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ABsTRACT. Topological phases protected by symmetry can occur in gapped and—surprisingly—in
critical systems. We consider non-interacting fermions in one dimension with spinless time-reversal
symmetry. It is known that the phases are classified by a topological invariant w and a central charge
c. We investigate the correlations of string operators, giving insight into the interplay between topology
and criticality. In the gapped phases, these non-local string order parameters allow us to extract w.
Remarkably, ratios of correlation lengths are universal. In the critical phases, the scaling dimensions
of these operators serve as an order parameter, encoding w and c¢. We derive exact asymptotics of
these correlation functions using Toeplitz determinant theory. We include physical discussion, e.g.,
relating lattice operators to the conformal field theory. Moreover, we discuss the dual spin chains.
Using the aforementioned universality, the topological invariant of the spin chain can be obtained from
correlations of local observables.
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1. INTRODUCTION

Topological phases are fascinating examples of quantum matter. In one spatial dimension, they can
be stabilised if the Hamiltonian has a symmetry group. Gapped topological phases have been classified
for both non-interacting fermionic systems (dubbed topological insulators or superconductors) [1-6]
as well as general fermionic and bosonic systems (dubbed symmetry protected topological (SPT)
phases) [7-12]. However, it has recently been realised that critical matter can also form distinct
topological phases—even without gapped degrees of freedom in the bulk [13|. As in the gapped case,
the topology manifests itself physically: for example, through exponentially localised zero-energy modes
at the physical edges. As long as a symmetry is preserved, a topological invariant can prevent two
critical systems from being smoothly connected. Relatedly, there is a lot of recent interest in topological
critical phases which do have additional gapped degrees of freedom [14-27].

In a previous work, we extended the well-known classification of the gapped topological phases of
quadratic fermionic Hamiltonians with spinless time-reversal symmetry [28] (‘BDI class’ of Altland
and Zirnbauer’s tenfold way [4]) to gapless topological phases [13|. These are labelled by a topological
invariant w (€ Z) and the central charge ¢ (€ 1Z) of the conformal field theory (CFT) that describes
the continuum limit if the model is critical. If the system is gapped, we say that ¢ = 0 and w reduces
to the well-known winding number of the BDI class [28]. What allowed for a complete analysis was the
fact that each Hamiltonian in this class can be efficiently encoded into a holomorphic function f(z) on
the punctured complex plane C\ {0}. Remarkably, ¢ and w can then be obtained by counting zeros of
f(2) (see Figure 1). This rephrasing allowed us to argue that two critical models in this class can be
smoothly connected if and only if they have the same topological invariants and central charges.

What remained an open question is the extent to which the topological nature of these gapped
and gapless phases is reflected in their correlation functions. Relatedly, it is natural to ask how the
correlations are encoded in f(z)—especially since ¢ and w are easily derived from its zeros. Moreover,
our earlier work left an uneasy tension: distinct critical phases could be distinguished by the topological
invariant w, yet it was not clear to what extent this lattice quantity is related to the CFT in the
continuum. Hence, bridging this gap in terms of a lattice-continuum correspondence is desirable.
More generally, since these models are exactly solvable we can hope to obtain a lot of information,
and perhaps uncover unexpected features. This is relevant also to the spin chains that are Jordan-
Wigner dual to these fermionic chains: whilst the non-interacting classification is less natural there, the
correlation functions we obtain contain useful physical information that can be related to an interacting
classification.

The aim of this work is twofold: on the one hand, we focus on answering the aforementioned questions
conceptually, linking universal properties of correlations to the function f(z) and shedding light on the
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FIGURE 1. The Hamiltonians we consider can be expanded in a basis H,, (defined below
equation (2)). The physics is encoded in the meromorphic function f(z). The given
definitions of ¢ and w classify the phases of Hppy, where Z[g] denotes the (multi)set of
zeros of g (with multiplicity) and N, the order of the pole at the origin. Physically, ¢
encodes the low-energy behaviour in the bulk, and w the topological properties.

interplay of criticality and topology. On the other hand, since our models allow for a rigorous analysis,
we give derivations of exact asymptotic expressions for important correlators. The method we use,
Toeplitz determinant theory, has a long association with statistical mechanics (for a review, see [29]),
and our analysis generalises the pioneering work of [30-32] to a wider class of physical models.

Since topological phases cannot be distinguished locally, in this work we study the correlations of
so-called string-like objects O, (labelled by o € Z), meaning that (O, (1)O4(N)) involves an extensive
(~ N) number of operators. Using Wick’s theorem, these correlations reduce to N x N determinants.
We calculate their asymptotic behaviour using the theory of Toeplitz determinants [29], phrasing the
answers in terms of the zeros of f(z). Figure 2 summarises some of the main results. In the gapped
case (¢ = 0), it is well-known that SPT phases can be distinguished by string order parameters [33-37],
and we indeed prove that O, has long-range order if and only if o = w. More surprising is that the
ratios of the correlation lengths of these operators are universal, i.e. they depend on w only. Moreover,
the largest correlation length has a universal relationship to the zero of f(z) which is nearest to the
unit circle. In the critical case (¢ # 0), all correlations are algebraically decaying and we obtain the
corresponding scaling dimensions of O,. It turns out that measuring these gives access to both ¢ and
w. Moreover, we propose a continuum-lattice correspondence for these operators. We expect that this
correspondence will prove useful in exploring the effect of interactions on the phase diagram.

Additionally, we discuss these correlators in the spin chain picture that is obtained after a Jordan-
Wigner transformation. For odd «, O, becomes a local spin operator, and long-range order in
(Oa(1)O4(N)) signals spontaneous symmetry breaking. However, for even a these correlators are
string order parameters for spin chain SPTs. Whilst there is no natural notion of ‘non-interacting spin
chains’, our analysis may be helpful for determining the (interacting) classification of topologically
non-trivial critical spin chains.

Since the physical consequences of our results can be understood without going into the mathematical
details, we structure the paper as follows. First, in Section 2, we outline the model and state our main
results. In Section 2.5 we discuss the dual spin chain; then in Section 2.6 we discuss connections to
previous works. In Section 3 we give further details of how our results fit into the broader physical
context. In particular, we discuss general approaches to string order parameters and the consequences
of universality in the gapped phases, give a CFT analysis of long-distance correlations and also show
how our results allow us to deduce critical exponents. Only after this do we give the mathematical
preliminaries in Sections 4 and 5. The proofs of our results then follow in Sections 6 and 7 for the
gapped and critical cases respectively. Finally, in Section 8, we explain how our results may be extended
in different directions.

2. STATEMENT OF MAIN RESULTS

2.1. The model. Consider a periodic chain where each site has a single spinless fermionic degree of
freedom? {CL, ¢n;n =1...L}. For convenience define the Majorana modes on each site:

Tn = CL + Cn, Yn = i(c;rz —cn), (1)

LFurther details supporting this section are given in Appendix A.1.
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FI1GURE 2. Universal asymptotics of the ground-state correlation functions considered
in this work. If ¢ = 0 (i.e. the system is gapped), then O, has exponentially decaying
correlations with correlation length &,. The ratios {,/&g are a universal function of
w, with the global scale set by 1/£ := min¢¢(g[log|(]; see the discussion before equa-
tion (9). (There is long-range order, i.e. a, # 0, if and only if @ = w; see Theorem 1b.)
If ¢ > 0 and the zeros on the unit circle have multiplicity one (i.e. the bulk is described
by a CFT with central charge c), then the correlation functions obey a power law with
universal scaling dimension Ay; see Theorem 4. The dependence of A, on both ¢ and
w means that these parameters may be determined by measurements of scaling dimen-
sions; see the discussion below Theorem 4. Note that there are exceptional cases that
behave differently, as discussed in the text.

where {Vn, Ym} = 20nm and {v,, ¥m} = 0. Our class of interest—time-reversal symmetric, translation-
invariant free fermions with finite-range couplings—has Hamiltonian |13, 38-40]

. o
1 ~
Hgpr = 5 Z Z LaYnYn+as ta € R. (2)
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This can be understood as an expansion in the basis Hy =123 i ¥nVnta- The coupling between
sites has maximum range oy, to the left and right. This model has an antiunitary symmetry, 7',
that acts as complex conjugation in the occupation number basis associated to the fermions ¢, and
satisfies T2 = 1. The Majorana operators 7, (3y,) are called real (imaginary) since Ty,T = 7, and

T3,T = —4,. This class of models is also invariant under parity symmetry P = ™2 e . We study
the thermodynamic limit L — oo, with «;/, finite but not fixed—i.e. we will consider models with
differing maximum range. The results given in this section are all for such finite-range chains, but we
discuss the extension to long-range chains in Section 8.1. This model was first analysed in its spin
chain form in reference [41].

The coupling constants ¢, establish a one-to-one correspondence between Hppr and the complex
functions

) =Stz (3)

This is a holomorphic function away from a possible pole at the origin. By the fundamental theorem
of algebra, f(z) is specified by the degree of this pole and a multiset of zeros (up to an overall
multiplicative constant). The basic relevance of f(z) is that |f(e'*)| gives the one-particle energy of
a mode with momentum k. The phase arg(f(e'*)) is the angle required in the Boguliobov rotation
that defines these quasiparticle modes [13,42]. Remarkably, many other physical questions can be
answered through simple properties of this function. Note that we will consistently abuse notation
f(k) := f(z = e*) whenever we restrict z to the unit circle.
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2.2. Phase diagram. Our results characterise the correlations in the different phases of Hgpi, hence
we give them context by describing the phase diagram. First, phases of matter are defined as equiva-
lence classes of ground states under smooth changes of the Hamiltonian, where two states are equivalent
if they can be connected without a phase transition (i.e. a sharp change in physical behaviour?). In
particular, we define two critical models to be in the same phase if physical quantities such as scaling
dimensions vary smoothly. Smooth changes to the Hamiltonian (i.e. smooth changes to t,, including
increasing the finite range by tuning some t,, off zero) are equivalent to smooth motions of the zeros
of f(z), as we discuss in Appendix A.2.
Hppr has two invariants that label both gapped and gapless phases (see also Figure 1):

1
c=3 (# zeros of f(z) on the unit circle) (4)
w =N, — Np, (5)

where N, is the number of zeros of f(z) inside the unit disk and N, is the degree of the pole at the
origin. If ¢ = 0, the model is gapped. For gapless models, c¢ is the central charge of the low energy CFT
when the zeros on the circle are non-degenerate®. Note that w is an invariant since it cannot change
under smooth motion of the zeros without changing c. It is moreover topological: it cannot be probed
locally, but distinguishes phases and manifests itself through protected edge modes [13|. That the pair
(c,w) specifies the phases of Hppr was shown in reference [13]. If in addition to the symmetries P
and T that stabilise the aforementioned phases, one also enforces translation symmetry, then there are
additional invariant signs, denoted X, that are discussed in Appendix A.2.

Note that the equivalence between Hppr and f(z) allows us to easily find a Hamiltonian within
each phase: H, is a representative of the gapped phase with winding number w and H,, + Hacyy is a
representative of the gapless phase (¢, w).

2.3. String operators. The above is already established in the literature. The results of the cur-
rent work show that given f(z), one can ‘read off’ detailed information about two-point ground-state
correlation functions of the operators Oy (n):

1 <H:Ln;11 i;Vm'Ym) InVn+1 - - - Inta—1 a>0
Oa(n) = { (—i) (H”m;ﬂ i@m%) (=) -+ (Fnpja)e1) @ <0 (6)
HZ;:ll 1YmYm a=0

where z = |a|/2 for a even and x = (Ja| — 1)/2 for a odd (the phase factors make O, hermitian).
These operators are a cluster of || Majorana operators to the right of site n multiplied by an operator
giving the parity of the number of fermions to the left of n. Such operators appear naturally as we
discuss in Section 3.1, see also [43]. There are two typical behaviours for these correlators. Let angle
brackets denote ground-state expectation value, then in the gapped case we expect:

(00(1)Ou(N +1)) ~ Ay + BN 2™ N/éa, (7)

The constants A, and d, as well as the correlation length &, do not depend on N. If A, # 0 we
have long-range order. B, is ©(1) and may include an oscillation with N. Note that, by translation
invariance, we could equally well have considered the correlation function (O (7)Ou (N + 7)) for any
r € Z—we fix r = 1 throughout for notational convenience. Note that (On(1)Og(N +1)) =0if a # 8
as a simple consequence of the Majorana two-point functions given in Section 4.

We will see below that the ground state expectation value limpy_,00(On(1)On (N 4 1)) in the gapped
phase with winding number w is non-zero only when o = w, and is hence an order parameter for that
phase—this can be seen as an extension of the results of [43].

Because these correlators contain a string of fermionic operators of length of order NV, these are called
string order parameters with value A,. Note that in the case that O, is local, (as happens in the spin
picture given in Section 2.5), it is usual to call the one point function (Oq(n)) the order parameter.
This is because in that case the ground state will spontaneous collapse such that v/A, = (O4(n)). In

2Transitions between gapped phases requires the closing of the gap. For two gapless phases a transition occurs when
there is a change in the low-energy description, for example an increase in the central charge of the CFT.

3This is argued in Appendix A.2, see also Section 3.4. If there are degeneracies then we have dynamical critical
exponent greater then one—we will discuss this further below.
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this work we prefer to use a single convention and always refer to the two point function as ‘the’ order
parameter.
At critical points with a low-energy CFT description we expect:

(0a(1)Oa(N + 1)) ~ CoN 28 (8)

where A, is the smallest scaling dimension of a CFT operator that appears in the expansion of the
continuum limit of O,. The prefactor C, may include spatial oscillations, and further details are given
in Section 3.4. Surprisingly, the set O, also act as order parameters for critical phases in a sense that
we explain following Theorem 4.

2.4. Main results. To fix notation, let us write:

B P N, o 2c - ikj Nz B ‘
f) =Tl E- Tl (= -e") T[] - 2). (9)

N, is the order of the pole at the origin, which is also the range of the longest non-zero coupling to the
left. The number?® of zeros inside, on and outside the circle are denoted N, 2¢, N respectively, and
p is a real number. Since the t, are real, all zeros are either real or come in complex conjugate pairs.

We first state results for the gapped case. Firstly we have that the correlators (O, (1)O4(N + 1))
form a complete set of order parameters for the gapped phases of Hppr.

Theorem la. In the phase (w,c=0,%) we have
A}im [{Oa(1)On(N + 1))| = const X dyq- (10)
—00

The non-zero constant is given in Theorem 1b. The value of the sign ¥ may be inferred by the presence
or absence of a (—1)N oscillation in this correlator.

Theorem 1b. In the phase (w,c = 0,%), the non-universal value of the order parameter is given by

1/4

lim [(Ou(1)OL(N + 1) = 7
i=1 1121 7

Thus from the decomposition (9) we can read off w = N, — N, and calculate the order parameter
through the detailed values of the zeros. We discuss the mathematical form of the order parameter in
Appendix E.

The next results show that the length scale in gapped phases is set by £ = 1/|log|(x|| where (, is
any zero that maximises the right hand side of that equation (see Figure 2 for illustration). The set of
¢ that are optimal in this way we call closest to the unit circle; we will always mean this logarithmic
scale® when we talk about distance from the unit circle. The following results will be stated for ‘generic
cases’—we argue that these cases are typical in Appendix A.2.

Now, in the phase w we then have that &, as defined in (7), is equal to —— (for a # w)—this is a

lw—al

(11)

consequence of:

Theorem 2. If the system is in the phase (w,c = 0,X) then, in generic systems, we have the large N
asymptotics

(0a(1)0a(N + 1)) = det(M(N)) (A}im |<ow<1>ow<M>>r) e Nlemelfte ™I (1 +0(1)); (12)
—00

m € Z is a known constant and M (N) is a known |w— a| X |w — | matriz. The elements of this matriz

have magnitudes that depend algebraically on N —in particular, det M(N) = @(N~9) for some § > 0.

Generic systems are those where the nearest zero(s) to the unit circle is either a single real zero, or are

a complex conjugate pair of zeros.

4We consider a multiset of zeros {¢;} and allow (; with different index to coincide. This makes the counting
unambiguous.

SThat is, 1/|log |¢i||. This gives the natural length scale set by each zero, since the set of these lengths is invariant
under spatial inversion f(z) — f(1/z).



w—al| det M(N) ||w—al| detM(N)
1 kN~1/2 -1 —AN—3/2
2 Ar— 322 Ar—
2 —5E N3 -2 —3 N5
3 _%N—wm _3 %N—ZI/Z
1356% n7— 141752% A7 —
4 1(5 N~ —4 16 N~'®

TABLE 1. The value of det(M(N)) in the case that there is one zero closest to the unit
circle, and that zero is inside the circle. The constants x and A are independent of N
and defined in Propositions 1 and 3.

The analysis we give extends to exceptional cases—more than two closest zeros will almost always
give the same &,, but if one has multiplicity, &, may be controlled by the next-closest zero. The &, are
always upper bounded by &, and in fact this bound is saturated in all exceptional cases except when
there are mutually inverse closest zeros. See the discussion in Section 6.2 for full details.

The form of det M (N) derived in Section 6.2.3 allows for some further general statements. Firstly,
if there is one real zero nearest to the circle, then det M (N) is real and does not oscillate with N. The
algebraic factor depends non-trivially on |w — |, as demonstrated in Table 1 for the case that |(] < 1.
If |¢x| > 1 then the second and fourth columns of Table 1 should be interchanged (and the definitions
of A and k change in the obvious way based on the formulae in Propositions 1 and 3).

If there are two complex zeros nearest to the unit circle then det M (V) is real but can contain O(1)
oscillatory terms such as sin(V arg(()) (these oscillations may, however, not appear in the leading
order term of det M(N)). Moreover, if |¢,| < 1 then det M(N) = @(N~Klw=al) where K = 1/2 for
w—a>0and K =3/2 for w—a < 0. The assignment of K is reversed when |(.| > 1.

We complete our analysis of gapped models with a result for the asymptotic approach to the value
of the order parameter. In particular, we prove that &, = £/2, following from:

Theorem 3. In generic systems that are in the phase (w,c = 0,%), we have for large N that

i —2N/¢
<owu;owuv+1»::(eﬂW”1m1<OMUJOWM4»Q <1+3Ne2>(1+0ﬂ»~ (13)
M—o0 N
The factor By is given implicitly in the proof and satisfies |By| = O(1), m € Z is a known constant.
Generic systems are defined as in Theorem 2.

The results of the discussion in Section 6.2 allow extension to non-generic systems. Given non-zero
correlation lengths of O, for o # w, the formula 1/&, = 1/&,-1 + 1/&w+1 holds. This agrees with
Theorem 3 in the generic case where &,11 = &,—1.

We now discuss results for the gapless phases. In critical chains the phases in the BDI class described
in the bulk by a CF'T and connected to a stack of translation invariant chains with arbitrary unit cell are
classified by the semigroup Z>o x Z: they are labelled by the central charge c € %Zzo and topological
invariant w € Z. The proof, using the f(z) picture, is given in [13]. Our present interest is confined to
translation-invariant Hamiltonians that lie in one of these phases, and our next result gives the scaling
dimension of the infinite class of operators O,. A graphical representation of this theorem is given in
Figure 2.

Theorem 4. Consider a critical chain in the phase (w,c > 0,X) where the 2¢ zeros on the unit circle
are non-degenerate. Let & = o« — (w + ¢). Then the operator O, has scaling dimension

Bafer) =3+ = (o= 1))

[z] denotes the nearest integer to x.

(14)

z=a/2c

Note that A, explicitly depends on the topological invariant w. Equation (14) is independent of
the choice in rounding half-integers, although for later notational convenience we define it to round
upwards in that case. In Section 7 we prove Theorem 4 on the way to the more detailed Theorem 10.
That theorem gives the full leading order term in the asymptotic expansion of (O, (1)O4(N + 1)) at
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criticality, including nontrivial oscillatory factors that are helpful in identifying lattice operators with
fields in the CFT description. We give a discussion of this CFT description in Section 3.4. A similar
result holds when we have degenerate zeros on the unit circle, as long as every degeneracy is odd. We
do not give results for the case that we have any zero of even degeneracy.

In the gapped case, Theorem la makes a simple link between measuring (O, (1)O4(N + 1)) and
learning w—one simply looks for the value of a with long-range order. It is not immediately obvious how
to generalise this to critical models. Theorem 4 shows that, as in the gapped phases, the behaviour of
correlation functions allows us to see marked differences between different critical phases. In particular,
the link between lattice operator and the operators that dominate its CFT description changes at a
transition between critical phases (discussed in detail below). In the critical case one can determine ¢
and w, but this requires information about more than one correlator. Inspecting the form of equation
(14), displayed in Figure 2, one concludes that it is not necessary to measure the scaling dimension
of all O, in order to determine the phase. One method would be to measure the scaling dimensions
of {Aq, Apt1,Aqt2} for some convenient «, and form the set of §, = Ay41 — A,. This difference
is equal to [(a — w)/2c — 1/2]—this means that d, is a constant integer on plateaus of width® 2c,
and that neighbouring plateaus differ in value by one. If the d, are all different” then we must have
¢ =1/2 and w can be determined easily using w = oo — d,. Otherwise, one should then measure further
scaling dimensions until the width of the constant plateau (equal to 2¢) is found. Once ¢ is known,
w may be determined: on the edge of the plateau we have w = o — 2¢d,,. Inferring the critical phase
through these scaling dimensions is analogous to distinguishing the gapped phases through the string
order parameter. If our model is taken to represent a spin chain then the O, are local for a odd.
In Appendix C we show that it is possible to recover both ¢ and w using scaling dimensions of local
operators on the spin chain. Moreover, in gapped chains one can use the universality of the gapped
correlations to similarly infer w from knowing only two correlation lengths; this is explained in Section
3.1.

2.5. The dual spin chain. Our results apply not only to Hgpr but also to certain spin-1/2 chains.
We briefly review this correspondence so that the reader can have both pictures in mind, and to help
us make links to the literature in the next section. We write the Pauli operators as
0 1 0 —i 1 0
X = , Y= , 4= . (15)
1 0 i 0 0 —1

Define X,,, Y, Z, as the operators X, Y, Z acting on the nth site (and tensored with identity on all
other sites). A class of translation-invariant spin chains is given by Hamiltonians of the form

to + n+a—1
Hspin:§ Z Zn_z2a< Z Xn( H Zm>Xn+Oc> -

nesites a>0 nesites m=n+1

" n+|al—1

«
5:5 > Yl I Zm| Yos |- (16)
a<0 nesites m=n-+1

As before, we only allow a finite sum over «, have t, € R and take periodic boundary conditions. This
is the class of generalised cluster models. Note that this includes the quantum Ising, XY and cluster
models as special cases. In Appendix A.3 we give details of the Jordan-Wigner transformation that
relates Hgpin to Hppr. The main point is that our results for the behaviour of (Oq(1)On (N +1)) apply
equally well to the spin chain. The expressions for O, in terms of spin operators are given in Table
2. Some of these operators appeared in the recent works [44,45]. Note that, as displayed in Table 2,
O, is local for odd a but remains a non-local string for even «. One can easily see that for odd «,
(On) is zero in any symmetric state; hence Theorem la implies that for odd w we have spontaneous
symmetry breaking. For even w, however, O, is a string order parameter for the spin chain. As we
discuss further in Section 3.1, this is indicative of the spin chain forming an interacting SPT phase.
Note that the two phases can coexist: for a« = 3, the order parameter is O3(n) = X,41Yn+2Xn+3;
hence P =[] i Zj and T' = K have been broken. However, PT is preserved, and due to the similarity

6For clarity, by a plateau of width 2¢ we mean that J, is constant for 2¢ consecutive values of a.
"We need three values of d; to check whether ¢ = 1/2 as 0, and do41 can be different if we happened to choose « at
a kink in the scaling dimension plot—see Figure 2.



! Oa(n)
Positive, odd X Y1 Xnt2Ynis .o Xpta—1
Positive, even (H;‘;ll Zj) Yo X1 YsoXnis - YoraroXntaoi
Zero H;:ll Z;
Negative, odd Yo Xni1YnioXnis. .. Yn+‘a|_1
Negative, even (H;‘;ll Zj) X Yos1 Xn19Yis - Xnsjal—2Yot |1

TABLE 2. Spin operators that are the Jordan-Wigner dual of the fermionic operators Q.

of O3 with the cluster model Hamiltonian—) | y X;Zj+1Xj4o—the ground state is also an SPT phase
protected by PT. Further details may be found in reference [40].

2.6. Relation to previous work. In reference [46], Lieb, Schultz and Mattis set the stage for the
analysis of determinantal correlations in free fermion models and related spin chains. The key reference
related to our results for gapped models is the classic paper of Barouch and McCoy [31]. There the
authors study bulk correlations in the XY model which is the spin model equivalent to (2) with non-zero
to,t1,t—1 only (and hence f(z) depends on two zeros). The section of that paper on zero temperature
correlations contains results for (O, (1)Oy(N + 1)) for a = 1, —1 in the phases w = 0,1 that include
what one would obtain from our theorems. Beyond that, the paper [47] includes a calculation of the
value of the order parameter for a = —1,2 in the special case that f(z) = 22 — X. Some portion of the
phase diagram for —2 < w < 2 is mapped out in reference [48] where order parameters are identified
and calculated numerically. Several papers, for example [49, 50|, study spin models with competing
‘large’ cluster term and Ising term (i.e. non-zero t,, t_1 and ty). In these cases winding numbers are
identified, but not order parameters or their values. Our computation giving Theorem 1b is novel,
extending previous calculations by addressing the full set of translation invariant models in the BDI
class which require f(z) with an arbitrary (finite) set of zeros. Moreover, this generality shows the
robustness of these order parameters throughout the phase diagram.

As mentioned, several papers have identified the form of the order parameters for |w| < 4 in the
spin language. Equivalent fermionic order parameters are easily found using the Jordan-Wigner trans-
formation and the paper [43] includes the fermionic O, for |a| < 2 as well as discussing the general
case. In our work we prove that the intuitive general case holds by linking these order parameters to
the generating function f(z) and matching the winding number of f(z) to the ‘unwinding number’ of
each correlator.

There are many works that study correlations in particular quantum phase transitions in our model.
Again reference [31] should be mentioned, along with [51], as seminal early works that derived critical
behaviour for correlators (Oq(1)O4(N + 1)) with |a] <1 at the ¢ = 1/2 Ising transition. Transitions
with higher ¢ include the ¢ = 1 XX model that is a standard model in physics [52], and the same
correlators were analysed in reference [53] using the mathematical methods found below. We also
mention the quantum inverse scattering method as a tool for calculating scaling dimensions in certain
cases [54] .

An isotropic spin chain is invariant under spin-rotation around the Z axis. In our fermionic model
Hpgpi, this manifests as invariance under spatial inversion H, <> H_,, and hence is a model for which
f(z) = f(1/z). This relation implies that w = —c. The correlators (O, (1)On (N + 1)) with |a] <1 in
isotropic models with general ¢ and w = —c were derived in references [55,56] using the same methods
as this paper. Our results go further by studying a wider class of models, including critical phases
with general (c,w), as well as a wider class of observables: (O,(1)O4(N + 1)) for all a. This allows
us to observe that from knowledge of the scaling dimensions of these operators, one can identify the
topological invariant w.

3. PHYSICAL CONTEXT AND DISCUSSION

In this section we interpret our results and give them context. In Section 3.1 we discuss universality
and its implications for spin chains, as well as the relation to symmetry fractionalisation. In Section
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3.2 we relate correlation length in the bulk to localisation length at the edge and in Section 3.3 we
derive critical exponents from our results. In Section 3.4 we connect our lattice results to continuum
(CFT) models and finally in Section 3.5 we discuss entanglement scaling approaching a transition.

3.1. SPT phases and string orders: universality and symmetry fractionalisation. In Section
2.4, we saw that for both gapped and critical systems in our class of models, one can measure the
topological invariant w by looking at the string order parameters O,. For gapped phases, one needs
to find the value of a for which there is long-range order (Theorem 1la), whereas in the critical case,
one uses the scaling dimensions (see Theorem 4 and the discussion following it). The existence of
topological string order parameters for critical phases is novel. However, even for the gapped phases
that we consider, the string order parameters are unusual. This is for two reasons. Firstly, the
usual justification for string orders relies on the concept of symmetry fractionalisation, which arises in
the classification of interacting SPT phases and is usually not employed in the classification of non-
interacting topological insulators and superconductors. Secondly, even in the interacting case, phases
which are protected by anti-unitary symmetries do not give rise to the kind of string order parameters
we discuss in this work. Bridging this gap is the purpose of Section 3.1.2. However, first we discuss
the remarkable result that the correlations in the gapped phases exhibit universal properties.

3.1.1. Universality. In the gapped phases, O, has correlation length &, = ﬁ (if @ # w), see Figure

2 (we assume the generic case for this discussion). This means that although ¢ depends on microscopic
properties (like the position of the zeros of f(z)), the ratio {,/s depends only on w and is hence
constant in each phase. This has interesting consequences. In principle, to determine the topological
invariant of a gapped phase, one has to find an « such that [(O,(1)O4(N))| tends to a non-zero limit
as N — oo. This requires going through an arbitrarily large set of observables. Surprisingly, it is
sufficient to measure only, for example, two correlation lengths &,, and &,, (for the observables O,
and O,,) for any fixed choice of a1 and ay satisfying |a; — ag| € {1,2}. To see this, note that there
are three cases. Firstly, if one finds long-range order for either oy or ao, then w is known. Secondly,

it &4, = &ay, one knows that w = % In any other case, a; and ag will either both be larger or
smaller than w, such that ga—l = 5:3? This can be uniquely solved, giving w = %
ag a1 a2

The above shows that, using universality, one can replace an infinite number of observables by just
two. However, it has an even more surprising consequence in the spin language. If we choose a1 =1
and as = —1, then this corresponds to the correlation lengths £x and &y of the local observables X,
and Y,. This fully determines the invariant

-1 if imy_00(Y1YN) #0
1 if Impy_eo(X1 X 0
- N— ( 1 N> 7é (17)
0 otherwise and if £x = &y
% otherwise.

This means that one can distinguish, for example, the trivial paramagnetic phase from the topological
cluster phase® by measuring the decay of correlation functions of local observables. This is truly unusual
and presumably an artifact of looking at spin models that are dual to non-interacting fermions. It
would be interesting to investigate such ratios between correlation lengths in interacting models and
determine whether this is a measure of the interaction strength between quasi-particles.

3.1.2. Symmetry fractionalisation. To contrast our analysis to the standard justification for string
orders, we briefly repeat how string order parameters arise within the context of symmetry fractional-
isation. It is worth emphasising that the known constructions for string order parameters of the type
that we discuss are only for SPT phases which are protected by unitary symmetries [35,57].

Let U be some on-site unitary symmetry, i.e. [U, H] = 0 with U = [[,, U,,. Consider the operator
UX = [1,.c x Un where X is some large line segment of length [ (see Figure 3). If I > &, then deep within
X, UX looks like a bona fide symmetry operator. Hence, it is only near the edge of X that UX can have
a non-trivial effect. In other words, if |gs) is the ground state, then effectively UX |gs) = UFUF|gs),
where UL and U® are operators that are exponentially localised near the boundary of the region
X. This can be made rigorous using matrix product states [35,58|. This phenomenon is known as

81.e. models that can be connected to H = — Z; XiZ;i+1Xiy2 without a phase transition.
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F1cURE 3. Consider a system which does not exhibit spontaneous symmetry breaking.
(a) The ground state remains invariant when applying a global symmetry U = [],, U,,.
(b) When acting with U¥ on a line segment X of length [ > ¢, then deep within that
segment, the action is indistinguishable from the global symmetry operation U. Hence,
the state can only be changed near the boundaries of X. In conclusion, effectively,
U~UMUR.

symmetry fractionalisation and is the essential insight that led to the classification of (interacting)
SPT phases in 1D [9,11,12,59|. To illustrate this, consider the case with a symmetry group Zs X Zo,
generated by global on-site unitary symmetries U and V. Since U, and V,, commute on every site,
we have that UXV = VUX. Moreover, UX = ULUR (when acting on the ground state subspace),
implying that U” and V have to commute up to a complex phase. Using that V2 = 1, we arrive at
ULV = (=1)2VU" where w € {0,2}. This defines a discrete invariant which allows to distinguish
two symmetry-preserving phases. (One says that the phases are labelled by the inequivalent classes of
projective representations of Zg x Zs.) In fact, one can show that in the phase where w = 2, the negative
sign implies degeneracies both in the entanglement spectrum and, for open boundary conditions, in
the energy spectrum [8]. Here we will not go into such details, referring the interested reader to the
review in reference [40]. Instead, we consider the effect on correlation functions.

One can consider the string correlation function (gs| U |gs) = (UX) = (UFUT). Due to locality, we
have that (UX) ~ (UF)(UF) for [ > €. Since SPT phases do not spontaneously break symmetries, we
have that (UL) = (ULV) = (=1)2 (VU") = (=1)2 (U*). Hence, we conclude that the string correlation
function (UX) has to be zero if w = 2. Equivalently, measuring (UX) # 0 implies that w = 0, such that
one calls this a string order parameter for the trivial phase (w = 0). Analogously, one can construct
a string order parameter for the non-trivial phase: if V, W are local operators anticommuting with V|
then by repeating the above argument, we conclude that (VUXW) # 0 implies that w = 2 (with V
(W) localised near the left (right) of region X). Note that these string order parameters always work
only in one direction: there is no information if one measures them to be zero. This is in striking
contrast with the string order parameters we found for our non-interacting class of models.

Let us make this discussion more concrete with an example, where U = P = [[ Z,, and V =
Poad = 11,,, oaq Zm- Two models with this symmetry are Hy =) Z, and Hy = — ) X, 12, Xp41.
One can calculate that their symmetry fractionalisations are w = 0 and w = 2, respectively. The
above tells us that Hﬁ[:l Zy is a string order parameter for the trivial phase. Similarly, taking

Vnnt1 = Y Xyp1—which indeed anticommutes with Pogq—then Vi o (Hﬁle Zn) VN+41,N+2, Or equiv-

alently X 1Yo (Hivzg Zn> Yn4+1XnN+2, is an order parameter for the topological phase w = 2. In this

case, the string order parameters we have derived—with respect to Zo X Zo— for the trivial phase
(connected to Hp) and the topological cluster phase (connected to Hy) happen to be the same as we
encountered in the non-interacting case—with respect to the P and T symmetries—see Table 2.

Can we make a connection with our non-interacting classification and the concept of symmetry
fractionalisation? For this it is easiest to work in the fermionic language. It is known that if one
studies the fractionalisation of only the P and T symmetries, then there are only eight distinct phases
[60]. However, since our model is non-interacting, the P and T symmetries imply an additional
structural symmetry: the Hamiltonian can only contain terms which have an equal number of real
and imaginary Majorana modes. This implies that if we have any operator which has a well-defined
number of real minus imaginary Majorana operators (e.g. ¥, Vn+1 would have ‘charge’ two), then the
Hamiltonian time evolution would conserve this. To see how this is useful, consider a fixed-point model
Hy =123 ciites InYnta- It is a simple exercise to check that for the symmetry fractionalisation of
P = P;Pg, we have that P has charge —w (and Pr charge w). By the aforementioned argument
and the concept of adiabatic connectivity, these charges of Pr, and Pgr should be stable throughout
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each gapped phase. It is easy to see that (V) = 0 for any operator whose charge is non-zero. Hence,
in this way we are naturally led to consider ¥ - - - Yo (Yat+1Ya+1 " - ININ) IN+1 - * - IN—+a: this operator
can only have long-range order if a = w.

The power of symmetry fractionalisation is that it is not specific to the non-interacting case. Does
that mean that if one considers interacting Hamiltonians preserving the aforementioned structural
symmetry”, that we obtain an infinite number of distinct interacting phases, labelled by Z and dis-
tinguished by the same string order parameters as the non-interacting case? This is not clear: the
structural symmetry is not a conventional symmetry; in particular, the charge of this symmetry is not
well-behaved under the multiplication of operators (which is usually essential to preserve charge under
renormalization group flow). Hence, it is perhaps unlikely that this structural symmetry gives rise to
non-trivial physics in the interacting case, but it might nevertheless be interesting to explore further.

3.2. Majorana modes: localisation length versus correlation length. In reference [13], we
showed that if w > 0, then the system has w Majorana zero modes per edge. More precisely, to each of
the w largest zeros {z;}i=1,.. w of f(z) within the unit disk, we associate a hermitian operator ¢, all
of them mutually commuting and squaring to the identity. Moreover, these operators commute with T’
and are exponentially localised near the left edge, with respective localisation lengths —1/1n |z;|. (The
same is true for the right edge, where they anticommute with 7'.) The crucial property which makes
them so-called zero-energy modes, is that they commute with the Hamiltonian (up to a finite-size error
which is exponentially small in system size). Hence we have w mutually anticommuting symmetries,
from which one can show that to each edge we can associate a V2" -fold degeneracy!®. This is to be
contrasted with the fact that the ground state is unique for periodic boundary conditions. This is a
characteristic property of topological insulators (and more generally, symmetry-protected topological
phases) in one spatial dimension. This is well-known for the gapped phases of the BDI class, but the
proof in reference [13] shows that this analysis goes through when the bulk is critical (i.e. ¢ # 0).

Reference [39] notes the link between the localisation length of the Majorana edge mode and the
behaviour of bulk spin correlations in a model equivalent to the XY model, and conjectured that this
is a general phenomenon. Here we simply point out that the largest localisation length of a Majorana
mode (if present) need not coincide with the bulk correlation length. Indeed, the latter is determined
by the zero of f(z) closest to the unit circle. In particular, if w > 0, the localisation lengths of the
Majorana modes are determined by zeros within the unit disk, whereas it could certainly be that a
zero outside the unit circle dominates the bulk correlation length. This disagreement between the two
quantities is consistent with the observation in [13] that one can tune a gapped phase to a critical point
whilst (some of) the edge modes remain exponentially localised.

This discussion for w > 0 holds also for w < —2¢ (if we interchange the words ‘left’ and ‘right’), with
the edge modes now being associated to zeros outside the unit circle. As mentioned above, spatial left-
right inversion corresponds to f(z) <> f(1/z), which at the level the topological invariant corresponds
to w <> —w — 2¢. For any other value of w, there are no edge modes [13].

3.3. Critical exponents. Critical exponents encode how different physical quantities diverge upon
approaching a phase transition. In the classical case, the tuning parameter is usually the renormalised
temperature 7 = T%CTC In the current quantum setting, there is an equally natural'! tuning parameter
e € R: if f(z) represents a gapless Hamiltonian, then f.(2) := f(2(1 — €)) interpolates between two
gapped phases. One can think of this as shrinking (¢ < 0) or expanding (¢ > 0) the radial component
of the zeros of f(z). We will work in the case where the system is gapless at ¢ = 0 with 2¢ zeros on
the unit circle, allowing for a multiplicity m (which we take to be the same for every distinct zero).
This means we have 2¢/m distinct zeros on the unit circle. We emphasise that the expressions in the
remainder of this section are derived only in the case of uniform multiplicity. Our results allow for an
analysis of the general case, but we do not wish to pursue this here.

We derive four critical exponents: the anomalous scaling dimension, n, defined by the scaling of the
order parameter, ¥, at the critical point ((U(1)¥(N)) ~ 1/N™); v, which encodes the divergence of
the correlation length (§ ~ |e|™"); the dynamical critical exponent, z, that relates how the correlation
length ¢ diverges relative to the characteristic time scale defined by 7, the inverse energy gap (7 ~ &7);
and B which relates to the decay of the order parameter (¥ ~ |e|?).

9That is, we allow any interaction term that contains the same number of real as imaginary Majorana modes.
10Hence the system as a whole has a 2“-fold degeneracy.
HMoreover, one can check that this agrees with 7 under the quantum-classical correspondence.
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Exactly at the critical point, we have given explicit results above only for m = 1. In particular,
Theorem 4 gives us that 7 = ¢/2. In the special case of ¢ = 1/2, we recover the well-known result
n = 1/4. For m > 1 and odd, we can use equation (113) from Appendix F to easily derive that
n = mc/2. The other three exponents are defined away from criticality where we can allow for any
m > 1. The correlation length is determined by the nearest zero, such that £ ~ 1/|In|1 +¢|| ~ 1/|e].
Hence, v = 1; independent of ¢ and m. The energy gap, min,cq1 |f(2)|, depends on the location of
all zeros. However, close to criticality, we need to care only about the zeros describing the transition.
Moreover, each of the distinct zeros has a local minimum, which all scale the same way. So without
loss of generality, we can consider f(z) = (z — (14 ¢))™. The gap scales as ~ |¢|™, such that 7 ~ ™
with dynamical critical exponent z = m. This is consistent with m = 1 being described by a CFT with
central charge c, since that implies z = 1. Lastly, we consider the order parameter given in Theorem

1b. For each distinct zero, the order parameter has a factor [1— (14¢)2|™"/8 ~ |¢|™/8; all other terms

do not go to zero with e. Combining 2¢/m such factors, we have ¥ ~ |€‘%X%. Hence, f = mec/4.

In the special case of the Ising transition, m = 1 and ¢ = 1/2, this reduces to the well-known result
g =1/8.

The above results are consistent with the well-known scaling relations [61]. In particular, we can
straightforwardly confirm that 28 = v(n + d — 2), where our dimension is d = 2. In fact, the afore-
mentioned relationship implies that 7 = mc/2 for any multiplicity m. Moreover, such scaling relations
can be used to derive other critical exponents: such as v =v(2—-1n) =2 —-m¢/2, a =2 —-vd =0
and 0 = vd/fB — 1 = 8/mc — 1. It is interesting to note that the critical exponent ~ changes sign for
mc = 4. This data is summarised in Table 3.

Critical exponent | « | S ¥ 0 n vz

Value 0|mec/d|2—mc/2|8/mc—1|mc/2|1|m

TABLE 3. Summary of the critical exponents found in Section 3.3. As above, ¢ is half
the number of zeros on the unit circle and m is the multiplicity of these zeros (taken to
be uniform). If m = 1, then ¢ is the central charge.

3.4. CFT and continuum-lattice correspondence. We now explain how certain features of The-
orem 4 (and Theorem 10) fit in to a CFT analysis of the critical point. This section is not rigorous,
the aim is to complement the mathematical proofs with a perhaps more intuitive physical picture. We
also use Theorem 10 to make claims about passing from the lattice to the continuum description of
the operators O,,.

If our system has 2¢ non-degenerate zeros on the unit circle, then one can argue that the appropriate
low-energy theory is a CFT built from 2c¢ real, massless, relativistic free fermions [62]. Briefly, one
can linearise the dispersion relation |f(k)| about all of its zeros on the circle (Fermi momenta), and
each local linearised mode is such a fermion. Moreover, since |f(k)| = |f(—k)| we can combine the
real fermions from a pair of complex conjugate zeros to form a complex fermion with central charge
one. This is helpful as complex fermions can be bosonised using the methods given in [52,63,64]. In
general, then, we have a low energy theory of an even number of complex fermions and either 0, 1 or
2 real fermions (located at k = 0 or 7). The central charge is always equal to c.

3.4.1. High level analysis. In reference [65], general CFT considerations are applied to integrable mod-
els to find asymptotic correlation functions of local operators Ay (z) that create fixed numbers, n;, of
quasiparticles of type j (i.e. excitations near momentum +£k;). For equal times, these take the form

(ALO) An(@)) = 3 Cupa 2 X0 A 5, miks (18)

{m;}
for scaling dimensions A,({), Fermi momenta k; and the sum is over sets of m; € 2Z . The amplitude
C4, depends on the appropriate form factor [65]. The oscillatory term comes from a multiplicative
factor e % when A gives an intermediate excitation with momentum &p—these are non-zero when
we have particle-hole excitations where the particles and holes are at different Fermi points. Relevant
discussion is found in references [54,65,66]. The O, that we consider are ‘square-roots’ of local operators
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in the sense that the product On(n)O4(n+m) (for small m) is a local fermionic operator on the lattice
and has an expansion dominated by such A. One may then expect that correlations of O, will have the
same form as (18), but with m; € Z. This is verified in Theorem 10, apart from the possibility of an
additional (—1)* oscillation. This is needed when the low energy degrees of freedom are modulated by
this oscillation. The constant in Theorem 10 implicitly gives form factors of the relevant fields [65,67].

3.4.2. CFT operator correspondence for one real fermion. We now consider more details of the CFT
description and the correspondence with canonical continuum operators. The following discussion will
be in terms of the spin chain dual to the fermionic system, as discussed in Section 2.5.

If our model has one zero on the unit circle (which must be at z = £1, corresponding to k = 0,7
respectively), then our continuum limit has ¢ = 1/2, and is hence described by the Ising CFT [68].
The operator content of this theory is well understood and, amongst the primary operators, there
are exactly two with scaling dimension 1/8. These are the ‘spin’ and ‘disorder’ operators, denoted
by o and p respectively. In the usual lattice Ising model, ¢ is the field corresponding to the local
order parameter of the neighbouring ordered phase and p is a non-local string order parameter of the
neighbouring paramagnetic phase. Moreover, ¢ is odd under parity symmetry (realised on the lattice
as P = Hj Zj), while 11 is even under P. Now, if we are in a model with w = 0 and ¢ = 1/2, then we
can continuously tune to a critical Ising chain H = ;X Xj1 £ Z; for which the correspondence is
standard and discussed in [68]. In particular, we will have X, — o(n) and [[’___ Z; — p(n); note
that this is consistent with the aforementioned symmetry considerations. Moreover, models in our
class with w = —1 and ¢ = 1/2 are in the same phase as a critical Ising chain H = Zj YY1 £ Z;
where the analogous standard correspondence is Y, — o(n) and [[;__ Z; — p(n), again consistent
with locality and symmetry properties.

Our results on the lattice, in particular Theorem 4, allow us to extend this by showing that a system
with ¢ = 1/2 and winding number w has two operators with this dominant scaling dimension: O, and
Ou+1. By considering locality and parity symmetry of the operators, as well as scaling dimension, we
identify O, with ¢ when w is odd and g when w is even; O, is then the other field. Importantly,
we conclude that the operators on the lattice that have overlap with the dominant primary scaling
fields depend on w. Indeed, along a path that connects a model with ¢ = 1/2 and winding number w
to a model with ¢ = 1/2 and winding number w’ # w then we must encounter a multicritical point
with ¢ > 1 where the pair of dominant operators in the ¢ = 1/2 models will have degenerate scaling
dimension and the dominant pair changes as we go through this point—we give an example of this in
Section 3.4.4. Other operators O, for a neither w nor w + 1 will be dominated by descendants of ¢ for
a odd and of u for a even (the lattice operators have dimension 1/8 + j for some j € Z, so we should
take CFT descendants at level j). Note that in all correspondences we may have a (—1)" oscillatory
factor.

3.4.3. CFT operator correspondence for one complex fermion. Let us now consider the case ¢ = 1
with a complex conjugate pair of zeros, at e**7 and a U(1) symmetry generated by Sz, = 123", Z;
(the standard model in this class is the XX spin chain [52], which in our language corresponds to
H = H_; + H; with f(z) = 2+ 1/z). These are isotropic models with f(z) = f(1/z), which implies
that w = —c¢; we discuss other values of w later.

The fermionic Hamiltonian may be bosonised as described in [63,69,70] and [52, Chap. 20|, passing

also to a continuum limit. We denote the resulting bosonic fields by 6(x) and ¢(z), such that

[0zp(),0(y)] = [020(x), p(y)] = imd(x — y) (19)

where §(x) is the Dirac delta function. We now recall some standard results for the isotropic model [52,
71]. Firstly, the vertex operator (@) creates a localised charge of the aforementioned U(1) symmetry,
and Oyp(x) is a density fluctuation: the total density is p(z) = (kr + 0z¢(x))/7. Vertex operators of
the form e M10@)+22¢(2)) have scaling dimension (A} + \3)/4. When A\; € Z and \y = 2k for k € Z,
these operators are well-defined and mutually local. When A1 € Z and Ao = 2k + 1 for k € Z, these
operators have a branch cut extending to infinity. As discussed below, on the lattice this branch cut
is related to the non-local Jordan Wigner strings. Notice that this is an asymmetry in the role of the
fields ¢ and 6.

We now consider operator correspondences for O,. Bosonisation will not fix constant coefficients of
the operators, so we will usually suppress them in the following. Note, however, that hermiticity and
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symmetries constrain certain coefficients. We may also need to include an additional antiferromagnetic
oscillation in order to correctly correspond to the lattice model and hence to our results.

Firstly, following [63,69], we note that p(z) generates the U(1) symmetry. Hence, we can make the
formal identification

013 X% — (X y(ele=1/2) _ Gix [(p(x)—1/2)de (20)

The Jordan-Wigner strings follow by setting x = 7 and truncating the sum and integral respectively.
We can then make the correspondence (see, for example, [69,70] and [52, Chap. 20]):

n
T 2 — actenre) 4 geitiense) (4 ©) (21)
1=—00
The fermionic creation operator creates a U(1) charge and is multiplied by a Jordan-Wigner string,
this leads to standard expressions for the dominant contributions to the right (+) and left (—) moving
continuum fermion fields

b (z) = @@ 4 (cn S qp(n) o eRFp () 4 e HEy (n)) . (22)

Time-reversal symmetry swaps these right and left moving fields (one may check the lattice expansion
given in, for example, [70]) and so we have that ¢ — ¢ and § — —6 under T'. We can also confirm that
the right-hand-side of (21) is hermitian and does not transform'? under the U(1) or T, as required for
the Z-string. The site at —oo may appear problematic in isolation, but we always consider two-point
correlators and thus the infinite string to the left will drop out (similarly in the continuum one may
take correlation functions to avoid considering the boundary). The meaningful correspondence here is:

T (kpnte(n) | omitkento)) (o9(0) o o-ip(0)
PR

where we now suppress constant coefficients.
Now, by considering the U(1) action and time-reversal symmetry, we see that o= — eFo(n) (with
real coefficients). We then have that

X, — cos(6(n))
Y, — sin(6(n)). (24)

Note that the relation between o and 1+ in the CFT corresponds on the lattice to (103).

The above correspondences are well known [52,69,70]. In our notation, (21) corresponds to Oy and
(24) correspond to O4;. Operators O, for || > 1 are more involved. However, the correspondences
that we have already established should allow us to find the continuum operator by taking operator
products. We consider first the family of local spin operators, with o odd. In particular, let us analyse
Os3(n) = X, Y41 Xnt+2. From Theorem 4, we know that this operator has scaling dimension 9/4.
In the field theory the operators e=3% and e*3 share this scaling dimension, as well as operators
that include derivatives, for example (9%0)e?. We should exclude terms that include e!?*+D¢ on the
grounds of locality. We now show that all operators depending solely on 6 and that have the correct
scaling dimension may appear. Moreover, we give a method for determining the exact correspondence.

First, note that any product of three neighbouring X or Y operators can be expanded as a lin-
ear combination of terms Jgafﬂafw, with all possible sign combinations present. These products
transform separately under U(1) with charge m € {—3,—1,1,3} equal to the sum of the signs. The
dominant terms would be e*?(™) with subdominant contributions from e=3%(™) and products of e+1(™)
and e*39(") with derivatives of f(n). It is possible that the coefficient of the dominant term and the
first few subdominant terms vanish due to destructive interference—Theorem 4 verifies that this occurs
and as stated above O13(n) has the same scaling behaviour as e*39(")  Details of a formal calcula-
tion in terms of the CFT operator product expansion are given'? in Appendix B. Intuitively, O3 is
dominated by terms that create three charges, as well as the remnants of several terms that create one
charge but (partially) destructively interfere with each other.

L2under a U(1) rotation through x € R, lattice operators are conjugated by exp(ix >, Z»/2) and fields transform as
b(x) — 0(x) + X, 9(x) > (). |

13Parenthetically, this calculation indicates that other triples of neighbouring X and Y operators will scale as e‘g; we
have confirmed this in numerical simulations.
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By generalising this idea to all odd «, we conjecture that O, (n) has an expansion of the form

|ot]
Ou(n) = Y l=2mfp o (0(n)) + ... (o 0dd). (25)
m=0
Da,m(0) is constant for m = £a, and for other values of m contains products of derivatives of
such that the scaling dimensions of each term matches the extremal terms e*?(") This is consistent
with both Theorem 10 and calculations of the type in Appendix B. Note that this conjecture includes
all operators in the field theory that depend only on 8 and that have the correct scaling dimension;
carefully taking operator products will give explicit expressions for the D.
The case of a even follows the same pattern, except that we should always include a Jordan-Wigner
string: the dominant term of which is given in (21). Hence, we arrive at

|ot|
Ou(n) — Z (ei(|a|—2m)9(n)+i(kpn+so(n)) +ei(lal—2m)9(n)—i(an+<p(n))) Dimy(0(1)) + ... (o even),
m=0
(26)
where, as above, Dg ,(6) is constant for m = +a and contains appropriate numbers of derivatives
such that all terms have the same scaling dimension. This is consistent with Theorem 10 and CFT
calculations. In all cases we should allow multiplication by a global antiferromagnetic oscillation as
discussed in the previous section.

The preceding analysis required the U(1) symmetry of isotropic models as a starting point. In
reference [40], generalised Kramers-Wannier dualities were discussed that map between our models.
One class of transformations swap models such that f(z) <> 2"f(z) for some m € Z. If f(z) is
isotropic, then 2" f(z) is not—this allows us to extend the preceding correspondence to anisotropic
models. Anisotropic models that are dual to isotropic models in this way have an appropriately
transformed U(1) symmetry. First, let us separate two cases: m even and m odd. When m is even,
the transformation will be local, and when m is odd it will be non-local (this is related to whether
the neighbouring gapped phases have a local order parameter). Now, in both cases we should take
the correspondences (25) and (26) and shift the label on the left-hand-side O, — Ou4y, while not
shifting the right-hand-sides. In the case that m is even, we take this as the correspondence. In the
case that m is odd, we alter the right-hand-side by swapping ¢ and 6. For example, in the transition
H =%, XnZni1Xnta + ., Zn we identify X,, with eilbrnt0(n) 4 o=ikrnt0(n) = Notice that for
odd m, the oscillatory factor e*#™ appears with the field #(z). This is because 9,0(z) is related to
the density of the transformed U(1) symmetry. Moreover, this correspondence is consistent with the
requirement that the non-local vertex operators with factors e(Z¥+1¢(*) always correspond to non-local
lattice operators.

The dualities discussed so far allow us to map an isotropic model to a representative of each phase
(¢ = 1,w). As mentioned above, these representatives all have a U(1) symmetry and are thus not
generic. It is then nontrivial to extend this analysis to general anisotropic models. Theorem 10 indi-
cates, however, that this correspondence should continue to hold. Since the above argument does not
make use of the fact that our underlying lattice model is non-interacting, we expect the correspondence
to persist'? in interacting models if the U(1) symmetry is preserved. However, if the U(1) symmetry
is broken, we see no reason to expect it to continue to hold (in contrast to the non-interacting case).

3.4.4. FExample: transition between topologically distinct critical phases. To complement the discussion
so far, we consider the example

f(2)=(1 =N +2xz— (1+ )
=(z-1D(Q=Nz+(1+X)). (27)
Tuning —1 < A < 1 we interpolate between two critical phases, with a transition at A =0. For A =1

the system is the standard critical Ising chain with H = —(3_; X; X;11 + Z;). Models with A > 0 are
in the same phase: (¢ =1/2,w =0). For A = —1 we have H = —(3_; X;Zj+1Xj42 — X;Xj41). Models

MNote that the scaling dimensions of the vertex operators will depend on the interactions, so the continuum operators
in our expansions (including derivative terms) will not necessarily all have the same dimension. The dominant operators
should be identified as a subset of these. Note also that for sufficiently strong interactions, subdominant contributions
that we ignore above can become important.
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¢ lwl|l Y 1, 2 X, [1% ) ZiYne1 Xure | XnYor1 Xoso
A>o0l1/2/00 98| 1/8—n | 1/8 0 9/8 25/8
A=0| 1 |0 5/4 [1/4— cos(p)|1/4 — et? 1/4 — sin(yp) 5/4
A<0]1/2]1 | 25/8 9/8 1/8 o 1/8 —u 9/8

TABLE 4. Behaviour of scaling dimensions across a transition between critical phases—
the model is f(z) = (1 — A\)2%2 4+ 2Xz — (1 + A). The dominant CFT fields associated to
the dominant lattice operators are also given.

with A < 0 can be smoothly tuned to this model and have (¢ = 1/2,w = 1). For A = 0, we have the
¢ = 1 transition between topologically distinct critical phases, with H = —%(Zj XiZi1 Xjyo + Zj).
Table 4 gives the behaviour of the scaling dimensions of the most dominant O, as the system crosses
the transition. We emphasise that while both sides of the transition are described by an Ising CFT,
the scaling dimensions of the lattice operators change discontinuously. Note that the ¢ = 1 model has
two real zeros so the CFT discussion above does not quite apply—a similar bosonisation scheme does
work, as applied to a doubled Ising model in reference [68].

3.4.5. CFT operator correspondence with ¢ complex fermions. For higher values of ¢, we work formally
with the linearised theory that consists of 2c¢ real fermions. Note that it has been shown that spin
models with f(z) = £2(2%¢ £ 1) are described at low energy by so(2¢); WZW models [48, 49],
although a lattice-continuum operator correspondence has not been made. We can smoothly connect!?
any critical model in Hppy to that subset of models [13].

Let us suppose for now that we have no real zeros and ¢ complex conjugate pairs of zeros (we
order the zeros so that k; = —ka.—;). Then we have ¢ canonical complex fermions which can each be
bosonised as described above to give a set of fields 6;(x) and ¢;(x). The relevant vertex operators are
of the form

C
Tuw(T) = H (kg +25)05 (@) + (1 —v5)p; (2)) (28)
j=1

where y; and v; are half-integer and have scaling dimension A, = Ej(,u? + 1/]2) /2 (we suppress
Klein factors [64]). The half-integer condition makes them twist operators for the linearised fermion
field [72]. They act nontrivially on all fermionic sectors, and by considering decoupled lattice models
with Hamiltonian H_,, + H,, (where the bosonisation in each sector is clear), their locality properties
correctly reflect those of the operators O,. Moreover, they have a minimal scaling dimension of ¢/4
(notice that this coincides with the smallest scaling dimension of the O, given in Theorem 4). As in
the ¢ = 1 case, when we have a U(1) symmetry, then d,¢;(z) or 0,8;(x) will correspond to fluctuations
in the charge density. Hence, the appropriate field will be accompanied by k;jz—this is p(x) (0(x))
when the U(1) charge is local (nonlocal) on the lattice. Again, as above, these oscillatory factors persist
away from these symmetric models.

Suppose now that we are in an isotropic model, with U(1) symmetry generated by Sg... The conjec-
tured expansion of lattice operators O, goes through roughly as above. However, the identification of,
say, o T with a charge one operator is no longer so restrictive; this is because charges can have different
signs in the different sectors and cancel. By considering the scaling dimensions, one concludes that
the leading order terms have charge distributed evenly throughout the different sectors. For example,
observe that the charge-two operator el(®1(@)+02(#) with A =1 /2 dominates the charge-two operator
el301(2)=02(2)) with A = 5/2.

More generally, as argued in [56], in isotropic models o™ = (01 +i0_1) /2 will be dominated by
operators 7y, with > (p;+v;) = 1 (charge condition) and |u; —v;| < 1 (dominance condition). These
conditions give a sum of terms that are products of eF10i(2) op +i(2i(@)+kiz) in each sector, and hence
that can be distinguished by the presence or absence of oscillatory factors e**i*. This is analogous
to the sum over Fisher-Hartwig representations (see Section 5) that we derive in Section 7.1, and the

15T hat is, along a path where the CFT data varies smoothly.
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relevant oscillatory factors are confirmed in Theorem 10 (indeed, each such term is represented in the
final result). Further, in [56] it was argued that Op will have > .(u; +vj) = 0 (charge condition)
and |pu; — vj| < 1. To extend this to operators with || > 1, consider first the operators 7, , with
>-i(1j +vj) = |o| (a maximal charge condition) and [p; —v;[ <1 (dominance condition). This gives a
set of operators that we expect to dominate the continuum limit of Q. However, as in the ¢ =1 case,
we expect that we should include terms where maximally charged operators efi?(®) are substituted
with a series of terms e!(fi—2m)0(z) |m=1,... r multiplied by derivatives, such that each term has the same
scaling dimension. The relevant scaling dimensions and oscillatory factors are confirmed in Theorem
10.

To extend this to non-isotropic models, with w = —c 4+ m, we note that there will again be two
cases—m even and m odd. For m even we simply shift the correspondences argued for the isotropic
case. For m odd we shift and further swap ¢;(x) and §;(x). These correspondences may also be derived
from ., (p; +v;) = [c+w—al (a maximal charge condition, when this is meaningful) and |p; —v;[ < 1
(dominance condition)—although when m is odd we should swap v; — —v; in these equations. Then,
as mentioned above, we should include descendant operators with lower charge. These correspondences
again agree with Theorem 10.

Example: Consider a model with ¢ = w = 2 (for example, H = Hg + H3). By solving E?:l(ﬂj +
vj) = 3 and then including descendants, we conjecture the correspondence:

Or(z) — <ei<zel<x>+w(x>+k1z> 1 elCh@)—er@)—kiz) | p(g,) (ei<m<x>+k1x> i e—i(w(w)+k1x>>
Lo 1@01(@) 1 (@) Hhix) e—i(291(w)—w(w)—k1$)>ew?(z) +(1e2)+.... (29

Note that all terms have A = 3/2, and all oscillate as either eFh1T o k27 g9 expected. Furthermore,
our conjecture gives the same expansion for O7, although the (suppressed) coefficients are not expected
to be the same in general. Indeed, Theorem 10 indicates that the coefficients are different in the general
case, since (95) is not symmetric under taking sign-reversed Fisher-Hartwig representations.

In the case that ¢ > 1 and any zero is real, we do not conjecture the operator correspondence. We
expect that similar arguments could work after bosonising a doubled model—this is performed for the
¢ = 1/2 case in [73]|. Note that Theorem 10 does not distinguish the case of two real zeros from two
complex conjugate zeros at the level of scaling dimension.

3.5. Entanglement scaling. The entanglement entropy of a subsystem is another physically impor-
tant quantity. Let p4 be the ground state reduced density matrix on sites 1 up to N and consider
asymptotics in large N after taking the length of the (periodic) chain to infinity. The most general
results for isotropic critical chains in our class are given in [42,74]. Having identified the correlation
length in gapped chains, derived from the nearest zero to the unit circle, it is interesting to consider
the following theorem adapted from [75].

Theorem 5 (Its, Mezzadri, Mo 2008). Consider a sequence of gapped chains (as defined in equation
(2)) such that 2c of the zeros approach the unit circle, and that the limiting chain has no degenerate
zeros on the circle. We label these approaching zeros by (;, noting that (j can be either inside or outside
the circle, and is either real or a member of a complex conjugate pair. Then the entanglement entropy
of a subsystem of size N, in the limit N — oo, has the following expansion as |(;| — 1:

2c
Sloal = —¢ D loglg; — 1/, +0(1). (30)
j=1

Note that the O(1) term is constant with respect to all the zeros that approach the unit circle
(which are allowed to approach independently). Now, let us consider a sequence of models with a set
of 2¢ zeros that approach the unit circle; for notational convenience let us fix them to be complex
zeros outside the unit circle, other cases lead to the same result. Let this set of approaching zeros be
specified by: {etiP1el/¢ eFid2elt2/E2  oFibeele/S) where ¢; # ¢jfori #j,t; >1and r; <1, and
we approach the circle letting § — oco. The conditions on ¢; and r; ensure that a closest zero is elf1e1/€
for £ large enough. Inserting into Theorem 5, we get that:
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Slpal = 3 Zlog(§) + 0(1). (31)

Having different rates of approach to the circle means that we are necessarily approaching a multicritical
point and we see crossover behaviour in the entanglement scaling. A simple example that allows
this behaviour is the approach to the ¢ = 1 critical point with H = >, X; X1 — Y;Y;11 which is
infinitesimally close to a ¢ = 1/2 line of transitions in the phase diagram of the XY model.

This is reminiscent of the Calabrese-Cardy formula [76] that applies far more generally and gives
asymptotics as the lattice spacing'® a — 0

Slpa] = 5 log(€'/a) + O(1), (32)

where ¢ is the central charge of the underlying CFT and ¢ is the (fixed) correlation length of the
system under consideration. This may also be interpreted as a scaling limit & > a [77], and the
formula was confirmed in this sense for the XY model in [78|. Further relevant references are found in
the review articles [77,79]. We see that equation (30) is equivalent to formula (32) in the vicinity of
a regular critical point. At multicritical points the path approaching the transition is important, and
the Calabrese-Cardy formula is expected to hold along renormalization group flow lines in parameter
space.

4. STRING CORRELATORS AS DETERMINANTS

We now begin the analysis necessary to prove the results given in Section 2.4.

4.1. Fermionic two point correlators. After defining f(z) as in equation (3), we have that:

H ="|f(k)|nfne + const (33)
k

where the Boguliobov quasiparticles are found by rotating the Bloch sphere vector'” (c_y, CL) through
an angle f(k)/|f(k)| about the z-axis, giving

1 F(k) 1 f(k)
= (1 i) o+ 2 (1= ) e o

The sum over k goes over momenta k, = 27n/L, although we always work in the limit where this
sum becomes an integral from 0 to 2. Details of this diagonalisation may be found in, for example,
[13,41,42]. The ground state, |gs), is the vacuum for the quasiparticles 7y, and from this we can easily
calculate fermionic correlation functions—we refer the reader to [42] for details. We will use

2
() = (o () o) = 5 [ e kak (39)

(Fnm) = (W ¥m) = Snm

as elementary correlation functions in the rest of the paper, noting that it is arg(f(z)), on the unit
circle, that controls these correlations.

As an aside, note that for gapped chains the analysis of Section 6.2 allows us to find the large N
asymptotics of (—i%¥,7n+n). As explained in the discussion around Section 6.2.4, in generic cases this
correlator will be O(N~Ke N/¢) where K € {1/2,3/2} is easily determined. For critical chains f(k)
has jump discontinuities. Decomposing as in equation (85) and integrating by parts, we have that the
fermionic two point function is ©(1/N)—this behaviour is as expected from the CFT description.

16E]sewhere in our work, units are fixed such that a = 1.
17 The ¢k are the Fourier transform of the lattice fermions from which we built the v, in equation (1).
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4.2. Wick’s theorem. Because the Hamiltonian (2) is quadratic, ground state expectation values have
a Pfaffian structure. More precisely, suppose that we have 2N distinct and mutually anticommuting
operators, A, then:

A do)= 3 7 ] (Andn) (36)

all pairings all pairs (m,n)
< = (A1 A9)(A3Ay) - - - (Aan_1AaN) — (A1 A3) (A2 Ay) -+ - (Aan—1.A2N) + . .. >

(—1)7 is the sign of the permutation that reorders the operators into each particular pairing. This
expression is proportional to the Pfaffian of the antisymmetric matrix (A,,.4,), and is a form of Wick’s
theorem that is given in reference [46].

4.3. String correlation functions. Consider the two point correlation function of O, for o > 0:

N
(Oa(1)Oa(N +1)) = (=1)* (71 - 7a (H i%%) IN+1VN42 - - - IN+a) (37)

n=1

N
(—1)“””’<(—i%)(—i%)---(—i’ya)( I1 %(—%)) IN+1IN+2 - WN+a)  (38)

n=a+1

We now transpose further terms to put unlike Majoranas as nearest neighbours and apply Wick’s
theorem:

N
(0a(1)Oa(N + 1)) = (_1)N(a_1)<H(_i'7n'7n+a)> = (_1)N(a_1) det(<_i’~yn7m+a>)%,n:1 (39)
n=1
_ (_1\N(a—1) e i n f(k) e—iake—i(m—n)k N
- e (o [0 ) o

For a@ < 0 an analogous calculation again leads to equation (40). Table 2 gives the spin operators
Jordan-Wigner dual to the fermionic operators O, (n) and Table 5 gives the equivalent spin correlators
for all . A derivation is given in Appendix A.4. Notice that for odd « these operators and correlation
functions are local in the spin variables, and for even « they are nonlocal; they are always nonlocal
for the fermions. Understanding the asymptotic behaviour of the determinant (40) is the key to the
results given in Section 2.

5. TOEPLITZ DETERMINANTS

Several theorems for the asymptotic behaviour of large Toeplitz determinants are required to prove
our results, hence we use this section to review them in detail. This section is intended to not only
state the results but to give an exposition of how to use them in practice. The reader already familiar
with these ideas can hence skip this section and refer back to it where necessary. Note that we
reformulate and simplify the statement of some theorems appropriately for our application, the most
general statements are available in the given references.

First, recall that an N x N Toeplitz matrix, T, takes the following ‘translation-invariant’ form:

to t_q t_o - tf(Nfl)
t1 to t—1 ... tf(N72)
(T)mn = (tm—n) = to t1 to . t,(N,3) . (41)
tn-1 tn—2 Tn—3 ... to

This matrix can be thought of as the N x N truncation of an infinite matrix, with element ¢_,, on
the nth descending diagonal. Consider a region of the complex plane, U, such that S' C U C C.
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A function t : U — C, integrable on the unit circle, generates a Toeplitz matrix through its Fourier

coefficients:
1 2

tn t (eik) ek dE. (42)

We refer to such ¢(z) as the symbol of the Toeplitz matrix'® and denote the Toeplitz determinant of
order N that is generated by ¢ as

Dy[t(2)] = det(tm—n)mn=1; (43)
i.e. it is defined simply as the determinant of the IV x N truncated matrix generated by t. It is
the analytic properties of ¢ that govern the form of the asymptotics of this determinant as N — oo.
By inspecting equation (40), we see that (Oy(1)On(N + 1)) is, up to an oscillating sign, a Toeplitz
determinant of order N generated by

—o [(2)
t(z) =2"¢ : (44)
£ (2)]
To go further, we consider the symbol on the unit circle z = ¢'* and attempt to factorise it as:
t(2) = e Otgngutar(2). (45)

Here ¢"(%) is called the smooth part of the symbol, which we take to mean that V(z) is analytic on
the unit circle!®. This implies that the winding number of exp (V (elk)) is equal to zero. The Fourier
coeflicients of V (eik) are

1 2

v, v (eik) eIk (46)

and we define the Wiener-Hopf factorisation of eV (%) as:
VD) = b (2)eWb_(2),  by(z) =T e b () = eZa Veni ", (47)
In our work, we will have three families of symbol to consider. The first case is tgingular(2) = 1, which
works when our symbol #(z) is smooth enough that its logarithm gives us an appropriate V(z). The
second case is tsingular(2) = 2%, this is needed to represent symbols ¢(z) that have an integral winding
number w. Finally, the third case represents symbols ¢(z) with sign-change jump discontinuities. Let
¢ = €' and consider the function on the unit circle:

ol 0 <argz <6
L fe s : 48
gCyﬂ( ) {e—lﬂ'ﬁ’ 0 < argz < 2. ( )

For § half-integer this is piecewise proportional to i, with a sign change at z = ( and at z = 1. To
C?B

singular

Conversely a jump only at z = 1 would be represented simply by z”. Notice that any half-integer 3
represents the sign-change through g¢ g, but the power of 5 that appears distinguishes the tgi’fgular(z).
The singular part of a function with several sign-change jump discontinuities can be decomposed as a

product

represent a sign-change only at z = (, we put ¢ (2) = zﬂgc’g(z), removing the jump at z = 1.

75singu1ar(z) = tgi];é{ﬂar(z) = H ZBjQCj,ﬁj (Z) = sz b HgC]‘ﬁj (Z)v (49)
J J J

where all 3; are half-integer, but note that now only the total Zj B; is fixed by the symbol we

wish to represent—this redundancy has important consequences. As an example, consider the symbol

s(k) = sign(cos(k)), this has jump discontinuities at z = £i. Hence we should represent it by two

half-integer singularities, and the fact that there is no overall winding implies that 51 = —f2. This

gives a family of representations

s(z) = const X g; 2nt1(2)g_; _2n+1(2) (50)
L) ) 2
where n € Z and the constant fixes the correct overall sign at z = 1.

18We will always go in this direction: from symbol to matrix. The reverse is possible providing the ¢; decay fast
enough.

19This smoothness requirement has been weakened by many authors; a strong result is given in [80], to which we refer
the interested reader. For our purposes the strong condition of analyticity is acceptable.
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With these ideas in place, notice that all three families of tgingular(2) can be represented in the same
way. If we use tgngular(2) = zﬁggg(z) as a building block, then tgngular(2) = 1 is the case ( = 1,8 =0
and tsingular(z) = 2% is the case ( = 1, 8 = w. Motivated by this discussion, we write down the canonical
form of reference [80] for a symbol that is non-vanishing on the unit circle and has sign-change jump
discontinuities:

m
toanon (2) = eV (B z22X5=1 55 H 92,8 (z)zj_ﬁj, z=cl* k € ]0,2m); (51)
j=1
where for j = 1,...,mand 0 < ky < ... < k;, < 27, we have z; = elki| Bj € %Z and the function

V(2) must be smooth as above. The factor Hj zj_ﬁ 7 is just a multiplicative constant and is there
to align notation with [80]. Any §; in this expression must be nontrivial, hence the symbol has m
jump discontinuities. Note that we allow m = 0 when the symbol is simply exp(V(z)), and the edge
case z1 = 1 has g1 g, = exp(—imf1). Our notation deviates slightly from reference [80], where a Sy is
associated to z = 1 even if there is no singularity there—this does not affect the adapted theorems we
quote below.

Now, as explained above, for a symbol ¢(z) with multiple jump discontinuities, there is an infinite
class of different tcanon(2) to which it is equal. In fact, if we find a single representation with a set
of {B;}, we can find another representation by shifting each 5; — B; + n; such that > n; = 0;
however, we may have to amend our choice of V(z) to include an additional multiplicative constant.
We are interested in representations where > j sz is minimal—these will contribute to the leading-order
asymptotics and so we refer to them as dominant.

Following [80], in order to write down the dominant asymptotics, it is helpful to introduce the
notion of FH-representations. Given a symbol ¢(z) written in canonical form (51), replace all 3; by
Bj = Bj+mn; such that Zj n; = 0. This new function is the FH-representation ¢(z;n1, ..., ny), defined
relative to the representation #(z;0,...,0) = t(z). We then have the equality:

t(z;n0, -y p) = H z;”t(z), (52)
j=1

this means that, in general, the FH-representation differs from a canonical form for the symbol by a
multiplicative constant. We illustrate this by example in Appendix D. An algorithm is given in [80] to
find the finite number of dominant FH-representations, where it is shown that all of these contribute to
the leading asymptotics of the determinant (43). For our purposes, finding a dominant representation
will be simple; and given one dominant FH-representation of f(z) for which we define n; = 0, all other
dominant FH-representations have n; € {1,—1,0}.

We now recall theorems relevant to the three cases introduced above. Szegd’s strong limit theorem
[81] gives the dominant asymptotics for matrices generated by smooth symbols with no winding, i.e.
the case m = 0. We use a form adapted from reference [80]:

Theorem 6 (Szegd 1952). Let t(z) = exp(V(2)) be a symbol, with V(z) smooth as explained above
and such that Yo" In||Va|? < 0o. As the matriz dimension, N, goes to infinity:

n=—oo

Dylt(z)] = exp (NVO + i nVnVn> (14 o(1)). (53)

n=1

If we have a symbol with an integral winding number, i.e. m =1, ky = 0, 51 € Z, the next theorem,
adapted from a result of Fisher and Hartwig [82], allows us to reduce it to the product of a determinant
that can be evaluated by Szeg@’s theorem and another small determinant.

Theorem 7 (Fisher, Hartwig 1969). Let t(z) = eV ()27, where V(z) satisfies the conditions for
Theorem 6. Given by(z) as defined in (47), define the auzilliary functions:

() = m(z) = m (54)
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with associated Fourier coeﬁcients20 ly,, my,.
For v > 0 we have:

dn dy-1 ... dy—p+1
d d dn_,
Dyl @) = ()™ Dy eV @ xdes | T A (55)
ANgv—1 dANyv—2 ... dn

where d, = [, + 5:. For v < 0 we instead have d, = my, + 6, ; (55) is otherwise unchanged.

General estimates for the error terms 52: are given in [82][—the only case we need is as follows.
Suppose that the large Fourier coefficients of h(z) = ¥ (*) behave as |h,| = O(p") and |h_,| = O(c™)
then for large k, 6;7 = O(p**c*) and §;; = O(p*a?").

Given the definitions in the above theorem, we can also state a formula from [82] for the leading
order correction to Theorem 6.

Theorem 8 (Fisher, Hartwig 1969). Let t(z) = eV#) satisfy the conditions for Theorem 6. Then we
can write

log Dn[t(z)] = NVo + > nVu Vo, + EY) + EY, (56)
n=1
where, for 1(z) and m(z) defined above, we have E](\}) = —> o MUNtnMNin. The error term E](\?)

is subdominant—see [82] for general estimates. For the case relevant to us, with p and o defined in
Theorem 7, we have EJ(\}) =0(pNo") and E](\?) = O(p*No2N).

The final theorem we need is the generalised Fisher-Hartwig conjecture. The asymptotics for sym-
bols with fractional jump discontinuities was initially conjectured by Fisher and Hartwig in [32]; this
conjecture was then generalised to the class of symbols that we need by Basor and Tracy [83]. This
generalised case was proved by Deift, Its and Krasovsky in [80], and we give a simplified form of their
result relevant to our work.

Theorem 9 (Deift, Its, Krasovsky 2011). Consider a Toeplitz matriz generated by t(z) in the canonical
form (51). Suppose B; € Z for all j. Then, as the matriz dimension, N, goes to infinity:

Dominant

FH—reps: {n;}

Dyt = Y [T | Rit(z: {n 1)1+ o(1)). (57)
Jj=1

Where:

R(t(z;{n;})) = N~ PR exp (NVO + vanv_n> H 2 — Zﬂzgiﬁj

n=1 1<i<j<m
x T b+ (=)0 ()% T G + BG(1 - 5y). (58)
i=1 j=1

(Recalling that 8; = B; +nj.)

The V,, are unaltered when passing between FH-reps. Branches of bi(zj)gj are determined by

Pt 2 oo +n
ba(z;)Pi = % 2n=1 VEnz" - G(2) is the Barnes G-function [84, §5.17]; given as a Weierstrass product
by

© J 2
Gz +1) = (2m)*/%e 2403w T <1 + z,) exp (—z + z.) : (59)
e J 23
where vg is the Euler-Mascheroni constant. It is clear from equation (59) that G vanishes whenever

the argument is a negative integer. Hence if 5; € Z, the RHS of (58) vanishes and this is not the first
term of the asymptotic expansion (instead we should use Theorem 7).

20These exist by the Wiener-Lévy theorem [82].
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6. GAPPED CHAINS - ANALYSIS

6.1. Closed form for the order parameter—Proof of Theorem 1b. Since ¢ = 0, the complex
function is given by

;N Ny
f(2) =P, [[E-=]11G:-2) (60)
i=1 j=1

Ny N, Ny
= p][(-2) | =[] - 2/2) [[Q - 2/2Z)) =: 0= fo(2). (61)
j=1 i=1

j=1

o =p Hj-vzzl(—Zj), and it is only the sign of this real number that is important; moreover, since the Z;

come in complex conjugate pairs, the sign only depends on N}, the number of zeros on the positive
real axis and outside the unit circle. For bookkeeping purposes, define

s = sign(p) x (—1)Nz. (62)

If we consider (—1)N@=1(0,,(1)0,,(N)), then this is generated by t(z) = "), where

V() Vo = 5 (log fol=) ~ log fol2)) (63)

for a continuous logarithm that could be found by integrating the logarithmic derivative of f. We
instead jump to the following solution:

V(=) ~ Vo= 5 3 Log(l - /2) — Log(1 - %/2) + Loa(1 - 2/2;) ~ Los(1 ~2/Z;)  (64)

(SO 6 () “

where the function Log(z) is the principal branch of the complex logarithm—this is clearly smooth
and recovers f(z) when we take the exponential. Note that we used that the zeros are either real, or
occur in complex conjugate pairs. On the unit circle z = e we can put Z = 1/z into (65).

This gives us an honest V(z) from which one can read off the Fourier coefficients:

Vo =logs=0,ir (66)
V, = 21"1( iz?;Zij”) >0 (67)
fﬁ< izi—Zijn) n < 0.
Inserting into Theorem 6 we reach:
Ny 2
det[t(2)] = sV exp Z - Zz Z zZ:" . (68)
- j=1

On expanding the square and interchanging the finite sums with the sum over n in the exponent, we
can then perform the sum over n leading to Theorem 1b. The term under the fourth root is always
a positive real, and the principal logarithm implies that we take the positive root. For completeness,
note that the oscillatory factor multiplying the order parameter is given by el™N(w—1)+Nlog(s)

Note that with the Fourier coefficients of V' in hand, we can find the Wiener-Hopf decomposition
(47) of our symbol when z is on the unit circle.

N
b () = T (02, 272 _ [ o Hhosti-= H ) (09
i=1
Nz
bo(z) =e" vy (X -2, 25 He 1Log(1—z;/2) H —3Log(1-1/(2Z;))
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Note that 1/by(z) = b_(1/z). Moreover,

1Y% - 227
bi(z) = 70
) H£V=21(1 — 22;) 0

where the square-root is continuous on the unit circle and the branch is fixed as the positive root of a
positive real at z = 1.

6.2. Correlation lengths. We now use Theorem 7 to find the behaviour of the correlation function
(Oa(1)On(N + 1)) in the gapped phase w. For definiteness, let us label the zeros by proximity to the
unit circle: |Z;| < |Z;| and |z;| > |2;| for i < j.

6.2.1. Asymptotics of I(z),m(z). The key ingredient that we need are the asymptotically large Fourier
coefficients of the auxilliary functions

b)) | TS - 22) (1 2i/2)
l( ) - b+(z) - ijzzl(l B ZZ]-_l))(l o Zj_l/Z) (71)

m(z) = 1/1(z). (72)

Note that so far [ and m are defined only on the unit circle and with the principal branch of the
square-root (in fact, due to the complex-conjugate pairs of roots, the arguments of the square-root are
strictly positive). For the purposes of this calculation, we assume the generic problem where the branch
points in R = {z;,2; L Zj, Z; 11 are all distinct, we will comment later on the effect of multiplicity.
We need the dominant asymptotic term of the nth Fourier coefficient of I(k) for large n:

1 2
L, = o /. l(k) exp(—ink)dk

1 < [T (1~ s20)(1 — zi/s) >1/2 s~ (s (73)
11 )

- s - L
2mi Jo \T[;4 (0 —s2; ) (1= 271 s

We analytically continue [(k) off the unit circle into the complex s-plane. The idea is to move the
contour of integration out to infinity, where the s~ term in the integrand will cause the integral to
vanish there. The integrand has branch cuts on which the contour gets snagged, and the dominant
contribution will come from the nearest branch points outside the unit circle—this is the Darboux
principle [85].

By inspection we have either a square-root or inverse square-root branch point at every element of
R. If there are an odd number of such points inside (and therefore, by symmetry, outside) the unit
circle, then zero and infinity are also branch points—hence there are always an even number of branch
points both inside and outside the unit circle. We choose any branch cut pattern inside the unit circle
(where no cut crosses the circle). Outside the unit circle we order the branch points by radial distance
from the origin. In generic circumstances there will be either one real branch point (case A), or a
complex-conjugate pair of branch points (case B), closest to the origin. Choose the cuts to be leaving
all branch points radially. An example for each of the two cases is depicted in Figure 4—we call the
nearest branch point(s) s; (and 31), for arg(s;) € [0, 7]. We connect up the radial cuts outside a circle
of large radius, the precise choice is unimportant.

In case A we consider the Hankel contour connecting infinity to the nearest real zero and back —
this is exactly the relevant part of the snagged contour. After parameterising s = sqef for t € R, and
where arg(t) = 0 below the axis and arg(t) = —2m above the axis, this integral obeys the conditions for
Watson’s lemma for loop integrals—see, for example, [86, §15.6.1] and [87]. This gives us an asymptotic
series of which we need only the first term. Recall that we have ordered our zeros so that s; is either
1/2z1 or Z1—then we have
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Im(z) Im(z)

case A case B

51

o~
9
i
N
(

FIGURE 4. Schematic for the two generic cases of the computation (73). Blue (wavy)
lines indicate branch cuts in the integrand. The black curve is the initial integration
contour S*, and the red (lighter) curve is the deformed contour. x indicates the closest
branch cuts to the unit circle that are outside the circle.

Proposition 1. Suppose there is a single real root closest to the unit circle. Then,

_n 1 1 (1-27) Hf\izz(l —zif/z1)(1 — 212
1 p3/2 2ﬁ H;V:Z]_(l _ Z;l/zl)(l _ ZlZ;l)

1/2
)> A+0m)  si=1/x

1, (1- 2120 (1—2:/21) 1/2
-—n_1 1 i1 U—Z1zi)(1—2i /21 _
S ((1212>H§V_Zz(1zlzjl><1(zlz»—l)) (1+0(/n)) 1= 21

where the square-root is principal (with positive real argument).

This follows from the above discussion after using the same method to estimate the contribution of all
other snagged contours—these are bounded above by |z.|~™ where |z| > s1, and are thus exponentially
subdominant.

In case B we use the same method but now sum over the dominant contributions coming from the
two branch points. This leads to

Proposition 2.

% Im(clz?)ﬁ (1+0(1/n)) s1=1/z
ln = (75)
% Im(CQan)# (1 + O(l/n)) s1 =241

for

o (_ (1= 22)(1 — 212)(1 — 71/20) [T — 2/21)(1 — zlzi)>l/2
A0 =220 - 212,

cg = — (— _ Hfizl(l 1Z12i)(1 —2i/%) )1/2 .
(1-Z7 )= 2/Z)(1 = (Z212) Y350 - 202,11 - (Z02)7Y)

This constant is the first term of the Taylor series of the regular part of the integrand at the branch
point, and the square root is continuously connected to the principal branch on the real axis.

Note that in the case where we have only two roots, and they form a conjugate pair (as happens in
the XY model), the constants are evaluated with the principal square root.

The exceptional cases where Propositions 1 and 2 do not apply are when f(z) has zeros with
multiplicity, more than a pair of zeros closest to the unit circle, or both. We discuss these cases below.
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We also need the asymptotic behaviour of m,,. Fortunately no further analysis is needed: m(z) and
l(z) share the same structure but are mutually inverse. Hence we have:

Proposition 3. In the case of a nearest singularity s1 on the real axis we have:

_n 127 150-22 )1z 2~ | /2
_Zl #ﬁ ( 1 HfV:JZ1(21—Z1Zi)(]1—zi/Z1) ] (1 - O(l/n)) =
m,, — - B 1/2 7
L A0z -z ) 7
A —=m = = (14+0(1/n)) s1=1/2.
VT \ (1- 21) [[;2(1 = 2i/21) (1 — 2123)
For a complex conjugate pair of nearest singularities we have:
Ll 27 s (1400 /m) s =2
my, = (78)
%Im(cflz?)#(l—i-@(l/n)) s1=1/z,

where the ¢; are defined in (76).

Now, if a zero has multiplicity two then we get either a simple pole of I(z) (and hence a zero of
m(z)) or a zero of I(z) (and hence a simple pole of m(z)). A simple pole will give an exponential
decay e~™/¢, using Cauchy’s theorem, with no algebraic prefactor (recall that ¢ = 1/|log|¢|| where
(s is (any) one of the zeros of f(z) closest to the unit circle). A zero of I(z) is not a singularity so
our contour will not be snagged there—we must hence look at the next-nearest singularity to the unit
circle. Higher order multiplicities will give branch points, higher-order poles or higher-order zeros, and
the calculations similarly go through. Higher-order poles will never have a vanishing residue for all n,
and in fact for large n the dominant term in the residue will come from derivatives of s~(*1) in (73).
Importantly, even in these exceptional cases, the nearest zero always sets the longest correlation length
for the operators O,. This is because, from the discussion above, either [,, or m,, has asymptotic decay
controlled by the nearest zero (and hence there is an observable with correlation length £ which follows
from the calculation below).

Having more than two equidistant singularities requires summing over the contributions from each
of them; this will give an e~/¢ decay for zeros of multiplicity one (the coefficient must be calculated
in each case, and for higher multiplicity one sums the contributions outlined above)—there may be
destructive interference for certain values of n. This can include equidistant singularities coming from
zeros both inside and outside the unit circle. Another exceptional case of this type is two closest zeros
both on the real axis (i.e. at a and —a). Again we sum over the contributions which are given explicitly
by the formulae in Propositions 1 and 3.

The final exceptional case is where we have degenerate closest zeros which are mutually tnverse. For
example, if the closest zeros are at a and at 1/a € R. This is the only case where £ defined in terms of
one of these closest zeros is not realised as the longest correlation length (although it is still an upper
bound)—the contribution of the mutually inverse zeros cancels in the definition of b4 (z) and so they
do not contribute to the asymptotics of any O,. In such a case, the longest correlation length is set
by the closest zero of f(z) whose inverse is not a zero. The starkest examples of this behaviour are
in isotropic models, where by (z) = 1 and the correlation length is zero for all observables! This also
follows from the observation that the ground state of a gapped isotropic model in our class is always
a product state.

In summary, we have, in generic cases, that [,, and m,, decay exponentially with correlation length
&. In exceptional cases their decay is at least this fast. Generically, if the nearest zero is inside the
circle, we have an algebraically decaying prefactor n=3/2 for 1,, and n~%/2 for m,, this assignment is
reversed if the nearest zero is outside. Moreover, if the nearest zero is complex then [,, and m,, have
an oscillatory prefactor.

6.2.2. Error terms in Theorem 7. In order to use Theorem 7 we need to estimate the errors 5]%,. To
do so, we need to find p and o such that for h(z) = e ), |h,| = O(p") and |h_,| = O(c™) for large
n. Recall that the relevant eV (*) = ¢Yob, (2)b_(2)—this has exactly the same singularities as [(z) and
m(z) up to exchanging square-roots with inverse square-roots. The analysis above goes through and
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we see that, in all non-degenerate cases, p = 0 = 1/|s1|. We thus have that either d,, = I, + O(la,my,)
or d, = my + O(l,may). For n large this means that we can replace the matrix elements d,, of the
small determinant in Theorem 7 with either [, or m,, without affecting the leading order behaviour.

6.2.3. The asymptotics of the correlator (O (1)Ou(N + 1)) —Proof of Theorem 2. Suppose that we are

in the phase w, then the generating function of the correlator is se¥ ¥z~ In the case w — a > 0,
using Theorem 7 we have that
(Oa(1)Oa(N +1)) = (=1)N@ DDy, o (se¥?) (79)
my myN-1 s MN—(w—a)+1
MN+1 mn MN_(w—
< det + N—(w—a)+2
MNt(w—a)-1 MN{(w—a)-2 --- mn

The large determinant D N+w_a(sev(z)) is of Szegd form, and is, to leading order, equal to the result
of Theorem 1b—i.e. the value of the order parameter. Inserting the dominant term of my as found in
the previous section, the second determinant may be evaluated directly to find the leading order term
of the correlator.

We have almost proved Theorem 2, but need to do some further analysis to isolate the exponential
decay. This is the point where we specialise to generic situations, so that we are guaranteed that
my = ©(eN/€). Then, in the position (7, j) of the second matrix we have a factor of e(=N+?=7)/¢ The
row and column index multiplicatively decouple, and so any individual term of the Laplace expansion
of the determinant contains a factor of e N@=®/¢ hence we may factor this out and we have that:

<ow<1>ow<R>>|) (80)

w—

(0a(1)O0a(N + 1)) = Nl TN logs ( lim |
R—o0
x e~ Nw=a)/€ get (N +i—35) Fanti—j)

-~

det M(N)

igj=1"

The matrix elements of M (N) are derived from the propositions above: i.e. K =1/2 or 3/2 and «,
are the coefficients that can oscillate with n. Hence, det M (N') will contribute an algebraic dependence
on N (and not affect the exponential scaling). For w — o < 0 the same calculation goes through with
my, replaced by I, (and the second matrix has dimension |w — «|). We have hence proved Theorem 2.

Now, putting together Theorems 1b and 2 prove Theorem la. In particular, we have shown that the
correlators [(Oq(1)O4(N + 1))| do indeed form a set of order parameters that distinguish w. The sign
of f(2) (an invariant of our model) may be inferred by the presence or absence of (—1)" oscillation.
As can be seen in (80), this oscillation depends on both w and s, as defined in (62) (one must also take
into account oscillations coming from det M ).

6.2.4. The correlation length of (O, (1)Oy(N)) in the phase w—Proof of Theorem 3. The proof follows

from Theorem 8 and our calculations above. Firstly, using 6.2.2 we have that E](\?) is exponentially

subdominant compared to E](\}). We do not evaluate E](\P in closed form, but need that the first term

in the sum (—lp+1mp+1) gives the dominant scaling, as claimed in [32]. Thus, in the generic case,

we have E](\}) = O(|s1|7#V/N?). To see this, one needs to consider the different orders in the full
asymptotic expansion of [, and m,,, as given by Watson’s lemma [86]. In particular, one can factor out
the dominant term from |l,,41my41| and E](\}) then becomes a sum of many convergent series multiplied
by non-positive powers of N (along with exponentially subdominant contributions coming from other
singularities further from the circle than s1). One of these convergent series is O(1) and we denote it by
Bn—this will oscillate with N if we have oscillation in [ and mpy. Putting this together one reaches
Theorem 3. The constant By, along with further corrections, are evaluated in [31,51] for correlators
that are equivalent to X and Y correlators in the XY model.

6.2.5. Possible alternative proof. An alternative approach to proving Theorem 2 would be to use the
Fisher-Hartwig conjecture. The idea of such a proof is given in [88]—one should expand the Fourier
contour defining the Toeplitz matrix (42) out to the nearest singularity in the generating function,
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and then rescale back to the unit circle. The deformed symbol is then singular on the unit circle (by
construction), and, if it can be written in Fisher-Hartwig form, then Theorem 9 can be used to derive
the leading order asymptotics. This method is applied in [53] to X and Y correlation functions in the
XY model.

7. GAPLESS CHAINS - ANALYSIS

7.1. Scaling dimensions. In this section we calculate the large N asymptotics of (O4(1)Oq (N + 1))
for a system described by (9) with non-zero ¢. This was solved for isotropic models (i.e. models where
f(2) = f(1/z)) and for « € {—1,0,1} in [56]. We now explain how to use Theorem 9 to find the answer
in the general case. The idea is simple; take the symbol corresponding to (—1)N (@D (0,(1)On (N +1)):
27%f(z)/]f(2)| and find the dominant Fisher-Hartwig representations. This goes as follows:

2Nz N 1—2i/2 2c 2 — etk Nz 1—-2/Z;
- AT O
i=1 7= j=1 ’

N, Ny 2c ik
(M —zi/2) y71 (L —2/Z;) 1 o (z —e')
_ w—o : ) 2
Cln— =z = 1l = (82)
Jj=1

J=1 J=1

eﬁz) singular

We reemphasise that in this analysis we pick the phase of the complex zeros such that k; € [0, 27).
The smooth part € (*) can be analysed as in the gapped case—in particular, the Fourier coefficients
for n # 0 are given by (67) (the phase factor C' is needed to put the singular part in canonical form,
and this shifts V5). Turning to the unit circle, z = ¢'*, the analysis of the singular part is split into
three cases: a real zero at kK = 0,7, a pair of complex conjugate zeros at k = ¢ and k = 27 — ¢, or a
set of zeros of multiplicity greater than one. The third (fine-tuned) case is discussed in Section 7.3, we
ignore it for now. Note that we explicitly exclude such cases in the statement of Theorem 4 where we
limit ourselves to chains described at low energy by a CFT. Now, for the real zero we have:

exp(ik) £1 cos(k/2)/| cos(k/2)|

lexp(ik) £ 1] isin(k/2)/|sin(k/2)| = i. (83)

= exp(ik/2) x {
For a zero at —1 we have a sign-change discontinuity at k£ = 7, and a zero at 1 has a sign-change-type?!
singularity at k = 0. For a complex conjugate pair of zeros at exp(=+i¢) we have:
(eik _ ei¢)(eik _ e—id)) ' )
- e —- = exp(ik) x sign(cos(k) — cos . 84
PR —— xp(ik) x sign(cos(k) (4)) (84)

Since ¢ # 0 or m, sign(cos(k) — cos(¢)) has sign-change discontinuities at k = ¢ and k = 27 — ¢. We
conclude that every zero contributes a factor exp(ik/2) as well as a sign-change at the location of the
zero, which we can represent with a gy, s.(2) for 5; any half-integer.

Putting this information back into the symbol we reach

N, Ny 2c
o 1—2;/z 1-2/7;) cta Bk
) = 50 [[ S [T U2l sovama ] gy g ()70, (85)
P L =25/ L[ = 2/Z;] "
7j=1 7j=1 7=1
eV(z) singllar
where the 3; are half-integer and

2c
Zﬁj:c—i-w—a. (86)
j=1

We need to fix the multiplicative constant, C, by noting that the singular factors, isolated above,
usually jump between =1, rather than =i, and we also need to include []e™#%i in the singular part
of (51). This leads to C' = szczl elﬁjkﬁékj’omﬂ/gkj,ﬁj(1).

To find the asymptotics we need some minimal representation (a set of 5; minimising ) | y 5]2), from
which we can generate a set of minimal FH-reps to insert into Theorem 9. We find the solutions by

211 e. we are in the limiting case where g1, is actually constant, but the contribution to the Toeplitz determinant is
as if it were a sign-change singularity.
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first considering the cases ¢ + w — a = (2m — 1)¢, for m € Z, where the minimal solution is unique:
Bj = 221 for all j. If we have (2m —1)c < c+w —a < (2m+ 1)c we form the set of minimal FH-reps

by starting from Bj = 2’”271 and sending Bj — ,5’]- + 1 for

ctw—a—2m—-1)c=(1-m)2c+w—a€Z (87)

of the Bj- We will consider our starting FH-rep (with all n; = 0) to be the one where we shift the first
(1 —m)2c+ w — a of the 3;. There are

2c B (2¢)!
((1—m)20+w—a> (1 —=m)2c+w—a)!(2me—w+ a)! (88)

minimal FH-reps in total. Given the parameters w, a, ¢ we get that m = 1+ |“5* ], where |x] denotes
the greatest integer less than or equal to z. Theorem 9 immediately gives the dominant scaling

{Oa(1)Of(N +1))| = const x N~22(1 + o(1)), (89)

where

(2m — 1)?

1 + 2e(l—m)+w—a)

(90)

Au(cw) = % <(20m—w+a) (2””1)2)

4

This formula for A, obscures some features of this function, to bring them out define & = o — (w+ ¢),
then one can show that

Auleyw) = c (i ba?— (2 [x])2> (91)

r=a/2c
where [x] is the nearest integer to x. It is then clear that A, is symmetric under & <> —& and that

the minimal scaling dimension of our operators is ¢/4.

7.2. The dominant asymptotic term. We can go further with Theorem 9 to get the first term in
the asymptotic expansion of (On(1)On(N + 1)) at large N. Firstly, note that:

2c N, Nz
V(z) _ 1Bk, (1—2/2) (1-2/Z))
V& = s T] % fgn, 5D [ ] T—o/s 11 T2z, (92)
j=1 j=1 I =1 J
eVo eV(z)—Vp

N 2

The first factor is a pure phase and contributes to the asymptotics as eV"0. By inspection?

2c
Vo = Log(s) +1Y_(8j(k; — ) + (28,7 + 7/2)3%; 0), (93)
j=1

it is important to emphasise that this is an imaginary number, and again recall that k; € [0,27). The
second factor contributes in two ways: firstly through e2on"V»V=n_ exactly the quantity we calculated
in Section 6.1. Secondly, we need powers of the Wiener-Hopf factors that were derived at the end of

Section 6.1. Putting this all together we get:

Theorem 10.

2c
(Oa(1)Oa(N +1)) = N2V T TT M | ({85 +n})(1+o(1)), (94)
{nj} \5=1

where the sum is over all dominant FH-reps, these are parameterised by {n;} and defined in Section
7.1. Ay is Ag(c,w) given in (91) and K is equal to —iVp + w(a — 1). The representation dependent

22The asymmetric second term in the sum is necessary because a singularity at k; = 0 is an edge case where
go.5(1) = e~™, For all other k we have gi (1) = eti™8,
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O(1) multiplier is given by

~ 11,02= - ZilzZZ i1,J2= 1. 1943 3.
C({B)) = 1 I ( = )2 [T jef—eope
i1 Zl] 1<i<j<2¢
NZ lk]Z )( —1k: 37 ) B]‘/Z 2c _ _
y H ( e ) [Tca+B8)ca—5).  (95)
1 % j=1

In our construction of the dominant FH-reps we start from setting all Bj to be equal and then add 1
to a fixed number of them. This means that the difference 3; — BJ is either 0 , 1 or —1 in all dominant
FH-reps. Hence, pairs of complex conjugate zeros e* = e™%i contribute e"*: N to the oscillatory factor
n (94), where n € {0, £1}. We discuss the non-universal multiplier (95) in Appendix E.

7.3. Degenerate zeros on the unit circle. In the case that some of the zeros on the unit circle are
degenerate, the analysis of the singular part given above follows through by raising to the power of the
relevant multiplicity. Conjugate pairs of zeros must have the same multiplicity so contribute to the
singular part as

<(|i; — 22 ‘(:,: - s_::‘) ) " exp(imk) x (sign(cos(kz) - Cos(gb))) " (96)

Equation (83) is similarly raised to the power m. We see an important difference between odd and
even multiplicity. For odd m the degenerate zeros behave as above and we have a Fisher-Hartwig
canonical form with half-integer 8 singularities at e*¢. In the case that m is odd for all zeros on the
unit circle we can derive an analogue of Theorem 10, the steps are given in Appendix F. For even m
at any zero, there is no jump discontinuity and we do not analyse this here. The multicritical point in
the XY model, with f(z) = (2 + 1)? is an example of such a case.

8. EXTENSIONS OF OUR RESULTS

8.1. Long-range chains. In this section we discuss the effect of allowing our model (2) to have non-
zero coupling constants between sites at ‘long-range’—i.e. that there is no finite constant beyond which
all couplings vanish.

First, consider the case that the couplings decay with an exponential tail at large distances. This
means that f(z) has a C* smooth part, and a well defined winding number. We still have that
w = N, — N, but note that poles are no longer restricted to the origin. The theory of Section 5, with
care, may still be used to reach the same broad conclusions as in the finite-range case. In addition, we
need the main result of [89]:

Theorem 11 (Erhardt, Silbermann 1996). Take a symbol of the form

f(z) = exp(V(2))2",

i.e. a symbol with a single Fisher-Hartwig jump singularity at z = 1, and demand that exp(V (z)) is a
C* function. Then:

D (f(2)) = exp(NVo)N~7(E + o(1) (97)
where E is the constant defined implicitly in (58).

For nonvanishing F, or equivalently § & Z, this is a special case of Theorem 9. However, for § € Z
this gives us a concrete asymptotic bound on the Toeplitz determinant in the case of a symbol with a
C* smooth part.

Szegd@’s theorem along with Theorem 11 allows us to extend the classification of gapped phases
via string order parameters to long-range chains with C'* symbol. In particular, in the phase w we
have that (O, (1)O,(N + 1)) tends to a non-zero value that can be calculated using Szegd’s theorem.
Moreover, Theorem 11 proves that (On(1)O4(N + 1)) for all @ # w tends to zero at large N. This
proves that Theorem la remains valid for long-range chains with exponentially decaying couplings. In
fact, one can go further than Theorem 11 and use the methods of [82] to give an analogue of Theorem
2. The ath correlator in the phase w is O(e~N/%) where £, is defined as above and ¢ is derived from
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the singularity of the symbol closest to the circle (this singularity will come from either a zero or a
pole of f(z)).

In critical chains, we may use the Fisher-Hartwig conjecture to derive the scaling dimensions exactly
as in the finite-range case, on condition that there are finitely many zeros of f(z) that are on the unit
circle, and that they remain well separated (this means that we may write our symbol in the canonical
form (51)). Note that a study of the critical scaling of entanglement entropy for the isotropic subclass
of such chains is included in [42]. While the winding number remains well defined, further analysis
must be given to extend the results of [13] to long-range chains.

Models where couplings have algebraic tails are also physically relevant, and of topical interest
[90,91]. In this case, f(z) will no longer be analytic and so singularities occur in the symbol distinct
from Fermi points (zeros on the circle) and winding number (discontinuities in the logarithm). As f(z)
is continuous, the winding number remains geometrically well-defined for gapped models. The theory
of Toeplitz determinants may still be used in this case, and is deserving of a detailed analysis.

8.2. Uniform asymptotics approaching transitions. Our results give asymptotic correlations at
particular points in the phase diagram. One may also be interested in how these correlations change
along a path in parameter space, particularly where this path crosses a transition. This problem was
studied analytically in reference [92] for the 2D classical Ising model (and hence the 1D quantum
XY model). There are two cases where relatively recent ‘black-box’ results in the literature can be
applied to a broader class of models. Firstly, consider a generalised Ising transition where we begin in
a general gapped phase and a single zero approaches the unit circle. The relevant Toeplitz determinant
asymptotics are given in reference [93]. Secondly, consider the case of two zeros et* that come
together. This is a generalisation of the approach to the multicritical point in the XY model along the
isotropic critical line. The relevant Toeplitz determinant asymptotics are given in reference [94]. In
both cases the crossover is controlled by a solution to the Painlevé V equation (althought a different
one in each case). Due to the multiplicative nature of contributions to Toeplitz asymptotics, one would
expect?® similar behaviour in more general transitions where, as well as the approaching zeros, there
are additional ‘spectator’ zeros on the unit circle.

9. CONCLUSION

Using Toeplitz determinant theory, we have investigated string-like correlation functions in a wide
class of gapped and critical topological models. The salient features of their asymptotics can be deduced
from the zeros of the associated complex function f(z). For example, the location of the zeros in the
complex plane allow us to deduce whether the system is gapped or critical, furthermore giving access
to correlation lengths and universal scaling dimensions (as summarised in Figure 2). Even detailed
information, like the exact value of the order parameter, is a simple function of the zeros of f(z). The
generality of these results allowed us to derive lattice-continuum correspondences, critical exponents
and order parameters for the topologically distinct gapless phases. We now mention a few interesting
paths to explore.

One surprising result was the universality of the ratios between the correlation lengths £,—this
allowed for the extraction of the topological invariant w. This was more striking for the dual spin chains,
where local observables can be used to measure w. It would be interesting to explore what happens
upon introducing interactions. One possible scenario is that ratios of distinct correlation lengths give a
measure of the interaction strength between the quasi-particles created by the corresponding operators.

One of the motivations of this work was to study how the invariants ¢ and w are reflected in
physical correlations. The full classification of topological gapless phases within this symmetry class was
obtained in the non-interacting case in reference [13|. Since this relied on concepts that are well-defined
only in the absence of interactions, it does not directly generalise?*. However, correlation functions
and their symmetries are much more general concepts, and having now characterised the topology in
terms of them, a natural next step is to use this to extend the classification to the interacting case.

Lastly, as discussed in the previous section, the exact solvability and Toeplitz theory extend to cases
with long-range couplings. This would certainly be interesting to explore, as removing constraints

23We are grateful to the participants of the AIM workshop ‘Fisher-Harwig asymptotics, Szeg6 expansions and statis-
tical physics’ for discussions on this point.
24However, numerical simulations indicated the stability away from the non-interacting limit.
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on f(z) leads to new asymptotic behaviours of the correlation functions beyond those that we have
analysed in this paper.

Acknowledgements. We are grateful to Estelle Basor, John Cardy, Torsten Ehrhardt, Paul Fendley,
Tarun Grover, Jon Keating, Francesco Mezzadri, Frank Pollmann, Tibor Rakovszky, Jonathan Robbins,
Ryan Thorngren and Chris Turner for helpful discussions. RV thanks Roderich Moessner for discus-
sions and collaboration on related topics. RV has been supported by the German Research Foundation
(DFG) through the Collaborative Research Centre SFB 1143.

(1]
2]

3l
(4]
]

[6]
(7]

(8]

9
(10]

11]
12]
113
[14]
115]
[16]
17
18]
[19]
120]
21]
122]
23]
[24]
125]
126]
[27]
28]

[29]

REFERENCES

L. Fu, C. L. Kane and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98 (2007) 106803.
A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conference Proceedings 1134 (2009)
22.

A. P. Schnyder, S. Ryu, A. Furusaki and A. W. W. Ludwig, Classification of topological insulators and
superconductors in three spatial dimensions, Phys. Rev. B 78 (2008) 195125.

A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid
structures, Phys. Rev. B 55 (1997) 1142.

S. Ryu, A. P. Schnyder, A. Furusaki and A. W. W. Ludwig, Topological insulators and superconductors: tenfold
way and dimensional hierarchy, New Journal of Physics 12 (2010) 065010.

M. Z. Hasan and C. L. Kane, Colloquium, Rev. Mod. Phys. 82 (2010) 3045.

Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renormalization approach and symmetry-protected
topological order, Phys. Rev. B 80 (2009) 155131.

F. Pollmann, A. M. Turner, E. Berg and M. Oshikawa, Entanglement spectrum of a topological phase in one
dimension, Phys. Rev. B 81 (2010) 064439.

L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83 (2011) 075103.
A. M. Turner, F. Pollmann and E. Berg, Topological phases of one-dimensional fermions: An entanglement point
of view, Phys. Rev. B 83 (2011) 075102.

X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems,
Phys. Rev. B 83 (2011) 035107.

N. Schuch and D. Pérez-Garcia, and J. I. Cirac,, Classifying quantum phases using matrix product states and
projected entangled pair states, Phys. Rev. B 84 (2011) 165139.

R. Verresen, N. G. Jones and F. Pollmann, Topology and edge modes in quantum critical chains, Phys. Rev. Lett.
120 (2018) 057001.

J. P. Kestner, B. Wang, J. D. Sau and S. Das Sarma, Prediction of a gapless topological Haldane liquid phase in a
one-dimensional cold polar molecular lattice, Phys. Rev. B 83 (2011) 174409.

M. Cheng and H.-H. Tu, Majorana edge states in interacting two-chain ladders of fermions, Phys. Rev. B 84
(2011) 094503.

L. Fidkowski, R. M. Lutchyn, C. Nayak and M. P. A. Fisher, Majorana zero modes in one-dimensional quantum
wires without long-ranged superconducting order, Phys. Rev. B 84 (2011) 195436.

J. D. Sau, B. I. Halperin, K. Flensberg and S. Das Sarma, Number conserving theory for topologically protected
degeneracy in one-dimensional fermions, Phys. Rev. B 84 (2011) 144509.

C. V. Kraus, M. Dalmonte, M. A. Baranov, A. M. Lauchli and P. Zoller, Majorana edge states in atomic wires
coupled by pair hopping, Phys. Rev. Lett. 111 (2013) 173004.

A. Keselman and E. Berg, Gapless symmetry-protected topological phase of fermions in one dimension, Phys. Rev.
B 91 (2015) 2353009.

F. Iemini, L. Mazza, D. Rossini, R. Fazio and S. Diehl, Localized majorana-like modes in a number-conserving
setting: An exactly solvable model, Phys. Rev. Lett. 115 (2015) 156402.

N. Lang and H. P. Biichler, Topological states in a microscopic model of interacting fermions, Phys. Rev. B 92
(2015) 041118.

A. Montorsi, F. Dolcini, R. C. Iotti and F. Rossi, Symmetry-protected topological phases of one-dimensional
interacting fermions with spin-charge separation, Phys. Rev. B 95 (2017) 245108.

J. Ruhman and E. Altman, Topological degeneracy and pairing in a one-dimensional gas of spinless fermions,
Phys. Rev. B 96 (2017) 085133.

T. Scaffidi, D. E. Parker and R. Vasseur, Gapless symmetry-protected topological order, Phys. Rev. X 7 (2017)
041048.

H.-C. Jiang, Z.-X. Li, A. Seidel and D.-H. Lee, Symmetry protected topological Luttinger liquids and the phase
transition between them, Science Bulletin 63 (2018) 753 .

R.-X. Zhang and C.-X. Liu, Crystalline Symmetry-Protected Majorana Mode in Number-Conserving Dirac
Semimetal Nanowires, Phys. Rev. Lett. 120 (2018) 156802.

D. E. Parker, T. Scaffidi and R. Vasseur, Topological Luttinger liquids from decorated domain walls, Phys. Rev. B
97 (2018) 165114.

J. K. Asboth, L. Oroszlany and A. Palyi, A Short Course on Topological Insulators. Springer International
Publishing, 2016, 10.1007/978-3-319-25607-8.

P. Deift, A. Its and 1. Krasovsky, Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model:
some history and some recent results, Communications on Pure and Applied Mathematics 66 (2013) 1360.


https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.075102
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevLett.120.057001
https://doi.org/10.1103/PhysRevLett.120.057001
https://doi.org/10.1103/PhysRevB.83.174409
https://doi.org/10.1103/PhysRevB.84.094503
https://doi.org/10.1103/PhysRevB.84.094503
https://doi.org/10.1103/PhysRevB.84.195436
https://doi.org/10.1103/PhysRevB.84.144509
https://doi.org/10.1103/PhysRevLett.111.173004
https://doi.org/10.1103/PhysRevB.91.235309
https://doi.org/10.1103/PhysRevB.91.235309
https://doi.org/10.1103/PhysRevLett.115.156402
https://doi.org/10.1103/PhysRevB.92.041118
https://doi.org/10.1103/PhysRevB.92.041118
https://doi.org/10.1103/PhysRevB.95.245108
https://doi.org/10.1103/PhysRevB.96.085133
https://doi.org/10.1103/PhysRevX.7.041048
https://doi.org/10.1103/PhysRevX.7.041048
https://doi.org/https://doi.org/10.1016/j.scib.2018.05.010
https://doi.org/10.1103/PhysRevLett.120.156802
https://doi.org/10.1103/PhysRevB.97.165114
https://doi.org/10.1103/PhysRevB.97.165114
https://doi.org/10.1007/978-3-319-25607-8

(30]
31]

132
133
[34]
135]
136]
137]
138]
139]
j40]
ja1]
j42]
143]
j44]
j45]
J46]
j47]
48]
j49]
150]
51]

[52]
[53]

[54]
155]
156]
157]
/58]
159]
[60]
61]
[62]
163]

[64]

34

B. M. McCoy, Spin correlation functions of the x —y model, Phys. Rev. 173 (1968) 531.

E. Barouch and B. M. McCoy, Statistical mechanics of the XY model. ii. spin-correlation functions, Phys. Rev. A
3 (1971) 786.

M. E. Fisher and R. E. Hartwig, Toeplitz determinants: Some applications, theorems, and conjectures, Advances in
Chemical Physics (1968) 333.

T. Kennedy and H. Tasaki, Hidden symmetry breaking and the Haldane phase in S=1 quantum spin chains,
Communications in Mathematical Physics 147 (1992) 431.

M. den Nijs and K. Rommelse, Preroughening transitions in crystal surfaces and valence-bond phases in quantum
spin chains, Phys. Rev. B 40 (1989) 4709.

D. Pérez-Garcia, M. M. Wolf, M. Sanz, F. Verstraete and J. I. Cirac, String order and symmetries in quantum spin
lattices, Phys. Rev. Lett. 100 (2008) 167202.

J. Haegeman, D. Pérez-Garcia, I. Cirac and N. Schuch, Order parameter for symmetry-protected phases in one
dimension, Phys. Rev. Lett. 109 (2012) 050402.

D. V. Else, S. D. Bartlett and A. C. Doherty, Hidden symmetry-breaking picture of symmetry-protected topological
order, Phys. Rev. B 88 (2013) 085114.

W. DeGottardi, M. Thakurathi, S. Vishveshwara and D. Sen, Majorana fermions in superconducting wires: Effects
of long-range hopping, broken time-reversal symmetry, and potential landscapes, Phys. Rev. B 88 (2013) 165111.
Y. Niu, S. B. Chung, C.-H. Hsu, I. Mandal, S. Raghu and S. Chakravarty, Majorana zero modes in a quantum
ising chain with longer-ranged interactions, Phys. Rev. B 85 (2012) 035110.

R. Verresen, R. Moessner and F. Pollmann, One-dimensional symmetry protected topological phases and their
transitions, Phys. Rev. B 96 (2017) 165124.

M. Suzuki, Relationship among Ezactly Soluble Models of Critical Phenomena. I*) 2D Ising Model, Dimer Problem
and the Generalized XY-Model, Progress of Theoretical Physics 46 (1971) 1337.

J. P. Keating and F. Mezzadri, Random matrixz theory and entanglement in quantum spin chains, Communications
in Mathematical Physics 252 (2004) 543.

Y. Bahri and A. Vishwanath, Detecting Majorana fermions in quasi-one-dimensional topological phases using
nonlocal order parameters, Phy. Rev. B 89 (2014) 155135 [1303.2600].

K. Minami, Infinite number of solvable generalizations of XY-chain, with cluster state, and with central charge ¢ =
m/2, Nuclear Physics B 925 (2017) 144 [1710.01851].

B.-e. Friedman, A. Rajak, A. Russomanno and E. G. Dalla Torre, The 10 phases of spin chains with two Ising
symmetries, ArXiv e-prints (2017) [1708.03400].

E. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals of Physics 16 (1961)
407 .

P. Smacchia, L. Amico, P. Facchi, R. Fazio, G. Florio, S. Pascazio et al., Statistical mechanics of the cluster Ising
model, Phys. Rev. A 84 (2011) 022304.

T. Ohta, S. Tanaka, I. Danshita and K. Totsuka, Topological and dynamical properties of a generalized cluster
model in one dimension, Phys. Rev. B 93 (2016) 165423.

V. Lahtinen and E. Ardonne, Realizing all so(N)1 quantum criticalities in symmetry protected cluster models,
Physical Review Letters 115 (2015) 237203.

W. Nie, F. Mei, L. Amico and L. C. Kwek, Scaling of geometric phase versus band structure in cluster-ising
models, Phys. Rev. E 96 (2017) 020106.

T. T. Wu, Theory of Toeplitz Determinants and the Spin Correlations of the Two-Dimensional Ising Model. I,
Phys. Rev. 149 (1966) 380.

S. Sachdev, Quantum phase transitions. Vintage Books, 2004.

A. Ovchinnikov, Fisher-Hartwig conjecture and the correlators in the XY spin chain, Physics Letters A 366 (2007)
357 .

V. E. Korepin, N. M. Bogoliubov and A. G. Izergin, Quantum inverse scattering method and correlation functions.
Cambridge university press, 1997.

J. Hutchinson, J. P. Keating and F. Mezzadri, Random matriz theory and critical phenomena in quantum spin
chains, Phys. Rev. E 92 (2015) 032106.

J. Hutchinson and N. G. Jones, Fisher-Hartwig determinants, conformal field theory and universality in generalised
XX models, Journal of Statistical Mechanics: Theory and Ezperiment 2016 (2016) 073103.

F. Pollmann and A. M. Turner, Detection of symmetry-protected topological phases in one dimension, Phys. Rev. B
86 (2012) 125441.

M. B. Hastings, An area law for one-dimensional quantum systems, Journal of Statistical Mechanics: Theory and
Ezperiment 2007 (2007) P08024.

F. Pollmann, E. Berg, A. M. Turner and M. Oshikawa, Symmetry protection of topological phases in
one-dimensional quantum spin systems, Phys. Rev. B 85 (2012) 075125.

L. Fidkowski and A. Kitaev, Effects of interactions on the topological classification of free fermion systems, Phys.
Rev. B 81 (2010) 1345009.

J. Cardy, Scaling and Renormalisation in Statistical Physics. Cambridge University Press, 1996.

R. Shankar, Renormalization-group approach to interacting fermions, Rev. Mod. Phys. 66 (1994) 129.

F. D. M. Haldane, Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids,
Physical Review Letters 47 (1981) 1840.

J. von Delft and H. Schoeller, Bosonization for beginners - refermionization for experts, Annalen der Physik 7
(1998) 225 [cond-mat/9805275].


https://doi.org/10.1103/PhysRev.173.531
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1007/BF02097239
https://doi.org/10.1103/PhysRevB.40.4709
https://doi.org/10.1103/PhysRevLett.100.167202
https://doi.org/10.1103/PhysRevLett.109.050402
https://doi.org/10.1103/PhysRevB.88.085114
https://doi.org/10.1103/PhysRevB.88.165111
https://doi.org/10.1103/PhysRevB.85.035110
https://doi.org/10.1103/PhysRevB.96.165124
https://doi.org/10.1143/PTP.46.1337
https://doi.org/10.1007/s00220-004-1188-2
https://doi.org/10.1007/s00220-004-1188-2
https://doi.org/10.1103/PhysRevB.89.155135
https://arxiv.org/abs/1303.2600
https://doi.org/10.1016/j.nuclphysb.2017.10.004
https://arxiv.org/abs/1710.01851
https://arxiv.org/abs/1708.03400
https://doi.org/http://dx.doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/http://dx.doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevA.84.022304
https://doi.org/10.1103/PhysRevB.93.165423
https://doi.org/10.1103/PhysRevE.96.020106
https://doi.org/10.1103/PhysRev.149.380
https://doi.org/http://dx.doi.org/10.1016/j.physleta.2007.02.061
https://doi.org/http://dx.doi.org/10.1016/j.physleta.2007.02.061
https://doi.org/10.1103/PhysRevE.92.032106
https://doi.org/10.1103/PhysRevB.86.125441
https://doi.org/10.1103/PhysRevB.86.125441
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.81.134509
https://doi.org/10.1103/PhysRevB.81.134509
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
https://arxiv.org/abs/cond-mat/9805275

35

[65] N. M. Bogoliubov, A. G. Izergin and N. Y. Reshetikhin, Finite-size effects and infrared asymptotics of the
correlation functions in two dimensions, Journal of Physics A: Mathematical and General 20 (1987) 5361.

[66] A. Izergin, V. Korepin and N. Y. Reshetikhin, Conformal dimensions in Bethe ansatz solvable models, Journal of
Physics A: Mathematical and General 22 (1989) 2615.

[67] F. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, Advanced series in
mathematical physics. World Scientific, 1992.

[68] P. di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory, Graduate Texts in Contemporary Physics.
Springer, New York, 1999.

[69] M. P. Fisher and L. I. Glazman, Transport in a one-dimensional Luttinger liquid, in Mesoscopic Electron
Transport, pp. 331-373, Springer, (1997).

[70] 1. Affleck, Field theory methods and quantum critical phenomena, .

[71] J. Polchinski, String Theory: Volume 1, An Introduction to the Bosonic String, Cambridge Monographs on
Mathematical Physics. Cambridge University Press, 1998.

[72] P. Ginsparg, Applied conformal field theory., in Les Houches, Session XLIX, 1988, Fields,Strings and Critical
Phenomena, E. Brezin and J. Zinn-Justin, eds., Elsevier, (1990).

[73] D. Boyanovsky, Field theory of the two-dimensional ising model: Conformal invariance, order and disorder, and
bosonization, Phys. Rev. B 39 (1989) 6744.

[74] J. P. Keating and F. Mezzadri, Entanglement in quantum spin chains, symmetry classes of random matrices, and
conformal field theory, Phys. Rev. Lett. 94 (2005) 050501.

[75] A. R. Its, F. Mezzadri and M. Y. Mo, Entanglement Entropy in Quantum Spin Chains with Finite Range
Interaction, Communications in Mathematical Physics 284 (2008) 117.

[76] P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, Journal of Statistical Mechanics:
Theory and Experiment 2004 (2004) P06002.

[77] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, Journal of Physics A: Mathematical
and Theoretical 42 (2009) 504005.

[78] I. Peschel, On the entanglement entropy for an XY spin chain, Journal of Statistical Mechanics: Theory and
Ezperiment 2004 (2004) P12005.

[79] O. A. Castro-Alvaredo and B. Doyon, Bi-partite entanglement entropy in massive (1+ 1)-dimensional quantum
field theories, Journal of Physics A: Mathematical and Theoretical 42 (2009) 504006.

[80] P. Deift, A. Its and 1. Krasovsky, Asymptotics of Toeplitz, Hankel, and Toeplitz+ Hankel determinants with
Fisher-Hartwig singularities, Annals of Mathematics 174 (2011) 1243.

[81] G. Szegs, On certain Hermitian forms associated with the Fourier series of a positive function, Comm. Sém. Math.
Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952) 228.

[82] R. E. Hartwig and M. E. Fisher, Asymptotic behavior of Toeplitz matrices and determinants, Archive for Rational
Mechanics and Analysis 32 (1969) 190.

[83] E. L. Basor and C. A. Tracy, The Fisher-Hartwig conjecture and generalizations, Physica A: Statistical Mechanics
and its Applications 177 (1991) 167.

[84] “NIST Digital Library of Mathematical Functions.” http://dlmf.nist.gov/, Release 1.0.10 of 2015-08-07. Online
companion to [95].

[85] R. B. Dingle, Asymptotic expansions: their derivation and interpretation. Academic Press, 1973.

[86] N. M. Temme, Asymptotic Methods For Integrals, vol. 6 of Series In Analysis. World Scientific, 2014.

[87] F. Olver, Asymptotics and Special Functions, AKP classics. Taylor & Francis, 1997.

[88] P. J. Forrester and N. E. Frankel, Applications and generalizations of Fisher-Hartwig asymptotics, Journal of
Mathematical Physics 45 (2004) 2003 [math-ph/0401011].

[89] T. Ehrhardt and B. Silbermann, Toeplitz determinants with one Fisher—Hartwig singularity, Journal of Functional
Analysis 148 (1997) 229.

[90] S. Hernandez-Santana, C. Gogolin, J. I. Cirac and A. Acin, Correlation decay in fermionic lattice systems with
power-law interactions at nonzero temperature, Phys. Rev. Lett. 119 (2017) 110601.

[91] K. Patrick, T. Neupert and J. K. Pachos, Topological quantum liquids with long-range couplings, Phys. Rev. Lett.
118 (2017) 267002.

[92] T. T. Wu, B. M. McCoy, C. A. Tracy and E. Barouch, Spin-spin correlation functions for the two-dimensional
ising model: Ezxact theory in the scaling region, Phys. Rev. B 13 (1976) 316.

[93] T. Claeys, A. Its and 1. Krasovsky, Emergence of a singularity for Toeplitz determinants and Painlevé V, Duke
Math. J. 160 (2011) 207.

[94] T. Claeys and I. Krasovsky, Toeplitz determinants with merging singularities, Duke Math. J. 164 (2015) 2897.

[95] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, eds., NIST Handbook of Mathematical Functions.
Cambridge University Press, New York, NY, Print companion to [84], 2010.

[96] G. Harris and C. Martin, Shorter notes: The roots of a polynomial vary continuously as a function of the
coefficients, Proceedings of the American Mathematical Society 100 (1987) 390.

[97] C. Itzykson, Toeplitz determinants as group averages, tech. rep., 1968.

APPENDIX A. DETAILS OF Hppr AND THE DUAL SPIN MODEL

In this appendix we give details of certain claims in the introductory sections.


https://doi.org/10.1103/PhysRevB.39.6744
https://doi.org/10.1103/PhysRevLett.94.050501
https://doi.org/10.1007/s00220-008-0566-6
https://doi.org/10.1007/BF00247509
https://doi.org/10.1007/BF00247509
https://doi.org/10.1063/1.1699484
https://doi.org/10.1063/1.1699484
https://arxiv.org/abs/math-ph/0401011
https://doi.org/10.1103/PhysRevLett.119.110601
https://doi.org/10.1103/PhysRevB.13.316
https://doi.org/10.1215/00127094-1444207
https://doi.org/10.1215/00127094-1444207
https://doi.org/10.1215/00127094-3164897

36

A.1. The model and its solution. Our model is a one-dimensional chain of L-sites, each hosting a
spinless fermionic mode. In other words, we have operators c,, labelled by a site index n, such that
the fermionic anticommutation relations are satisfied:

{cl, em} = Opm {cn,cm} =0. (98)

The Hilbert space is the Fock space built from these L modes—i.e. H = @rLz:o A™(C?), where the
direct sum is over antisymmetric n-particle states. We take periodic boundary conditions, i.e. we
identify sites 1 and L + 1, and reduce all site labels modulo L when appropriate. The ordering of sites
induces a notion of locality. We always work in a double scaling limit N — oo, L — oo and N/L — 0,
where L is the system size and N is the scale at which we are studying correlations. A local operator
at site n should have support on a number of sites around n that is independent of N and L.

Our model Hppy is defined in equation (2). This may be rewritten in terms of the fermions ¢, as

R
Hppr = T:Z:R n;;es arch Cpyr + %T (cLCLJﬂ — cncn+r> (4-const) (99)
where:
o — bttty
" 2
Ol > b (100)

A general time-reversal symmetric, translation-invariant spinless free fermion Hamiltonian has a rep-
resentation of the form (99) with a, = a_, € R and b, = —b_, € R—the first condition follows from
H = HT and the second from the anticommuting fermion algebra. Through equation (100), this is in
one-to-one correspondence with (2), which is hence general as claimed.

A.2. Further discussion of the phase diagram. We first consider smooth changes to our model
Hpgpy. The coefficients ¢, are symmetric functions of the zeros (;, so vary continuously upon a con-
tinuous change of the (;; moreover the results of Harris and Martin show that, for a fixed degree
polynomial, the zeros vary continuously with the coefficients [96]. We allow an increase in the range
of f(z) by tuning ¢, off 0 for & < af, or &« > ag. In the first case we introduce a zero-pole pair at the
origin, and in the second case we introduce a zero-pole pair at infinity—hence these should be allowed
‘smooth operations’ when we want to classify phases by thinking of a Hamiltonian in terms of the
zeros and pole of the corresponding f(z). The reverse is also important: we can decrease the range by
tuning tq, , to zero, or deleting a zero-pole pair at the origin or infinity.

When we study gapless systems in this work, we usually focus on the case where the zeros on the
unit circle are non-degenerate. In that case, each zero corresponds to a linear zero-energy crossing of
the single-particle dispersion, which after linearisation contributes a single real fermionic field to the
low-energy description. Hence, ¢, as defined in terms of the zeros, exactly coincides with the central
charge of the bulk CFT—see also Section 3.4. If any zero has degeneracy greater than one, then the
low-energy theory will not be a CFT and the scaling behaviour changes. One can see that under the
allowed smooth operations, w = N, — N, and c are invariants of these phases. For ¢ > 0 these phases
are always critical points between neighbouring gapped phases—we can continuously move all zeros
off the unit circle either inside or outside to reach different ¢ = 0 phases.

We now consider what constitutes a generic model in our class. Since we have a finite number of
zeros, fixed by the coupling range, by any reasonable distribution of zeros we expect either no zero or
one independent zero at a particular radius. Since any complex zeros must come in conjugate pairs,
we thus have either no zero, one real zero or two complex zeros at a particular radius. This means that
typically gapless models will have ¢ = 1/2 or ¢ = 1. The theory extends easily to 2¢ nondegenerate
zeros on the unit circle, and so we state our main results for this case. Such higher-c models arise as
multi-critical points in the phase diagram. Typical gapped models will have either a single, real, zero or
a complex conjugate pair of zeros closest to the unit circle. For gapped models this will be the ‘generic
case’ that we refer to in some of our results. In the statements of our results we usually assume these
generic cases, but discuss how the results are altered in other cases. For example, we do give results
for some cases with degenerate zeros on the unit circle in Section 7.3. Then the dispersion relation
| f(k)| cannot be linearised and we do not have a CFT description. It is clear that even conditioning
on having many zeros on the unit circle, these are rare points in parameter space.
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o (Oa(1)Oa(N + 1))
Positive, odd (X1YoX3Yy .. . Yo 1 Xo X1 YnioXNis .o YNta—1XN+ta)
Positive, even (X1Y2++ Xa-1Ya (T1) et Z5) Y1 Xsa - Xnvta)
Zero I, z)

Negative, odd || (Y1 XoY3Xy... X|q|=1Y]a| YN+1XN+2YN13 -+ XNpja|=1 YN+ o))
Negative, even (Y1Xo - Yg-1X|qf (H?f:mﬂ Zj) XNy1YN+2 Yga)

TABLE 5. Spin correlation functions that are the Jordan-Wigner dual of the fermionic
string correlators (Oq(1)Oq(N + 1)).

Finally we mention the extra signs ¥. In the gapped case, the sign of f(1) is invariant—it must be
real so can only change by passing through zero and hence closing the gap. A gapped model in the
phase w can be smoothly connected to f(z) = +2z“. In reference [13] we showed that there are two
invariant signs when ¢ > 0 and the model is described by a CFT—in that case we can continuously
connect any model to one with f(z) = £2¢(227* £ 1), the two signs cannot be removed without
a phase transition. We hence have a description of the phase diagram that labels both gapped and
critical phases by the triple (w, ¢; X) where ¥ € Zo for ¢ = 0 and X € Zg X Zg for ¢ > 0 gives the relevant
signs. This sign information is easy to keep track of, so we classify phases including this sign—one is
free to discard the extra information this gives.

A.3. The spin model. We now go into more detail related to Section 2.5. First a note on the Hilbert
space of the spin chain. It is formally similar to that of the fermionic chains, as both are built from
a set of two-dimensional Hilbert spaces. They differ in that the mathematical structure is simpler:
®,]§/‘[:1 H,,, where the local Hilbert space H, ~ C2—in contrast to the fermions, operators localised on
distinct sites commute.

We now define a Jordan-Wigner transformation that allows us to (almost) map Hppr into Hgpin and
back. Let

n—1 n—1

Zn =1y Xn= [ Gmrm)m Vo= [] Gmym) Tn- (101)

m=1 m=1

transform fermions into spins. The inverse transformation is given by

n—1 n—1
=] ZnXn =[] ZnYn. (102)
m=1 m=1
Note that we also have the relationship
n—1 n—1
of =TI Gmvm)en  on = [ @mrm) ch- (103)
m=1 m=1

Applying this transformation to Hgpin gives us (2), except that for all couplings extending over the
final bond between sites L and L+1 = 1, we have a multiplicative factor of (—1)f'—the total fermionic
parity. Since the Hamiltonian (2) is quadratic, it preserves the parity, and so we can solve (2) in
two total parity sectors. Details may be found in [41], where it is shown that we get two copies of
(2), one with periodic and one with antiperiodic boundary conditions. Since we will be interested in
bulk correlation functions, which will be independent of boundary conditions in the L. — oo limit, we
claim that simply using our results for the periodic fermion chain will be enough to understand these
correlations in the periodic spin chain.

A4. O, as a spin operator. In this section we explain how to derive the contents of Table 2,
from which Table 5 follows. The quickest way to proceed in all cases is to use the nearest-neighbour
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substitutions:

XnYn+1 = ViV YnYn+1 = —1YnYn+1 (104)
Y Xnt1 = AndinYnYnt1 = Hiyn Yot (105)

First consider the operator X, +1Yn4+2Xnt3Ynt4... Xpta. By substituting with (105) starting from
the right and then inserting the Jordan-Wigner form of X,,, we reach:

Xn+1Yn+2Xn+3Yn+4 o Xn—i—a = Xn+117n+27n+3 o i’)’n—&-oe—1’}’71—}—04 (106)
n
= H (YmY¥m) Ynr1i¥n+2¥n+3 - - - nta—1Vnta (107)
m=1
n
=i/ H (FmYm) Yn+1Vn+2Y¥n+3 - - - Ynta—1Vnta (108)
m=1
= Ou(n+1) (o =2m+1>0). (109)

Using that [[,, Zm = [[,, ¥m7ym (i.e. the trivial correspondence for Op) and using (104) and (105),
the same reasoning leads to the other cases (including the correct phase factor). The oo odd and o =0
cases in Table 5 follow immediately. For a even, we put the operators on sites 1 up to « together and
then simplify using the Pauli algebra.

APPENDIX B. EXPANSION OF THREE NEIGHBOURING SPIN OPERATORS

We wish to understand the CFT behaviour of lattice operators P, 2F,11F, where P; = X; or iY}.
Using the substitutions (24) we can write up to an overall multiplicative constant:

ProioPosi Py — (zeiO(n+2a): +s9 :efiG(n+2a):) (:eie(nJra): +1 :efi€(n+a):) (:eiﬁ(n): +s0: efiQ(n):> 7
(110)
for s; = +1, lattice spacing a and colons indicate normal ordering (as defined in [71]). We then multiply
out the brackets and use the normal ordering prescription to simplify. For all choices of s; apart from
(1,—1,1) and (—1,1, —1), the dominant terms are proportional to (™ and e~ (") For s; = (1, -1, 1)
we have

an+2Y’I’L+1Xn — :e3i9(n): _ :e—3ie(n)

—V/2ia? 0" (2) <ei0(”) + e_w(”)): —V/8a? :0/ (x)? <ei9(") - e_ig(”)): +...  (111)

where the ellipsis indicates terms with subdominant scaling dimension. That these terms all have the
same scaling dimension is a consequence of, for example, [71, Eq. 2.4.19]. The number of derivatives
in each term exactly balances the difference in scaling dimension of the vertex operators.

APPENDIX C. RECOVERING (¢,w) FROM SCALING DIMENSIONS

We will show how to find ¢ and w even when we have access to the scaling dimensions of O, only
for o odd (i.e. for the spin chain we have access to correlation functions of local operators only). As
explained in the main text, it is helpful to consider differences between scaling dimensions. In this
restricted case we calculate 0/, := Ayio — A,

First suppose that ¢ > 2, we are then guaranteed to see plateaus with repeated values of §/,. If these
plateaus are constant width then this width gives us ¢—if not, then a ‘plateau’ of width one implies
the presence of a kink in A, (c,w) at the even value of « that is skipped over. We can then determine
¢, and hence w as described in the main text.

For ¢ < 2 we are not guaranteed to see these plateaus, however, we can still recover ¢ and w. By
writing out 0/, using equation (14), we derive the formulae in Table 6. These can be easily distinguished
by taking the next level of differences®. Hence, given a finite set of A, that are derived from local
observables in the spin chain, we can recover (c,w). The size of the required set is of order c.
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c 1/2 1 3/2 2
5 2@ —w)+1l|a—w | {20z,a—w—-1— 2|} | {2|z],0 —w—2—2|x]|}
1A 4 1 (1,2} {0,2} or 1

TABLE 6. Differences in scaling dimension derived from equation (14) for small ¢. As
defined above, z = (o — (w + ¢))/2c.

k1 =0 ko =m V(z) Symbol f.(z):
Canonical form 1: B1=1/2 | Po=—-1/2]| in/2 sign(sink) = f(z) X
Canonical form 2: B1=-1/2| Pa=1/2 | —im/2 sign(sink) = f(z) X
Canonical form 3: f1=-3/2| By=3/2 | im/2 sign(sink) = f(2)
FH-rep(ng = 0,n7 = 0) fr=1/2 | fo=—1/2| in/2 sign(sink) = f(z) X

FH-rep(ng = —1,n1 =1) || f1 = —=1/2 | Bo=1/2 | in/2 || —sign(sink) = e'Xki" f(z) || x

FH-rep(ng = —2,n1 = 2) || f1 = =3/2 | B2=3/2 | in/2 | sign(sink) =2k f(2)

TABLE 7. Example representations for the symbol f(e'*) = sign(sin k). Note that the
given parameters {k;, 5;,V'} fully specify the RHS of (51). In the final column, x
indicates a dominant representation.

APPENDIX D. EXAMPLE REPRESENTATIONS OF A FISHER-HARTWIG SYMBOL

In Table 7, we give some representations of the symbol ¢(el*) = sign(sin k). The aim is to illustrate
the difference between canonical forms and FH-reps explained in Section 5.

APPENDIX E. DISCUSSION OF NONUNIVERSAL FACTORS

It is interesting to note that the order parameter given in Theorem 1b is a symmetric function in the
variables {z;} and, separately, {1/Z;} (listing zeros with multiplicity as distinct symbols). Another way
to see why this occurs is through noting that a Toeplitz determinant generated by t(el¥) is the same
as the average of T(el%i) := I, t(e*i) over the group U(N) (with eigenangles labelled by k;) [42,97].
From the analysis of Section 6.1, for ¢(z) = e”(®) we have that 7 is a symmetric function separately
in the arguments {z;}, {1/Z;} and e'*; so can be expanded in a basis of symmetric functions. Let us

write 7({2;, Zj,e*i}) = 37, aks,(cl)({zj})sl(f)({1/Zj})s](€3)({eikj}) for some constants aj and symmetric
functions s,(;). When integrating over U(N), s,gl)({zj})s,?)({l/Zj}) can be factored out for each k,

leaving us with a result that is a sum over products of symmetric functions and so the determinant is
a symmetric function in the appropriate variables.

25Note that ¢ = 2 allows two possible patterns depending on the parity of w. For even w, starting at o = w + 1, we
see the differences {0,1,2,3,4, ...}, whereas for odd w, starting at & = w, we see {0,0,2,2,4,4,...}.
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In the critical case we can rewrite the ©(1) multiplier (95) in a way that gives a structure similar
to the order parameter. In particular, when we have that all |3;| = 1/2, then

_ 1Yy (1= 2 2) Ty (1 -
C({ﬁj}) _ ( 1,i2=1 1712 J1,J2 1< 32> HH 1k]eflk sign(B:5;)

vazzl ;V:Z1< - %) i=1j#
2 N 1 o\ sien(8)
) Hlil j:ZI ((1_elkle )(1—6 1kle ))

H ((1 — eikiz)(1 — eiklzi))sign(ﬁz)
ilcil)

Notice that, up to the normalising G-functions, this constant is built from terms of the form (1—(;

/
) (G(3/2)G(1/2))20. (112)

where the (; are zeros of f(z). The sign of Bj somehow tells us whether the jth zero on the unit circle
acts as if it is inside the unit circle, or acts as if it is outside. Indeed, we see that if the ith and jth
zero are both inside or both outside, we get a positive power of the term (1 — el e*iki) and if one is
in and one is out it is a negative power—this mirrors the behaviour of the factors coming from the z;
and Z;. In the second line we have factors mixing zeros on the circle with zeros inside and outside
the circle. Since all zeros on the circle come in complex conjugate pairs, terms of the form (1 — elh ;)
appear twice—however depending on the relative sign of §; and 3, for this pair these factors can either
cancel, or give a square. A similar squared term appears in the factor matching the z; to the Z; on
the first line. For |3;| = n/2 for n > 1 we have a multiplicative effect where the contribution from the
jth zero on the circle is counted n times. This is reminiscent of the CF'T description where operators
that involve many excitations give multiplicative contributions from the same Fermi point (which is
located at some momentum £;).

APPENDIX F. CRITICAL MODELS WITH DEGENERATE ROOTS ON THE UNIT CIRCLE

As explained in Section 7.3, we consider f(z) with zeros of odd multiplicity m; at ¢l®i. The index
runs over ¢ = 1... Ny and so the total number of zeros on the circle is given by 2¢ = Zj\f:ol m;. Note
that by symmetry we must have equal multiplicities at complex conjugate zeros.

The main difference in the analysis is that there is only one [ for each unique zero (i.e. the
degenerate zeros at that point correspond to only one FH singularity, but contribute to the winding
multiple times)—this alters the sum rule (86), which becomes

No
Zﬁj:c+w—a. (113)

A method for solving (113) is to first solve (86) as in Section 7.1: assigning a half-integer Bj where
7 =1...2c. We then group these as:

Bi= > B j=1..N. (114)
j: Zj-:Z]'

As all multiplicities are odd, this will lead to a canonical form for the symbol, but not necessarily a
dominant FH-rep—this is because we minimised Z B2 whereas we need to minimise Z BQ We
proceed by adding one to the smallest 8; and subtractmg one from the largest §; until the distance
between smallest and largest is equal to zero or one. With this set of § we can construct a dominant
canonical form as in Section 7.1, noting that the sum in the definition of Vj (93) should now range
over unique zeros only (i.e. goes from 1 to Np). Moreover, if the 3 are not all equal, we construct the
other dominant FH-reps BJ Bj + nj as described in Section 5. We then have that By e{ Lc+‘” fru—a |
1/2, Lcﬂffigaj +1/2}, and the scaling dimension follows. Theorem 9 leads again to a variant of Theorem
10, where we sum over the dominant FH-reps just described, and where all products over the k; are
over unique zeros only.
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