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1 |  INTRODUCTION

Baseline correction belongs to one of the standard proce-
dures in ERP research (cf. Luck, 2005) yet comes with two 
inherent difficulties: the choice of baseline interval and 
the assumption that there are no systematic differences be-
tween conditions in the baseline interval. Often discussed in 
conjunction with high‐pass filtering, baseline correction is 
argued to be an artifact‐free way to compensate for signal 
drifts in electrophysiological recordings (cf. the recent de-
bate started in the Journal of Neuroscience Methods: Maess, 
Schröger, & Widmann, 2016a, 2016b; Tanner, Morgan‐
Short, & Luck, 2015; Tanner, Norton, Morgan‐Short, & 
Luck, 2016; Widmann, Schröger, & Maess, 2015). In the 
following, we will demonstrate that, regardless of the choice 
of baseline interval or high‐pass filter setting, traditional 
baseline correction is never an optimal procedure with mod-
ern statistical methods. In short, the correct way to address 
potential bias introduced by signal drifts is by including the 
baseline period in the statistical analysis.

2 |  THE GENERAL LINEAR 
MODEL IN ERP RESEARCH

At the heart of all common analyses in ERP research, whether 
repeated measures analysis of variance (ANOVA) or vari-
ous forms of explicit regression, is the general linear model 
(GLM):

where y represents a column vector of observed EEG data 
(usually averaged over a given time window and in ANOVA‐
based approaches, averaged over trials), xi are column vectors 
of various predictors and covariates, �i represents the (sta-
tistically determined) weights of the xi, and � represents the 
error term (i.e., residuals, which are assumed to be normally 
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distributed). In its usual form, the error term is assumed to be 
homogenous, (i.e., having the same variance across the entire 
model and thus independent of any particular observation—
the homoskedacity assumption). In the case of baseline‐cor-
rected statistics analyses, we can decompose the y column into

(Note that it does not matter whether the baseline is sub-
tracted from the entire epoch before averaging within a given 
time window or afterward. This is because the baseline cor-
rection for a given epoch is a constant and the average of the 
difference is the same as the difference to the average.)

This means that we can re‐express our GLM as

which we can further rewrite as

To highlight the fact that the baseline correction is now on the 
“predictors” side of the equation, we change its name from 
ybaseline to xbaseline:

We note that this is just a special case of a linear model with 
the baseline correction as a predictor, with the special case 
that �baseline =1 (and no baseline correction is exactly the case 
that �baseline =0). This already suggests a more general way 
forward: we make the baseline interval a proper predictor 
and allow the model to determine the weight empirically. 
Nonetheless, let us consider the usual assumptions of classi-
cal baseline correction.

3 | THE UNDERLYING ASSUMPTIONS 
OF TRADITIONAL BASELINE 
CORRECTION MAKE IT 
IRRELEVANT

For traditional baseline correction to be valid, we assume that 
experimental conditions (whether traditional discrete, facto-
rial conditions or “continuous conditions” in more naturalis-
tic and less parametric designs) do not differ systematically 
in the electrophysiological activity in their respective base-
line intervals. If they were to differ systematically in their 
baseline interval, then traditional baseline correction would 
move effects from the baseline window into window of inter-
est (cf. e.g., Luck, 2005). Component overlap between trials 
presents a particular set of problems for this assumption (cf. 
Luck, 2005), although component overlap within trials is also 

problematic, and several methods have been proposed to ad-
dress this issue (Smith & Kutas, 2014a, 2014b). In the fol-
lowing, we will ignore this particular problem for simplicity 
and without loss of generality.

As we have assumed no systematic differences in the 
baseline interval between conditions, we can think of the vec-
tor of baseline values as noise: xbaseline ∼N

(

�baseline, �2
baseline

)

, which we assume to be normally distributed without loss of 
generality. In this case, our linear model simplifies to:

where

In other words, under these assumptions, traditional 
baseline correction increases the variance of the error term, 
(i.e., increases the noise) without otherwise impacting the 
inferential engine beyond introducing a shared offset x̄baseline, 
which will typically be expressed as a change in the inter-
cept term. However, we have made a small yet potentially 
misleading equivalency, namely, that “no systematic dif-
ferences in the electrophysiological activity in the baseline 
interval” is the same as “no systematic differences in the 
baseline interval.” Other physical and environmental dif-
ferences may lead to conditions differing systematically in 
their baseline interval. In the case that they differ only in 
their mean, then the previous observation holds, although 
the offset introduced by the baseline is now conditional on 
the experimental condition (i.e., there is now an interaction 
term with condition). If, however, the variance of the base-
line interval differs, then we no longer meet the assumption 
of homoskedacity, as the resulting error term �′ is not ho-
mogenous across conditions.

We note at this point that the mathematics of traditional 
baseline correction—subtracting out a reference signal—
are the same as the mathematics for rereferencing. It is 
no surprise then that baseline correction suffers the same 
pitfalls as a bad reference, such as biasing apparent to-
pographies and introducing noise (cf. Maess, Schröger, & 
Widmann, 2016a, 2016b; Urbach & Kutas, 2006). However, 
unlike rereferencing, where each channel is shifted by the 
same time‐dependent value and thus the relative values re-
main the same even if the individual values change (see 
Figures 1 and 4 in Lau, Stroud, Plesch, & Phillips, 2006, 
for an example), baseline correction shifts each channel 
by a different time‐independent signal and can change the  
observed topography. As such, even more so than the choice 
of reference, the choice of baseline influences the infer-
ences that can be made about observed effects (see Section 5  
below for further discussion on the choice of baseline 
window).

(2)y= ywindow−ybaseline

(3)ywindow−ybaseline =
∑
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�ixi+�,
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Finally, this result also holds for analyses of spectral 
power (ERSP) under the usual normalization procedure. In 
particular, the usual normalization of dividing the target 
window by the baseline window and then taking the loga-
rithm of the quotient (i.e., converting to decibels) yields the 
same statistical model:

In the following, we will omit further explicit mention of 
time‐frequency analyses, but we note that all results and sug-
gestions apply equally to ERP and ERSP.

4 |  EXPLICIT REGRESSION 
ON SINGLE‐TRIAL DATA AS AN 
OPTIMAL SOLUTION

Returning to explicit regression without the baseline window 
included in the error term, we can consider the simple case of 
one experimental predictor1:

In line with modern practice, we assume that this is a sin-
gle‐trial analysis, although the same should hold, albeit 
less optimally, for aggregated analyses. Including xbaseline 
as a predictor, we use the data to determine the weighting 
of the baseline correction, with �baseline =1 corresponding to 
traditional baseline correction and �baseline =0 correspond-
ing to no baseline correction. Now, if the conditions dif-
fer in the amount of baseline correction “necessary,” we 
can straightforwardly address this by adding an interaction 
term to our model:

This interaction term allows the amount of baseline correc-
tion to vary by condition as would be, for example, necessary 
if changes in the external environment (electrode gel warming 
up, participant sweating, changes in ambient electrical noise) 
occur during the course of experiment, especially for block 
designs. However, even in the case of nonblock designs, this 
actively accounts for issues resulting from randomization 
order and can be complemented by added main‐effect and in-
teraction terms for the trial sequence (or even smoother terms, 
cf. H. Baayen, Vasishth, Kliegl, & Bates, 2017; Tremblay & 
Newman, 2015).

As this procedure allows the data to determine how 
much baseline correction is warranted by condition, it is op-
timal and not as strongly dependent on the “no systematic 
differences” assumption. Like GLM‐based deconvolution 
methods, which model mixtures of time‐lagged influences 
on the signal, this technique reduces confounding by ex-
plicitly modeling other influences on the signal, instead 
of mixing them into the response. Moreover, this method 
includes traditional baseline correction as well as no base-
line correction as special cases and thus supersedes those 
methods. As noted above, this result holds equally well for 
single‐trial time‐frequency data under the usual normaliza-
tion procedure.

The notion of confound is also useful for a more intu-
itive derivation of the optimality of this approach, where 
baseline is a covariate. Baseline correction is not there to 
create a true zero per se but rather as an inferential control 
(cf. Urbach & Kutas, 2006). As noted previously, good ex-
perimental design can and should also function as a way 
for inferential control, and indeed the usual baseline as-
sumptions correspond exactly to a particular method of 
experimental control. However, a more general and more 
powerful technique is to adjust for potential confounds sta-
tistically, by including potential confounds as a covariate. 
Rather than making a priori assumptions about the impact 
of the confound, this procedure allows for determining its 
actual influence and allows for a broader class of experi-
mental designs where the confound cannot be controlled 
via systematic manipulation or experimental procedure 
(Sassenhagen & Alday, 2016).

This method can also be viewed as a computationally sim-
ple special case of regression methods such as rERP (Smith & 
Kutas, 2014a, 2014b), without lagged predictors and margin-
alized over distinct time windows. The method presented here 
has the advantage that it fits much more easily into existing 
computational and statistical frameworks, trivially works with 
modern mixed‐effects models for simultaneously modeling 
both participant and item variance (R. H. Baayen, Davidson, & 
Bates, 2008; Clark, 1973; Judd, Westfall, & Kenny, 2012), and 
is no more expensive computationally than other contemporary 
methods (see worked example below). Finally, this method also 
subsumes and generalizes other baseline‐normalization meth-
ods such as traditional baseline correction, especially when in-
teractions with the baseline predictor are included.

This method does, however, have a few disadvantages. It 
functions best with unaggregated (i.e., single‐trial) data and 
explicit regression approaches (i.e., not AN(C)OVA); how-
ever, these are considered best practice anyway (for the gen-
eral statistical preference for explicit estimation, see 
Cumming, 2014; Kruschke & Liddell, 2017; for insights 
gleaned from single‐trial analyses of ERP data, see, e.g., 
Frömer, Maier, & Rahman, 2018; Gaspar, Rousselet, & 
Pernet, 2011; Hauk, Davis, Ford, Pulvermüller, & 

(8)log
ywindow

xbaseline

= log ywindow− log xbaseline.

1 Of course, in a real study, we would probably have multiple predictors, 
including topographic ones as well as random effects, for example, for 
by‐participant and by‐item differences.

(9)ywindow =�0+�conditionxcondition+�baselinexbaseline+�

(10)
ywindow =�0+�conditionxcondition+�baselinexbaseline

+�condition,baselinexconditionxbaseline+�
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Marslen‐Wilson, 2006; Pernet, Sajda, & Rousselet, 2011; for 
the advantages of a multi‐level regression approach using 
mixed‐effects models, see R. H. Baayen et al., 2008; Clark, 
1973; Judd et al., 2012). Numerically, other issues may arise 
if there is large signal drift and thus variables on vastly dif-
ferent scales; however, once again best statistical practice, 
namely, centering and scaling variables, provides a solution 
to this problem.2 More challenging is that the additional pa-
rameters in these models increase both computational com-
plexity and the amount of data necessary for reliable 
parameter estimation. This is especially true for models in-
cluding topographical information (e.g., channel name or 
position in a multichannel recording). The computational 
complexity is hard to address, but the requirement for more 
data is again in line with contemporary best practice to ad-
dress the chronic lack of power in neuroscience (cf. Button et 
al., 2013; Szucs & Ioannidis, 2017). Regularization (e.g., 
ridge regression or LASSO in the frequentist framework, 
sparsity priors in the Bayesian framework) can also help. 
This method is also somewhat more difficult to integrate into 
procedures not based on the GLM, such as independent com-
ponent analysis (ICA) and source localization, although 
probably not prohibitively so. For example, this technique 
would provide an interesting way to improve stationarity and 
thus potentially enhance IC decompositions of epoched data 
without depending on the strong filters often used in such 
contexts.3 Finally, this method does not completely address 
issues related to the selection of the baseline interval, which 
remains an open question, and a researcher degree of free-
dom, but some general guidelines are suggested in the next 
section.

5 |  RELATIONSHIP TO HIGH‐
PASS FILTERING AND CHOICE OF 
BASELINE WINDOW

It is common to refer to baseline correction as an alternative 
or complementary to (strong) high‐pass filtering. However, 
baseline correction can also be interpreted as a high‐pass fil-
ter in its own right (albeit an unusual one). In intuitive terms, 
baseline correction removes the changes in the signal be-
tween epochs and can be interpreted as removing slow drifts 

and thus low‐frequency components. Like a filter, baseline 
correction, both traditional and regression based, also has 
free parameters that influence its effect on the data.

All things equal, a longer baseline window will tend to be 
less noisy or variable compared to a shorter one. In statistical 
terms, a longer baseline window corresponds to a larger sam-
ple drawn from a random variable and will thus tend to offer 
a better estimate of its true mean with less variance (i.e., both 
more accurate and more precise). However, all things are rarely 
equal, and longer baseline windows present additional diffi-
culties: they require longer interstimulus intervals (potentially 
disruptively long ones for many research questions) and/or po-
tentially include parts of the evoked response from the previous 
stimulus, thus changing the meaning of reference point for later 
evoked potentials. This suggests that a baseline window on the 
order of a few hundred milliseconds may be the sweet spot for 
many experimental designs under typical laboratory conditions 
without large high‐frequency artifacts (see empirical example 
below for a brief comparison of different baseline windows).

Beyond the length of the baseline window, the relative po-
sition of the baseline window to the time‐locking events and 
critical events is also important. Because the position of the 
baseline window within an epoch is absolute and not relative 
compared to a given sample (as in a typical filter), baseline 
correction will generally not remove slow drifts within an 
epoch. In traditional baseline correction, the entire epoch is 
shifted by a constant offset, and thus the overall slope is not 
affected: translations are shape‐preserving transforms. In the 
regression‐based correction proposed here, the drift away 
from the calibration given by baseline will eventually lead 
to the baseline weight shrinking to zero. This is unsurprising 
in the sense that a distant baseline window is a poor baseline 
window (e.g., the first 2 s of EEG recording are not used as 
the baseline window for all trials in that recording). As such, 
baseline correction is not a substitute for but rather a comple-
ment to traditional high‐pass filtering.

The choice of baseline window should also be shaped by 
the research question. The logic of baseline correction, as 
highlighted by Urbach and Kutas (2006), is not to establish 
a true zero (which may or may not be meaningful for a mea-
sure such as voltage that is inherently a difference) but rather a 
meaningful reference point or control with which to compare 
successive changes and thereby infer causality. For a classical 
prestimulus baseline, the ERP thus shows the change in the 
electric field following the stimulus (or, more generally, event 
of interest): the state after the stimulus relative to the (average) 
state before. For a baseline consisting of the entire epoch, the 
ERPs show the change in the electric field relative to its aver-
age of a time interval that includes the event of interest. This 
does not show as directly that the state afterward is different 
than the state before and instead only shows the difference 
to the average state. When the difference to the average state 
is larger after an event of interest than the difference to the 

2 This is sometimes addressed as part of the signal processing, via a special 
case of baseline correction, namely, subtracting the mean of the whole trial 
from each trial. However, as the activity between conditions is assumed to 
differ between trials, this again violates the assumptions of baseline correc-
tion and can introduce effects into other time windows. This is especially 
problematic for large‐amplitude and/or prolonged effects. While not prob-
lematic for statistical analyses carefully focused on a single time window of 
interest, this is still less optimal than simply scaling the variables in the re-
gression model.
3 We are indebted to a helpful reviewer for suggesting this approach.
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average state before the event of interest, then this can also be 
taken as indirect evidence of event‐related change; however, 
this second stage of “difference of differences” is implicitly 
an additional baseline correction to the prestimulus interval. 
The no‐baseline‐correction case corresponds to assuming 
that the reference point aligns with true zero, which may be 
a reasonable assumption, for example, for studies with stron-
ger high‐pass filtering and comparable stimulation before the 
critical event. The advantage of using regression‐weighted 
baseline correction is that the data determine the evidence that 
the chosen reference point (baseline window) differs from true 
zero and how to weight its contribution because the reference 
point itself is a noisy measurement. In other words, using a 
deterministic baseline is ignoring the error bars on the control 
given by the baseline window.

This is crucial when interpreting topographies. Traditional 
baseline correction necessarily projects the inverse scalp 
topography into the epoch, but the weighting in the regres-
sion‐based approach properly controls for scalp topography 
instead of forcibly shifting it. This is achieved in two ways. 
First, the weighting of the baseline window can differ by 
electrodes. Second, the weighting of the baseline window 
can differ by condition. In either case, this can be achieved by 
performing the baseline correction on each electrode or con-
dition separately (as in traditional baseline correction) or by 
including topographical position or condition as interaction 
effects in the regression model (for a pooled estimate). By 
applying such proper statistical control, we can avoid many 
of the biases that lie at the heart of Urbach and Kutas's (2006) 
arguments. The empirical example in the next section shows 
how traditional baseline correction can be misleading in such 
cases, but the regression‐based approach properly controls 
for topographical differences in the baseline conditions.

In brief, baseline correction serves a similar role to high‐
pass filtering and suffers many of the same potential pitfalls 
in terms of artifacts, both causal and acausal. Moreover, each 
has a number of similar tradeoffs: longer baseline intervals 
and stronger high‐pass filters better correct for some types 
of noise in the signal but at increased risk of additional ar-
tifacts. However, one does not completely replace the other, 
and the combined choice of baseline window and high‐pass 
filter should reflect the tradeoffs necessary for a particular 
experimental design. Regression‐based baseline correction 
supersedes traditional baseline correction but does not elimi-
nate the need for appropriate high‐pass filtering.

6 |  EMPIRICAL EXAMPLE: N400  
PARADIGM WITH ENVIRONMENTAL 
NOISE

In the following, we aim to demonstrate the claims above 
via an empirical example. We reanalyze data from Tromp, 

Peeters, Meyer, and Hagoort (2017), a classical semantic 
mismatch N400 paradigm, but conducted in virtual real-
ity with a cross‐modal mismatch. The virtual reality setting 
presents a particular challenge because of the potential for 
environmental noise and movement artifacts. Such noise and 
artifacts could potentially cause signal changes despite no 
violation of the “no systematic differences in electrophysi-
ological activity” assumption and thus necessitate a correc-
tion for signal drift.

Using MNE‐Python v0.17.1 (Gramfort et al., 2013) and 
in line with the original analysis, (continuous, nonepoched) 
data were rereferenced to the linked mastoids and band‐pass 
filtered from 0.1 to 40 Hz (pass‐band edge; zero‐phase FIR 
filter with a Hamming window and fir_design = fir-
win, all other parameters left as auto). These filter settings 
should eliminate line noise and very slow drifts without in-
ducing problematic artifacts, but traditional wisdom suggests 
that they do not eliminate the need for baseline correction (cf. 
Tanner et al., 2016). As in the original analysis, the baseline 
interval consisted of the 100 ms immediately before (audi-
tory) stimulus onset. Analyses conducted with other high‐
pass filter edges (0.1, 0.3, 0.5, 1.0 Hz) are presented below 
in summary form for comparison but are not discussed at 
depth nor further analyzed. Trials with instantaneous ampli-
tude exceeding ±75 µV were excluded from further analysis. 
Although Tromp and colleagues (2017) analyzed both the 
N400 time window and an earlier time window, we restrict 
ourselves to their N400 window (350–600 ms).

It is important to note that the original data were recorded 
at 500 Hz and filtered online with a low‐pass filter at 200 Hz 
and a high‐pass filter at 0.016 Hz. The file metadata show that 
the high‐pass filter was applied both in hardware and in soft-
ware, while the low‐pass filter was applied only in software. 
Although Tromp and colleagues (2017) originally reported on-
line high‐pass filtering at 0.01 Hz, Brain Products amplifiers 
specify their cutoff in time (here: 10 s), and the corresponding 
frequency cutoff is calculated as 1∕2�t following analog fil-
ter convention and not as 1∕t as is common in other areas. As 
such, the raw data already reflect two forward passes of a weak 
high‐pass filter. This will, of course, greatly attenuate the sorts 
of drift that baseline correction serves to correct but is not an 
unusual recording setup and as such demonstrates that the role 
baseline correction plays under actual laboratory conditions.

All analysis source code as well as the preprocessed 
single‐trial data are available on OpenScience Framework 
(https ://osf.io/pnaku/ ). There are data for each of the above 
filter settings as well as for several different baseline windows 
(500 ms prestimulus, 200 ms prestimulus, 100 ms prestimu-
lus, 200 ms poststimulus, average across entire epoch). It is 
beyond the scope of this manuscript to discuss all possible 
combinations of baseline interval and filter settings in depth, 
but we do briefly examine the impact of the baseline interval 
for the primary high‐pass filter setting (0.1 Hz) below.

https://osf.io/pnaku/
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6.1 | Differences in the baseline are illusory
The grand‐averaged waveforms from the apex electrode Cz 
are presented in Figure 1 with the corresponding difference 
waves in Figure 2. Figure 1a presents the waveform with-
out any baseline correction. Although the grand averages 
themselves look distinct in the baseline window, we see 
that the confidence intervals overlap, and correspondingly 
the confidence interval for the difference wave crosses 
zero (Figure 2a). We are thus unable to reject the null hy-
pothesis that the observed difference between conditions 
in the baseline interval occurred by chance alone. Less 
rigorously, the waveforms are statistically indistinguish-
able in the baseline window, and the apparent differences 
in the baseline window are not distinguishable from noise. 
Figure 1b presents the waveform with traditional baseline 
correction. We note how the confidence intervals become 
broader; moreover, there is an apparent, yet misleading, 
prolonged separation of the waveforms well beyond the 
N400 time window, which is also apparent in the difference 
wave in Figure 2b. Again, the overlap in the confidence in-
tervals suggests that this difference is not distinguishable 
from noise; however, this distinction would be lost in typi-
cal ERP plots without confidence intervals. Finally, Figure 
1c presents the regression‐based baseline strategy applied 
to each time point. We see that the confidence intervals are 
much narrower than in the traditional baseline correction. 

Moreover, the overall time course of the N400 effect is 
much more apparent and much more temporally focal in 
the difference plot (Figure 2c).

Figure 3 displays the topography of the grand‐averaged 
difference waves. Note that the overall topography does not 
change greatly between baseline‐correction methods for this 
experiment because stimulation before onset of the critical 
item was comparable. Taken together, Figures 2 and 3 sug-
gest that regression‐based baseline correction reduces the 
size of the N400 effect. This is not quite accurate; instead, 
traditional baseline correction leads to a slight overestimation 
of the size of the N400 effect. This is discussed in more depth 
below.

Most interestingly, the later N400 effect around 
600‒800 ms reported by Tromp and colleagues (2017) with 
traditional baseline correction has a different topography 
than the early one around 300‒500  ms.4 While they re-
ported no overall interaction between condition and topog-
raphy within each time window, they did not compare 
topographies between time windows. Meanwhile, both no 
baseline correction and regression‐based baseline correc-
tion suggest an extremely weak effect near zero across the 
entire scalp (Figure 3a,c). Examining the topography in the 
baseline window given in the no baseline‒correction plot 

4 We are indebted to a helpful reviewer for pointing out this shift in topogra-
phy and positing that it may be a baseline artifact.

F I G U R E  1  Comparison of baseline‐correction strategies for waveforms at the apex electrode (Cz)

(a) (b) (c)

F I G U R E  2  Comparison of baseline‐correction strategies for difference waves at the apex electrode (Cz)

(a) (b) (c)
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(Figure 3a), we see that traditional baseline correction proj-
ects this small, albeit nonsignificant, difference in means 
forward in time, where it combines with the minimal effect 
present in that time window to generate the larger observed 
effect with its distorted topography and duration. This 
graphical impression is supported by analysis with mixed‐
effects models: the inclusion of the baseline in the model 
improves fit and removes the effect of condition (Figure 4). 
In contrast, the primary N400 effect in the 350–600  ms 
time window retains its topography across correction 
methods.

For all of these plots, we note that the bootstrap con-
fidence intervals computed samplewise per electrode on 
single‐subject averages do not correspond directly to the 
statistics used in the analysis below. In particular, the anal-
yses below include subject and item variance simultane-
ously and are computed on trialwise window and region of 
interest (ROI) averages. The window and ROI averaging 
will generally increase the signal‐to‐noise ratio, and as has 
been noted many times (e.g., R. H. Baayen et al., 2008; 
Clark, 1973; Judd et al., 2012), item variance cannot be ig-
nored, especially in language studies. This is apparent (see 
Table 1) where the between‐item variance is larger than the 
between‐subject variance.

6.2 | Prestimulus baseline influence on later 
components is not what you think
The misleading duration and amplitude of the N400 effect 
in the plot with traditional baseline correction is partly the 
result of traditional baseline correction's ability to bias later 
components in the wrong direction. Figure 5 shows the cor-
relation of the ERP for each condition with the baseline 

F I G U R E  3  Comparison of baseline‐correction strategies for the 
topography of difference waves

(a)

(b)

(c)

F I G U R E  4  Coefficient plot comparing estimates from different baseline correction strategies in the later time window (600–800 ms). 
Intervals are 95% profile confidence intervals. Note the extremely small, yet extremely precise, estimate for the (effect of the) baseline window. 
Model selection preferred the regression model including baseline as a main effect but not further interacting with ROI or condition; see below 
for a more extensive example using the primary window of interest (350–600 ms). The impact of the small bias introduced by traditional baseline 
correction is apparent in the confidence interval for the effect of condition—even a small change downward would have led to a rejection of the 
null hypothesis
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interval over time. Unsurprisingly, the correlation with the 
mean of the baseline interval is quite high within the baseline 
interval; however, the correlation drops off rapidly, reach-
ing zero less than 200 ms after stimulus onset. Somewhat 
disconcertingly, the correlation in typical N400 and P600 
time windows is nonzero and negative. This suggests that 
traditional baseline correction is shifting the waveform 
in the wrong direction. As voltage is inherently a relative 
measure, this bias, shared among all conditions, is not par-
ticularly problematic per se. Nonetheless, the low magnitude 
of the correlation at larger latencies indicates that there is 
little shared covariance between the baseline window and 
the target window. In other words, applying traditional a 

priori baseline correction fails to correct bias introduced by 
the baseline. Moreover, traditional baseline correction may 
introduce additional bias and will necessarily introduce the 
additional variance from the baseline interval. This suggests 
that the baseline interval is most relevant for the early exog-
enous, perceptual components. Again, including the base-
line interval as a predictor in the statistical model applies the 
correct amount of correction as determined by the data—and 
that level of correction is expected to differ between data 
sets. For example, DC recordings without online or offline 
high‐pass filtering will necessarily require more correction 
than those such as here with both online and offline high‐
pass filters.

Linear mixed model fit by maximum likelihood

AIC BIC logLik Deviance df.resid

40623 40782 −20289 40577 7187

Min 1Q Median 3Q Max

−5.44 0.64 0.01 0.64 4.42

Random effects

Groups Term SD Corr

Item (Intercept) 1.02305

condition[S.match] 0.68514 −0.366

Subject (Intercept) 0.48629

condition[S.match] 0.67955 0.228

Residual 3.94258

Number of observations: 7210, Groups: item, 80; subject, 20.

Fixed effects

Estimate SE t value

(Intercept) −0.92 0.17 −5.6

baseline −0.2 0.0088 −23

roi[S.LA] 0.24 0.096 2.5

roi[S.LP] 0.19 0.094 2

roi[S.RA] −0.23 0.1 −2.2

roi[S.RP] −0.11 0.094 −1.2

condition[S.match] 0.47 0.18 2.7

baseline:roi[S.LA] 0.011 0.016 0.7

baseline:roi[S.LP] −0.014 0.018 −0.77

baseline:roi[S.RA] 0.0039 0.015 0.25

baseline:roi[S.RP] −0.01 0.018 −0.57

baseline:condition[S.match] −0.033 0.0087 −3.8

roi[S.LA]:condition[S.match] −0.11 0.093 −1.2

roi[S.LP]:condition[S.match] 0.11 0.094 1.2

roi[S.RA]:condition[S.match] −0.1 0.095 −1.1

roi[S.RP]:condition[S.match] 0.067 0.094 0.71

Note: All categorical contrasts are sum coded. ROIs are named by laterality (L vs. R) and sagittality (A vs. P) 
or the midline (M). Model fitted with lme4 version 1.1.20 (Bates, Maechler, Bolker, & Walker, 2015).

T A B L E  1  Summary of full model for 
the primary window of interest (350-600 ms) 
with pairwise interactions between 
topography, manipulation, and the baseline
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We see this in the mixed‐effects model for the N400 time 
window, presented in Table 1 and Figure 6. Although the 
main effect for the baseline window has a large t value, the 
actual size of the effect is quite small and in the wrong direc-
tion. (Recall from above that traditional baseline correction 
corresponds to a regression weight of +1). We also note that 
there is an interaction of baseline with condition, which tra-
ditional baseline correction could not have accommodated.

6.3 | Model complexity and fit and their 
impact on statistical power
While the model presented in Table 1 may seem much 
more complex to fit and interpret than a model without the 

baseline predictors, this is not the case. As elsewhere in sta-
tistics, we can include additional covariates as controls with-
out further interpreting those covariates. In other words, we 
can safely ignore the terms related to baseline correction, 
but we cannot omit them from the model. As reflected in 
the shifted vertical midpoint in Figure 1, the baseline term 
will have an impact if we compute, for example, marginal 
means, but that does not preclude us from interpreting the 
effects attributable purely to our experimental manipula-
tion. Moreover, if the interpretation of the interaction be-
tween the baseline and the experimental manipulation is of 
interest, then it is no different than the interpretation of the 
interaction between topographical predictors and the exper-
imental manipulation.

Following the ongoing debate about the tradeoffs in 
Type I error, power, and model complexity (e.g., Barr, Levy, 
Scheepers, & Tily, 2013; Matuschek, Kliegl, Vasishth, Baayen, 
& Bates, 2017), we can consider the impact of additional pre-
dictors on model fit and statistical power. Figure 7 shows that 
the improved fit resulting from including the baseline window 
as a predictor more than compensates for the potential loss in 
power from the additional predictors (power estimated using 
the simr package, Green & MacLeod 2016). Moreover, the 
reduced variance in the dependent variable results in faster 
convergence of the numerical optimization procedure, and 
thus computation time is also not worsened by the additional 
model complexity. For this particular data set, the models 
with additional terms for the interaction of the baseline with 
condition and topography do show an improved fit (as mea-
sured by log likelihood), but the accompanying increase in 
model complexity exceeds the corresponding improvement 

F I G U R E  5  Correlation of electrophysiological signal with 
baseline interval at the apex electrode (Cz)

F I G U R E  6  Coefficient plot for the 
model presented in Table 1. Intervals are 
95% profile confidence intervals. Note the 
extremely small, yet extremely precise, 
estimate for the (effect of the) baseline 
window

F I G U R E  7  Statistical power and 
model fit for different types of baseline 
correction
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in model fit when comparing the pairwise interaction model 
to the full interaction model (ΔAIC = 6, and corresponding 
likelihood‐ratio test �2 (4)=2.8, p= .6). We therefore prefer 
the more parsimonious pairwise interaction model over the 
full interaction model. Crucially, the model with traditional, 
a priori baseline correction performs the worst in terms of 
model fit. The minimal apparent increase in power is thus ir-
relevant because a poorly fitting model calls the overall valid-
ity of inference into question. We see here empirically what 
we demonstrated mathematically above: traditional baseline 
correction reduces power and biases our inferences.

For comparison, the estimates from a priori baseline, no 
baseline, and the pairwise model are plotted in Figure 8 (see 
also Figure 4 for a similar comparison in the late N400 time 
window examined in a post hoc analysis by Tromp and col-
leagues). Overall, the pattern of effects is similar across mod-
els, except that the model with the a priori baseline has much 
larger estimates and larger confidence intervals. For the main 
effects of topography, this reflects the topographical biases 
inherent in traditional baseline correction and reflects the 

combined topography of the baseline interval and average to-
pography across both conditions, while the interaction model 
separates these effects.

The larger estimate for the experimental manipulation 
also leads to its high power estimate (cf. Figure 7). Although 
its confidence interval is much broader than the other models, 
the mean value is higher and so the lower edge of the confi-
dence is further away from zero. This in turns leads to higher 
observed power, which is known to be biased in this way (cf. 
Gelman & Carlin, 2014; Hoenig & Heisey, 2001).

6.4 | Choice of baseline window and high‐
pass filter
The baseline window and high‐pass filter used in the analy-
sis thus far were chosen to match the original analysis by 
Tromp and colleagues (2017). Given the overall experi-
mental design and considerations on the impact of baseline 
window discussed above (Section 5), we do not expect a  
large difference for longer prestimulus windows. We tested 

F I G U R E  8  Coefficient plot comparing the estimates from the models corresponding to different baseline strategies. Intervals are 95% profile 
confidence intervals. Note the much larger confidence intervals for the a priori baseline but otherwise overall similar pattern of effects for the 
experimental manipulation and its topography. The differences in main effects in topography are an example of the topographical biases inherent in 
traditional baseline correction and reflect the combined topography of the baseline interval and average topography across both conditions, while 
the interaction model separates these effects

F I G U R E  9  Coefficient plot comparing the estimates from the models corresponding to different baseline strategies with different baseline 
windows. Intervals are 95% profile confidence intervals. The long baseline corresponds to 500 ms prestimulus, the medium to 200 ms prestimulus, 
and the “default” baseline to 100 ms prestimulus. The different baseline strategies and windows were estimated with separate models
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this empirically by computing the same pairwise interac-
tion model for the same baseline (100  ms prestimulus), a 
long baseline (500  ms prestimulus), and a medium base-
line (200  ms prestimulus). As Figure 9 shows, the overall 
pattern of effects, both between and within models, did not 
change between conditions, although the absolute magnitude 
of the intercept term (reflecting the average voltage across 
all conditions and ROIs) did change. Similarly, the weight 
awarded to the baseline window changed (see Figure 10), but 
its interactions with ROIs and condition did not (reflecting an 

overall matching of the baseline prestimulus interval across 
conditions). The change in both the intercept and weight of 
the baseline term reflects a change in the absolute voltage 
measured in the N400 window, but the absolute change on 
a relative scale is less interesting than the impact it has on 
the estimate of the effect of interest, which was minimal: the 
estimates for condition and its topographical interactions did 
not differ much between baseline windows. Note that differ-
ent experimental designs with different stimulation and noise 
constraints can lead to a longer or shorter baseline being 

F I G U R E  1 0  Coefficient plot comparing the estimated weights awarded to different baseline intervals. Intervals are 95% profile confidence 
intervals. The long baseline corresponds to 500 ms prestimulus, the medium to 200 ms prestimulus, and the “default” baseline to 100 ms 
prestimulus. The different baseline windows were estimated with separate models, all including pairwise interactions of the baseline interval and 
other predictors

F I G U R E  1 1  Coefficient plot comparing the estimates from the models corresponding to different baseline strategies and different high‐pass 
filter settings. Intervals are 95% profile confidence intervals. All filters are band‐pass zero‐phase FIR filters with an upper pass‐band edge of 40 Hz 
and a lower pass‐band edge corresponding to the value in the plot. The different baseline strategies and filter settings were estimated with separate 
models. Note that stronger filtering shrinks all effects to zero but those attributable to drift (intercept, baseline, topographical main effects) and not 
the targeted experimental manipulation (condition and its interactions) more strongly
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preferable, but for this experiment, the choice of prestimulus 
baseline window did not have a huge impact.

Similarly, the choice of high‐pass filter did not greatly im-
pact the effect of interest here, as seen in Figure 11. All filter 
settings with the exception of the relevant pass‐band edge were 
the same as above (zero‐phase FIR), and for simplicity these 
models were computed using only the 100‐ms prestimulus 
window as the baseline correction. Stronger filtering shrinks 
all effects toward zero but those attributable to drift (intercept, 
baseline, topographical main effects) more strongly than the 
fast changes due to targeted experimental manipulation (con-
dition and its interactions). In addition to the potential to shrink 
events of interest to zero with strong enough filtering, filters 
can also introduce other artifacts not obvious in the statistical 
models, as discussed at length in the Tanner‐Maess debate. 
Moreover, pass‐band edge is not the only relevant filter set-
ting—the choice of causal versus acausal, zero‐phase or not, 
filter‐length and IIR versus FIR—all involve a number of 
tradeoffs whose scope exceeds the present manuscript.

6.5 | Bayesian analysis
Despite the theoretical and empirical evidence presented 
above, some researchers may still have a strong a priori 
belief in the necessity of the traditional baseline procedure. 
To that end, we again note that the data‐driven, model‐
based approach presented here will yield traditional base-
line correction, when the data support it. Moreover, we can 
accommodate our a priori beliefs as part of the statistical 
model. Using the R package brms (Bürkner, 2017) to in-
terface with the probabilistic programming language Stan 
(Carpenter et al., 2017, RStan version 2.18.2), we also ran 
a Bayesian analysis with a main effect of baseline interval 
and main effects of and interactions between experimental 
condition and scalp topography. For the baseline interval, 
we used a Student's t  prior with three degrees of freedom, 
centered at +1 and variance equal to 0.001. This leads to 
a very sharp spike centered at 1 with heavy tails—in more 
casual terms, this is a very strong belief in traditional base-
line correction with nonetheless a willingness to change 
given enough evidence. For the condition and topographi-
cal factors, we used normal priors centered at 0 and with 
standard deviation equal to 2. This is equivalent to the as-
sumption that 60% of effects are smaller than ±2 µV and 
95% effects are smaller than ±4 µV, which is a reasonable 
“no outrageous” effects assumption for language‐related 
ERPs.

Figure 12 presents the resultant change in beliefs about 
the correct weighting for the baseline interval. Even starting 
from such a strong assumption, the posterior distribution still 
clearly places the most credibility on a small, yet nonzero 
weighting for the baseline interval in the direction opposite 
the traditional direction.

7 |  CONCLUSION

Baseline correction is in many ways the twin of filtering in 
EEG preprocessing, serving both to replace stronger filtering 
and ultimately functioning as a filter itself (see above dis-
cussion in Psychophysiology and Journal of Neuroscience 
Methods). However, traditional baseline correction is self‐
defeating, increasing noise, and not affecting signal in ex-
actly those situations fulfilling its assumptions. Here, we 
have presented a straightforward extension of the modern 
statistical analysis that supercedes the traditional baseline 
correction, allowing the data to dynamically determine the 
strength of the correction, while including both traditional 
baseline correction and no baseline correction as limiting 
cases. Extending Tanner and colleagues' (2016) comments a 
bit, we can find out whether and how much baseline correc-
tion is a good idea.
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