirac energy distribution of the carriers, as 

illustrated in the left of Figure 4.4. The downshift of the chemical potential with increasing 

electronic temperature results in an increase of the amount of optically active inter-band 

transitions with energies ℏ𝜔 > 2𝜇∗ (see Figure 2.3) that were Pauli-blocked (since 𝜇0 > 𝜇∗) 

at room temperature before the interaction with the THz pulse. Because the total spectral 

weight must remain constant [46], the increased number of the inter-band transitions leads to 

the decrease of the weight of intra-band absorption, which contributes to the THz conductivity 

of graphene, as illustrated in the right of Figure 4.4. Thus, the downshift in chemical potential 

at elevated electronic temperatures, and constant carrier density qualitatively explains the 

experimental observations of lower THz conductivity in graphene at stronger THz fields. 

For a quantitative description of the measured THz conductivity spectra shown in Figure 4.2, 

we directly apply equation (4.1) within the constraint of carrier density conservation (4.3) 

(yielding the chemical potential 𝜇 at a given temperature as explained above), and use the 

electronic temperature 𝑇𝑒𝑙 as a free fit parameter. At this point, not only the temperature-

dependent electron distribution, but also the energy dependence of the momentum scattering 

time 𝜏(ℰ) should be considered. 

As discussed in detail in [16] and references therein, the carrier scattering in graphene may 

occur according to two main energy-dependent scenarios. One scattering regime is long-range 

scattering at Coulomb impurities, where the carrier scattering time 𝜏 is proportional to its 

energy 𝐸, 𝜏 = 𝛼𝐸. Another one is short-range scattering at disorder sites, which is 

characterized by the inverse dependence of scattering time on carrier energy, 𝜏 = 𝛽/𝐸. The 

former is the predominant scattering mechanism for a CVD-grown graphene, whereas the 
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latter is predominant in (encapsulated or suspended) exfoliated graphene [16]. The 

proportionality constants, 𝛼 and 𝛽, can be readily established experimentally as 𝛼 = 𝜏0/𝜇0 

and 𝛽 = 𝜏0 ∙ 𝜇0 [68] from the linear characterization of graphene at room temperature (here 

𝜏0 and 𝜇0 correspond to carrier scattering time and chemical potential at room temperature). 

Nevertheless, we note that the argument of conservation of the total spectral weight described 

above demonstrates that precise knowledge of energy dependence of momentum scattering 

time in graphene is not essential for predicting the observed reduction of strong-field THz 

conductivity in graphene. 

The direct application of (4.1) (in the scenario of long-range Coulomb scattering) is in 

quantitative agreement with the measured conductivities for the field strengths up to 

~40 kV/cm, with the carrier temperature has been taken as a free fitting parameter [68]. In 

this case, peak electron temperatures of ~1000 K were associated with THz field strength of 

~40 kV/cm. We note that this temperature is close to the typical Fermi temperature of 

graphene sample used in the experiment [68]. 

For the stronger fields, however, the quasi-static, weakly perturbative description given by 

(4.1) is no longer appropriate, and a full time-dependent treatment of conductive response of 

 

Figure 4.5: The measured conductivity spectra of graphene (symbols) at different peak field 

strengths, along with the corresponding modeling (lines) based on the time-dependent 

thermodynamic balance in graphene described in the text. The error bars are the standard deviations 

in the measurements. Adapted with permission from Nat. Commun. 2015, 6, 7655 [68]. Copyright 

(2015) Nature Publishing Group. 

 

0.2 0.4 0.6 0.8 1.0 1.2

0

5

10

15

20
THz peak

field strength

(kV/cm)

 2.3 

 5.0 

 10  

 18  

 36  

 72  

 120

 

 

re
a
l 
c
o

n
d

u
c
ti
v
it
y
 (

G
0
)

frequency (THz)



60 

 

graphene is necessary. We have employed a split-step time-domain approach [68], similar to 

the one used in nonlinear optics [95] that takes into account the dynamics of the electron 

heating (instantaneous) and its cooling (retarded [92], [93]) throughout the interaction of the 

THz field with graphene (see Appendix 4.A). 

As a result, the entirety of experimental data, taken at all field strengths 2.3 –  120 kV/cm, 

and in the entire frequency range up to 1.2 THz, has been reproduced without using any 

adjustable parameters, as shown in Figure 4.5 [68]. 

As one can see in Figure 4.5, for the frequencies above > 1 THz, and THz peak fields of 

~100 kV/cm, the conductivity of graphene almost entirely vanishes, while the calculations 

evidence the peak electron temperatures exceeding 7000 K for the strongest fields used. A 

comparison between experiments and the theory reveals that, on the timescale of graphene — 

THz interaction of 1.5 –  2.0 ps, about 15% of absorbed THz energy is retained as electronic 

heat, lowering the chemical potential and reducing the intra-band conductivity of graphene, 

whereas the rest of the absorbed THz energy is spent on the emission of phonons [68]. 

4.3 Photoconductivity of graphene — thermodynamic model 

In the previous section, the intra-band excitation of carriers in doped (CVD) graphene with 

intense THz pulses has been shown to lead to a reduction of intra-band graphene conductivity. 

A similar effect has been observed for doped graphene after inter-band excitation with ultra-

short optical pulses [47], [65], [67], [79], [80], [86], [94], [96] using optical pump – THz probe 

spectroscopy. In a typical semiconductor [1] the photoconductivity is positive, i.e., it becomes 

more conductive upon an optical excitation that creates extra free carriers in the conduction 

and valence bands. The photoconductivity of doped graphene is negative, i.e., the conductivity 

of graphene reduces as a consequence of the photo-excitation [65], [67]. See for instance 

Figure 3.10 showing the negative photoconductivity dynamics (i.e., evolution in time) of 

graphene and the positive one of silicon. The reason for this is similar to the case of THz 

excitation of graphene that we have discussed above in the text. It is the effective redistribution 

of energy from photo-excited electrons and holes to initially unexcited free (intra-band) 

electron population, leading to its heating [94]. 

In work by Jensen at al [67], we have studied the ultrafast carrier-energy relaxation in CVD 

graphene using OPTP spectroscopy. We have used two types of samples. The first sample is 
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a CVD graphene with an area of 1 cm2 transferred onto a substrate that consists of slightly 

doped silicon, covered by a 300 nm thick insulating layer of SiO2. The silicon serves as a 

backgate allowing the control of the carrier concentration in the graphene sheet, i.e., Fermi 

level from 0.3 eV down to ∼ 0.06 eV. The second sample consists of a CVD grown graphene 

with an area of a square inch transferred onto quartz with fixed Fermi level of < 0.15 eV. 

At first, we have studied the photoconductivity dynamics (1D OPTP experiment) in the sample 

with controllable chemical potential as a function of carrier concentration, and in the sample 

with fixed chemical potential as a function of the fluence of exciting optical pulse [67]. The 

observed dynamics are similar to the one introduced in Figure 3.10 in both samples and show 

negative photoconductivity. The observed maximal amplitude of the negative 

photoconductivity in the first sample decreases with the decreasing chemical potential and in 

the second sample (with fixed Fermi level), it increases with increasing optical excitation 

fluence (see Figure 4.6 (b)). 

We note, that in the first sample with very low chemical potential (∼ 0.06 eV) 

photoconductivity dynamics changes from negative to positive as it is shown in Figure 4.6 (a). 

This is typical behavior for the intrinsic graphene with the chemical potential near the Dirac 

point. In the intrinsic graphene, the electrons and holes, created by the optical excitation in the 

(a) (b) 

  

Figure 4.6: Photoconductivity dynamics dependence on Fermi level and fluence. (a) The 

photoconductivity for different Fermi level (sample with controllable Fermi level). The 

photoconductivity is negative for all traces, except for the one closest to the Dirac point, where it is 

positive. (b) The photoconductivity for excitation with 800 nm light at different excitation powers, 

corresponding to absorbed photon densities from 0.26 to 7.6 ×  1012 photons/cm2 (sample with fixed 

Fermi level). The photoconductivity is negative and increases for increasing excitation power. 

Adapted with permission from Nano Lett. 2014, 14, 5839−5845 [67]. Copyright (2014) American 

Chemical Society. 
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conduction and the valence bands, increase the total amount of conductive carriers, thus 

leading to the increased conductivity – positive photoconductivity. While in the doped 

graphene, the same electron-hole pairs transfer their energy to the electron population in the 

conduction band, thus leading to the state with an elevated electron temperature wherein the 

total amount of carriers in the conduction band is conserved. As we have already pointed out 

this state has reduced conductivity – negative photoconductivity. 

The peak negative photoconductivity in Figure 4.6 corresponds to a state with elevated carrier 

temperature. The system reaches this state as follows. The absorbed photon creates initial 

electrons and holes in the conduction and the valence band correspondingly. This unbalanced 

state of carrier population reaches quasi-equilibrium via two main processes: (i) carrier-carrier 

scattering and (ii) optical phonon emission (see Figure 4.7 (a)). The equilibration takes place 

during the first few hundred femtoseconds after photoexcitation, that is, during the rise of the 

conductivity change. Figure 4.8 shows the normalized photoconductivity signals for this time 

window. The rise dynamics exhibit a peculiar effect: upon decreasing the chemical potential 

(i.e., the intrinsic carrier density) or increasing the optical excitation fluence (i.e., the density 

of primary excited carriers), the signal reaches its maximum at increasingly later times.  

The slowing down of the energy dissipation process of photoexcited carriers with decreasing 

chemical potential is consistent with energy dissipation via intraband carrier-carrier scattering 

(see Figure 4.7 (b)). Photoexcited carriers relax by exchanging energy with an intrinsic 

population of the carriers in the conduction band that eventually leads to the increase of its 

temperature. Levitov has shown in his work [97] that the probability of a single carrier-carrier 

scattering event is the highest when the exchange energy (between a photoexcited carrier and 

(a) (b) 

  

Figure 4.7: (a) The diagram of possible energy dissipation channels of photo-excited carriers in doped 

graphene that occur either via carrier-carrier interaction or by emitting optical phonons. (b) The 

comparison of carrier-carrier scattering processes for two different chemical potentials. The 

relaxation time increases for the case of lower chemical potential 𝜇 since more scattering events are 

required for the carriers to complete their energy relaxation cascade. 
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a carrier of the intrinsic population in the conduction band) amounts to the value of chemical 

potential 𝜇. This results from the competition between the available phase space that increases 

with exchange energy and the coulomb interaction that decreases with the recoil momentum 

[97]. Thereby, if 𝜇 decreases then more scattering events are required for the photoexcited 

carriers to complete their energy dissipation cascade. This results in an increased relaxation 

time. Other channels of energy dissipation are expected to start contributing to the overall 

relaxation process of carriers if the energy dissipation via carrier−carrier scattering would slow 

down that much that its rate becomes comparable to the rate of other dissipation channels. This 

would lead to a decrease in the fraction of energy that is transferred to the electron system. 

To quantify the fraction of absorbed energy that leads to carrier heating, i.e., heating efficiency, 

we compare THz photoconductivity data with the results of the thermodynamic model that we 

have introduced in the previous section. 

To calculate the hot carrier temperature, we use the same concept that before photoexcitation 

there is a known amount of internal energy in the carrier system: 

 𝑊0 = ∫ 𝑑ℰ ∙ 𝑔(ℰ) ∙ ℰ ∙ 𝑓(𝜇0, 𝑇0, ℰ)
∞

0

 (4.4) 

and a known number of carriers in the conduction band: 

(a) (b) 

  

Figure 4.8: (a) The photoconductivity normalized to the peak of the signal (sample with controllable 

Fermi level), showing that decreasing the Fermi level leads to slower rise dynamics. (b) The 

photoconductivity normalized to the peak of the signal (sample with fixed Fermi level), showing that 

increasing the excitation power leads to slower rise dynamics. Adapted with permission from Nano 

Lett. 2014, 14, 5839−5845 [67]. Copyright (2014) American Chemical Society. 
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 𝑁0 = ∫ 𝑑ℰ ∙ 𝑔(ℰ) ∙ 𝑓(𝜇0, 𝑇0, ℰ)
∞

0

 (4.5) 

Because of optical excitation, an amount of energy ℰ𝑎𝑏𝑠
𝑜𝑝𝑡

 is absorbed in the graphene and a 

fraction 𝜂 of this energy ends up in the electronic system through intraband carrier−carrier 

scattering. After intraband heating is complete, the system is then described by the following 

set of equations: 

 

𝑊∗ = 𝑊0 + 𝜂ℰ𝑎𝑏𝑠
𝑜𝑝𝑡

= ∫ 𝑑ℰ ∙ 𝑔(ℰ) ∙ ℰ ∙ 𝑓(𝜇∗, 𝑇∗, ℰ)
∞

0

 

𝑁∗ = 𝑁0 = ∫ 𝑑ℰ ∙ 𝑔(ℰ) ∙ 𝑓(𝜇∗, 𝑇∗, ℰ)
∞

0

 

(4.6) 

Here 𝜇∗ and 𝑇∗ are the chemical potential and the carrier temperature in the hot state, 

respectively. The solution of the equations (4.6) shows that the carrier temperature increases 

and the chemical potential decreases upon photoexcitation, essentially repeating the results we 

have obtained in the experiment with high field THz pulses. The photoinduced increase of 

carrier temperature and the associated decrease in chemical potential have been also explicitly 

(a) (b) 

  

Figure 4.9: Comparison of experimental and theoretical photoconductivity. (a) The complex 

photoconductivity of the sample with fixed Fermi energy as a function of frequency for an excitation 

fluence corresponding to Nexc = 1 × 1012 carriers/cm2, together with the model result with a carrier 

heating efficiency of η = 0.75. (b) The complex photoconductivity of the sample with fixed Fermi 

energy as a function of frequency for an excitation fluence corresponding to Nexc = 8 × 1012 

carriers/cm2, together with the model result with a carrier heating efficiency of η = 0.5. This shows 

that in this regime other energy relaxation channels contribute to the ultrafast energy relaxation. 

Adapted with permission from Nano Lett. 2014, 14, 5839−5845 [67]. Copyright (2014) American 

Chemical Society. 
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confirmed by mapping the carrier distribution using time- and angle-resolved photoemission 

spectroscopy (ARPES) in work by Gierz I. et al. [92]. 

The hot carrier distribution, with 𝜇∗ and 𝑇∗ calculated using the carrier heating model, directly 

leads to negative THz photoconductivity (see the previous section). Using the general 

expression for the general complex conductivity in graphene (4.1), we then can calculate 

frequency resolved photoconductivity as a difference between conductivities of graphene in 

the ‘hot’ state and the ‘cold’ state, that is, ∆𝜎̂(𝜔) = 𝜎̂(𝜔, 𝜇∗, 𝑇∗) − 𝜎̂(𝜔, 𝜇0, 𝑇0). The former 

corresponds to the state at the peak of photoconductivity dynamics when the carrier system of 

graphene reaches quasi-equilibrium and the Fermi distribution with 𝜇∗ and 𝑇∗ (obtained from 

(4.6)) describes its state. The latter state corresponds to graphene, prior to the optical 

excitation, at the room temperature of 𝑇0 and chemical potential 𝜇0. For the conductivity 

calculations, we use a similar assumption of the scattering time dependence on the energy as 

we did in the previous section, namely, we assume that scattering time is determined by 

charged impurity scattering and increases linearly with the energy ℰ, that is 𝜏(ℰ) = 𝛼 ∙ ℰ [16], 

[98]. To estimate the value of the proportionality constant 𝛼, we firstly evaluate the carrier 

scattering time 𝜏0 at the room temperature by fitting the Drude model (Eq. (2.34)) to the 

experimental data for the background THz conductivity of graphene obtained using THz-TDS. 

Then one simply calculates 𝛼 by dividing the scattering time 𝜏0 by the chemical potential 𝜇0 

(𝛼 = 𝜏0/𝜇0). The latter we estimate using Raman spectroscopy as 𝜇0 = 0.155 𝑒𝑉 [99]. We 

thus estimate a scattering time proportionality constant in the sample with the fixed chemical 

potential to be 𝛼 = 200 fs/eV. 

We compare the predictions for the frequency-resolved photoconductivity ∆𝜎̂(𝜔) with the 

experimental results for the sample with fixed Fermi energy. In Figure 4.9(a), we show this 

comparison for an excitation fluence of ~12 𝜇𝐽/𝑐𝑚2 (a pump wavelength of 800 nm), which 

correspond to the 𝑁𝑒𝑥𝑐 = 1 × 1012 absorbed photons per cm2, and find good agreement with 

a heating efficiency of 𝜂 = 0.75. The small discrepancies between data and model can be 

ascribed to artifacts that arise from the temporal change of the photoconductivity during the 

interaction with the THz pulse, [28] although we largely avoid these by moving the optical 

pump delay line simultaneously with the THz probe delay line (see section 3.2.2). 

In Figure 4.9(b), we provide a similar comparison in the high fluence regime with 𝑁𝑒𝑥𝑐 = 8 ×

1012 absorbed photons per cm2 that corresponds to the excitation fluence of ~100 μJ/cm2. 

Here we find that we can only describe the data with a significantly reduced carrier heating 
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efficiency of 𝜂 ≈ 0.5 while keeping the chemical potential 𝜇0 and scattering time 

proportionality constant 𝛼 the same as in the low fluence regime. Together, these results show 

that at sufficiently low fluence, a larger fraction of the absorbed energy ends up in the electron 

system, that is, the ultrafast energy relaxation occurs through efficient carrier−carrier 

scattering. However, upon increasing the fluence (i.e., the carrier temperature), the relative  

amount of energy transferred to the electron system decreases, which means that 

carrier−carrier scattering becomes less efficient and other relaxation processes start to 

contribute. 

The overall agreement between data and model shows that the observed negative THz 

photoconductivity of intrinsically doped graphene [47], [65], [74], [79], [94], [96] can be fully 

reproduced by considering intraband carrier heating, which reduces the averaged conductivity 

of the intrinsic carriers, for example energy relaxation via the emission of acoustic phonons..  

To determine in more detail how the carrier heating efficiency depends on the excitation 

fluence, we study the peak photoconductivity of the sample with fixed Fermi energy for a large 

range of excitation powers for both 800 and 400 nm excitation. We show the 

(a) (b) 

  

Figure 4.10: Carrier heating efficiency−dependence on fluence. (a) The peak photoconductivity of the 

sample with fixed Fermi energy for a large range of excitation powers and an excitation wavelength 

of 800 nm together with the model with η = 1 (solid line) and heating efficiency of η = 0.5 (dotted 

line). (b) The peak photoconductivity of the sample with fixed Fermi energy as a function of excitation 

power (Nexc) for excitation with 800 nm light and 400 nm light. The dashed lines correspond to the 

model with the same parameters as in a, using η = 1. The model describes the data well up to Nexc = 

0.3 × 1012 carriers/cm2 for 800 nm excitation and up to Nexc = 0.15 × 1012 carriers/cm2 for 400 nm 

excitation. The inset shows the carrier temperature that is reached after excitation and thermalization 

by carrier−carrier scattering, reaching ∼4000 K before heating becomes less efficient, for both 

excitation wavelengths. Adapted with permission from Nano Lett. 2014, 14, 5839−5845 [67]. 

Copyright (2014) American Chemical Society. 
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photoconductivity at the peak (when the ultrafast energy relaxation is complete) in Figure 

4.10a,b, together with the results of the carrier heating model for the same parameters as in 

Figure 4.7a and a frequency of 0.7 THz. For low fluences (up to ~4 μJ/cm2, corresponding to 

𝑁𝑒𝑥𝑐~0.3 × 1012 absorbed photons/cm2, 800 nm excitation, ~2% absorption) the 

experimental data are in agreement with the heating model with a fixed heating efficiency of 

𝜂 = 1. Interestingly, at fluences above ~4 μJ/cm2 the experimental photoconductivity starts 

saturating and the model is only in agreement for a heating efficiency that gradually decreases 

to ~50% for the highest fluences applied here (Figure 4.10a). These observations suggest that 

once a certain carrier temperature (~4000 K, see inset Figure 4.10b) is reached, the heating 

efficiency decreases. Interestingly, the experimental data for excitation with 400 𝑛𝑚 light start 

deviating from the model (with efficiency 𝜂 = 1) at 𝑁𝑒𝑥𝑐~0.15 × 1012 absorbed 

photons/cm2 (Figure 4.10b), instead of ~0.3 × 1012 absorbed photons/cm2 in the case of 

excitation with 800 nm light. This is because each 400 nm photon has twice the energy of a 

800 nm photon. Thus, in both cases, the carrier heating efficiency starts decreasing around the 

same carrier temperature. 

Comparing the data and the heating model leads to the following physical picture of the 

ultrafast energy relaxation in graphene: until a certain carrier temperature is reached (∼

4000 𝐾), the ultrafast energy relaxation is dominated by carrier−carrier scattering, which leads 

to efficient and fast (~100 fs) carrier heating. Once this carrier temperature is reached, the 

relaxation slows down and the carrier heating efficiency decreases, as ultrafast energy 

relaxation occurs through additional pathways involving optical phonon emission [100]. The 

reduction in heating efficiency that follows from the macroscopic heating model can be 

explained using the microscopic picture of intraband carrier−carrier scattering [94], [97]. At 

increased electron temperatures, the quasi-equilibrium chemical potential decreases, which 

means that the electronic heat capacity decreases. It furthermore implies that the amount of 

energy that is exchanged in intraband carrier−carrier scattering events (~𝜇) decreases. 

Therefore, the energy relaxation of a photoexcited carrier requires an increasing number of 

intraband carrier-carrier scattering cascade steps. Thus, for an increasing carrier temperature, 

energy relaxation through intraband carrier heating slows down. 
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4.4 Conclusions 

In this chapter, we have covered the THz spectroscopy of graphene and presented a simple 

thermodynamic picture that qualitatively and quantitatively describes the nonlinear THz 

conductivity and photoconductivity of doped CVD graphene. Within this picture, the energy 

of a THz [68] or an optical [67] signal is efficiently and quasi-instantaneously converted into 

the thermal energy of the entire graphene carrier population, which acts as thermalized fermion 

gas (within the sub-picosecond timescale) in or out of equilibrium with the lattice. The 

condition of energy and particle number conservation leads to the decrease of the chemical 

potential of graphene with increasing electron temperature, reducing its intra-band, THz 

conductivity. 

4.A Appendix: Numerical propagation of terahertz pulse through 

graphene 

Zoltán Mics has developed the approach presented in this section. The numerical propagation 

of the incident THz pulse through graphene on the substrate provides the transmitted 

waveform 𝐸𝑡𝑟𝑎𝑛𝑠
𝑐𝑎𝑙𝑐 (𝑡), from the known reference waveform 𝐸𝑟𝑒𝑓

𝑒𝑥𝑝
(𝑡). One obtains the latter 

performing TDS experiment on the substrate without graphene (see Section 3.2.1). Then, by 

performing Fourier transform on those waveforms, one obtains the nonlinear conductivity 

using the Tinkham formula, i.e., 

 𝜎̂(𝜔) =
1 + 𝑛𝑠

𝑍0
(

𝐸̂𝑟𝑒𝑓
𝑒𝑥𝑝

(𝜔)

𝐸̂𝑡𝑟𝑎𝑛𝑠
𝑐𝑎𝑙𝑐 (𝜔)

− 1) (4.7) 

In the following, we will introduce an algorithm to calculate 𝐸𝑡𝑟𝑎𝑛𝑠
𝑐𝑎𝑙𝑐 (𝑡) numerically. 

Given the fact, that graphene film is very thin and conductive, the complex-valued 

transmission function of the graphene layer is [62], [68]: 

 𝑡̂(𝜔) =
2

1 + 𝑛𝑠 + 𝑍0𝜎̂(𝜔)
 (4.8) 

The transmitted waveform is the convolution of the response function of the sample and the 

reference waveform: 
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 𝐸𝑡𝑟𝑎𝑛𝑠(𝑡) =
(1 + 𝑛𝑠)2

4𝑛𝑠
∫ 𝑇(𝑡′)𝐸𝑟𝑒𝑓(𝑡 − 𝑡′)𝑑𝑡′

∞

0

 (4.9) 

where 𝑇(𝑡) is the inverse Fourier transform of the complex transmission function 𝑡̂(𝜔) (4.8). 

Note that 𝑡̂(𝜔) depends on 𝜎̂(𝜔) that is subjected to change over the course of interaction of 

incident THz waveform and graphene due to the absorbed heat 𝛿𝑄 by the carriers from the 

THz pulse. The heat (i.e., the internal energy of electrons) also evolves during the THz-

pulse/graphene interaction process. To calculate this function, the balance between instant 

heating and slow heat dissipation has to be accounted. To this end, we evaluate the following 

convolution: 

𝛿𝑄(𝑡) = ∫ 𝑅(𝑡′) ∙ (𝐸𝑟𝑒𝑓
2 (𝑡 − 𝑡′) − 𝑛𝑠𝐸𝑠𝑎𝑚𝑝

2 (𝑡 − 𝑡′)

∞

0

− [𝐸𝑠𝑎𝑚𝑝(𝑡 − 𝑡′) − 𝐸𝑟𝑒𝑓(𝑡 − 𝑡′)]
2

) 𝑑𝑡′ 

(4.10) 

where 𝑅(𝑡) describes the dynamics of the heat dissipation from the carriers and the expression 

in the parentheses is the absorbed THz energy as a difference between the energy of the 

incident THz waveform and that of the reflected and transmitted one. 

Based on the carrier cooling characterization in work by Gierz [92], we adopt a 

phenomenological expression of the excess heat dissipation from the carrier system as 

 𝑅(𝑡) = 0.54 ∙ exp (−
𝑡

0.1
) + 0.46 ∙ exp (−

𝑡

0.92
) (4.11) 

Here 𝑡 is a time in picoseconds. We note that these cooling dynamics likely correspond to a 

combination of hot electrons coupling to graphene optical phonons (the sub-picosecond 

component) and impurity-assisted super-collision cooling via acoustic phonons of graphene 

[101]–[103], and/or energy flow to the substrate [104] (the picosecond component). 

To solve the system of equations (4.9) and (4.10) we yet have to find the expression for 𝑇(𝑡). 

The explicit use of Boltzmann conductivity (4.1) in the expression for 𝑡̂(𝜔) makes the inverse 

Fourier transform incredibly difficult, given that change of the chemical potential and the 

scattering time evolves in time with the absorbed heat. Thereby we parameterize the 

conductivity (4.1) with the analytical expression (Drude formula) that is a function of absorbed 

heat 𝑄: 



70 

 

 𝜎(𝜔, 𝑄) =
𝜎𝐷𝐶(𝛿𝑄)

1 − 𝑖𝜔 ∙ 𝜏𝑒𝑓𝑓(𝛿𝑄)
 (4.12) 

To find expressions for 𝜎𝐷𝐶(𝛿𝑄) and 𝜏𝑒𝑓𝑓(𝛿𝑄) we calculate several conductivities for a 

variety of absorbed portions of heat 𝛿𝑄 using equations (4.1) – (4.3) (in the assumption of 

long-range Coulomb scattering, i.e., 𝜏(ℰ) = 𝛼 ∙ ℰ) and fit obtained results with Drude formula. 

These results are presented in the Figure 4.11. We note that conductivity 𝜎𝐷𝐶(𝛿𝑄) at the zero 

frequency has very weak dependence (Figure 4.11) on the heat that is straightforward to prove 

analytically by calculating 𝜎𝐷𝐶 from the expression (4.1) by setting 𝜔 = 0: 

𝜎𝐷𝐶 =
𝑒2𝜐ℱ

2

2
∫ 𝑑ℰ ∙ 𝑔(ℰ) ∙ ℰ ∙ 𝜏(ℰ) ∙ (−

𝜕𝑓(𝜇, 𝑇𝑒𝑙 , ℰ)

𝜕ℰ
)

∞

0

= 𝑒2𝜐ℱ
2 𝛼𝑁0 = 𝑐𝑜𝑛𝑠𝑡 (4.13) 

Here we used integration by parts and the fact that the density of states and the scattering time 

are both proportional to the energy ℰ. 

For the dependence of the scattering time on the added heat, we found empirically from our 

simulations that the effective scattering time of the hot carriers depends linearly on the amount 

of heat 𝛿𝑄 added to the system. 

 𝜏𝑒𝑓𝑓(𝑄) = 𝜏0 + 𝛿𝑄 ∙ 20000 [
fs ∙ cm2

μJ
] (4.14) 

 

Figure 4.11: The calculated conductivity spectra of a heated carrier system using (4.1) fitted by an 

empirical effective Drude model (4.12). The numerically calculated hot carrier conductivity perfectly 

follows the Drude model. 𝛿𝑄 is the amount of heat deposited in the carrier population. 
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By substituting the obtained parametrized Drude expression into the complex transmission 

function, we finally obtain the expression for the time-dependent response function of 

graphene as: 

𝑇(𝑡) =
2

𝑛𝑠 + 1
𝛿(𝑡) −

2𝑍0𝜎𝐷𝐶

(𝑛𝑠 + 1)2𝜏𝑒𝑓𝑓(𝑡)
exp (−

𝑍0𝜎𝐷𝐶 + 𝑛𝑠 + 1

𝑛𝑠 + 1
∙

𝑡

𝜏𝑒𝑓𝑓(𝑡)
) (4.15) 

Were 𝛿(𝑡) us the Dirac delta function and 𝜏𝑒𝑓𝑓(𝑡) depends on time via 𝛿𝑄(𝑡). 

Now, to calculate 𝐸𝑡𝑟𝑎𝑛𝑠
𝑐𝑎𝑙𝑐 (𝑡), we spit the time interval of 𝐸𝑟𝑒𝑓

𝑒𝑥𝑝
(𝑡) by the time step 𝑑𝑡. Then we 

evaluate 𝐸𝑡𝑟𝑎𝑛𝑠
𝑐𝑎𝑙𝑐 (𝑡) at every point 𝑡𝑖 of this time interval following the next iterative steps: 

1. At the very start (𝑡𝑖 = 0) we set 𝛿𝑄𝑖 = 𝛿𝑄(𝑡𝑖) to zero. 

2. Using the value of 𝛿𝑄𝑖 we calculate the time dependent response function 𝑇(𝑡) (4.15). 

3. We calculate 𝐸𝑡𝑟𝑎𝑛𝑠
𝑐𝑎𝑙𝑐 (𝑡) using the convolution (4.9) in the interval (𝑡𝑖 , 𝑡𝑖 + 𝑑𝑡) 

4. We calculate average 𝛿𝑄(𝑡) for 𝑡 ∈ (𝑡𝑖, 𝑡𝑖 + 𝑑𝑡) from expression (4.10) 

By repeating steps 2 to 4, one can gradually calculate both 𝐸𝑡𝑟𝑎𝑛𝑠
𝑐𝑎𝑙𝑐 (𝑡) and 𝛿𝑄(𝑡). We used 

typically 𝑑𝑡 = 0.5 fs for the time step. 
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5 Terahertz spectroscopy of mesostructured graphene – GraFold printing 

 

Chapter 5 

Terahertz spectroscopy of mesostructured 

graphene — GraFold printing 

 

The material presented in this chapter is a result of the combined work of several institutions 

that have been published in Ref. [105]. 

In CVD graphene owing to its atomically thin nature, folds occur spontaneously [106], [107]. 

They have sub-lithographic widths and macroscopic lengths, and can locally affect the 

electronic structure of graphene. For instance, owing to the symmetry breaking in the 

honeycomb lattice of graphene, folding can enhance the spin-orbit coupling in the vicinity of 

the fold thus leading to pseudomagnetic fields [108], [109]. Bending of the lattice in the fold 

also results in the re-hybridization of the 𝑠𝑝2 bonds (that are forming the structure of graphene) 

leading to the local formation of 𝑠𝑝3 bonds, which enables the covalent chemistry on the 

usually unreactive graphene surface [110], [111]. A controlled folding thus could allow the 

employment of these kinds of effects for technological advantage. 

In this chapter, we introduce the controlled graphene folding process that induces periodic 

well-aligned folds on the surface of the CVD graphene. The group of Prof. G. Duesberg in the 

Trinity College (Dublin) has developed this method, so-called GraFold printing. We also show 

how these folds impact the carrier transport in graphene using THz spectroscopy. 

5.1 Description of the sample — GraFold printing 

The samples have been made in Trinity College Dublin by Toby Hallam. In this section, we 

will describe the procedure of the sample preparation as well as some characterization that has 

been done prior to the THz experiments in Mainz. The team of Trinity College has obtained 

the results presented in this section. 
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GraFold is a transfer/printing process where the excess of graphene film produces the folds. 

One achieves that by using polydimethylsiloxane (PDMS) stamp with a periodic pattern that 

modulates the graphene tension and adhesion throughout the stamp. 

The CVD graphene, once it has formed on the surface of the copper plate (the standard choice 

for the chemical growth of graphene [112], [113]), could be transferred onto any target 

substrate using a layer of a polymer (for instance PMMA – polymethyl methacrylate). One 

performs this by spin-coating of the polymer layer on top of graphene and subsequently 

etching off the copper plate. At this stage, one covers the required substrate with this polymer-

graphene bilayer and dissolves the polymer with an appropriate solvent thus leaving a 

graphene film on the substrate [114]. 

In GraFold approach, at first, the polymer-graphene bilayer is placed on the top of the PDMS 

stamp (Figure 5.1a). One calls this step the inking of the stamp. At this point, the polymer layer 

supports the graphene film in a rigid planar form. Once it is dissolved, the graphene can relax 

(a) (b) 

 

 

     
“Inking” Graphene release 

(c) (d) 

 

 
Interface formation Slow peeling 

Figure 5.1: Schematic representation of the GraFold concept. (a) A polymer supported graphene film 

is draped across a relief patterned stamp. (b) The polymer layer is dissolved. (c) The stamp is placed 

onto the substrate, and PDMS is separated from graphene by slow peeling. (d) The collapse of 

graphene loops creates free-standing folds. 
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into the grooves of the PDMS stamp and partially adhere to the sidewalls as it is schematically 

shown in (Figure 5.1b). The subsequent drying process enhances this adhesion process [105]. 

The inked (with graphene) stamp is then transferred onto the destination substrate Figure 5.1c, 

at this stage, conformal contact is achieved between the stamp, graphene, and the substrate. 

Following this, one slowly peels the stamp away thus leaving the graphene film with 

mechanically patterned folds (Figure 5.1d). One performs the peeling of the stamp in the 

direction parallel to the fold features to reduce the amount of tears (in Figure 5.1d it is shown 

otherwise for the sake of simplicity and clarity). For similar reasons, the peeling is performed 

at a rate of 2 − 5 μm/s [105]. Defects presented in graphene, such as grain boundaries, lead 

to the tearing in graphene during the removal of the PDMS stamp. 

The graphene films produced by the GraFold printing show a periodic line structure (Figure 

5.2a). These lines persist over the whole surface of the film and replicate the patterned 

landscape of the stamp. One can observe the graphene and these features on 300 nm SiO2 with 

a 100× confocal optical microscope since this is a high-contrast configuration for graphene 

observation. The folded graphene film deposited on a metal substrate is invisible due to the 

absence of the optical interference effect thus indicating its cleanliness [115]. The optical 

images also reveal the presence of some tearing in the graphene film. These tears are because 

of large forces on the graphene during solvent drying and subsequent transfer [116]. Extensive 

tearing is unavoidable during the printing of continuous films. To reduce this one introduces 

controlled boundaries into the graphene by etching of the graphene into squares before the 

inking stage. 

Scanning electron microscopy (SEM) in Figure 5.2b shows the more detailed structure of the 

folds, revealing that they have some flaws in their structure. In addition, it shows some tearing 

of the graphene films similar to the optical microscopy image. 

Atomic force microscopy (AFM) reveals (see Figure 5.2c) that the height of the folds is around 

20 nm. It also shows that some bubbles are present in areas between the folds. This indicates 

that the graphene does not sit perfectly flat on the substrate, which is typically taking place in 

transferred CVD graphene [117]. 

The high angle annular dark field (HAADF) scanning transmission electron microscope 

(STEM) imaging [118], [119] has been employed to obtain the cross-sectional picture of the 

structure of folds (Figure 5.2d). It reveals the shape of printed folds, pointing out that a radius 
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of curvature of the fold is approximately equal to its height, i.e., 20 nm. The radius of 

curvature is thus too big to induce a bandgap opening like it takes place in carbon nanotubes 

[29]. 

 

Figure 5.2: Microscopic characterization of the folded graphene film. (a) Optical micrograph of the 

folded graphene film. The inset shows a large-scale image of the film indicating the low level of 

tearing. (b) SEM of a folded graphene film. (c) AFM of a folded graphene film. The topography of 

the region under the blue line is shown in the inset. (d) The cross-sectional HAADF STEM of 

graphene fold. (e) AFM image of the single fold. The region studied with TERS is marked with the 

solid red line. (f) Contour map for graphene doping variation extracted from TERS data, assuming 

hole doping. (g) Contour map for graphene strain variation extracted from TERS data. The dashed 

black lines in e, f, and g indicate the region of the fold. Reprinted with permission from Nano Lett. 

2015, 15, 857−863 [105]. Copyright (2015) American Chemical Society. 
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In addition to the structure, the information about strain and doping level has been obtained 

with near-field tip-enhanced Raman spectroscopy (TERS) [120]–[122]. This technique allows 

hyperspectral Raman imaging with a subwavelength resolution [123], [124]. The extracted 

images of local doping and strain variation are shown in Figure 5.2f and g, where the black 

dashed lines indicate the fold presented in Figure 5.2e. Figure 5.2f shows that the area of the 

fold has reduced doping density compared to the flat part near the fold. The difference between 

the doping density at the tip of the fold and that on SiO2 amounts to 1013 cm−2, which is 

consistent with the typical value of p-type doping of graphene transferred onto SiO2 substrates 

[125]. One can explain the reduced doping in the fold by the fact the graphene in the fold is 

not in contact with the substrate [126]. This also confirms the STEM findings that are 

indicating the absence of intercalated material under the fold, which would otherwise dope 

graphene in the region of the fold (Figure 5.2d). From the low doping of the graphene in the 

fold, one thus can conclude that the GraFold printing provides an alternative approach of 

producing locally suspended graphene. 

Figure 5.2g shows the extracted strain for the same region as in Figure 5.2e-f. The compressive 

strain variation in the fold region is up to +0.3%. A crude estimation of the total residual strain 

in the area surrounding the fold shows ca. 0.1% compressive strain. Even smaller strain values 

have been revealed over different flat regions of the same sample via confocal Raman 

spectroscopy measurements. This is in contrast with the reported compressive strain in 

transferred CVD graphene where the entire film is under strain [117], [127]. For printed 

graphene, the draping graphene on the flexible PDMS stamp before transferring to the 

substrate releases the intrinsic compressive strain. 

5.2 Terahertz spectroscopy of GraFold samples 

To study the influence of the GraFold printed folds on carrier transport in graphene, we first 

use THz-TDS. The measurement of the transmission through the GraFold sample of THz 

pulses linearly polarized parallel or perpendicular to the folds gives the estimation of the 

conductivity along these two orthogonal directions. The THz polarization is predetermined in 

the setup by the polarization of the generating laser pulse, and any change in this alignment 

usually causes a substantial change in the detected signals and thus alternate the experimental 

conditions. To make things simple and avoid this, we thus keep the polarization of the probing 
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THz pulse untouched but instead rotate the sample relative to the direction of the probe pulse 

polarization. The illustration of these experiments is shown in Figure 5.3a (the pulses shown 

there are not to scale with the GraFold squares). In the experiment, we also use the wire grid 

THz polarizer to ensure the purity of the polarization of the probing THz pulse. 

The resulting THz conductivities show similar behavior regardless of the probe polarization 

(Figure 5.3b). We also have performed similar experiments on the samples that are without 

GraFold printed folds as it is shown in Figure 5.3c, although this fold-free graphene has 

received a similar etching before the transfer onto the  SiO2 substrate. Thus, this control sample 

also consists of 20 × 20 μm graphene square islands separated from each other by 2 μm gaps. 

(a) (b) 

 

 
(c) (d) 

 

 

Figure 5.3. (a) The schematic layout of THz-TDS experiment on the GraFold sample (Figure 5.2a). 

Two probe polarization has been used, i.e., the blue one is along the folds’ direction, and the red one 

is perpendicular to it. (b) The results of the experiments shown in a. (c) The schematic layout of THz-

TDS experiment on the sample without folds (no GraFold printing) but with the similar etching, that 

graphene receives before GraFold printing. (d) The results of the experiments shown in c. The solid 

and hollow dots in b and d correspond to the real and the imaginary THz conductivities, respectively. 
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The resulting conductivities for the folds-free sample (Figure 5.3d) shows indistinguishable 

results for the two probe orientations and qualitatively similar to the results in GraFold. It is 

worth pointing out here, that due to a sub-mm wavelength nature of THz radiation, the focal 

point of the focused THz beam on the sample is thus on the order of 1 mm. This is much larger 

than any micro or sub-microscopic features of our GraFold sample (Figure 5.2a and b). Hence, 

in this experiment one measures the conductivity averaged over the ~1mm2 area. The 

obtained conductivity spectra substantially differ from the Drude model. That importantly 

implies that the carriers in both samples experience substantial backscattering. Given the size 

of the squares being much larger than mean free path of the electrons, they unlikely affect the 

obtained carrier conductivity spectra. One can simply explain this on the example of ballistic 

transport. The average distance 𝐿 that carrier could possibly cover in ideal graphene driven by 

the electromagnetic wave of 1 THz frequency is therefore equal to 𝜐ℱ ∙ 𝑇 2⁄  (here 𝑇 is the 

period of the wave, i.e., 1 ps), which evaluates to ~500 nm. Thus, we assume that the obtained 

spectral shape is due to the poorer quality of the CVD graphene used, where such a spectral 

shape implies the presence of the substantial amount of defects, i.e., crystal grain boundaries 

[81]. The overall reduction of the conductivity amplitude that amounts to ~10 units of 𝑒2 ℎ⁄  

in GraFold sample comparing to the ~30 units of 𝑒2 ℎ⁄  in only etched graphene (Figure 5.3b, 

d) could be explained by the tearing during the GraFold process (Figure 5.2a). Despite the fact 

that the etching substantially reduces the tearing, the latter is not completely avoidable. 

Thereby the total amount of graphene in GraFold printed sample is less than in the etched fold-

fee sample, which leads to the observed reduction of the conductivity, since the probing pulse 

interacts with the lesser amount of the material. In total, we conclude that folds or GraFold 

printing process do not have a strong impact on the background THz conductivity. 

To study the impact of folds further, we have performed OPTP experiment. In this 

experiments, the sub-100 fs laser pulses (with a wavelength of 800 nm, which corresponds to 

1.55 eV photon energy) excite the GraFold sample. Then we measure the time-dependent 

relative change of the peak field of the transmitted THz probe pulses at the peak of photo-

excitation in two situations, as illustrated in Figure 5.4a. 

The observed 1D dynamics (Figure 5.4b) follows the same evolution as that observed in the 

intact (without etching and folds) monolayer CVD graphene [128] as we have already shown 

in the previous chapter [67]. The rise dynamics correspond to the initial equilibration of the 

photogenerated carriers (that occurs on a timescale of photoexcitation, i.e., ∼ 100 fs [100]). 
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At the peak of the dynamics, the carriers are in the heated up state, which results in the 

observed THz bleaching (Figure 5.4b). The latter corresponds to the reduced THz conductivity 

compared to the unexcited state (−𝛥𝜎 ∝ ∆𝐸/𝐸0). The relaxation of −𝛥𝜎 on the time scale of 

ca. 10 ps reflects the dynamics of electron gas cooling, which occurs via phonon emission 

[128]. As can be seen in Figure 5.4b, the THz bleaching measured parallel to the direction of 

fold exceeds the one measured perpendicular to it. 

We have also measured the dependence of the peak photoconductivity as a function of optical 

pump fluence for both cases Figure 5.5a. Within the employed range of excitations, we observe 

equal dependence for both cases. The ratio of the peak photoconductivities (parallel to the 

perpendicular) has no dependence on the incident excitation density Figure 5.5b, and it is equal 

to ~1.55. As no optical pump absorption anisotropy was found in our sample, which could 

lead to the asymmetry in the density of the photoexcited charges, the observed anisotropy of 

photoconductivity can only be related to the anisotropy of carrier mobility in the direction 

parallel and perpendicular to the folds, i.e., of 𝜇∥ 𝜇⊥⁄ = 1.55. TERS measurements (Figure 

5.2f) reveal the difference in local doping densities on the order of 1013 cm−2 between the 

folds and surrounding areas, which must result in substantial local potential fluctuations in the 

direction perpendicular to the folds. Therefore, the most likely cause for the observed carrier 

(a) (b) 

 

 

Figure 5.4. (a) The schematic layout of OPTP experiment on the GraFold sample (Figure 5.2a). Two 

probe polarizations have been used, i.e., the blue one is along the folds’ direction, and the red one is 

perpendicular to it. The THz pulses probe the photoconductivity in the sample upon the excitation 

with an optical pulse (shown in purple). All sizes of the THz pulses and optical beam are not up to 

the scale of sample’s features (b) The results of the experiments shown in a. The 1D dynamics shows 

the relative change of the peak THz amplitude as a function of pump-probe time delay. 
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mobility anisotropy is a highly anisotropic potential landscape for the carriers moving 

perpendicular and parallel to the folds. We note that in our samples the 100 nm folds of lightly 

doped graphene are separated by 2 μm stripes of highly doped one (Figure 5.2b,e), and hence 

the folds comprise only about 5% of the area of the THz-probed sample. In this respect, it is 

quite remarkable that such a low filling fraction of 1D folds (in a sense that their length 

infinitely larger than their width) results in a conductivity anisotropy as high as 1.55: 1, clearly 

indicating the potential of GraFold for optoelectronics applications where ultrafast directional 

charge transport may be required, such as in mechanically printed electronic circuits. 

5.3 Conclusions 

In this chapter, we have studied the periodically folded graphene using so-called GraFold 

printing method. The introduced folds have the semicircular form. Near folds, graphene shows 

reduced p-doping and a small amount of compressive strain. Using OPTP spectroscopy, we 

show that the periodic folding of graphene introduces significant charge transport anisotropy 

in the photo-excited state exhibiting ~1.55 times higher suppression of the background 

conductivity in the direction parallel to folds. Meanwhile, the folded graphene shows no 

explicit anisotropy in the background conductivity. 

  

(a) (b) 

  

Figure 5.5. (a) The peak of 1D dynamics from Figure 5.4b as a function of incident excitation density. 

The inset shows the similar plot for the fold-free sample. Blue and red colors correspond to the two 

probe polarization directions, explained in the text and Figure 5.4a. (b) The ratio of the peak 1D 

dynamics parallel to fold to the one perpendicular to them as a function of the incident fluence. The 

dashed line shows the mean value of the peak ratio for all fluences. 

 

0 20 40 60 80

1

2

 ETHz   folds

 ETHz  folds

p
e

a
k
 

E
/E

0
 (

%
)

incident fluence (J/cm2)

0 20 40

3

6

w/o folds

0 20 40 60 80

1.5

2.0

1.0

p
e

a
k
 r

a
ti
o

 (
 
 
to

 
 )

incident fluence (J/cm2)

1.55



82 

 

  



Terahertz spectroscopy of graphene nanoribbons   83 

 

6 Terahertz spectroscopy of graphene nanoribbons 

 

Chapter 6 

Terahertz spectroscopy of graphene 

nanoribbons 

 

The material presented in this chapter is a result of the combined work of the author with 

Yunbin Hu, Uliana Beser and Akimitsu Narita from the group of Klaus Müllen, who have 

kindly provided us with the GNR samples. Silvio Osella from the Centre of New Technologies, 

the University of Warsaw in Poland and David Beljonne from the Laboratory for Chemistry 

of Novel Materials, the University of Mons in Belgium have provided the Density functional 

theory (DFT) and Deformation potential (DP) calculations. The author has performed all THz 

measurements, as well as retrieved and analyzed THz conductivities. The results presented in 

this chapter have been the basis for the publication J. Am. Chem. Soc. 2017, 139, 7982−7988 

[129]. The published data are presented here with permission from the American Chemical 

Society. Copyright (2017). 

As it was mentioned previously in section 1.2, the chemical synthesis of GNRs by a bottom-

up approach [12], [39], [40] provides the unique control over the variety of structural 

properties of the GNRs that is usually not possible by top-down methods such as lithography. 

The width and lattice orientation, in particular, could still be tuned in the top-down approaches 

since the former is defined by the technical limits of a particular method of fabrication and the 

latter by the lattice orientation of the initial graphene film [130]. Meanwhile, the physically 

smooth and clean edge structure is challenging to achieve by top-down methods. As we have 

already stated in section 1.2, the edge plays a crucial role in the electronic properties of GNR. 

Thereby in this sense, the bottom-up methods have the apparent advantage since the 

synthesized GNRs have well-defined edge structure [40]. The perspective of having such an 

ability to control the structure of the GNR brings the very relevant question of how exactly the 

structural properties of the GNRs influence their conductive properties. 
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The conductivity properties of the various GNRs have been the subject of intense study [66], 

[131]–[133]. The contact-based measurements in such nanosystems are naturally challenging 

[35], [134]–[137]. Thereby THz spectroscopy is a particularly attractive method of 

investigating the charge transport in GNRs [1] since it allows retrieving the conductivity of 

materials of interest without physical contacts. The recorded THz conductivity spectra and 

their interpretation provide access to fine details of carrier transport. Moreover, the conduction 

mechanism such as free versus bound charge, quasi-free charge localized on potential long-

range corrugations and so forth [138] also could be determined. 

In this chapter, we are investigating how the structure of GNRs and in particular their edge 

structure affects the carrier transport. To this end, we employ OPTP spectroscopy (section 

2.2.2). 

6.1 Graphene nanoribbons samples 

The lattice structures of studied GNRs are shown in Figure 6.1. All these GNRs have been 

prepared by a solution-based bottom-up protocol that provides GNRs of hundreds of 

nanometers long [39], [40]. The nomenclature of structures is as follows. The letter C in the 

CGNR stands for cove – the peculiar part of the edge structure that is highlighted with red 

color in Figure 5.1a. The front number (e.g., 6CGNR) counts the amount of the whole zigzag 

chains aligned along the axis of the ribbon [139] (see Figure 6.1a). The p-AGNR is an armchair 

GNR where p stands for para – the name of the implemented connectivity of monomers 

(building blocks of the GNR) that are highlighted with bright red in Figure 6.1c. We note that 

4CGNR shown in Figure 6.1d has not been studied in this work, although it has been studied 

and published previously in refs [66], [140]. These results have been considered here. 

Further, one can notice dodecyl chains (𝐶12𝐻25, marked with R in Figure 6.1) attached to the 

periphery of GNRs. Their purpose is dictated by the synthesis method that in particular takes 

place in a liquid. In first and foremost one introduces them into a precursor of the GNR to 

sterically hinder [141] undesired conformations and thus secure the formation of strait GNRs 

[40]. Chains also enhance the dispersibilty of the resulting GNRs [142] in a solvent. These 

polymeric chains could be attached to different sites of the precursor resulting in the formation 

of the similar structure of a backbone of the GNR, although with different locations of these 

chains at the periphery of the GNR. As one can see that in particular in Figure 6.1a and b, 
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where the aforementioned dodecyl chains are bonded at the outermost or innermost sites of 

the 6CGNR structure. We thereby distinguish them as edge and cove sites, respectively. The 

precise position of the dodecyl chains, in Figure 6.1a and b, affects the structure of 6CGNR. 

In the case, when they sit in the cove sites (see Figure 6.1b, we call it 6CGNR-cove), they 

cause out-of-plane bending of neighboring protruding benzene rings (shaded with gray in 

Figure 6.1, the actual bending of the structure is not shown). In the opposite, when the chains 

are attached to the protruding rings (Figure 6.1a, we call it 6CGNR-edge) of the edge structure, 

the 6CGNRs retain their planar geometry. This structural distortion of the 6CGNR-cove causes 

the bandgap lowering in comparison to the 6CGNR-edge, the details of this are published in 

work by Hu et al. [143]. The impact of the precise location of the alkyl chains on the band 

(a) (b) 

 
6CGNR-edge 

 
6CGNR-cove 

(c) (d) 

 
p-AGNR 

 
4CGNR-edge 

Figure 6.1: Chemical structure of the investigated GNRs (a-c), as well as the one, studied previously 

(d) [66]. (a) 6CGNR-edge, with dodecyl (C12H15) chains on the outer benzene rings (shaded with 

gray), blue color. (b) 6CGNR-cove with chains on the inner benzene rings, red color. (c) p-AGNR 

terminated by the same dodecyl chains. (d) 4CGNR-edge investigated in work [66] by Jensen et al. 

Dodecyl chains are marked with R. Adapted with permission from J. Am. Chem. Soc. 2017, 139, 

7982−7988 [129]. Copyright (2017) American Chemical Society. 
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structure is also evident from the optical density measurements shown in Figure 6.2, where 

the absorption spectra of these two types of 6CGNRs structures (blue and red) are compared. 

To perform optical and THz measurements, all GNRs have been dispersed in a solvent, which 

in this case is 1,2,3-trichlorobenzene (TCB). TCB is transparent at optical and the most 

important THz frequencies, thus making THz measurements possible. All dispersions have 

been sonicated for ~15 min., centrifuged and filtered to achieve the bundle free suspension of 

freely floating GNRs in the volume of the solvent. The resulting suspensions have been poured 

into the optical cuvettes. The optical cuvette consists of 1 mm thick quartz windows separated 

by a 1 mm thick gap that is filled with the suspension (see for example Figure 3.14). 

The optical density spectra of the three suspensions of GNRs (6CGNR-edge, 6CGNR-cove, 

and p-AGNR, see Figure 6.2), reveal that the optical bandgaps of all samples are in the spectral 

range between 900 and 1000 nm (that corresponds to the photon energy range of 1.20-1.40 

eV). An optical transition of excitonic origin dominates the optical spectra of all GNR samples. 

6.2 Terahertz conductivity of graphene nanoribbons. 

We assume that all presented GNRs are intrinsic semiconductors, i.e., there are no free charges 

in neither the conduction nor the valence band. The probability of the thermal electrons (holes) 

 

Figure 6.2: The absorbance of the investigated GNR samples dispersed in TCB solvent. The data 

have been normalized to the exciton resonance maxima of the GNRs. Adapted with permission from 

J. Am. Chem. Soc. 2017, 139, 7982−7988 [129]. Copyright (2017) American Chemical Society. 
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to occupy the conduction (valence) band is also low given that bandgaps (~1 eV) are much 

bigger than the thermal energy (~0.03 eV). Thereby to study the conductivity we employ 

OPTP spectroscopy where one creates free carriers by optical excitation and probe their 

conductivity with a THz pulse. 

To photoexcite GNR samples, we employ ultrashort (~40 fs) optical pulses with 3.1 eV photon 

energy (400 nm wavelength) that we obtain from the 1.55 eV laser pulses by doubling photon 

energy in a nonlinear crystal (BBO). The photon energy of the optical pump exceeds the 

bandgap of all presented GNRs (Figure 6.2). Therefore, the photoexcitation generates 

electrons and holes with energies above the conduction band minima and below the valence 

band maxima. The formation of excitons out of these ‘hot’ electron-hole pairs is also not 

excluded. Nevertheless, the recombination of ‘hot’ excitons can also lead to the free carrier 

formation at short delay times [144]. Of note, in these measurements, one cannot distinguish 

between the conductivity contributions from electrons and holes, so the sum of both 

contributions is measured at once [1]. In the OPTP experiments, we measure both 1D and 2D 

scans. 

In 1D spectroscopy experiment, we record the time evolution of real and imaginary 

conductivity of samples that follow the photo-excitation. To this end, as it has been introduced 

in the section 2.2.2, one measures the relative change of the field amplitude at the peak [63] 

and the first zero crossing after the peak [64] of the probing THz pulse. The measured transient 

dynamics of real and imaginary photoconductivity in all three types of GNRs are shown in 

Figure 6.3 as a function of the time delay between optical excitation and probing THz pulse. 

After the initial ~0.5 ps long rise, the photoconductivity demonstrates fast, ~1 ps long decay 

followed by a slower one. At the latter stage, the imaginary part of the conductivity remains 

large relative to the real one in all GNR samples. 

The negative imaginary conductivity together with the vanishingly small real one indicates 

that at later times upon the optical excitation the conductivity response is dominated by bound 

charges, such as excitons, rather than by free carriers [43]. One can expect the efficient exciton 

formation in these systems given the one-dimensional nature of GNRs and weak screening 

due to the low dielectric constant of the environment. Thereby, we conclude that in the first 

moments after optical excitation at the peak of 1D scans there are mostly mobile electrons and 

holes in the conduction and the valence band. The similar 1D dynamics have been reported in 

narrower [66] and broader [39] GNRs. 



88 

 

To study the impact of optical intensity on the conductivity dynamics in GNRs samples, they 

have been optically excited at photon densities ranging from 0.1×1019 photon/m2 to 2.3×1019 

photon/m2. These are essentially the limiting values of optical intensity attainable in our setup 

(at 400 nm wavelength). Then the relative change at the peak of the THz pulse has been 

recorded at the pump-probe time delay corresponding to the maximum signal in the 1D scans 

(~0.5ps, Figure 6.3). We have found that at high excitation densities (> ~1.5×1019 photon/m2) 

the magnitude of this relative change for all three samples deviates from the linear dependency 

observed at the lower fluences (see Figure 6.4). 

(a) (b) 

  
   

 (c)  

 

 

 

Figure 6.3: THz photoconductivity of GNRs dispersed in 1,2,4-trichlorobenzene, photoexcited by 

optical pulses (400 nm wavelength) with a sheet excitation density of ~1019 photons/m2 (c). Plots 

showing the dependence of the relative change in peak THz field transmitted through the sample on 

the pump−probe delay for 6CGNR-edge, -cove, and p-AGNR, respectively. The solid blue circles 

correspond to the change at the peak field of the THz pulse (representing the dynamics in real 

conductivity), and the red hollow circles show the change in the crossing point of the THz field 

(representing a change in the imaginary part of the conductivity). Adapted with permission from J. 

Am. Chem. Soc. 2017, 139, 7982−7988 [129]. Copyright (2017) American Chemical Society. 
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On can explain such behavior either by absorption saturation in the nanoribbons or by the 

increased carrier density at higher incident fluences facilitating more efficient binding of 

electrons and holes into excitons that do not contribute to the THz absorption [145]. In both 

scenarios, the per-photon efficiency of converting absorbed photons into mobile, free carriers 

is reduced at elevated excitation densities compared to lower excitation densities. In our 

experiments, we have therefore kept the pump intensities at values corresponding to the linear 

excitation regime. 

To shed light on the nature of carrier transport in GNRs, we have measured the frequency-

resolved complex-valued conductivity spectra (2D spectroscopy, see section 2.2.2), at the 

maxima of the 1D dynamics, i.e., approximately 0.5 ps after optical excitation. The AC 

photoconductivity ∆𝜎(𝜔) that is obtained in this experiment is a characteristic measure of the 

transport properties of charges on the nanoscale. To illustrate this, let’s consider a ballistic 

propagation of an electron at room temperature having the thermal velocity ~105 m/s, which 

(a) (b) 

  
 (c) 

 

 

Figure 6.4: The maximum relative change of the THz transmission upon photo-excitation in three 

GNR samples as a function of the incident photon density. In all three samples, it deviates form the 

linear trend at higher pump intensities. 
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is a fair assumption for these materials. The moving distance of such a charge propelled by the 

electric field cycle of ca. 1 ps duration (like in the probing THz pulse) amounts to a length of 

~100 nm [1]. As such, the conductivity is probed on length scales shorter than the actual length 

of the nanoribbons studied here (100s of nm), so we can neglect the effects of the ends of the 

ribbons on the measured conductivity. 

The retrieved conductivity spectra for all GNR types are characterized by positive real and 

negative imaginary parts, both increasing in absolute magnitude towards higher THz 

(a) (b) 

  

𝑐 = −0.92 ± 0.01 
𝜏𝐷𝑆 = 40 ± 3 𝑓𝑠 

𝑐 = −0.93 ± 0.01 
𝜏𝐷𝑆 = 35 ± 2 𝑓𝑠 

 (c)    

 

 

 

 
𝑐 = −0.88 ± 0.02 
𝜏𝐷𝑆 = 18 ± 4 𝑓𝑠 

 

Figure 6.5: The complex frequency-resolved conductivity measured 0.5 ps after photoexcitation, i.e., 

at the peak of the photoconductivity (Figure 6.3). The conductivity is scaled to the density N of 

absorbed photons. The lines show the results of the Drude−Smith model, with parameters shown in 

the respective panels. Adapted with permission from J. Am. Chem. Soc. 2017, 139, 7982−7988 [129]. 

Copyright (2017) American Chemical Society. 
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frequencies, as one can see in Figure 6.5. This behavior qualitatively resembles the 

conductivity that is typical for many nanometer-sized semiconductors, including narrower 

GNRs, carbon nanotubes [66] and also semiconducting polymers [146]. 

These conductivity spectra can be well described by the Drude-Smith (DS) model [49] 

introduced in section 1.2. This conductivity model is a fair assumption in our case as other 

models, such as the Lorentz oscillator model [138], cannot reproduce such a large real 

conductivity amplitude as compared to the imaginary one. Further, the hopping model [138] 

seems also less applicable to GNRs, as their structure is uniform with minimum defects and 

given the fact that the sample represents a dispersion of freely floating GNRs with minimum 

interconnections. To fit the spectra we have used the expression for the DS conductivity in its 

reduced form where the only first term in the summation (see Eq. 2.35) is non-zero, that is: 

 𝜎̂𝐷𝑆(𝜔) =
𝜀0𝜔𝑃

2𝜏𝐷𝑆

1 − 𝑖𝜔𝜏𝐷𝑆
(1 +

𝑐

1 − 𝑖𝜔𝜏𝐷𝑆
) (6.1) 

here 𝜀0 is the vacuum permittivity, 𝜔𝑃 is the plasma frequency, the square of which is 

proportional to the carrier concentration, 𝜏𝐷𝑆 is the average carrier momentum scattering time, 

and the parameter 𝑐 describes the correlation between carrier momentum before and after a 

scattering event (section 1.2). Fitting frequency-resolved conductivity spectra of all GNRs 

samples to the DS model produces the localization parameter c of -0.92 ± 0.01 (-0.93 ± 0.01) 

for 6CGNRs-edge (-cove) and -0.88 ± 0.02 for p-AGNRs samples. A very similar c parameter 

value has been reported for narrower 4CGNRs [66]. 

Following ref. [66], the retrieved values of the localization parameter 𝑐 are in reasonable 

agreement with the ones expected for a randomly oriented 1D conductors in a non-conducting 

solution. Indeed, the linearly polarized THz field accelerates charges in nanoribbons along its 

backbone axis. Thus when GNR is parallel to the THz field, the response would be 

characterized by the DS model where 𝑐 = 0. In the opposite case, of perpendicular orientation, 

this value is −1. Averaging on all possible orientations of the GNRs in the suspension one 

obtains the expected average value of parameter 𝑐 that amounts to – 𝜋/4 =  −0.78 [66]. 

The assumption of an infinite 1D conductor can be applied for the current samples as well, 

where the length of the GNRs (100s of nm) is much longer than the length scale of the average 

carrier propagation driven by the THz field. Given the length of the GNRs in the presented 

sample that are 100s of nm, the assumption of the randomly oriented 1D conductors can also 

be applied.  
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We note that the measured spectra demonstrate the conductivity of the sample as a ‘whole’, as 

an overall response of many GNRs floating in the body of solvent. Nevertheless, the fitting of 

the DS model to the conductivity spectra allows retrieving of the crucially important parameter 

characterizing the microscopic transport in the GNR, i.e., the carrier momentum scattering 

time 𝜏𝐷𝑆 (see Eq. 6.1). This time constant is a measure of the intrinsic conductivity of the 

GNRs and related to the carrier mobility 𝜇 = 𝑒𝜏𝐷𝑆 𝑚⁄ . Applying the DS model to the data, we 

obtain the momentum scattering times 𝜏𝐷𝑆 equal to 40 ± 3 fs and 35 ± 2 fs for the 6CGNR-

edge and -cove samples, respectively, and 18 ± 4 fs for the p-AGNRs.  

Within the experimental error, one can argue that both 𝑐 parameters (~ − 0.92) and the 

scattering times (~37 fs) are similar for the 6CGNRs-edge and –cove. This importantly 

implies that the conductivity in these two nanoribbons is largely unaffected by the location of 

the alkyl chains and the concomitant distortion of the peripheral benzene rings. For the 

narrower 4CGNR with the larger bandgap, a shorter scattering time of 30 fs has been 

previously reported [66]. However, for the p-AGNR ribbons, the scattering time is 

substantially reduced reaching only the half of that of the 6CGNRs. One thus can observe the 

following trend in the obtained scattering times: 𝜏𝐷𝑆
6𝐶𝐺𝑁𝑅 > 𝜏𝐷𝑆

4𝐶𝐺𝑁𝑅 > 𝜏𝐷𝑆
𝑝𝐴𝐺𝑁𝑅

. 

6.3 Electronic structure and transport calculations 

To study the origin of the variation in the measured momentum scattering times in different 

GNR structures, electronic structure and transport calculations have been performed. 

The electronic structure of GNRs, including 4CGNR, has been calculated at the Density 

Functional Theory (DFT) level using the screened exchange hybrid exchange-correlation 

functional HSE06 and the standard 6-31G* basis set [147]. It worth noting that in these 

calculations, the alkyl side chains have been substituted with hydrogen atoms. We assume that 

these chains do not contribute to the frontier crystal orbitals. Although, they have a minor 

impact on the electronic band structure in 6CGNR-edge and 6CGNR-cove, as one can see that 

in their optical density spectra (Figure 6.2) and ref. [143]. Thereby, the calculations do not 

distinguish these two particular GNRs structures. The experimental THz responses of those 

two GNRs, which, within error, are indistinguishable, justifies this approximation. 
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Calculations were performed for p-AGNR ribbons, the 6CGNRs, and its narrower analog 

4CGNR. 

The band structure diagram of the three ribbons is displayed in Figure 6.6. The corresponding 

wavefunctions of the band edge state at the Γ point which are equivalent to the frontier crystal 

orbitals are plotted in Figure 6.7. The frontier crystal orbital that is also referred to as the 

frontier molecular orbital corresponds to two states of the highest occupied molecular orbital 

(HOMO) for the hole and the lowers unoccupied molecular orbital (LUMO) for the electron. 

With regard to the band structure, these two states equivalent to the hole state at the valence 

band maximum (VBM) and the electron state at the conduction band minimum (CBM). 

The most prominent result that one can conclude from Figure 6.6 is the close similarity 

between the electronic band structure of the 6CGNR and p-AGNR. These two systems possess 

a very similar band gap and the common squared dependence of energy versus momentum at 

(a) (b) 

4CGNR 6CGNR 

  

 (c)  

 p-AGNR  

 

 

 

Figure 6.6: Electronic structure of the studied GNRs. Band structure showing the frontier crystal 

orbitals (red and blue lines). Adapted with permission from J. Am. Chem. Soc. 2017, 139, 7982−7988 

[129]. Copyright (2017) American Chemical Society. 
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the band edges. Despite that the CGNRs share the same crystal direction as pure ZGNRs, the 

former has the band structure contradicting to the one expected for the latter that displays flat, 

localized, edge states at the Fermi level [139] (see Figure 1.5 in section 1.2). 

This distinct difference between zigzag and cove GNRs can be explained with regard to Clar’s 

rule, a well-known approach in chemistry [148], [149]. In organic chemistry, one can define 

the so-called benzenoid aromatic ring as a resonance between two hexagonal rings with 

alternating single and double bonds (Figure 6.8a), which results from the delocalization of 𝜋 

electrons over the ring [150], [151]. For such a structure, known also as Clar’s sextet, all the 

bonds sticking out of the hexagon are single bonds and, as a consequence, two benzenoid rings 

cannot be adjacent [152]. The Clar’s rule states that for any given benzinoid structure, the 

representation with a maximum number of Clar sextets, called the Clar’s formula, is the most 

representative and stable one [149], [153]. The electronic structure of such structure is then 

the result of a superposition of all possible Clar’s formulas. Hence, the 6CGNRs have a single 

Clar’s representation without any unpaired electron (see Figure 6.8b). In contrast, the 

corresponding representation of 6ZGNRs (6CGNR without protruding rings) involves 

unpaired electrons confined at the ribbon edges (see Figure 6.8c). Importantly, the number and 

relative position of the protruding benzo-rings in CGNRs has a profound impact on their 

electronic structure and may lead to the ZGNR-like one [154]. 

Following to earlier theoretical works on semiconducting CNTs [155], [156], the charge 

carrier mobility and scattering times in presented GNRs have been modeled using the 

deformation potential (DP) theory [157]. Where, it has been assumed that the scattering of 

charges is primarily due to acoustic phonons, similarly to CNTs [155]. The local deformations 

induced by these acoustic phonons are similar to the homogeneously deformed crystal [156], 

4CGNR 6CGNR p-AGNR 

  
    

VBM CBM VBM CBM VBM CBM 

      

Figure 6.7: Plots of the wave functions at valence band maximum (VBM) and conduction band 

minimum (CBM), i.e., at the Γ point. Adapted with permission from J. Am. Chem. Soc. 2017, 139, 

7982−7988 [129]. Copyright (2017) American Chemical Society. 
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[158]. In the effective mass approximation, the charge carrier mobility μ according to the DP 

theory thus reads as: 

(a) (b) 

 
 

 

(c) 

 

Figure 6.8: (a) The Clar’s sextet represents the delocalization of six 𝜋 electrons as a combination of 

two complementary hexagonal configurations featuring different single and double bonds. (b) Clar’s 

formula of 6CGNR showing the configuration without any localized double bonds. (c) The possible 

Clar’s formulas for 6ZGNR showing localized double bonds and unpaired electrons (blue dots) 

located at the edge of the ribbon. 
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 𝜇 =
𝑒𝜏𝐷𝑃

𝑚∗
=

𝑒ℏ2𝐶

√2𝜋𝑘𝐵𝑇|𝑚∗|3 2⁄ 𝐸1
2
 (6.2) 

 where 𝑒 is the elementary charge, 𝜏𝐷𝑃 the scattering time, 𝑚∗ the effective mass, 𝐶 the elastic 

constant, and 𝐸1 the DP constant. To obtain 𝐶 and 𝐸1, the lattice vector of the GNR is stretched 

or compressed along the longitudinal axis (see Figure 6.1). By fitting the total energy with 

respect to the lattice change, 𝐶 can be derived from: 

∆ℰ𝑡𝑜𝑡

𝑎0
=

𝐶

2
(

∆𝑎

𝑎0
)

2

 

Here, 𝑎0 is the lattice constant at equilibrium, and ∆𝑎 and ∆ℰ𝑡𝑜𝑡 are changes in the lattice 

constant and the total energy. The DP constant is defined as 

𝐸1 = ∆ℰ𝐵𝐸 (
∆𝑎

𝑎0
)

−1

 

where ∆ℰ𝐵𝐸 is the energy change of the corresponding band extremum, i.e., at VBM for holes 

and CBM for electrons, due to ∆𝑎. The effective mass can be calculated from the second 

derivative around the VBM (CBM) for the hole (electron) as 

1

𝑚∗
=

1

ℏ
∙

𝜕2ℰ(𝑘)

𝜕𝑘2
 

Here, ℰ(𝑘) is the energy dispersion of VB and CB. It is worth noting that the effective mass 

approximation is applied only for the cases of a parabola-like dispersion. In cases of very weak 

flat-band dispersion like in ZGNR (Figure 2.5b) or linear one similar to graphene (Figure 2.2), 

one has to appeal for Boltzmann transport equation coupled with the DP theory [154], [159], 

[160]. Nevertheless, in the case of parabolic bands, the DP theory using the effective mass 

approximation and the Boltzmann transport equation provide similar results [156]. 

Table 6.1 summarizes the relevant quantities obtained from the calculations, including the 

scattering times 𝜏𝐷𝑃. Irrespective of the charge carrier, we find lower 𝜏𝐷𝑃 values for the p-

AGNR, which can be associated with lower elastic constant, 𝐶, and larger electron-phonon 

coupling, 𝐸1, to longitudinal acoustic distortions. For all ribbons investigated, the electron 

scattering times are significantly larger than the corresponding hole values, which can be 

explained by the weaker coupling of the electrons to the phonons. 
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One could, in turn, understand this enhanced coupling of holes to the phonons in these 

structures by inspecting the electron and hole wave functions shown in Figure 5.6. At the VBM 

(the hole state) of all GNRs, the crystal orbitals have nodal planes running perpendicular to 

the ribbon axis, and thus it is vertically localized perpendicular to the stretching direction. In 

contrast, the CBMs (the electron state) of the ribbons show a bonding pattern delocalized along 

the stretching axis. It is argued that the band-edge shift due to ribbon stretching comes from 

the site energy instead of the hopping integral [156]. It is thus expected that the localized hole 

state is scattered more strongly by the acoustic phonon than the electron state as a result of the 

larger shift in the VBM (and hence higher 𝐸1) than in CBM. 

These theoretical calculations reveal several interesting aspects of charge carrier transport in 

presented GNRs. Firstly, derived from the DP theory scattering times for holes reproduce the 

experimentally observed trend: 𝜏𝐷𝑆
6𝐶𝐺𝑁𝑅 > 𝜏𝐷𝑆

4𝐶𝐺𝑁𝑅 > 𝜏𝐷𝑆
𝑝𝐴𝐺𝑁𝑅

. Further, results reaffirm the 

absence of the direct correlation between bandgap and mobility. Even though, one can expect 

that the mobility should monotonously increase towards that of graphene for progressively 

smaller bandgaps. This is not the case for the presented GNRs. Particularly, in the case of p-

AGNR, which have the smaller band gap than one in 4CGNR, the effective masses of electrons 

and holes are almost one order smaller than in the rest of structures, indeed approaching the 

zero mass of graphene. However, the resulting mobility is more than compensated by a 

reduction of the scattering times, due to stronger coupling to the acoustic phonons. Thus, the 

overall mobility is even smaller than in 4CGNR with the bigger bandgap. 

In addition, the scattering times calculated with the DP theory are substantially larger than 

those retrieved from the THz experiments. One can explain this with the fact that calculations 

only account the effects of acoustic phonons on the motion of charges. This difference between 

Table 6.1. Major results of DFT study and carrier transport calculations. 

GNR 
𝐸𝑔 

eV 
carriers 

𝐸1 

eV 

𝐶 

eVÅ-1 

𝑚∗ 

me 

𝜇 

cm2V-1s-1 

scattering time 

𝜏𝐵𝑇𝐸  

fs 

4CGNR 2.056 
h 5.60 

202.1 
0.228 472 61 

e 0.84 0.246 18700 2615 

6CGNR 1.508 
h 6.28 

299.6 
0.154 994 87 

e 0.91 0.163 43800 4060 

p-AGNR 1.388 
h 8.80 

65.14 
0.0847 542 26 

e 1.40 0.0838 21800 1040 
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the modeled and measured scattering times has to be because of extra factors affecting charge 

transport that have not been accounted for in theory. That could be, for instance, alkyl side 

chains and (or) mechanical distortions of floating GNRs in the suspension, such as kinks. 

The scattering time (𝜏𝐷𝑆) inferred from the experimentally measured conductivities utilizing 

the Drude–Smith model is generally defined by the relation between the typical sizes of 

confining boundaries and the mean free propagation length of the carriers [161]. In GNRs, 

such boundaries could be manifested as potential barriers that occur as the result of extensive 

bending and buckling of the lattice, for instance, at the kinks of the backbone [162]. In the 

ideal Drude model (𝑐 = 0), the boundaries are absent, and charge carriers undergo momentum-

randomizing scattering events due to collisions with the lattice. Therefore, in this case, the 

scattering time 𝜏𝐷𝑆 coincides with the average momentum scattering time of the carriers in the 

bulk material [161]. One can expect such Drude-like conductivity behavior to occur in GNRs, 

in the case of carriers that are moving along the axis of an infinite, straight and structurally 

perfect nanoribbon in a vacuum. In this respect, the scattering time is expected to equal the 

one obtained with the DP theory (𝜏𝐷𝑃). In our experiments, the GNRs are finite, flexible 

polymer chains floating in a dipolar molecular liquid thus they inevitably tend to bend, twist 

and entangle/aggregate with each other. Thereby, the carrier motion will be affected by the 

presence of these complex mechanical deformations in GNRs.The localization parameter 𝑐 in 

DS model in our THz experiments largely reflects the random orientation of the ribbons. 

Although, the retrieved from the fitting 𝑐 parameters for all structures are smaller than the 

value of –0.78 [66] expected from the randomized orientation of GNRs only. This discrepancy 

could be explained by the presence of extra factors leading to the stronger localization of 

carriers. That could be the potential corrugation induced by the aforementioned mechanical 

distortions. 

To estimate the distance between these potential corrugations, we adopt a simple model that 

relates the measured DS scattering time to the one calculated with the DP theory. Here we 

assume the charge carrier that, after traveling over the distance 𝑙 along the ribbon, scatters on 

a potential barrier (for instance, induced by a kink in the ribbon). The mean scattering time for 

such a charge is equal to: 

 〈𝑡〉 =
∫ 𝑡 ∙ 𝑝(𝑡) ∙ 𝑑𝑡

𝑙 𝑣𝑡ℎ𝑒𝑟𝑚⁄

0

∫ 𝑝(𝑡) ∙ 𝑑𝑡
𝑙 𝑣𝑡ℎ𝑒𝑟𝑚⁄

0

= 𝜏𝐷𝑃 (1 −
𝑙

𝑙𝑓𝑟𝑒𝑒
∙

1

exp (
𝑙

𝑙𝑓𝑟𝑒𝑒
) − 1

)  
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where 𝑝(𝑡) = exp(− 𝑡 𝜏𝐷𝑃⁄ ) is proportional to the probability density that the carrier scatters 

at time 𝑡. Here 𝑣𝑡ℎ𝑒𝑟𝑚 = √2𝑘𝐵𝑇 𝑚∗⁄  is the thermal velocity of the carriers with the effective 

mass 𝑚∗ – taken from DFT calculations, and 𝑙𝑓𝑟𝑒𝑒 = 𝑣𝑡ℎ𝑒𝑟𝑚 ∙ 𝜏𝐷𝑃 is carrier mean free path. 

By assuming that this average time 〈𝑡〉 equal to 𝜏𝐷𝑆 we thus can estimate the mean value of 

the distance 〈𝑙〉 between consecutive scattering potentials on a GNR by solving the following 

equation: 

 𝜏𝐷𝑃 (1 −
〈𝑙〉

𝑙𝑓𝑟𝑒𝑒
∙

1

exp (
〈𝑙〉

𝑙𝑓𝑟𝑒𝑒
) − 1

) = 𝜏𝐷𝑆 (6.3) 

The results are shown in Table 6.2 and reveal that 〈𝑙〉 lies between 10 and 20 𝑛𝑚 for all GNR 

structures. Comparing the 4CGNR to the 6CGNR, it seems that increasing the width of the 

nanoribbons leads to the increase of 〈𝑙〉. This indicates that bends and buckles in the 

nanoribbon, which are expected to be reduced for the wider 6CGNRs, play a substantial role 

in the electronic motion in the GNRs. 

6.3 Conclusions 

The THz photoconductive properties of GNRs with different edge structures and position of 

alkyl chains appear to be qualitatively similar and can be well reproduced within the Drude-

Smith conductivity model of quasi-free carriers with preferential backscattering. The carrier 

scattering times derived from this model imply that the alkyl functionalization of the edges 

has little impact on the transport properties of GNRs, while the effect of varying the edge 

structure of GNR is substantial. 

Table 6.2. DP and DS carrier scattering times and the estimated distance between corrugations. 

GNR structure carriers 
𝜏𝐷𝑃  
fs 

𝜏𝐷𝑆 

fs 

𝑎 

nm 

4CGNR 
h 61 

30 
15 

e 2615 12 

6CGNR 
h 87 

35-40 
22 

e 4060 18 

p-AGNR 
h 26 

18 
17 

e 1040 12 
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Based on the studies presented in this chapter and the one published previously (4CGNR) [66], 

we have pointed out a clear trend: 𝜏𝐷𝑆
6𝐶𝐺𝑁𝑅 > 𝜏𝐷𝑆

4𝐶𝐺𝑁𝑅 > 𝜏𝐷𝑆
𝑝𝐴𝐺𝑁𝑅

. Theoretical DFT calculations 

of the band structures together with transport calculation using the DP method show the same 

trend, yet with substantially increased values for carrier scattering time. 

A simple model has been used to account for GNRs’ corrugation as a possible origin of 

reduced scattering time as measured in the experiments. This model produces an effective 

mean free path of carriers in dispersed GNRs on the order of tens of nanometers that 

corresponds to the average distance between corrugations. 

The results presented here show that the simple alkyl chains at the edge of GNRs have a 

minimal impact on the transport properties of the ribbons. However, the possible substantial 

change in the carrier transport is not excluded in the structures with complex functional groups 

[163] such as with a significant dipole moment or in the structures without the 

functionalization whatsoever. In particular, the comparison with the latter one is hindered due 

to the difficulty of preparation of a dispersed solution of such bare GNRs. Moreover, the 

synthesis of such GNRs is performed on the surface [164] and sometimes produces the 

network of interconnected GNRs. 
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7 Summary and outlook 

 

Chapter 7 

Summary and outlook 

 

In this thesis, we have investigated charge carriers dynamics in three graphene-based systems. 

THz spectroscopy has been a primary tool to study these phenomena as it provides means for 

probing transport in broad frequency range without contacts. We investigated the following 

systems. 

In a large-area monolayer of CVD graphene, we have shown that one can describe the ultrafast 

electron transport using a simple picture of a time-dependent thermodynamic balance 

maintained within the electronic population. Given the extremely efficient electron-electron 

interaction in graphene, the energy of a THz pulse or an optical signal is efficiently and 

instantaneously (on a sub-ps timescale) transferred into the internal energy of the carrier 

population. The condition of the energy and particle number conservation thus leads to the 

decrease of the chemical potential of graphene thereby reducing its intra-band conductivity. 

We have also shown that the efficiency of this process is strongly correlated with the carrier 

concentration and the excitation intensity. 

In graphene with mechanically induced periodic folds (using the GraFold technique), we have 

shown that the folds have minimal impact on the background THz conductivity. At the same 

time, we have observed a significant charge transport anisotropy in the hot transport (optically 

excited state). That exhibits 1.55 times stronger suppression of the hot transport in the direction 

parallel to the folds. We nevertheless have not provided a profound understanding of the 

mechanism behind this first experiment on folded graphene. An initial explanation is that in 

photo-excited state this sample exhibit the anisotropic potential landscape that leads to the 

observed anisotropy of the photoconductivity. In the future, one can shed more light on this 

unique material by performing further experiments on the samples with an increased fold 

density, with different fold sizes and the larger graphene films. 
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In graphene nanoribbons, we have observed that carrier transport well described by the Drude-

Smith model of the carriers with preferential backscattering. We have demonstrated that 

derived from this model scattering times of the carriers have a non-trivial correlation with the 

edge structure of the GNR. The DFT and DP transport calculation corroborated the 

experimental result although they provide larger values of the scattering times. We have 

accounted for this discrepancy by the presence of mechanical distortions in GNRs species that 

are freely floating in the liquid. Using a simple scattering model, we could evaluate the average 

distance between two neighboring kinks. We have also found a negligible influence of the 

simple alkyl chains on the carrier transport. As a future perspective, one can develop a deeper 

understanding of the ultrafast THz transport of GNRs by performing experiments on a broader 

variety of GNR structures. One of the possible directions could also be the developing of the 

samples with a more organized structure. As an example of it, one could imagine a network of 

perfectly aligned GNRs. Thereby in such configuration, the THz spectroscopy could provide 

a better evaluation of the conductivity in the experiment where the probing field polarization 

is aligned along the ribbons. Thus, one could avoid unwanted corrugations and the use of 

phenomenological models. One practically could achieve that in CVD grown ribbons on the 

surface. 
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