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Abstract Estimates of radiative fluxes under cloud‐free conditions (“clear‐sky”) are required in many
fields, from climatic analyses of solar transmission to estimates of solar energy potential for electricity
generation. Ideally, these fluxes can be obtained directly from measurements of solar fluxes at the surface.
However, common standard methods to identify clear‐sky conditions require observations of both the
total and the diffuse radiative fluxes at very high temporal resolution of minutes, which restricts these
methods to a few, well‐equipped sites. Here we propose a simple method to estimate clear‐sky fluxes only
from typically available global radiation measurements (Rsd) at (half‐)hourly resolution. Plotting a monthly
sample of observed Rsd against the corresponding incoming solar radiation at the top of atmosphere
(potential solar radiation) reveals a typical triangle shape with clear‐sky conditions forming a distinct, linear
slope in the upper range of observations. This upper slope can be understood as the fractional transmission
of solar radiation representative for cloud‐free conditions of the sample period. We estimate this upper
slope through quantile regression. We employ data of 42 stations of the worldwide Baseline Surface
Radiation Network to compare our monthly estimates with the standard clear‐sky identification method
developed by Long and Ackerman (2000, https://doi.org/10.1029/2000JD900077). We find very good
agreement of the derived fractional solar transmission (R2 = 0.73) across sites. These results thus provide
confidence in applying the proposed method to the larger set of global radiation measurements to obtain
further observational constraints on clear‐sky fluxes and cloud radiative effects.

Plain Language Summary Even under cloud‐free condition we typically observe lower solar
radiative fluxes at the surface than the incoming solar radiation at the top of atmosphere. A fraction of
the solar radiation is being absorbed in the atmosphere and thereby reduces the amount received at the
surface. Common standard methods to estimate the clear‐sky fluxes from ground‐based observations need a
very high temporal resolution of 1 min and additional measurements of diffuse radiation to identify
cloud‐free conditions. Since these data are not broadly measured, we propose an alternative method, which
exploits the typically linear relationship of observed, cloud‐free solar radiation fluxes to the incoming
solar radiation at the top of the atmosphere. This relationship can be estimated by the statistical method of
quantile regression. We test this alternative approach with high‐quality surface radiation data and
compare it with the standard approach. Results show that the alternative method yields good agreement of
monthly fractional clear‐sky transmission and thus clear‐sky fluxes for the 42 sites evaluated. This
provides confidence to utilize the commonly measured global radiation for the estimation of clear‐sky fluxes
in applications ranging from solar energy planning to a climatology of the shortwave cloud radiative
effect from direct observations.

1. Introduction

Solar radiation provides the main energy input to the Earth system and is of great importance for the local
climate and human activities such as agriculture and solar energy generation. Diurnal and seasonal varia-
tions in surface solar radiation are mainly determined by astronomical settings which determine the incom-
ing solar radiation at the top of atmosphere (in the following referred to as potential solar radiation). Further
variation is caused by the atmospheric conditions with clouds being the most dominant source of variation.
The radiative properties of clouds contribute to most of the uncertainty in our ability to model and predict
current and future climate (Bony et al., 2015). Apart from clouds, the solar beam is attenuated by the pre-
sence and concentration of gases and aerosols, which also cause variations of Rsd in space and time
(Iqbal, 1983).
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The solar fluxes under cloud‐free (used here synonymously for clear‐sky)
conditions serve as an important baseline describing the potential of solar
energy and are used as a reference to quantify the radiative effects of
clouds. Water vapor and aerosols from natural and anthropogenic sources
will further affect the clear‐sky solar radiation and contribute to climate
changes. Especially, the contribution of aerosols is, however, rather
uncertain for the past, present, and future (Boucher et al., 2013). The abil-
ity to resolve clear‐sky fluxes and especially the absorption of solar radia-
tion in the cloud‐free atmosphere was found to correlate with the
hydrological sensitivity of climate models (DeAngelis et al., 2015).
Although remote sensing‐based surface solar radiation products are avail-
able to compare climate models at global scale, these surface fluxes are
modeled by radiation transfer with atmospheric profiles obtained from
numerical weather models, which leads to large uncertainties in the
fluxes. Direct observational estimates are still required to validate the
clear‐sky fluxes from radiative transfer models (Zhang et al., 2019).

Such a comparison of clear‐sky fluxes directly estimated from surface
radiation measurements with historical runs of climate models has actu-
ally revealed substantial model biases and helped to obtain a global
cloud‐free energy balance (Wild et al., 2019). Their comparison was based
on 54 Baseline Surface Radiation Network (BSRN) stations across the
globe. These measurements follow a strict protocol and include direct
radiation measured with pyrheliometers, as well as diffuse radiation and

the total incoming solar radiation (or global radiation) measured with pyranometers at high temporal reso-
lution (minute data; Driemel et al., 2018; Ohmura et al., 1998).

There are many different approaches to determine clear‐sky fluxes described in the literature (see Gueymard
et al. (2019) and Ruiz‐Arias and Gueymard (2018) for recent reviews). The simplest approach is based on a
comparison of incoming total surface shortwave radiation (Rsd) with potential solar radiation at the top of
atmosphere (Rsd,pot). The ratio, often referred to as “clearness index,” is then used as threshold above which
a period is identified as clear. Yet it is unclear which threshold should be used with different values reported
in the literature ranging from 0.6 to 0.7 (Reno & Hansen, 2016). Further approaches also use observations of
diffuse and direct normal radiation at the surface to classify clear conditions (e.g., Perez et al., 1990; C. N.
Long & Ackerman, 2000). Another approach is to directly model the clear‐sky irradiance dependent on
atmospheric conditions. These models range from simple Linke turbidity factors (Ineichen & Perez, 2002;
Linke, 1922) to radiative transfer models (Gueymard, 2008; Lefèvre et al., 2013). The latter approaches
require additional input data on the atmospheric composition such as water vapor and aerosol loads
(Reno & Hansen, 2016), whereas the former approaches are based on surface observations only.

The method by Long and Ackerman (2000) only requires surface shortwave radiation measurements and
has found wide application as a reference (Gueymard, 2012; Kim & Ramanathan, 2008; Reno & Hansen,
2016; Wild et al., 2019). This approach, however, requires global and diffuse radiation at high temporal reso-
lution (1 min) to estimate clear‐sky fluxes (Long & Ackerman, 2000). These requirements thus strongly
restrict the available data to a few sites and limit the evaluation to a short period after 1990. In contrast, pyr-
anometers, which measure global radiation, are muchmore widely used by the various weather services and
by research networks (e.g., FLUXNET). To address this need we present a simple, robust methodology,
which is based on global radiation with (half‐) hourly temporal resolution.

To overcome these restrictions of the standard clear‐sky identification approaches we propose a signature‐
based approach which takes the observations of global radiation out of their temporal context and relates
them to the potential solar radiation. The potential solar radiation describes the radiation which would be
received at the surface under a nonattenuating atmosphere at a certain location and only depends on the
date, time, and latitude. Figure 1 illustrates such a relationship with half‐hourly data of one month at
the BSRN site Lindenberg, Germany. Data recorded under cloud‐free conditions forms a linear slope in
the upper range of observations, whereas cloudy conditions with reduced global radiation fall below this

Figure 1. Illustration of quantile regression approach. The scatterplot
shows a monthly sample of 30‐min observations of incoming shortwave
radiation versus the corresponding potential shortwave radiation
(Lindenberg, Germany, August 2003). The scatter forms a well‐defined
orthogonal triangle with clear‐sky conditions close to the upper boundary.
The quantile regression method (Koenker, 2005) allows to estimate this
upper slope for a given quantile ω (here 85%).
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upper linear slope. Such signatures are found to be rather typical and thus can be used to estimate the frac-
tional clear‐sky transmission of solar radiation (also known as clearness index), representative for a given
period. To estimate this upper linear slope, we employ quantile regression to estimate conditional quantile
functions (Koenker, 2005). The proposed method requires a relatively large sample of clear‐sky conditions to
obtain statistically significant estimates. Here we used a monthly sampling period with (half‐)hourly data.
Therefore, the resulting fractional clear‐sky transmission is only representative for the sampling period of
one month. Hence, the method is not suitable for daily or hourly assessments and is thus applicable for cli-
matological analyses, such as seasonal changes of clear‐sky fluxes.

In order to test and validate the proposed methodology, we use data from the BSRN network with a sparse
but global coverage from the tropics to the poles. The BSRN network provides 1‐min data of diffuse and glo-
bal shortwave radiation (Driemel et al., 2018). Reference clear‐sky fluxes are computed by the standard
method of Long and Ackerman (2000). We then employ the quantile regression methodology on monthly
samples of half‐hourly aggregated data of global radiation only. We use fixed parameters for all sites to test
if the method can be applied to any site and season without a priori knowledge. Results are reported for 54
sites of the BSRN network in terms of monthly clear‐sky shortwave fluxes and the fractional shortwave
transmission. We compare the new estimates with monthly estimates from the Long and Ackerman
(2000) reference method using scatter diagrams and standard error characteristics.

2. Materials and Methods
2.1. Modeling Potential Solar Radiation

Potential radiation at the horizontal surface can be modeled as a function of the solar zenith angle θ and top
of atmosphere solar radiation S0 (Long & Ackerman, 2000):

Rsd;pot ¼ S0 cos θð Þð Þb (1)

The exponent b modulates the form of the cosine and allows to consider the modulation of the optical path
through a curved, refractive atmosphere compared to a plane‐parallel, nonrefractive atmosphere, which will
be discussed below. The solar zenith angle θ is a function of latitude φ, the degree of declination δ between
the Sun and the equator determined by day of the year and the hour angle H given by the time of the day
(Iqbal, 1983):

cos θ ¼ cos H cos φ cos δþ sin φ sin δ (2)

The Sun‐Earth orbit eccentricity correction is applied in the calculation of the degree of declination δ.
Specifically, we used the function fCalcPotRadiation of the R‐software package REddyProc (Wutzler et al.,
2018). That function implements the correction by Spencer (1971). Hence, the potential radiation can be
computed when location and time are known.

The potential radiation formulation as such assumes a plane‐parallel atmosphere through which the light
beam travels. This causes a small nonlinearity of the observed to potential radiation relationship, which is
exemplified in Figure 2 for a clear‐sky day at the site Lindenberg. Assuming a plane‐parallel, nonrefractive
atmosphere (b = 1) we find a small, but consistent curvature (Figure 2a) which shows larger deviations to the
linear fit at lower potential solar radiation (morning and evening; see Figure 2b). To account for the effects of
a curved, refractive atmosphere, we use the exponent b in equation (1) similar to Long and Ackerman (2000).
We find that the nonlinear deviations can be largely resolved with an exponent b = 1.2 (see Figure 2). The
exponent b = 1.2 is also used in the formulations for quality control of surface shortwave radiation measure-
ments for BSRN sites (Long & Shi, 2008; Roesch et al., 2011). In contrast to Long and Ackerman (2000), we
choose to use a fixed exponent b = 1.2 for all sites and periods for two reasons. First, we find that the residual‐
squared error of the quantile regression (explained below) shows a minimum close to the exponent b = 1.2
across sites and seasons. Second, we find that the slope of the quantile regression covaries linearly with the
exponent b, which limits the parameter identifiability. Since we are mainly interested in a monthly change
in fractional clear‐sky transmission, we keep exponent b constant, enabling better comparability across sites
and seasons.
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2.2. Clear‐Sky Signature and Quantile Regression Approach

The key of the proposed methodology is to establish and quantify the relationship of the observed global
radiation with the potential solar radiation. Potential radiation is only a function of date, time, and location
and can thus be calculated for any site a priori. The relationship can be best visualized by plotting observed
global radiation (Rsd) against potential radiation Rsd,pot in a scatterplot. This takes the time series observa-
tions out of their temporal context (Figure 1) and reveals an approximately linear relationship of Rsd to
Rsd,pot close to the upper boundary. Clouds mostly reduce Rsd when direct radiation is blocked or enhance
Rsd under partial cloud cover with enhanced diffuse radiation and but direct radiation passing to the surface.

We assume that the slope close to the upper linear boundary represents the fraction of transmitted solar
radiation under clear‐sky conditions. To estimate this slope from the data we employ quantile regression.
Quantile regression is an emerging statistical method for linear and nonlinear response models (Koenker
& Machado, 1999) which provides an estimate of a conditional quantile function (Koenker, 2005). Here
we use the univariate linear form relating response Y to forcing X through

Y ωð Þ ¼ αþ β X (3)

Thereby we estimate the intercept α and slope β conditional on the quantile ω. The resulting regression line,
say for a quantile ω = 0.85, ensures that 85% of the data is below the estimated line (see Figure 1). The coef-
ficients are estimated using the default method recommended by the author of the quantreg R package
(Koenker, 2005).

The estimated slopes should be in the range 0 < β(ω) < 1, since observed global radiation should not exceed
the potential radiation. The intercept term α should also be close to 0. Deviations from 0 indicate systematic
biases in the measurements, such as problems of timing of measurements or issues with the mounting of
the pyranometers.

The quantile regression approach allows to estimate the standard deviation of the derived slope and inter-
cept terms and thus provides a quantitative assessment of the uncertainty. Goodness of fit is evaluated
through a pseudo‐R2 measure R1 suggested by Koenker and Machado (1999). The rationale is to assess the
goodness of fit at a certain quantile by comparing the sum of weighted deviations of the model of interest
(ρmod) with the sum of weighted deviations from a model in which only the intercept appears (ρ1):

Figure 2. Illustration of time dependence of solar attenuation on potential solar radiation. (a) The relationship of observed
solar radiation to potential radiation in 1‐min resolution. Light blue data show a small curvature when potential
radiation is modeled without accounting for air mass‐dependent attenuation (exponent b = 1) resulting in deviations from
linearity at lower potential solar radiation (morning and evening). The light red data points are derived with setting
the exponent b = 1.2 improving the linear relationship. (b) The incoming solar radiation versus time. Grey are
observations and the dashed lines represent linear regression fits of observed to potential solar radiation for that day. The
potential solar radiation with exponent b = 1.2 clearly shows a better match of the observed curve with lower
deviations in morning and afternoon (dashed lines with green background). The plot utilizes observations from site
Lindenberg (LIN) in Germany measured at the 11 August 2003 with 1‐min resolution.
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R1 ¼ 1–ρmod=ρ1 (4)

with ρ determined by the model residuals u weighted by the quantile ω:

ρ ¼ Σ u* ω− u<0ð Þð Þð Þ:

The only free parameter in the proposed method is the quantile ω used in the quantile regression. A very
high ωwould be sensitive to short periods with very large values of shortwave radiation, for example, caused
by reflections during partial cloud cover. This effect is particularly important when using data at 1‐min tem-
poral resolution, but it can be reduced by temporal aggregation to half‐hourly or hourly values. A small ω
will lead to smaller β, which will be important during periods with almost permanent cloud cover. In order
to facilitate the choice of the ω, we performed a sensitivity analysis with varying values of ω and use the stan-
dard method as reference with all sites available.

The estimated slopes by the quantile regression β(ω) represent the fractional transmission of shortwave
radiation under cloud‐free situations for a given period. Assuming that this slope, representing the fractional
clear‐sky transmission, is constant for that period, we can estimate the clear‐sky fluxes by multiplying with
the potential solar radiation:

Rsd;cs ¼ β Rsd;pot

3. Data
3.1. Baseline Surface Radiation Network

The BSRN provides high‐quality downwelling radiation observations at 1‐min resolution for more than 50
sites across the globe (Driemel et al., 2018; Ohmura et al., 1998). Here we use the majority of sites (54) for
which monthly clear‐sky fluxes are available from the standard method as used by Wild et al. (2019). The
location of the sites is shown in the map in Figure 3. Meta data including site codes are tabulated in
Table 1.

3.2. Data Preparations

We flag suspect data following the BSRN policy (Long & Shi, 2008; Roesch et al., 2011) and set values outside
the “extremely rare” limits to missing. Three sites showed lower negative nighttime values than the extre-
mely rare minimum limits (SBO, SOV, TAM). This issue which is related to the thermal offset due to long-
wave loss of the instrument has been often reported (Driemel et al., 2018; Dutton et al., 2001). To cope with

Figure 3. Map showing the location of all BSRN sites analyzed in this study. The color indicates the estimated site average
value of the fractional clear‐sky shortwave transmission determined by the quantile regression approach.
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Table 1
BSRN sites used in the evaluation

Shortwave fluxes (W/m2) Fractional transmission

Site code Site name Location Lon Lat Rsd Rsdcs,QR Rsdcs,LA RMSE βQR βLA R2 Slope n fCRE

ALEa Alert Lincoln Sea, Canada ‐62.4 82.5 83 99 99 10.1 0.93 0.95 0.17
ASP Alice Spring Australia 133.9 ‐23.8 254 297 289 9.7 0.85 0.83 0.83 0.89 225 0.14
BAR Barrow Alaska, USA ‐156.6 71.3 118 167 165 6.4 0.84 0.84 0.67 0.49 20 0.29
BERb Bermuda Bermuda ‐64.7 32.3 204 276 278 6.0 0.79 0.80 0.26
BIL Billings Oklahoma, USA ‐97.5 36.6 171 227 232 7.9 0.82 0.84 0.64 0.69 211 0.25
BON Bondville Illinois, USA ‐88.4 40.1 166 239 242 7.7 0.82 0.84 0.61 0.60 168 0.31
BOS Boulder Colorado, USA ‐105.2 40.1 188 253 252 5.0 0.87 0.87 0.89 0.74 166 0.26
BOU Boulder Colorado, USA ‐105.0 40.0 198 259 264 7.5 0.85 0.87 0.73 0.64 272 0.23
BRB Brasilia Brazil ‐47.7 ‐15.6 221 307 293 18.5 0.79 0.75 0.43 0.70 44 0.28
CAB Cabauw Netherlands 4.9 52.0 126 193 198 6.7 0.80 0.83 0.58 0.63 127 0.35
CAMb Camborne United Kingdom ‐5.3 50.2 120 190 191 5.4 0.81 0.82 0.37
CAR Carpentras France 5.1 44.1 177 223 219 6.1 0.83 0.81 0.86 0.80 219 0.21
CLH Chesapeake L North Atlantic Ocean, USA ‐75.7 36.9 187 248 247 4.6 0.82 0.82 0.91 0.97 180 0.24
CNR Cener Spain ‐1.6 42.8 160 221 219 6.7 0.83 0.82 0.67 0.62 57 0.28
COCb Cocos Island Cocos Islands 96.8 ‐12.2 243 307 309 6.3 0.78 0.79 0.21
DAA De Aar South Africa 24.0 ‐30.7 242 287 274 17.2 0.87 0.83 0.24 0.72 49 0.16
DAR Darwin Australia 130.9 ‐12.4 236 295 292 6.8 0.78 0.77 0.55 0.84 148 0.20
DOM Concordia St Antarctica 123.4 ‐75.1 231 232 239 13.8 1.08 1.14 0.37 0.29 33 0.00
DRA Desert Rock Nevada, USA ‐116.0 36.6 242 272 267 8.7 0.87 0.86 0.67 0.49 134 0.11
E13 Southern Gre Oklahoma, USA ‐97.5 36.6 184 241 241 5.3 0.82 0.83 0.82 0.68 193 0.24
EUR Eureka Canada ‐85.9 80.0 96 121 114 15.3 0.93 0.84 0.45 0.41 25 0.21
FLO Florianopoli Brazil ‐48.5 ‐27.5 177 271 268 6.5 0.80 0.79 0.53 0.80 65 0.35
FPE Fort Peck Montana, USA ‐105.1 48.3 164 220 221 7.7 0.84 0.86 0.72 0.55 167 0.25
FUA Fukuoka Japan 130.4 33.6 157 251 258 8.2 0.77 0.80 0.68 0.69 62 0.38
GCR Goodwin Cree Mississippi, USA ‐89.9 34.2 182 254 254 7.0 0.80 0.80 0.63 0.63 168 0.28
GVN Georg von Ne Antarctica ‐8.2 ‐70.7 169 210 209 6.2 0.98 0.99 0.75 0.62 201 0.19
ILOa Ilorin Nigeria 4.6 8.5 199 264 288 29.2 0.68 0.74 0.25
ISHb Ishigakijima Japan 124.2 24.3 181 272 277 9.2 0.76 0.77 0.34
IZA Izana Tenerife, Spain ‐16.5 28.3 290 317 315 3.9 0.92 0.91 0.89 1.03 76 0.09
KWAb Kwajalein North Pacific Ocean 167.7 8.7 229 295 297 8.3 0.77 0.77 0.22
LAU Lauder New Zealand 169.7 ‐45.0 170 241 239 6.5 0.86 0.85 0.61 1.06 174 0.30
LERb Lerwick Shetland Island, UK ‐1.2 60.1 43 74 78 4.4 0.79 0.86 0.42
LIN Lindenberg Germany 14.1 52.2 118 180 183 6.9 0.80 0.83 0.42 0.50 151 0.34
MANb Momote Papua New Guinea 147.4 ‐2.1 207 303 300 5.8 0.78 0.77 0.32
MNM Minamitorish Japan 154.0 24.3 229 281 283 3.5 0.78 0.79 0.68 0.77 64 0.19
NAUb Nauru Island Nauru 166.9 ‐0.5 243 304 303 6.6 0.78 0.77 0.20
NYA Ny‐Alesund Spitsbergen 11.9 78.9 52 69 71 3.1 0.90 0.92 0.64 0.70 63 0.25
PAL Palaiseau France 2.2 48.7 142 213 216 6.4 0.80 0.82 0.33 0.47 117 0.33
PAY Payerne Switzerland 6.9 46.8 138 205 207 5.8 0.81 0.82 0.31 0.42 222 0.33
PSU Rock Springs Pennsylvania, USA ‐77.9 40.7 157 240 243 7.1 0.82 0.84 0.63 0.57 130 0.35
PTR Petrolina Brazil ‐40.3 ‐9.1 244 297 301 9.6 0.74 0.75 0.04 0.15 53 0.18
REG Regina Canada ‐104.7 50.2 164 220 217 5.3 0.89 0.88 0.93 0.99 190 0.25
SAP Sapporo Japan 141.3 43.1 148 233 236 6.7 0.81 0.82 0.70 0.85 63 0.36
SBO Sede Boqer Israel 34.8 30.9 240 265 262 8.0 0.81 0.80 0.52 0.52 113 0.10
SMS Sao Martinho Brazil ‐53.8 ‐29.4 207 288 276 12.5 0.83 0.80 0.77 0.80 26 0.28
SOVa Solar Village Saudi Arabia 46.4 24.9 252 275 270 9.2 0.81 0.80 0.08
SPOb South Pole Antarctica ‐24.8 ‐90.0 198 216 211 11.5 1.07 1.36 0.08
SXF Sioux Falls South Dakota, USA ‐96.6 43.7 168 230 232 6.2 0.83 0.85 0.79 0.58 71 0.27
SYO Syowa Antarctica 39.6 ‐69.0 153 192 191 6.1 0.97 0.97 0.40 0.49 201 0.20
TAM Tamanrasset Algeria 5.5 22.8 275 312 300 15.1 0.87 0.84 0.59 0.78 181 0.12
TAT Tateno Japan 140.1 36.0 158 238 247 12.5 0.80 0.82 0.70 1.23 222 0.34
TIK Tiksi Siberia, Russia 128.9 71.6 74 97 92 5.5 0.93 0.87 0.56 0.68 21 0.24
TOR Toravere Estonia 26.5 58.3 115 174 176 5.6 0.82 0.85 0.31 0.54 197 0.34
XIA Xianghe China 117.0 39.8 168 236 247 21.1 0.80 0.83 0.39 1.03 112 0.29
Mean 179 235 235 8.5 0.84 0.85 0.61 0.68 128 0.25

Note. Meta data, site average global shortwave radiation fluxes (Rsd), estimated clear‐sky fluxes by quantile regression method Rsdcs,QR, the standard method
Rsdcs,LA, RMSE reports the root‐mean‐square error for the clear‐sky fluxes. Site averages of fractional clear‐sky shortwave transmission for the QR method
βQR and the Long and Ackerman method βLA. R

2 and slope reports the best fit lines for each site and the number of month n used for comparison. Column
fCRE reports the fractional shortwave cloud radiative effect fCRE = 1 − Rsd/Rsd,cs.aLong and Ackerman flagged doubtful. bLong and Ackerman approach in climatological mode.
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these issues, we set negative values <−10 to missing. Remaining negative values during periods with high
solar zenith angle (θ > 80°) have been set to 0.

For analysis we use the unshaded pyranometer measurements of global radiation when available. If these
are not available for a given time step we use measurements of direct Rsd,DIR and diffuse solar radiation
Rsd,DIF to compute total radiation with Rsd,tot = cos(θ) Rsd,DIR + Rsd,DIF. We prefer the use of unshaded pyr-
anometer measurements of global radiation since these data are broadly available in other measurement
networks in contrast to direct normal and diffuse radiation.

To aggregate the data, which is available in 1‐min resolution, we follow the recommendations by Roesch
et al. (2011). Thereby, we first calculate 15‐min averages where only 20% of the data must be available.
From these 15‐min aggregates we compute 30‐min aggregates which require two values. For hourly aggre-
gates we require three nonmissing 15‐min values. Monthly fluxes are obtained by first computing the
monthly mean diurnal cycle from the 30‐min data, whereby 26 nonmissing values for each time step are
required. Then the monthly mean is calculated from the monthly mean diurnal cycle requiring no missing
values. These procedures try to reduce sampling biases which can be significant due to the pronounced
diurnal cycle.

3.3. Application of the Quantile Regression Approach to the BSRN Data

The quantile regression (QR) approach is applied for each month at all available sites with sufficient data.
Here we use half‐hourly data as basis for regression. The resulting estimates are very similar when hourly
aggregates are used.

Persistent cloud cover can reduce the slope of the quantile regression because of insufficient cloud‐free mea-
surements. This is identified by a poor fit using the R1 goodness‐of‐fit statistic and a deviation of more than
25% of the site average values obtained by regression of all data at one site. If R1 > 0.75 and the slope is within
a 25% range of the site average value the estimate is retained. If not, we increase the sampling period by
including the preceding and following month. We used three‐, five‐, and seven‐month sampling windows
which allow estimates for most observations in the BSRN database.

At higher latitudes (|φ|> 67°) the solar zenith angle will not rise above the horizon during winter days and
therefore Rsd,pot = 0. However, many sites still measure very small amounts of global radiation (usually <30
W/m2). During these winter months the potential radiation was observed to be lower than the measure-
ments resulting in β(ω) > 1. To account for these issues we constrain the quantile regression to periods with
more than 100 values of Rsd,pot > 10 W/m2. If this constraint is not met, the coefficients are set to missing,
while for estimating the monthly mean clear‐sky flux we simply use the potential radiation and set β to 1.
These considerations allow to calculate annual average clear‐sky fluxes for most of the sites in the
BSRN network.

3.4. Reference Clear‐Sky Detection Approach

In order to evaluate the performance of the quantile regression approach we use the Long and Ackerman
(2000) clear‐sky detection approach which provides clear‐sky fluxes of shortwave radiation. The approach
is based on observations of total and diffuse hemispheric broadband shortwave radiation with a temporal
resolution of 1 min. It employs a series of four tests to identify clear‐sky episodes and then estimates the
clear‐sky fluxes of each day with these data using a power law formulation with the cosine of the zenith
angle as independent variable. The tests involve thresholds for acceptable ranges of total and diffusion radia-
tion under clear skies. Also, temporal variability is used to identify clear‐sky conditions, one for total radia-
tion and one for the ratio of diffuse to total radiation normalized by the cosine of the zenith angle. All tests
require to set thresholds, which are based on experience and can be locally different. To automate the pro-
cess, Long and Ackerman (2000) use an iterative procedure of clear‐sky identification and parameter fitting.
A core limitation are days and periods with persistent cloud cover with less than 2 hr of clear‐sky conditions.
The fluxes of those days are estimated by linear interpolation and then monthly fluxes of clear‐sky solar
radiation are computed. For sites with persistent cloud cover, the Long and Ackerman algorithm uses a dif-
ferent estimation technique which is based on monthly input and historical data to derive clear‐sky coeffi-
cients (C. N. Long & Gaustad, 2004). This affects especially (sub)tropical sites in ocean environments
(BER, COC, ISH, KWA, MAN, NAU) and cloudy extratropical sites (LER, CAM, SPO). Also, a few sites
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the Long and Ackerman method were marked as doubtful (ALE, ILO, SOV). These sites have been excluded
from the comparison of monthly estimates.

The approach by Long and Ackerman (2000) has become a standard clear‐sky detection approach. For exam-
ple, it was used to establish a climatology of clear‐sky fluxes of 53 BSRN stations to evaluate the modeled
clear‐sky fluxes of global climate models (Wild et al., 2019). Here we use these climatological clear‐sky fluxes
on a monthly mean basis for evaluation of the simpler quantile regression approach.

3.5. Statistical Evaluation

We use standard methods to calculate the goodness of fit through Pearson correlation and linear regression.
Additionally, we employ the mean square error skill score (MSES) to evaluate the skill of the derived clear‐
sky solar radiation with a reference estimate:

MSES ¼ 1−MSEp=MSEref (5)

where MSEp is the mean squared error of the prediction and MSEref of the references, respectively. As refer-
ence we use a constant fractional solar transmission βref = 0.81 multiplied by the potential solar radiation,
representing the average across all sites. A perfect skill is indicated by a MSES of 1 and 0 if the prediction
is worse than the reference. It can be interpreted as the reduction of variance compared to the reference.

4. Results
4.1. Sensitivity of the Quantile Used in Regression

The proposed method relies on quantile regression which requires to choose a quantile ω to estimate the
fractional clear‐sky shortwave transmission for a given sample. Using a very largeω close to 100%would lead
to high β due to short periods with very large values of shortwave radiation, for example, caused by reflec-
tions and enhanced diffuse radiation during partial cloud cover. A smaller ω will lead to smaller fractional
transmissions, which will be important during periods with almost permanent cloud cover.

To assess the sensitivity of ω, we repeated the quantile regression for different ω in the range between 70 and
99%. Then skill scores (MSES, R2) were computed using the clear‐sky fluxes of the standard method as the
reference. To evaluate the skill, we use a constant β = 0.81 as reference across all sites and conditions.
When data of all the sites are pooled together, we find the best performance in terms of bias and correlation
at ω = 85% (see Figure 4a). The explained variance of the monthly fractional solar transmission estimates is
R2 = 0.79 at ω = 85% which is within a flat peak of the maximum correlation. One can note from Figure 4a
that the bias is more sensitive to the choice of ω than the correlation. In the supporting information the rela-
tionships of the skill score to ω are shown for each site (Figure S1). There is a broad agreement with a max-
imum skill score at ω = 85%; however, some sites show deviations from the global pattern. The sites ASP,
BRB, CAR, DRA, SMS, and TAM show their maximum MSES skill at distinctly lower values of ω with
approximately 70%. Hence, at these sites we must expect a positive bias to the standard method, when using
a global value of ω = 85%. At three sites (BOU, TAT, XIA) we find the maximum skill at ω = 95% indicating
an underestimation of the QR approach with ω = 85% at these sites.

An increase in ω will lead to a larger estimate of fractional clear‐sky transmission. However, the sensitivity
study also revealed that the sensitivity of the clear‐sky fluxes to the choice of ω is rather small. Figure 4b
shows the distribution of the difference between ω = 90% and ω = 85% for monthly clear‐sky fluxes across
all the sites which is relatively uniform across the sites. Overall an increase of ω by 5% leads to increase
by 3 W/m2 when averaged across all sites. Given the measurement uncertainty this should be acceptable
when no further information, such as diffuse radiation and direct normal radiation, is available.

Given the relatively small uncertainty in setting ω and because the skill scores for bias and correlation have
their maxima close to ω = 85% we use that value for subsequent analysis for all sites.

4.2. Evaluation of Fractional Shortwave Transmission

We applied the quantile regression approach to eachmonth of the available data using a fixedω= 85% for all
sites and conditions. This yields a regression slope which can be interpreted as fractional clear‐sky solar
transmission. Overall the temporal and spatial variability of the fractional clear‐sky transmission as
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measured by the Long and Ackerman method is well captured by the QR approach as shown in the
scatterplot in Figure 5. Most estimates follow the 1:1 line and yield a R2 = 0.73 across the 42 sites. The
derived estimates and statistics are very similar when using hourly (R2 = 0.71) or half‐hourly data (see
Figure S2 in the supporting information which is based on hourly aggregated data).

Time series of the fractional clear‐sky transmission of the QR methods
and the Long and Ackerman method are shown for five selected sites in
Figure 6 (all sites are shown in Figure S3 in the supporting information).
Here we used an automatic scheme (see section 3) to detect overcast con-
ditions, where months with poor fit are replaced by a fit using a longer
sampling period. These conditions are marked in Figure 6 with crosses.
At the site PAY there are frequent overcast conditions during winter
which would lead to underestimation of β. These conditions are often
characterized by small fractional transmissions accompanied by a poor
R1 of the quantile regression and can be effectively identified.

The time series of both methods show a pronounced seasonal cycle at
extratropical sites (see Figure 6 and S3). During winter there is generally
a higher fractional shortwave transmission than in summer. Toward the
tropics the seasonal variation is strongly reduced. Furthermore, we find
that continental sites show larger seasonal variations than sites in an ocea-
nic environment at comparable latitude (compare sites E13 in Central
United States and BER at the Bermuda Islands in the Atlantic; Figure
S3). At the poles, especially at the sites in Antarctica we find very high
fractional solar transmission >1 during the dark winter months. In these
periods the potential solar radiation is very small or zero, but there are still
diffuse light sources which contribute to the measured solar fluxes. In
these cases, the fractional solar transmission can be larger than 1. This

Figure 5. Comparison of monthly fractional clear‐sky solar transmission
obtained with the proposed QR method and the Long and Ackerman
method. The blue line shows the linear best fit and the dashed line shows the
1‐1 perfect fit.

Figure 4. Sensitivity of the quantile regression method to the choice of the quantile. (a) Skill scores across 42 sites and
available months using the estimates of the Long and Ackerman (2000) method for evaluation. Red shows the
explained variance of the fractional solar transmission and black shows the skill score with a constant fractional solar
transmission as reference. (b) The box and whisker plot shows the difference in the monthly estimate of the clear‐sky
shortwave flux when the quantile ω= 90% is compared to ω= 85%. The sensitivities only cover months where the quantile
regressions yielded a R1 > 0.75.
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is, however, less relevant for the estimated clear‐sky fluxes since the potential solar radiation in these winter
months is very small or zero.

4.3. Comparison of Clear‐Sky Fluxes

Next, we compare the clear‐sky shortwave radiation fluxes obtained from the quantile regression approach
with the results obtained from the standard method proposed by Long and Ackerman (2000). We use the
monthly average fluxes for comparison. The scatterplot in Figure 7 is based on monthly data of 42 sites.

Figure 6. Monthly mean time series of fractional clear‐sky shortwave transmission estimated by the Long and Ackerman
method (black) and the QR method (red) for five selected sites with long records. Purple crosses show months where
the sampling size of cloud free periods of that month was insufficient to estimate a reliable fractional clear‐sky
transmission, and therefore, a large sampling window was used for that month (see section 3).
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The estimates follow the 1:1 line with only a slight overestimation (slope of best linear fit 1.01) and low error
(RMSE = 8.5 W/m2).

Since the main signal in the clear‐sky estimate comes from the seasonal course of potential solar radiation
we further compare our results with a reference case which uses a constant fractional transmission βref =
0.81. Figure 8 shows the residuals (difference between the QR estimate and the standard method) ordered
by the clear‐sky fluxes. Both residual distributions (right panel of Figure 8) have their center around zero,
but the constant fractional transmission estimate shows a much larger spread. Hence, the quantile regres-
sion method as applied to the monthly data is able to reduce the residual variance with MSES = 74% com-
pared to the reference with constant solar transmission across all the sites.

4.4. Site‐Level Evaluation

The BSRN stations are distributed across the globe and providemeasurements in all climate zones. This wide
spectrum allows us to assess if the proposed method can be applied on any site with solar radiation measure-
ments. The evaluation statistics of all 54 sites are reported in Table 1. Time series of the fractional clear‐sky
solar transmission of each site are shown in Figure S3 in the supporting information. Note that the Long and
Ackerman method used a different estimation technique for sites with persistent cloud cover (C. N. Long &
Gaustad, 2004), which does not allow a fair comparison of the time series. These sites have been excluded
from comparison (see section 3.4).

At the site TAM the QR method shows a positive trend in β which is not as strong for the Long and
Ackermanmethod (see also Figure 6c). This site is located in the Sahara which is characterized by high loads
of dust which can reduce solar radiation at the surface (Polo et al., 2009). More recently, it was noted that the
ratio of diffuse to total radiation used a one of the tests of the Long and Ackerman method identifies many
periods as cloudy which were rather hazy (Ruiz‐Arias et al., 2018). The tropical site in continental climate
(PTR) shows no correlation of monthly β time series (R2 = 0.04), which can be due to the low seasonal var-
iation of the Long and Ackerman estimate for this site. At the site XIA there is a positive trend in β by the QR
approach, which is not seen by the Long and Ackerman method.

The remaining 39 sites show good agreement with the Long and Ackermanmethod with RMSE <18.5W/m2

averaging to 7.7 W/m2 for the clear‐sky shortwave fluxes. The explained variance of the fractional clear‐sky
transmission is on average R2 = 0.63 and larger than R2 > 0.24. Given that only global radiation is used to
diagnose the clear‐sky fluxes we believe that these deviations at these sites are acceptable and illustrate

Figure 7. Comparison of monthly mean clear‐sky shortwave fluxes derived by the proposed QRmethod and the Long and
Ackerman method for 42 sites with reliable estimates of the Long and Ackerman method. The scatter is binned into
hexagons to visualize the high point density shown by the grey color legend on the left. The dashed line shows the 1‐1
perfect fit and the blue line the linear best fit with statistics annotated in blue text.
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that the QR method is a reliable tool to estimate fractional solar transmission and clear‐sky fluxes at a
monthly time scale in various environments and atmospheric conditions.

5. Discussion
5.1. Interpretation

We introduced and successfully tested a simple methodology to estimate the monthly fractional clear‐sky
transmission by only using global radiation measurements at a half‐hourly resolution. The proposed QR
method can be considered as a clear‐sky identification approach which is different from approaches which
model the radiation transfer through the atmosphere. The latter approaches have to link surface radiation
data and column‐integrated data of water vapor and aerosols with surface radiation measurements which
may introduce further uncertainties (Ruiz‐Arias & Gueymard, 2018).

The QRmethod exploits the commonly observed linear relationship of surface solar radiationmeasurements
with incoming solar radiation at the TOA under cloud‐free conditions forming a rather slope close to the
upper envelope. This linear relationship is reliably estimated with quantile regression when using a rather
high quantile. The slope of this linear relationship β can be thought of the fractional solar transmission
under cloud‐free conditions and it is typically smaller than 1. Here we find an average of β = 0.84 (see
Table 1). The complement, that is,(1 − β), represents fractional absorption and backscattering of shortwave
radiation in the atmosphere. Fractional absorption under all‐sky conditions was found to be around 0.23 +
−0.02 (Hakuba et al., 2016) and 0.21 under clear‐sky conditions (Wild et al., 2019). Note that Hakuba et al.
(2016) used a difference of top of atmosphere and surface net shortwave radiation under all‐sky conditions
from the CERES‐EBAF remote‐sensing product, while here we used cloud‐free conditions of the downwel-
ling radiation only. Nevertheless, there is a broad agreement, indicating that a large part of the reduction of
solar radiation at the surface under cloud‐free conditions can be attributed to the absorption of shortwave
radiation within the atmosphere.

We find that the monthly time series of fractional clear‐sky transmission show a pronounced seasonal cycle
at extratropical sites (Figures 6 and S2). Thereby, we find higher fractional shortwave transmission during
winter compared to summer. The seasonality can be linked to the seasonality of water vapor in the atmo-
sphere which is an important absorber of shortwave radiation (DeAngelis et al., 2015). This is also consistent
with the reduced seasonality toward the tropics and the lower seasonality in maritime environments com-
pared to continental climates.

Figure 8. Difference of monthly mean clear‐sky fluxes to the standard method for all sites and months. Grey dots show a
reference estimate which simply estimates clear‐sky solar radiation by 0.81 * Rsd,pot. Red dots show the estimate with
time varying fractional solar transmission by quantile regression. The panel on the right shows the marginal distributions
of the residuals, obtained by kernel density estimation.
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5.2. Limitations

The proposed QR method strongly relies on sufficient samples of cloud‐free conditions. Here we used one
month as sampling period which is sufficient for most sites to obtain reliable estimates; however, persistent
overcast conditions can lead to distinctly smaller estimates of fractional clear‐sky transmission. Here we
used the R1 goodness of fit metric and a threshold of 25% of the site average estimate to identify these periods.
Increasing the sampling period allowed to obtain estimates throughout the year for almost all sites
and months.

The method also requires choosing a quantile ω for which the slope β is being estimated. Generally, this
quantile ω should be above the 75% percentile and lower than the 97% percentile. At the highest quantile
the performance drastically decreases. This is because partly cloudy conditions can enhance global radiation
due to enhanced diffuse radiation and high direct radiation. Hence, the occurrence of such conditions at a
given site can influence the choice of ω for quantile regression. Here further research which should include
diffuse radiation measurements is required to improve the approach at specific sites.

Here we used the Long and Ackerman method as a reference to find that the quantile of 85% provides the
best results across the whole set of sites. There are sites where lower quantiles would improve the skill of
the method and further investigation of the radiative conditions at these sites could improve the comparison
with the standardmethod. However, the sensitivity of the correlation and the bias shows a rather flat plateau
around the 85% and indicates that the uncertainty stemming from the choice of ω is relatively small. Given
further uncertainties inmeasurements we believe that the good error statistics for most sites demonstrate the
applicability of the QR approach.

5.3. Potential Applications

Global radiation is commonly measured in various national meteorological sites, and in many research net-
works (e.g., FLUXNET) which allows to apply the method for a much wider spatial and temporal domain
than available with the BSRN network. Thereby, one can obtain relevant climatic information on fractional
solar transmission which is shaped by absorption of solar radiation in the atmosphere, which allows to com-
pute clear‐sky fluxes and the shortwave cloud radiative effect. Spatial and temporal trends are thereby of
high interest to understand for example the reasons of global dimming and brightening (Wild et al., 2005).
Station‐based estimates of fractional clear‐sky transmission and the cloud radiative effect could help to attri-
bute the decadal changes in global radiation observed, namely, in Europe, Northern America, and Asia
(Sanchez‐Lorenzo et al., 2017; Wild, 2016).

With the dense network of global radiation measurements, it is possible to obtain estimates of clear‐sky
radiative fluxes at the monthly time scale. These may be used for validation of remote sensing‐based esti-
mates (e.g., CERES), as reference for climate models (Wild et al., 2019) or for the planning of photovoltaic
installations (Ruiz‐Arias & Gueymard, 2018).

6. Conclusions

We proposed a novel, alternative parsimonious approach to derive clear‐sky solar radiation fluxes only from
commonly measured global shortwave radiation observations at (half‐) hourly resolution. The key idea is
that measurements taken under clear‐sky conditions are linearly related to potential solar radiation. This
slope can be reliably estimated with the statistical method of quantile regression (Koenker, 2005). We used
data of the BSRN network which provides the highest‐quality observations of surface radiation measure-
ments to evaluate the proposed method with a well‐accepted standard approach (Long & Ackerman,
2000). The standard approach is based on high‐resolution temporal data and also requires diffuse solar radia-
tion measurements which can only be applied for well‐equipped sites, such as those from BSRN. By compar-
ing the derived fractional solar transmission of the novel approach and the standard approach we found the
best agreement with the quantile ω = 85% which is the only parameter which must be set a priori. The esti-
mated clear‐sky shortwave radiation allows to predict the temporal variation with low bias and high correla-
tion across the 54 sites evaluated here. These results provide confidence to apply the novel method at
meteorological sites where global radiation is being measured accurately. With a much larger data coverage
of available global radiation records the proposed method has the potential to provide estimates of monthly
fractional clear‐sky shortwave transmission and clear‐sky fluxes with higher spatial and temporal coverage
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than before. This can be used to analyze the attenuation of solar radiation by gases and aerosols and the
cloud radiative effect on shortwave radiation from a much larger observational network. These aspects are
key to improve and validate remote sensing‐based as well as model‐calculated estimates of shortwave radia-
tion; they can improve the planning of solar energy installations and provide observational constraints on
cloud and aerosol effects relevant to the surface climate.
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