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Abstract

Numerous examples of functional relations for multiple polylogarithms are

known. For elliptic polylogarithms, however, tools for the exploration of func-

tional relations are available, but only very few relations are identi�ed. Starting

from an approach of Zagier and Gangl, which in turn is based on considerations

about an elliptic version of the Bloch group, we explore functional relations

between elliptic polylogarithms and link them to the relations which can be

derived using the elliptic symbol formalism. The elliptic symbol formalism in

turn allows for an alternative proof of the validity of the elliptic Bloch relation.

While the �ve-term identity is the prime example of a functional identity for

multiple polylogarithms and implies many dilogarithm identities, the situation

in the elliptic setup is more involved: there is no simple elliptic analogue, but

rather a whole class of elliptic identities.

Keywords: elliptic polylogarithms, iterated integrals, functional relations, Bloch

group

(Some �gures may appear in colour only in the online journal)

1. Introduction

The majority of calculations in quantum �eld theory, in particular when considering quan-

tum chromodynamics, is based on the evaluation of integrals associated to Feynman graphs.

Using Feynman parameters one can rewrite integrations over loop variables into integrations
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over Feynman parameters in a formalised manner. Along with several further advantages, the

reparametrisation allows to bring the integrals to an iterated form.

This is a rather general concept: Feynman integrals seem to be expressible in terms of iter-

ated integrals over a suitably chosen set of differential forms on Riemann surfaces of various

genera. The exploration of classes of these iterated integrals and the utilisation of their alge-

braic properties did not only change the way calculations are performed, but simultaneously

leads to convenient representations: once a proper class of functions is identi�ed, one can �nd

functional relations and thus reduce to a basis of integrals.

It turns out that suitable differential forms de�ning classes of iterated integrals can be

identi�ed starting from geometrical considerations: taking the �rst abelian differential on the

simplest genus-zero surface, the Riemann sphere, leads to the class of multiple polylogarithms

[1–5] while abelian differentials on a genus-one Riemann surface are the starting point for the

elliptic polylogarithms [6, 7] to be discussed in this article.

Genus zero: multiple polylogarithms have been a very active �eld of research in the last years:

since their motivic version constitute a graded Hopf algebra [3, 8, 9], with the shuf�e product

as algebra multiplication and the deconcatenation coproduct, there are very strong tools avail-

able [10] allowing in particular to derive functional relations. While the Duval algorithm [11]

delivers a basis with respect to the shuf�e product, further relations between different argu-

ments of polylogarithms can be explored using the coproduct, which is usually referred to as

the symbol map. A non-exhaustive list of examples, where such relations are investigated,

is references [1, 12–17]. Examples involving the evaluation of Feynman integrals include

references [18–22]. We are mainly interested in functional relations of the dilogarithm. Of

particular importance hereby is the so-called �ve-term identity

D (t)+ D (s)+ D

(
1− t

1− ts

)

+ D (1− ts)+ D

(
1− s

1− ts

)

= 0, (1.1)

where D(t) = Im
(
Li2(t)− log

(
|t|
)
Li1(t)

)
is the Bloch–Wigner function, the single-valued

version of the dilogarithm. The �ve-term identity has a beautiful interpretation in terms

of a volume decomposition in hyperbolic space into (hyperbolic) tetrahedra. In addition,

it is known [14, 23] to create a large class of functional equations for the dilogarithm

which are linear combinations of Bloch–Wigner functions where the arguments are ratio-

nal functions of one variable and satisfy a particular condition, to be explained below.

Similar statements are conjectured to hold in more general situations where the arguments are

allowed to be algebraic functions or rational functions of more than one variable [16]. On the

physics side, the idea of splitting a given volume into several polyhedra has been used to inter-

pret and reformulate the calculation of various Feynman diagrams, see for example references

[20, 21]. Linear combinations of values of the Bloch–Wigner function which satisfy the men-

tioned condition above and which are equal modulo �nitely many applications of functional

relations of the Bloch–Wigner function are identi�ed in the Bloch group [24–26]. Similarly,

higher Bloch groups have been investigated in the context of higher order polylogarithms.

Genus one: while elliptic polylogarithms have been explored for a long time [6, 27, 28], it

is only recently that they have been facilitated in the calculation of scattering amplitudes in

physics [29, 30]. However, as became apparent, many of the structures inherent in multiple

polylogarithms can be taken to genus one easily: iterated integrals on genus one allow for a

natural shuf�e multiplication and an associated coaction or symbol map [31].

Given the existence of the symbolmap for elliptic iterated integrals, it is a natural problem to

investigate functional relations for elliptic polylogarithms. In particular, an elliptic analogue of

the Bloch group has been considered in reference [32], which is based on a class of functional
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relations for an elliptic generalisation of theBloch–Wigner function, the elliptic Bloch–Wigner

function DE, and given by relations of the form

DE(ηF) = 0 (1.2)

where the object ηF is parametrised by (some of the zeros and singularities of) any non-constant

elliptic function F [33]. However, a similar functional relation for the elliptic Bloch–Wigner

function and the construction of an elliptic analogue of the Bloch group has already been dis-

cussed in reference [34]. In contrast to the genus-zero case, where the �ve-term identity suf�ces

to represent a large class of functional identities of the dilogarithm, a whole class of func-

tional identities given by equation (1.2) needs to be investigated in the genus-one case [32].

The considerations therein, however, remain on the level of a few particular examples, e.g. an

implicitly de�ned elliptic analogue of the �ve-term identity. As will be described in detail

below, the answer to the question of an explicit elliptic �ve-term identity and the explicit

description of the other elliptic functional identities generated by equation (1.2) requires

substantially more technical effort than for classical polylogarithms.

In this article, we are going to put Zagier’s and Gangl’s method to work in order to �nd

several examples of functional identities between simple elliptic polylogarithms. The resulting

relations are going to be contrasted with relations derived using the elliptic symbol map. In

order to compare the two types of relations, one has to translate between different formula-

tions of the elliptic curve, and thus different types of (iterated) integrals, which is a source

of the complexity of the problem. Despite those dif�culties we �nd several relations con-

necting elliptic polylogarithms of rather complicated arguments. In some cases, the relations

found can be trivially accounted to known symmetry relations for the elliptic Bloch–Wigner

function.

The translation of the elliptic Bloch–Wigner function to the torus, represented as the com-

plex plane modulo a two-dimensional lattice C/Λ, allows a new perspective on the elliptic

Bloch relation: the condition encoded in equation (1.2) above translates into rather simple

relations between iterated elliptic integrals on the torus, whose correctness is not dif�cult to

show. Thus the translation combined with the elliptic symbol calculus provides an alternative

proof of the elliptic Bloch relation.

As an aside, we are going to translate Ramakrishnan’s generalisations of the elliptic

Bloch–Wigner dilogarithm [25, 35] as well as Zagier’s generalised single-valued elliptic poly-

logarithms [36] to the torus formulation of the elliptic curve. These representations will be

serving as a starting point for the investigation of relations between higher elliptic functions in

a forthcoming project.

Given the general structure of the elliptic curve, it was not to be expected that functional

relations are at the same level of simplicity as their genus-zero cousins. On the one hand,

the calculation of zeros and poles of elliptic functions is more complicated than in the case of

rational functions on the Riemann sphere. On the other hand, the translation from the projective

formulation of the elliptic curve, where the mentioned zeros and poles may be described in

terms of rational functions, to the torus given by Abel’s map is not algebraic and highly non-

trivial.

This article is structured in the following way: in section 2 we present some of the well-

known results for functional relations of the Bloch–Wigner function and in particular the

construction of the Bloch group and the Bloch relation. In section 3 we review several known

concepts: we set the notation for different formulations of elliptic curves as well as ellip-

tic functions and review known results about the Bloch group in the genus-one situation,

which are mostly formulated on the Tate curve describing the corresponding elliptic curve.

Section 4 is devoted to the translation of the above and further concepts to the torus and the

3
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projective elliptic curve. In particular, notions of (conjecturally) single-valued elliptic gen-

eralisations of polylogarithms de�ned on the Tate curve are related to the elliptic multiple

polylogarithms as holomorphic iterated integrals on the torus, which further allows to formu-

late (and prove) the elliptic Bloch relation (1.2) on the torus and the projective elliptic curve,

respectively.

2. Bloch groups for polylogarithms

The description of functional relations of polylogarithms and in particular of the single-

valued dilogarithm—the Bloch–Wigner function—can be formalised using the concept of

(higher)Bloch groups. These are certain (abelian) groupsBmwhich capture functional relations

satis�ed by single-valued polylogarithms of order m.

In subsection 2.1 we are going to review the geometric construction and interpretation of

B2 in terms of hyperbolic three-manifolds. Afterwards, in subsection 2.2 we introduce the

Bloch relation of the Bloch–Wigner function, which generates functional identities such as the

�ve-term identity. In the subsequent section this Bloch relationwill be generalised to the elliptic

curve and will be used to de�ne the elliptic analogue of B2, the elliptic Bloch group, which is

discussed in subsection 3.4.

2.1. The Bloch group

The functional relations of the dilogarithm Li2 often take a very simple form when expressed

in terms of the Bloch–Wigner function

D(t) = Im
(
Li2(t)− log

(
|t|
)
Li1(t)

)
, (2.1)

which is the single-valued version of the dilogarithm (see reference [16] for an extensive review

of the Bloch–Wigner function). The Bloch–Wigner function is continuous on the Riemann

sphere and real analytic except at the points 0, 1 and∞, where it is de�ned to vanish.

The Bloch–Wigner function and its functional relations admit a broad variety of mathemat-

ical interpretations and applications, ranging from periodicities of a cluster algebra [37–39],

volumes in hyperbolic space [40, 41] and the symbol calculus [42, 43] to functional identities

generated by rational functions on the Riemann sphere [33], the latter is the main focus of our

considerations.

The Bloch–Wigner function satis�es the symmetry relations

D(t) = D

(

1− 1

t

)

= D

(
1

1− t

)

= −D

(
1

t

)

= −D (1− t) = −D

( −t
1− t

)

(2.2)

and the duplication relation

D(t2) = 2D (t)+ 2D (−t) , (2.3)

which can be easily proven using the properties of the logarithm and Li2. In addition, there is

the famous �ve-term identity already mentioned in the introduction, which can be described

as a consequence of the periodicity of the A2 cluster algebra [39]. It reads

D (t)+ D (s)+ D

(
1− t

1− ts

)

+ D (1− ts)+ D

(
1− s

1− ts

)

= 0. (2.4)
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In order for the above equation to yield a valid new relation, t and s are numbers chosen such

that neither of the arguments yields 0, 1 or∞, i.e. s, t 6= 0, 1 and st 6= 1. In those special cases,

however, equation (2.4) degenerates to the symmetry relations in equation (2.2) above.

Alternatively, one can interpret the �ve-term identity as a relation between volumes of

hyperbolic three-simplices in the so-called Poincaré half-space model [40, 41]. As it is this

volume interpretation of the Bloch–Wigner function which leads to an illustrative geomet-

ric construction of the Bloch group4, let us describe this construction in a little more detail

following the lines of references [16, 32]. The volume of a complete, �nite, hyperbolic three-

manifold M can be triangulated and, thus, expressed as the sum over the volumes of a �nite

number of three-simplices

Vol(M) =
∑

i

D(ti), (2.5)

each of which can be labelled by a cross ratio ti ∈ C such that its volume is given by D(ti).

Considering the geometric properties of such a triangulation, one can show that the associated

coordinates ti in equation (2.5) have to satisfy the following algebraic constraint [40]:

∑

i

ti ∧ (1− ti) = 0 ∈ C
∗ ∧C

∗. (2.6)

Correspondingly, one can in general express the volume ofM as

Vol(M) =
∑

i

D(ti) = D(ξ), (2.7)

for an element ξ ∈ A2 (C), where

A2 (C) =

{
n∑

i=1

ni(ti) | ti ∈ C
∗ \ {1}, n ∈ N, ni ∈ Z,

n∑

i=1

ni (ti ∧ (1− ti)) = 0

}

⊂ FC, (2.8)

FC is the free abelian group5 generated by C and the Bloch–Wigner function is extended by

linearity to FC, i.e.

D

(
∑

i

ni(ti)

)

=
∑

i

niD(ti). (2.9)

Let us brie�y discuss the de�nition (2.8) of A2(C). The condition ti /∈ {0, 1} corresponds to

the de�nition of D(0) = 0 = D(1). The fact that now, we allow in
∑n

i=1 ni (ti ∧ (1− ti)) = 0

the coef�cients ni to be any integer and not only to equal 1, as in equation (2.6), is required to

turnA2 (C) into a subgroup of FC and to (uniquely) shorten the sum (2.7) in the case of ti = tj
for i 6= j.

The geometric interpretation of the �ve-term identity corresponds to a change of triangula-

tion: it describes two distinct triangulations of a volume de�ned by �ve vertices and the edges

4The Bloch group B2 has originally been introduced in reference [24] and has been extended in references [25, 26] to
higher orders.
5The free abelian group generated by a set S is the group of formal �nite sums

∑

s∈Sns(s) with ns ∈ Z, all but �nitely

many equal to zero. The group operation is de�ned by
∑

s∈Sns(s)+
∑

s∈Sms(s) =
∑

s∈S(ns + ms)(s) and the iden-

tity element is the empty sum. Note that in contrast to the usual notation where square brackets are used to denote

an element of the free abelian group, we use parentheses in agreement with the notation of divisors introduced in

subsection 2.2.
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being geodesics, which can either be described by a disjoint union of two hyperbolic three-

simplices or of three such simplices. The �ve-term identity expresses the equality of the sum

of the volumes of the former two and the latter three simplices. The change of triangulation

and the associated applications of the �ve-term relation motivate the de�nition of the follow-

ing subgroup of A2(C), which can be thought of as constituting the group of relations of the

Bloch–Wigner function with the generator6 being the arguments occurring in the �ve-term

identity,

C2 (C) = 〈(t)+ (s)+

(
1− t

1− ts

)

+ (1− ts)+

(
1− s

1− ts

)

|s, t ∈ C
∗\{1} , st 6= 1〉. (2.10)

Thus, the volume ofM can be expressed as the value

Vol(M) = D(ξM) (2.11)

for a canonical ξM ∈ B2 (C) associated toM with

B2 (C) =
A2 (C)

C2 (C)
(2.12)

being the Bloch group7.

Besides this geometric construction, theBloch groupB2(C) is an elementary algebraic struc-

ture for the description of dilogarithmic functional relations, i.e. identities of �nite sums such

as
∑

iniD(ti(sj)) = c, for rational or algebraic functions ti of one or more variables sj and

some constant c ∈ C. In the case of only one variable s and rational functions ti(s) ∈ C(s),

the element ξ =
∑

ini(ti(s)) evaluates under D to a constant if and only if
∑

ini (ti(s)) ∧
(1− ti(s)) is independent of s [25]. For the particular condition

∑

ini (ti(s)) ∧ (1− ti(s)) = 0,

the element ξ belongs to the Bloch group B2(C(s)) of the �eld of rational functions C(s).

As proven in reference [14], all such elements are equal to zero in B2(C(s)). Thus, in this case

the functional equation
∑

iniD(ti(s)) = 0 is indeed obtained by a �nite number of applications

of the �ve-term identity. Similar statements are not known in the case of algebraic functions

or rational functions in more than one variable, but they are expected to exist, see e.g. [16].

2.2. Bloch’s dilogarithm relations

Bloch describes a concept to formalise the generation of functional identities for the

Bloch–Wigner function and of its generalisation to elliptic curves [33]. In this subsection we

state his results in the classical situation and generalise it to the elliptic case in section 3 below.

In the following, we are going to make use of the concept of a divisor: for anymeromorphic

function g de�ned on a compact Riemann surface X, the divisor of g is de�ned as

Div(g) =
∑

p∈X
ordp(g) (p), (2.13)

where ordp(g) is the order of the pole (a negative integer) or the order of the zero (a positive

integer), respectively, of g at p. If p is neither a pole nor a zero of g, ordp( f ) = 0, which renders

6 For T ⊂ S, the subgroup 〈t|t ∈ T〉 of FC generated by T is the group of formal �nite sums
∑

t∈Tnt(t) with nt ∈ Z, all

but �nitely many equal to zero.
7Higher Bloch groups Bm(C) for m > 2 can be constructed recursively [32]. In analogy to the case C2(C) considered
above, the subgroup Cm(C) of the group of ‘allowable’ points Am(C) (where allowable can be de�ned recursively and

corresponds to the condition
∑n

i=1 ni (ti ∧ (1 − ti)) = 0 in the case m = 2) is constructed to be the span of functional

relations among polylogarithms of order m.

6
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the number of terms in the above sum �nite. In the de�nition above, divisors are elements of

the free abelian group generated by the Riemann surface X.

Let f : CP1 → CP1 be a non-trivial rational function on the Riemann sphere satisfying

f (0) = f (∞) = 1, (2.14)

which can be realized by representing f as a �nite product

f (t) =
∏

i

(t − ai)
di ,

∑

i

di = 0 ,
∏

i

a
di
i = 1, (2.15)

where ai ∈ C and di ∈ Z. Furthermore, let us write

1− f (t) = b
∏

j

(t − b j)
e j , (2.16)

where b, b j ∈ C and e j ∈ Z. The divisor of the function f de�ned in equation (2.15) reads

Div( f ) =
∑

i

ordai( f )(ai) =
∑

i

di(ai) , Div(1− f ) =
∑

j

e j(b j). (2.17)

In reference [33] Bloch proves that for any rational function f as de�ned above, the

Bloch–Wigner function satis�es

∑

i, j

die jD

(
ai

b j

)

= 0, (2.18)

abbreviated in terms of the element

η f =
∑

i, j

die j

(
ai

b j

)

(2.19)

of the free abelian group FC and the Bloch–Wigner function extended by linearity as in

equation (2.9), this so-called classical Bloch relation reads

D
(
η f
)
= 0. (2.20)

Letting the zeros ai of f vary subject to the conditions in equation (2.15), this dilogarithm

relation of Bloch becomes a functional relation. Choosing different rational functions satisfying

equation (2.14) in the �rst place, equation (2.20) yields a whole class of functional relations

for the Bloch–Wigner function parametrized by rational functions f on the Riemann sphere,

which is however not independent. In fact, it is conjecturally generated by the single example

of the �ve-term identity (see the discussion at the end of subsection 2.1), which is discussed in

the following paragraph.

As the most fundamental example and an application of the Bloch relation, let us discuss

how to recover the �ve-term identity equation (2.4) from equation (2.20) following the lines

of reference [32]: let a, b ∈ C, a′ = 1− a, b′ = 1− b and consider the rational function

f (t) =
(t − a)(t− a′)(t − bb′)

(t − b)(t− b′)(t − aa′)
. (2.21)

It satis�es f (0) = f (∞) = 1 and

1− f (t) =
(bb′ − aa′)t2

(t − b)(t− b′)(t − aa′)
, (2.22)

7
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such that Bloch’s relation can be applied, which yields the identity

D
(a

b

)

+ D

(
a′

b′

)

+ D
( a

b′

)

+ D

(
bb′

aa′

)

+ D

(
a′

b

)

= 0, (2.23)

where we have used that D(0) = D(1) = D(∞) = 0 and the symmetry relations (2.2). Chang-

ing variables to t = a
b
, s = a′

b′ �nally leads to the �ve-term identity in the usual form (2.4).

3. Elliptic curves, the divisor function and Bloch’s relation

The aim of this section is twofold: after reviewing mathematical tools for the description of

elliptic curves in various formulations and a particular type of elliptic iterated integrals in

subsections 3.1 and 3.2 we are going to discuss and exemplify the generalisation of the con-

cepts of the divisor function and the Bloch relation from the previous section to the genus-one

Riemann surfaces/elliptic curves in subsections 3.3 and 3.4. In particular, subsection 3.4 con-

tains three examples of functional relations on the elliptic curve parametrised by various

rational functions.

3.1. Elliptic curves and functions

This subsection begins with the introduction of the torus description of elliptic curves: being

a Riemann surface of genus one, the torus is the natural geometry underlying an elliptic

curve due to its two periodicities. Along with the discussion of the torus formulation, sev-

eral properties of elliptic functions are reviewed. Afterwards, two isomorphisms are discussed,

where the �rst one relates the torus to the projective (elliptic) curve and the second one maps

the torus to the so-called Tate curve given by the exponential map. These are well-known

mathematical concepts, but in particular the map from the torus to the Tate curve is rarely

mentioned in the physics literature. A thorough introduction which relates to the common

physics language can e.g. be found in reference [44], which is the basis for the discussion in

this subsection.

A torus can be described as the quotient C/Λ of the complex plane and a lattice

Λ = ω1Z+ ω2Z (3.1)

where the periods ω1 and ω2 are complex numbers and taken to be linearly independent over

the real numbers. The domainPΛ = {aω1 + bω2|0 6 a, b < 1} is called the f undamental par-
allelogram of C/Λ which de�nes the torus upon identifying the opposite sides of its closure.

Due to this immediate relation, we will simply refer toC/Λ as the torus itself. The torus is often

scaled such that τ = ω2/ω1 and 1 are its periods and without loss of generality τ is assumed to

be an element of the upper half plane, Im(τ ) > 0, in this case the fundamental parallelogram

can be depicted as in �gure 1.

A function is called elliptic on C if it is Λ-periodic, i.e. a function de�ned on C/Λ, and
meromorphic.However, in the case of generalisations of multiple polylogarithms to the elliptic

curve, we sometimes also refer to multi-valued functions on the torusC/Λ (i.e. not necessarily

Λ-periodic functions), as elliptic functions if they are meromorphic. This is in particular the

case for the elliptic multiple polylogarithms introduced in subsection 3.2.

Two explicit examples of elliptic functions are the even Weierstrass ℘ function

℘(z) = ℘(z;ω1,ω2) =
1

z2
+

∑

(m,n)6=(0,0)

(
1

(z+ mω1 + nω2)2
− 1

(mω1 + nω2)2

)

(3.2)

8
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Figure 1. Fundamental domain of the torus C/Λ.

and its odd derivative ℘′(z). Note that ℘ has a double pole at any lattice point, whereas ℘′

has a triple pole at the lattice points. Closed expressions of zeros of ℘ are generally compli-

cated, while the zeros of ℘′ are exactly the half periods ωi/2, for i = 1, 2, 3 and ω3 = ω2 − ω1.

Moreover, these elliptic functions satisfy the differential equation

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) = 4℘(z)3 − g2℘(z)− g3 (3.3)

where the three roots ei are de�ned by

ei = ℘(ωi/2) (3.4)

and sum to zero. The Weierstrass invariants g2 and g3 in the above equation can be expressed

in terms of Eisenstein series

g2 = 60
∑

(m,n)6=(0,0)

1

(mω1 + nω2)4
, g3 = 140

∑

(m,n)6=(0,0)

1

(mω1 + nω2)6
(3.5)

and are related to the roots by

e1 + e2 + e3 = 0 , e1e2 + e2e3 + e3e1 = −1

4
g2 , e1e2e3 =

1

4
g3. (3.6)

It turns out that the notion of ellipticity is quite restrictive: for example, the zeros and poles of

an elliptic function F are subject to the conditions8

∑

z∈PΛ

ordz (F) = 0 ,
∑

z∈PΛ

ordz (F) z ∈ Λ, (3.7)

where the order ordz(F) ofF at z is the usual order of zeros and poles ofmeromorphic functions,

in analogy to the de�nition of the order in the context of rational functions on the Riemann

sphere used in equation (2.13). In particular, points which are neither zeros nor poles are of

order zero. Thus, the sums over the fundamental parallelogram in equation (3.7) are �nite and

include the non-vanishing terms at zeros and poles of F only.

Moreover, an elliptic function can not have a single simple pole: using Cauchy’s residue

theorem and integration along the fundamental parallelogram, where the (reversed) parallel

paths cancel pairwise due to theΛ-periodicity, the sum of the residues has to vanish, which can

not be satis�ed by a single simple pole alone. The conditions in equation (3.7) follow from the

8 See e.g. the lecture notes [45] for the derivation of equation (3.7) and the following statements about Weierstrass

functions.
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same cancelation of the integration along the fundamental parallelogram in the (generalised)

argument principle.

Furthermore, any elliptic function is determined up to scaling by its zeros and poles: the

quotient of two elliptic functions with the same zeros and poles, counting multiplicities, is

bounded on the fundamental parallelogramPΛ and hence, byΛ-periodicity, is a bounded entire

function, such that Liouville’s theorem implies that these two elliptic functions are proportional

to each other. This fact, in turn, implies that any elliptic function on C/Λ is a rational function

in ℘ and ℘′: those rational functions are elliptic by construction and can be combined to have

the same zeros and poles as any given elliptic function.

Alternatively, any elliptic function can be expressed in terms of the Weierstrass σ function

σ(z) = sC exp

(∫ z

z0

dz′ ζ(z′)

)

, (3.8)

where the scaling factor sC and the base point z0 are chosen
9 such that σ′(0) = 1. The logarith-

mic derivative (and thus the integrand in equation (3.8)) of the Weierstrass σ function is the

Weierstrass ζ function

ζ(z) =
1

z
+

∑

(m,n)6=(0,0)

(
1

z− mω1 − nω2

+
1

mω1 + nω2

+
z

(mω1 + nω2)2

)

, (3.9)

which itself is the negative odd primitive of ℘.
The Weierstrass σ function has no poles and one simple zero at the lattice points, hence,

it can not be elliptic. In fact, neither ζ nor σ is Λ-periodic. For the Weierstrass ζ function

and a lattice period ωi, integrating the equation ℘(z+ ωi) = ℘(z) implies that ζ changes by a

z-independent integration constant

ζ(z+ ωi) = ζ(z)+ 2η(ωi) (3.10)

with the quasi-period η(ωi) = ζ(ωi/2), which follows from the evaluation of equation (3.10)

at z = −ω1/2. In a similar manner one can determine the transformation behaviour of the

Weierstrass σ function, which reads

σ(z+ ωi) = exp (2η(ωi)z+ ξ(ωi))σ(z), (3.11)

where ξ(ωi) is yet another integration constant (see e.g. reference [45]). This shows explicitly
that σ is indeed not elliptic. The transformation (3.11) of σ and the fact that it has one simple

zero at any lattice point and no poles at all leads to the alternative representation of a given

elliptic function F mentioned above: one can always choose particular representatives Ai of

the zeros and poles of F in C/Λ (not necessarily in the fundamental domain) such that

∑

i

di = 0 ,
∑

i

diAi = 0, (3.12)

9Both, sC and z0, can be chosen canonically by adjusting the integration constant ξ(ωi) in equation (3.11).

10
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where di = ordAi (F). It is then the set of conditions (3.12), satisfying the natural constraints

(3.7) for the zeros and poles of an elliptic function, which ensures that the combination10

∏

i

σ(z− Ai)
di = exp

(
∑

i

di

∫ z−Ai

0

dz′ζ(z′)

)

(3.13)

is elliptic. Indeed, under a lattice displacement the exponential proportionality factor in

equation (3.11) from the transformation of the individual factors σ(z− Ai)
di in equation (3.13)

form a product with an exponent which is a linear combination of the left-hand sides of

the two conditions (3.12), such that the overall proportionality constant evaluates to one.

Since σ has only one simple zero at the lattice points and no pole, the above product has

exactly the same zeros and poles including multiplicities as the function F. Correspondingly,

any elliptic function F can be written as

F(z) = sA
∏

i

σ(z− Ai)
di = sA exp

(
∑

i

di

∫ z−Ai

0

dz′ζ(z′)

)

(3.14)

for some scaling factor sA ∈ C. The behaviour of the zeros and poles of an elliptic function can

be conveniently captured in terms of divisors, which are introduced in subsection 3.3.

The fact that all elliptic functions can be expressed as rational functions of ℘ and ℘′ facil-
itates their description in terms of rational functions on a complex projective algebraic curve.

The Weierstrass ℘ function induces an isomorphism betweenC/Λ and the complex projective

algebraic curve

E (C) = {[x : y : 1] | y2 = 4x3 − g2 (Λ) x − g3 (Λ)} ∪ {[0 : 1 : 0]}, (3.15)

where [0 : 1 : 0] is denoted by in�nity∞. Note that the cubic equation in x and y of the curve

in de�nition (3.15) is of the same form as the differential equation (3.3) for ℘: this representa-
tion of the constraint equation on the projective formulation of the elliptic curve is called the

Weierstrass f orm orWeierstrass equation. Furthermore, the projective algebraic curve E(C) is

often called the projective formulation of the elliptic curve or the projective elliptic curve.

The isomorphism of Riemann surfaces is given by

ξΛ,E : C/Λ→ E (C) , 0 6= z 7→
[
℘(z) : ℘(z)′ : 1

]
, 0 7→ [0 : 1 : 0] = ∞,

(3.16)

see e.g. reference [44] for more details. The addition on E (C) is provided by the so-

called chord-tangent construction with the additive unity being ∞. It has a nice geometric

interpretation, which is described in appendix A.

The inverse of the isomorphism ξΛ,E is called Abel’s map and can be determined from the

differential equation (3.3). Given a point P = [xP : yP : 1] with yP 6= 0, one �nds

z = ±
∫ xP

∞

dx

y
modΛ, (3.17)

10Note that compared to the de�nition of the Weierstrass σ function (3.8), the factors of sC from the product on the

left-hand side of equation (3.13) multiply to one and the base point z0 of the integrals in the exponential can be shifted

to zero due to the condition
∑

id i = 0 in equation (3.12).

11
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where the correct sign is determined by the requirement that ℘′(z) = yP, and ξ−1
Λ,E(ei) = ωi/2

for P = [ei : 0 : 1]. Upon identifying

x = ℘(z) , y = ℘′(z) (3.18)

as well as using the fact that these two functions generate any elliptic function on the torus in

terms of rational functions, it follows that the elliptic functions can be described as the rational

functions in x and y on the projective elliptic curve E(C).

The above choice of signs in Abel’s map (3.17) is not the only issue that needs some care

if a translation from a given projective elliptic curve E(C) with elliptic invariants g2 and g3 to

the torus has to be implemented explicitly.

A �rst ambiguity has to be addressed by making a choice for the periods ω1 and ω2

associated to the elliptic curve with Weierstrass equation y2 = 4x3 − g2x − g3 = 4(x − e1)

(x − e2)(x − e3). The roots ei are de�ned by g2 and g3 up to relabelling according to

equation (3.6). Simultaneously, Abel’s map together with equation (3.4) implies

ω1

2
=

ω2

2
− ω3

2
=

(∫ e2

e3

dx

y

)

modΛ, (3.19)

where the ωi, or the fundamental parallelogram, respectively, are chosen such that the periods

are given by the integrals [46]

ω1 = 2

∫ e2

e3

dx

y
, ω2 = 2

∫ e1

e3

dx

y
, ω3 = ω2 − ω1 = 2

∫ e1

e2

dx

y
. (3.20)

Any other choice of labelling the roots will yield an integer linear combination of the periods

de�ned in equation (3.20) above, i.e.

2

∫ e j

ei

= mi jω1 + ni jω2 (3.21)

with mi j, ni j ∈ Z. Hence, the choice of periods corresponds to choosing different basis vectors

for spanning the lattice Λ. Correspondingly, the six possible labellings of the roots de�ne six

pairs of periods (ω1,ω2), whereas the associated different tori are isomorphic to a particular

elliptic curve.

The second, but related issue is that the complex planemay always be rescaled byω1. Hence,

only the ratio τ = ω2/ω1 matters when dealing with the Λ-periodicity, i.e. the geometry of the

torus. Therefore, a torus is usually only de�ned by the modular parameter τ with positive

imaginary part Im(τ) > 0 while the second period is chosen to be one. Under scaling ω1, the

Weierstrass ℘ function rescales as

℘(z; 1, τ ) = ω2
1 ℘(ω1z;ω1,ω2). (3.22)

Choosing τ in the upper half-plane means that three possible labellings of the roots ei are

disregarded. The remaining three period ratios obtained from the different labellings of the

roots ei are related to the τ in the upper half plane by modular transformations.

In summary, the Weierstrass invariants of an elliptic curve completely de�ne the torus up

to modular transformations. Conversely, given two tori with period ratios τ and τ ′ related by

a modular transformation, the Weierstrass equations of the projective elliptic curves obtained

by ξτZ+Z,E and ξτ ′Z+Z,E′ , respectively, are related by a coordinate transformation of the form

x 7→ a2x + b , y 7→ a3y+ ca2x + d , with a, b, c, d ∈ C , a 6= 0. (3.23)

12
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Two elliptic curves are called isomorphic if they are related in this way. For example, the

transformation x 7→ a2x, y 7→ a3y only changes the roots by the constant rescaling ei 7→ a−2ei,

which is an isomorphismon the complex plane (with respect to addition). Thus, the period ratio

τ modulo modular transformations uniquely de�nes the isomorphism class of elliptic curves

de�ned by ξτZ+Z,E and vice versa.

Note that the computer algebra system Mathematica11 offers built-in functions

for translating from the projective formulation of elliptic curves to the torus. In those

functions, however, the ambiguities described above are chosen implicitly. For example,

the determination of the half periods ω1/2, ω2/2 with the Mathematica function

WeierstrassHalfPeriods[{g2,g3}] relies on a choice of the labellings of the roots

which is selected depending on the signs of the Weierstrass invariants and the modular

discriminant∆ = g32 − 27g23.

In order to de�ne a third formulation of the elliptic curve, let us consider a torus de�ned

by the modular parameter τ and de�ne q = e2πiτ . The exponential map induces another

isomorphism

ξτ ,q : C/ (τZ+ Z)→ C
∗/qZ , z 7→ e2πiz. (3.24)

where the codomainC∗/qZ is called Tate curve12 and is endowed with the multiplicative group

structure inherited by the exponential map from addition on the torus. For example, the repre-

sentatives z1 + n1 + m1τ and z2 + n2 + m2τ of z1 and z2 modulo lattice displacements inC/Λ,
where ni,mi ∈ Z, are mapped to the elements

ξτ ,q(zi + ni + miτ ) = e2πi(zi+ni+miτ ) = e2πiziqmi , (3.25)

which are representatives of t1 = e2πiz1 and t2 = e2πiz2 , respectively, modulo integer powers of

q. Similarly, the sum z1 + z2 modulo lattice displacements is mapped to the product t1t2 modulo

integer powers of q on the Tate curve.

The description of elliptic functions on the Tate curve offers a connection to rational func-

tions on the Riemann sphere CP1 and, in particular, admits a convenient tool to take the

classical limit q→ 0. In order to reveal this connection to functions on the Riemann sphere,

let f :CP1 →CP1 be a non-trivial rational function on the Riemann sphere satisfying the

condition

f (0) = f (∞) = 1, (3.26)

which will be justi�ed in a moment. Note that this class of functions was already discussed in

the context of the classical Bloch relation in subsection 2.2; the two approaches will be related

below. For now, recall from the discussion of the classical Bloch relation that this ensures that

f is of the form (2.15), i.e.

f (t) =
∏

i

(t − ai)
di , (3.27)

with
∑

i

di = 0 ,
∏

i

a
di
i = 1. (3.28)

11 See e.g. reference [47] for a guideline of the use and the choices of Mathematica’s built-in conversions from the

projective elliptic curve to the torus, which is based on the conventions of [46].
12 See reference [48], appendix A.1.2, or reference [49], section 4.3, for a more recent introduction to the Tate curve.

13



J. Phys. A: Math. Theor. 53 (2020) 245201 J Broedel and A Kaderli

Averaging f multiplicatively as follows over the Tate curve yields a function

F(t) =
∏

l∈Z
f (tql), (3.29)

which obeys the transformed Λ-periodicity condition F(tq) = F(t), cf equation (3.25) for

the transformation behaviour of lattice displacements under the isomorphism ξτ ,q, and, can
therefore be called elliptic on the Tate curve. A discussion of the properties of such elliptic

functions on the Tate curve can be found in reference [33].

The so far unexplained condition (3.26) can be justi�ed as follows: on the one hand it ensures

that in the limit q→ 0 we recover f (t), on the other hand it implies the condition (3.12) on the

zeros and poles ai of the elliptic generalisation F of f from equation (3.29) after the appli-

cation of the isomorphism ξ−1
τ ,q and the identi�cation ai = e2πiAi .13 As we will see in subsec-

tion 3.3, these two conditions (modulo lattice displacements) are not only necessary, but also

suf�cient to be the zeros and poles of some elliptic function. Therefore, we can summarize that

the function F is the elliptic generalisation of f on the Tate curve and all elliptic functions on

the Tate curve can be obtained by this method up to scaling.

3.2. Elliptic multiple polylogarithms

There are several descriptions of elliptic generalisations of multiple polylogarithms, so-called

elliptic multiple polylogarithms. Based on the fact that there is no elliptic function on the torus

with just one simple pole, such generalisations are either not meromorphic or not Λ-periodic.

However, in Feynman integral calculations one usually chooses to work with meromor-

phic rather than single-valued functions. Motivated by this physical reason, we focus on the

holomorphic iterated integrals Γ̃ on the torus described in reference [44] and relate some

other notions of (single-valued but non-holomorphic) elliptic multiple polylogarithms to these

iterated integrals in subsection 4.1. In analogywith the multi-valuedness of the logarithm func-

tion, we still refer to these holomorphic iterated integrals as elliptic multiple polylogarithms

de�ned on the torus.

Consider a torus with periods 1 and τ , where Im(τ) > 0 as described in subsection 3.1

above, and denote

t = e2πiz , q = e2πiτ and w = e2πiα. (3.30)

The holomorphic functions g(n)(z, τ ), which satisfy g(n)(z, τ ) = g(n)(z+ 1, τ ), constitute the

integration kernels of the holomorphic iterated integrals Γ̃ described in reference [44]. They

are generated by the Eisenstein–Kronecker series [50, 51]

F(z,α, τ ) =
θ′1(0, τ )θ1(z+ α, τ )

θ1(z, τ )θ1(α, τ )
=

1

α

∑

n>0

g(n)(z, τ )αn, (3.31)

13We generally denote an elliptic function by a capital Latin letter F (while functions on the Riemann sphere are

denoted by small Latin letters) and its zeros and poles on the Tate curve by small letters ai, while their images on the

torus are denoted by the corresponding capital letters Ai. However, for a point on the torus, which corresponds to a

point t on the Tate curve, we usually write zt. The same applies for a given point P on the elliptic curve and its image

zP on the torus.
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where θ1(z, τ ) is the odd Jacobi θ function. The corresponding iterated integrals are de�ned

via

Γ̃(
n1 . . . nk
z1 . . . zk

; z, τ ) =

∫ z

0

dz′ g(n1)(z′ − z1, τ )Γ̃(
n2 . . . nk
z2 . . . zk

; z′, τ ) , Γ̃(; z, τ ) = 1. (3.32)

The integration kernels g(n)(z, τ ) are not as abstract as they might seem at �rst glance:

they are closely related to the doubly-periodic kernels introduced and used in reference [6].

Furthermore, the kernel g(1)(z, τ ) can be expressed as

g(1)(z, τ ) = ζ(z)− 2η1z, (3.33)

where ζ(z) is the Weierstrass ζ function introduced in equation (3.9) and η1 = ζ(1/2) is a

quasi-period of the elliptic curve (cf equation (3.10)). For n > 1, the integration kernels can be

expressed as polynomials of degree n in g(1)(z, τ ) and the coef�cients depend polynomially on

℘(z) and ℘′(z), where the �rst two examples are

g(2)(z) =
1

2

(
g(1)(z)

)2 − 1

2
℘(z) , g(3)(z) =

1

6

(
g(1)(z)

)3 − 1

2
℘(z)g(1)(z)− 1

6
℘′(z). (3.34)

More suitable for numerical evaluation is the description of the integration kernels gn(z, τ )
by their q-expansions, which are stated in the appendix B. Furthermore, since the Eisen-

stein–Kronecker series satis�es the mixed heat equation 2πi ∂
∂τ
F(z,α, τ ) = ∂2

∂z∂α
F(z,α, τ ) [6],

the integration kernels solve the partial differential equation

2πi
∂

∂τ
g(n)(z, τ ) = n

∂

∂z
g(n+1)(z, τ ). (3.35)

At this point, some facts about the regularisation of those iterated integrals need to be men-

tioned. Considering the q-expansions (B.1)–(B.4) it is obvious that only the kernel g(1) has

a singularity at z = 0. This singularity is a simple pole, which renders the iterated integrals

Γ̃

(

n1 . . . nk
z1 . . . zk

; z, τ

)

with zk = 0, nk = 1 singular.

Employing the shuf�e product of iterated integrals, any singular integral can be rewrit-

ten such that the only singular terms are of the form Γ̃

(

1 . . . 1
0 . . . 0

)

︸ ︷︷ ︸

n

; z, τ . Those singular terms

can then be regularised in a way that preserves the shuf�e algebra. Following the prescription

described in reference [31] the logarithmic singularity at the lower integration boundary of the

integral Γ̃

(
1

0
; z, τ

)

for z 6= 0 can be subtracted by de�ning its regularised value as follows:

Γ̃reg

(
1

0
; z, τ

)

= lim
ǫ→0

∫ z

ǫ dz′ g(1)(z′, τ )+ log(1− e2πiǫ)

= log(1− e2πiz)− πiz+ 4π
∑

k,l>0

1
2πk (1− cos(2πkz))qkl.

(3.36)

Note that while the original integral Γ̃

(
1

0
; z, τ

)

vanishes at z = 0 and is divergent at any

other value of z, the regularised version Γ̃reg

(
1

0
; z, τ

)

is �nite at any z 6= 0, but has a logarith-
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mic divergence at z = 0. The prescription can be easily generalized to iterated integrals with

multiple successive divergent entries: with the generalisation

Γ̃reg

(
1 . . . 1
0 . . . 0
︸ ︷︷ ︸

n

; z, τ

)

=
1

n!

(

Γ̃reg(
1

0
; z, τ )

)n

. (3.37)

From here on—unless stated otherwise—we denote by Γ̃

(

1 . . . 1
0 . . . 0
︸ ︷︷ ︸

n

; z, τ

)

its regularised value

and refer to the unregularised version as follows

Γ̃unreg

(
1 . . . 1
0 . . . 0
︸ ︷︷ ︸

n

; z, τ

)

=

∫ z

0

dz′g(1)(z′, τ ) Γ̃unreg

(

1 . . . 1
0 . . . 0
︸ ︷︷ ︸

n−1

; z′, τ

)

. (3.38)

In subsection 4.1 below, a particular class of the iterated integrals Γ̃ is discussed in detail,

which is the one given by the regularised elliptic polylogarithms of the form

Γ̃

(
0 . . . 0m
0 . . . 0 0
︸ ︷︷ ︸

n

; z, τ

)

, (3.39)

where n,m > 1. The numerical evaluation of this class of functions is particularly simple, since

their q-expansions can directly by given by n-fold integration of the q-expansions (B.3) and

(B.4) of the integration kernels g(m)(z, τ ) form > 1 and the q-expansion (3.36) of Γ̃reg(
1

0
; z, τ ).

The results are given in equations (B.10)–(B.15).

The values of the (regularised) iterated integrals at z = 1 are particularly interesting since

they can be used to de�ne a class of elliptic multiple zeta values [52, 53]. Ordinary zeta values

ζm, for m > 1, are de�ned as the values of the corresponding polylogarithms evaluated at one

ζm = Lim(1). (3.40)

Analogously, we consider the elliptic zeta values de�ned by evaluation at one of the above

class of elliptic polylogarithms

ωn(m; τ ) = Γ̃

(
0 . . . 0m
0 . . . 0 0
︸ ︷︷ ︸

n

; 1, τ

)

. (3.41)

Note that this class of elliptic zeta values agrees with the de�nition of elliptic multiple zeta

values in reference [52]. Furthermore, the even zeta values are related to the elliptic zeta values

according to

ω1(2m; τ ) = −2ζ2m, (3.42)

which can be seen from the q-expansion (B.13).
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3.3. The divisor function

The last paragraph in subsection 3.1 was devoted to illuminating the relation between an ellip-

tic function F on the Tate curve and the corresponding rational function f on the Riemann

sphere. As mentioned at that point, this is closely connected to the formulation of the classical

Bloch relation in terms of divisors of such rational functions f discussed in subsection 2.2.

The combination of these two considerations leads to the formulation of the elliptic Bloch

relation using the concept of divisors of elliptic functions.

The group of divisors Div(C/Λ) of the torusC/Λ is the free abelian groupFC/Λ generated

by the points on the torusC/Λ and similarly for the projective elliptic curve as well as the Tate

curve, which are related via the isomorphisms introduced in equations (3.16) and (3.24) above.

Hence, a generic divisor is a �nite sum of the form

∑

i

ni(zi) ∈ Div(C/Λ) ,
∑

i

ni(Pi) ∈ Div(E(C)) or
∑

i

ni(ti) ∈ Div(C∗/qZ), (3.43)

respectively, with ni ∈ Z, zi ∈ C/Λ, ξΛ,E(zi) = Pi ∈ E(C) and ξq,E(zi) = ti ∈ C∗/qZ. Analo-
gously to the case of rational functions on the Riemann sphere, cf equation (2.17), and accord-

ing to the general de�nition (2.13), the divisor of an elliptic function F captures the structure

of the zeros and poles of F and is de�ned by

Div(F) =
∑

z∈PΛ

ordz(F)(z) ∈ Div(C/Λ) (3.44)

where the sum runs over all points in the fundamental domain PΛ of C/Λ.
According to the identi�cation of elliptic functions on the torus with rational functions on

the projective elliptic curve and elliptic functions on the Tate curve alluded to above, the divisor

(3.44) of an elliptic function F can be translated by the usual isomorphisms to the projective

formulation and the Tate curve via

Div(F) =
∑

P∈E(C)
ordP(F)(P) ∈ Div(E(C)) (3.45)

and

Div(F) =
∑

t∈C∗/qZ:|q|<|t|61

ordt(F)(t) ∈ Div(C∗/qZ), (3.46)

where the orders of the rational function F(x, y) and the elliptic function on the Tate curve F(t)

are de�ned by the order of the elliptic function F(z) on the torus at the corresponding points.

For two divisors D =
∑

id i(Pi) and E =
∑

jej(Qj), a new divisor

D−
=
∑

i

di(−Pi) (3.47)

and the binary product

D ∗ E =
∑

i, j

die j(Pi + Q j) (3.48)

can be de�ned, such that a divisor of the form

ηκF = Div(F) ∗ Div(κ− F)−, (3.49)
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can be associated to any rational function F, and similarly on the torus and the Tate curve,

respectively. In the above de�nition, κ ∈ C is a scaling parameter, which needs to equal one in

the classical situation described in subsection 2.2. The divisor ηκF associated to an elliptic func-
tion F plays an important role in later sections of this article and in particular in the formulation

of the elliptic Bloch relation in subsection 3.4.

The fact that two elliptic functions are equal up to scaling if they have the same zeros and

poles (counted with multiplicities) translates to the condition of having the same divisors. On

the other hand, a divisorD is said to be principal, if there exists an elliptic function F such that

D = Div(F). Now, we can properly rephrase the last two sentences in subsection 3.1: it turns

out that a divisor D is principal if and only if it is of the form D =
∑

id i(Ai) where

∑

i

di = 0 ,
∑

i

diAi ∈ Λ. (3.50)

A proof of this equivalence can be outlined as follows (cf reference [45]): the necessary impli-

cation follows from the conditions (3.7) on the zeros and poles of an elliptic function. In order

to prove suf�ciency, �rst note that any divisor D =
∑

id i(Ai) satisfying equation (3.50) can

be written as a linear combination of divisors of the form (A1)+ (A2)− (0)− (A1 + A2). Now,

consider elliptic functions of the form

Fλ(z) = (1− λ)
℘′(z)− ℘′(−A1 − A2)

℘(z)− ℘(−A1 − A2)
+ λ. (3.51)

In reference [45] it is shown that one can always �nd a complex parameter λ such that the

divisor associated to the above function reads:

Div(Fλ) = (A1)+ (A2)− (0)− (A1 + A2) (3.52)

and D can indeed be written as a divisor of an elliptic function D =
∑

je jDiv(Fλ j) =

Div
(
∏

jF
e j
λ j

)

, since the divisor function satis�es Div(F1F2) = Div(F1)+ Div(F2) for two

elliptic functions F1 and F2. Alternatively, the elliptic function F such that Div(F) = D can

be constructed by means of the Weierstrass σ function as in equation (3.14).

3.4. The elliptic Bloch relation

After having introduced the mathematical background for elliptic curves and elliptic functions

in the previous subsections, the elliptic version of Bloch’s dilogarithm identity (2.18) can be

discussed: in order to do so, an elliptic generalisation of the Bloch–Wigner function D de�ned

in equation (2.1) is required. Since the Bloch–Wigner function satis�es D(0) = D(∞) = 0, the

elliptic generalisation on the Tate curve in terms of an in�nite product as in equation (3.29) is

not applicable. However, an additive average over the Tate curve yields

DE(t, q) =
∑

l∈Z
D(tql). (3.53)

This function DE is referred to as the elliptic Bloch–Wigner f unction [33]. It inherits some

symmetry properties from the classical Bloch–Wigner function D, in particular the inversion

relation

DE(t−1, q) = −DE(t, q) (3.54)
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and the duplication relation

DE(t2, q) = 2
(
DE(t, q)+ DE(t

√
q, q)+ DE(−t, q)+ DE(−t√q, q)

)
(3.55)

from equations (2.2) and (2.3), respectively. The elliptic version of Bloch’s dilogarithm identity

(2.18) is that for any elliptic function F, any κ ∈ C and the divisors Div (F) =
∑

idi(ai) and

Div (κ− F) =
∑

je j(b j) expressed on the Tate curve, the following identity holds

∑

i, j

die jD
E

(
ai

b j
, q

)

= 0, (3.56)

which takes the form

DE
(
ηκF, q

)
= 0, (3.57)

when expressed in terms of ηκF, the divisor de�ned in equation (3.49). Here againD
E is extended

by linearity to the group of divisors. The above identity is referred to as the elliptic Bloch

relation.

Bloch proves this statement starting from the classical case with a rational function f satisfy-

ing f (0) = f (∞) = 1, approximating its elliptic generalisationF on the Tate curve, constructed

according to equation (3.29), by FN =
∏

|l|6Nf (tq
l) and an error estimation as N→∞ [33].

Note that in contrast to the classical case, cf the second equation in (2.17), the constant κ
de�ned in equation (3.49) does not need to equal one. But since any scaling of the elliptic

function F is allowed, this condition is redundant and the elliptic Bloch relation can be stated

without loss of generality with κ = 1. In the classical limit q→ 0 the Tate curveC∗/qZ degen-
erates to C∗, and, simultaneously, the elliptic Bloch–Wigner function degenerates to its clas-

sical version, the Bloch–Wigner function. Finally, for an elliptic function on the Tate curve of

the form

F = lim
N→∞

FN (3.58)

with FN and f (scaled) as before, the elliptic Bloch relation degenerates to the classical Bloch

relation, cf (2.18),

DE
(
Div(F) ∗ Div(1− F)−, q

)
→
∑

i, j

ordai ( f )ordb j(1− f )D

(
ai

b j

)

. (3.59)

However, the above limit, i.e. the transition from elliptic to classical and vice-versa, is subtle,

as it can be seen by Bloch’s careful proof of the elliptic Bloch relation in terms of the classical

Bloch relation. Another hint for this subtlety is the following: if on the left-hand side in the

limit (3.59) instead of 1− F, the difference κ− F for κ 6= 1 is chosen, the left-hand side still

vanishes identically according to equation (3.57). But the right-hand side of (3.59) in general

only vanishes for 1− f , but not for κ− f . Therefore, in such a case the elliptic Bloch relation

does not degenerate to its classical analogue.

Analogously to the classical Bloch groupB2(C), Zagier and Gangl de�ne the group of func-

tional relations C2(E) in the construction of the elliptic Bloch group B2(E) = A2(E)/C2(E)
as a subgroup of the group A2(E) of ‘allowable’ elements in the free abelian group gen-

erated by points on the elliptic curve E, the precise meaning of allowable is reviewed in

[32]. It is generated by the elliptic Bloch relation (3.57), the inversion relation (3.54) and the

duplication relation (3.55), which are expected to form a full set of relations for the elliptic

Bloch–Wigner function on the points in A2(E) [32]. Thus, in contrast to the classical case
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discussed in subsection 2.1, where the �ve-term identity is suf�cient to generate the subgroup

of functional relations for the dilogarithm on the points in A2(C), the elliptic analogue may

require a larger class of functional relations generated by the elliptic Bloch relation. Using the

construction of elliptic functions on the Tate curve described in subsection 3.1, the class of

functional relations of the elliptic Bloch–Wigner function is parametrised by rational func-

tions on the Riemann sphere and the complex number κ. We refer to this procedure to generate

functional identities for the elliptic Bloch–Wigner function as Zagier and Gangl’s method.

In the following three subsections we discuss some examples and show explicit calculations

which use the above concepts and in particular the elliptic Bloch relation.

3.4.1. First example: a divisor on y2 = 4x3 − 4x+ 1. Let us consider the following example14

of reference [32] to approve the elliptic Bloch relation. Take the elliptic curve with Weierstrass

equation y2 = 4x3 − 4x + 1, i.e. g2 = 4 and g3 = −1, and the rational function F(x, y) = y+1
2

on E(C). The three zeros of F are P = [0 :−1 : 1], P1 = [1 :−1 : 1] and P2 = [−1 :−1 : 1]

and since F(℘(z),℘′(z)) = ℘′(z)+1
2

, the (pull-back of the) rational function F as an elliptic

function on the torus has a triple pole at the lattice points, such that on the elliptic curve

ord∞(F) = −3. Using the group addition on the elliptic curve described in appendix A, one

obtains P1 = 2P and P2 = −3P and more generally

−3P = [−1 :−1 : 1] , −2P = [1 : 1 : 1] , −P = [0 : 1 : 1] ,

P = [0 :−1 : 1] , 2P = [1 :−1 : 1] , 3P = [−1 : 1 : 1] ,

4P = [2 : 5 : 1] , 5P =

[
1

4
:
1

4
: 1

]

, 6P = [6 :−29 : 1] .

(3.60)

Therefore, the divisor of F on the projective elliptic curve is

Div(F) = (P)+ (2P)+ (−3P)− 3(∞). (3.61)

Similarly, the divisor of 1− F is given by

Div(1− F) = (−P)+ (−2P)+ (3P)− 3(∞), (3.62)

such that the associated divisor η1F of F(x, y) = y+1
2

de�ned in equation (3.49) is

η1F = (−6P)− 6(−3P)+ 2(−2P)+ 2(−P)+ 9(∞)− 6(P)− 5(2P)+ 2(3P)+ (4P).

(3.63)

The roots of the elliptic curve y2 = 4x3 − 4x + 1 = 4(x − e1)(x − e2)(x − e3) are
15

e1 = 0.837 565 4352 , e2 = 0.269 594 4364 , e3 = −1.107159 8716, (3.64)

such that according to equation (3.20) the periods of the corresponding tori are given by

ω1 = 2.993 458 6462 , ω3 = 2.451 389 3819i , ω2 = ω1 + ω3 (3.65)

14This is the example E37 : y
2 − y = x3 − x in reference [32]. However, we directly work in the Weierstrass form,

which can be obtained from the original example by the coordinate transformation y 7→ y+1

2
.

15We have chosen to display the �rst ten digits of numbers only. Of course, all calculations have been performed with

much higher precision.
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with the period ratio

τ =
ω2

ω1

= 1+ 0.818915 3991i. (3.66)

The point z on the torus with lattice Λ = ω1Z+ ω2Zwhich corresponds to P = [0 :−1 : 1] is

determined by Abel’s map (3.17)

z̃P =

∫ ∞

0

dx√
4(x − e1)(x − e2)(x − e3)

= 2.0638 659 408+ 1.225 694 7056i. (3.67)

The rescaled point corresponding to P in the fundamental parallelogram of the torus de�ned

by τ is

zP =
z̃P

ω1

mod(Z+ τZ) = 0.689 458 6481+ 0.409457 7022i (3.68)

which maps to

tP = e2πizP = −0.0283399 159− 0.070 873 1874i (3.69)

on the Tate curve, while the parameter q takes the value

q = e2πiτ = 0.005 826 1597. (3.70)

For practical purposes, let us de�ne the following approximation of DE(t, q):

DE
k (t, q) =

k∑

l=−k
D(tql), (3.71)

which allows to control the accuracy of convergence depending on the number of terms 2k+ 1.

According to the elliptic Bloch relation, our example η1F from equation (3.63) is expected to

satisfy

−8DE (tP, q)− 7DE
(
t2P, q

)
+ 8DE

(
t3P, q

)
+ DE

(
t4P, q

)
− DE

(
t6P, q

)
= 0,

(3.72)

where we already used the inversion relation (3.54) to simplify the evaluation of the divisor

η1F.
Using the approximation (3.71) for numerical evaluation of the above equation, we �nd

agreement up to 10−7 already for k = 10. For other permutations of labelling the roots ei the

elliptic Bloch relation holds as well, as can be tested numerically.

3.4.2. Second example: lines on the projective elliptic curve. As a second example, consider

a line on the projective elliptic curve, i.e. a rational function of the form

La,b,c(x, y) = ax + by+ c (3.73)

with a or b not equal to zero, x and y satisfying y2 = 4x3 − g2x − g3. The poles of La,b,c are

located at∞ with multiplicities 2 if b = 0 and 3 otherwise (they correspond to the double and

triple pole of x = ℘(z) and y = ℘′(z), respectively. See the discussion around equation (3.46)).
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The zeros of La,b,c can be determined explicitly as algebraic functions of the coef�cients a, b

and c, they satisfy the cubic equation

(a

b
x +

c

b

)2

= 4x3 − g2x − g3 , y = −a

b
x − c

b
. (3.74)

Similarly, the zeros of 1− La,b,c satisfy

(
a

b
x +

c− 1

b

)2

= 4x3 − g2x − g3 , y = −a

b
x − c− 1

b
. (3.75)

These cubic equations can be solved by radicals, such that Div
(
La,b,c

)
and Div

(
1− La,b,c

)

depend algebraically on the coef�cients a, b and c. Furthermore, since the group addition on

the projective formulation E(C) of the elliptic curve also only involves algebraic operations, as

can be seen from the explicit equations in the appendixA, the resulting divisor η1La,b,c expressed
on the projective elliptic curve is algebraic in a, b and c. However, applying Abel’s map and

translating the solutions to the Tate curve, where the elliptic Bloch–Wigner relation (3.57)

is de�ned (so far), generally turns the zeros into integral expressions of the variables a, b

and c. Thus, in order to obtain a functional relation with algebraic arguments, the elliptic

Bloch–Wigner relation has to be expressed on the torus and ultimately on the projective elliptic

curve, which is done in section 4.

Alternatively, instead of solving for the zeros starting from a particular choice of param-

eters a, b and c, one could as well choose three zeros directly and obtain another three

from equations (3.74) and (3.75). However, since there are only three free parameters

(the lines La,b,c and 1− La,b,c have the same slope), i.e. three roots which determine the remain-

ing roots in terms of at least one non-linear equation, this still involves some non-trivial alge-

braic dependencies of the arguments in the �nal functional relation induced by the elliptic

Bloch–Wigner relation on the Tate curve.

Let us illustrate the above argumentation by an example: if e.g. the zeros P1, P2 of La,b,c
and one zero Q1 of 1− La,b,c are called [x1 : y1 : 1] , [x2 : y2 : 1] and [x3 : y3 : 1], respec-

tively, the third zero of La,b,c is P3 = −P1 − P2 according to the de�nition of addition in

appendix A and thus algebraic in xi, yi, i = 1, 2. This ensures that the x-coordinates of the

divisor of La,b,c are very simple. One of the two remaining zeros, Q2 and Q3, of 1− La,b,c is

de�ned by Q3 = −Q1 − Q2. But the last zero, Q2, is still determined by a quadratic equation

in terms of Q1, such that mapping the divisor to the Tate curve yields again a non-algebraic

functional relation.

3.4.3. Third example: the five-term identity. As a last example, consider f given by

equation (2.21) which is the rational function generating the classical �ve-term identity when

inserted in the classical Bloch relation (2.18). It satis�es f (0) = f (∞) = 1, such that its

elliptic generalisation on the Tate curve F(t) =
∏

l∈Z f (tq
l) (cf equation (3.29)) with the

following associated divisor can be formed

Div(F) = (a)+ (a′)+ (bb′)− (b)− (b′)− (aa′), (3.76)

where all variables have been de�ned after equation (2.21). Since the elliptic Bloch relation

DE(η1F, q) = 0 degenerates to the classical one D(ηF) = 0 for q→ 0, it can be expected that

the elliptic Bloch relation evaluated for F generates an elliptic analogue of the �ve-term iden-

tity [32]: it is an elliptic dilogarithm identity generated by the same rational function f on

the Riemann sphere, which implies the �ve-term identity. In order to write it down explicitly,

the zeros and poles of 1− F need to be known. While the poles are the same as the ones
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of F, �nding the zeros of 1− F is a major obstacle, which was already encountered in the

example with the lines in the previous paragraph. While the cubic equation for the zeros

of1− F in the line example could be solved by radicals, the current situation involves a quintic

equation in the x-coordinate of the projective elliptic curve, which cannot be solved in general.

Correspondingly, an elliptic analogue of the �ve-term identity can in general not be written

down explicitly in terms of algebraic arguments.

The quintic equation is obtained as follows: following the argumentation at the end of

subsection 3.3, there exist λa,λb ∈ C, such that

Div

(
Fλa

Fλb

)

= Div(F), (3.77)

whereFλ is a rational function on the projective elliptic curve of the form (3.51) and the divisor

of F is expressed on the projective elliptic curve via the usual isomorphisms

a ∈ C
∗/qZ 7→ ξ−1

τ ,q (a) = A ∈ C/ (τZ + Z) 7→ ξτZ+Z,E(A) = Pa = [xa : ya : 1] ∈ E(C).

(3.78)

Performing the translation, F can be expressed on the projective elliptic curve as the rational

function

F(x, y) =
1

κ

Fλa(x, y)

Fλb(x, y)
=

(1− λa)
(

y− y 1
aa′

)(

x − x 1
bb′

)

+ λa

(

x − x 1
bb′

)(

x − x 1
aa′

)

κ(1− λb)
(

y− y 1
bb′

)(

x − x 1
aa′

)

+ κλb

(

x − x 1
bb′

)(

x − x 1
aa′

)

(3.79)

for some scaling factor κ ∈ C, xa = ℘(A) and ya = ℘′(A). The poles of 1− F are the same

as the ones of F, i.e. Pa, Pa′ and Pbb′ . The zeros of 1− F are determined by κFλb − Fλa = 0,

which translates by the Weierstrass equation to the quintic equation mentioned above. Since a

and b are variables as well as based on the fact that λa and λb depend non-trivially on a and

b the resulting quintic equation is not solvable by radicals in general. Even though the elliptic

analogue of the �ve-term identity generated by the elliptic Bloch relation can not be written

down explicitly, it may however be described implicitly as above.

In summary, the elliptic Bloch relation (3.57) generates many (conjecturally all) functional

relations of the elliptic Bloch–Wigner function. But for most of these relations, the relevant

divisor η1F can not be expressed as a linear combination of variables depending algebraically

on each other. The most notable exceptions are the divisors η1La,b,c generated by lines expressed
on the projective elliptic curve. It is this situation, it would still be possible to explicitly write

down functional relations. However, they are by no means nice and elucidating and we will

thus refrain from doing so. Instead, all relations are going to be formulated on the torus in

order to be contrasted with relations between elliptic polylogarithms on the torus introduced

in subsection 3.2.

4. Elliptic multiple polylogarithms: connecting two languages

The aim of this section is to translate the elliptic Bloch relation (3.57) from the Tate curve to the

torus and to the projective elliptic curve, respectively. From the previous section, it is known

how elliptic functions and their divisors can be translated between the three descriptions of an
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elliptic curve. Hence, we are left with the translation of the elliptic Bloch–Wigner function DE,

de�ned in equation (3.53), to the iterated integrals Γ̃ on the torus, which will be performed in

subsection 4.1.Moreover, a further translationwill allow to express the Bloch–Wigner function

in the projective formulation of the elliptic curve.

In subsection 4.2 we show how these translations can be generalised to two families of ellip-

tic polylogarithmsof higher weight, both of which include the elliptic Bloch–Wigner function.

Finally, in subsection 4.3 we combine our results and write down the elliptic Bloch relation on

the torus and on the projective elliptic curve explicitly. Moreover, we discover some holomor-

phic functional relations on the torus which imply the elliptic Bloch relation and thereby give

an interpretation of the elliptic Bloch relation in terms of the elliptic symbol calculus.

4.1. The elliptic dilogarithm: from the Tate curve to the torus

We begin with establishing a connection between the iterated integrals Γ̃ de�ned in

equation (3.32) above and the sum

En,m(t, s, q) = −
(
ELin,m(t, s, q)− (−1)n+mELin,m(t

−1, s−1, q)
)
, (4.1)

where the objects

ELin,m(t, s, q) =
∑

k,l>0

tk

kn
sl

lm
qkl (4.2)

have been introduced and described in reference [54].

In the end, it will turn out that the valueEn,−m(t, 1, q) = En,−m(e2πiz, 1, q) of En,−m de�ned on

the Tate curve is, up to polynomials in z, equal to the n-fold iterated integral of the integration

kernel g(m+1)(z, τ ), i.e. Γ̃

(
0 . . . m+ 1

0 . . . 0
︸ ︷︷ ︸

n

; z, τ

)

, which is an iterated integral de�ned on the

torus.

In order to show this, the case m = 0 is discussed �rst, for which the de�nition

En(t, s, q) = −
(
1

2
Lin(t)− (−1)n

1

2
Lin(t

−1)

)

+ En,0(t, s, q) (4.3)

turns out to be useful. In terms of the variables t, q and w de�ned in (3.30), the Eisen-

stein–Kronecker series (3.31) can be rewritten as [55]

F(t,w, q) = −2πi

(

t

1− t
+

1

1− w
+
∑

k,l>0

(tkwl − t−kw−l)qkl

)

, (4.4)

such that from the limit g(1)(z, τ ) = limα→0

(

F(z,α, τ )− g(0)(z,τ )
α

)

a straightforward calculation

implies16

E0(t, 1, q) =
1

2πi
g(1)(z, τ ). (4.5)

16This calculation has been pointed out in reference [56] and motivated to consider the generalisations forEn,−m(t, 1, q)
with n,m > 0 described in the following parts of this subsection. Similar considerations can be found in reference [57].

24



J. Phys. A: Math. Theor. 53 (2020) 245201 J Broedel and A Kaderli

The iterated integrals Γ̃ on the torus may be recovered using the partial differential equation

∂

∂z
En(z, 1, τ ) = 2πiEn−1(z, 1, τ ), (4.6)

where the function En is pulled-back to the torus by the exponential map. This leads to the

following integral representation of E1(t, 1, q)

E1(t, 1, q) = lim
ǫ→0

∫ z

ǫ dz
′ ∂
∂z′ E1(z

′, 1, τ )+ E1(e
2πiǫ, 1, q)

= Γ̃

(
1

0
; z, τ

)

− 2ELi1,0(1, 1, q)+
πi
2
,

(4.7)

where Γ̃

(

1
0
; z, τ

)

is the regularised integral (see subsection 3.2). Note that the logarithmic

singularity of Γ̃unreg

(

1
0
; z, τ

)

=
∫ z

0
dz′g(1)(z′, τ ) cancels the singular contribution Li1(1) of

E1(1, 1, q), leaving only a phase shift
πi
2
caused by the different directions of the paths approach-

ing the singularity of Li1(1). For n > 1, there is no singularity at all if the regularised iterated

integrals are used, since for n > 1

En(1, 1, q) = −
(
1

2
(1− (−1)n)Lin(1)+ (1− (−1)n)ELin,0(1, 1, q)

)

=

{

0 n even

−ζn − 2ELin,0(1, 1, q) n odd
(4.8)

is �nite as well. This can be seen by considering equation (4.1) for s, t = 1:

ELin,0(1, 1, q) =
∑

k>0

qk

(1− qk)kn
= −2i

∑

k>0

ekπiτ

sin (kπτ ) kn
. (4.9)

Fortunately, the calculation of the above series can be circumvented by considering the integral

representation of E2 on the torus: taking into account that E2(1, 1, q) = 0, a representation of

E2(t, 1, q) can be obtained by the following calculation

E2(t, 1, q) = 2πi
∫ z

0
dz′ E1(z

′, 1, τ )

= 2πiΓ̃

(

0 1
0 0

; z, τ

)

+ 2πi
(
πi
2
− 2ELi1,0(1, 1, q)

)
z.

(4.10)

Evaluation at z = 1 of equation (4.12) together with equation (4.8) yields the value of

ELi1,0(1, 1, q) in terms of the regularised iterated integrals

2ELi1,0(1, 1, q) = ω2(1; τ )+
πi

2
, (4.11)

such that

E2(t, 1, q) = 2πi
∫ z

0
dz′ E1(z

′, 1, τ ) = 2πi

(

Γ̃

(
0 1

0 0
; z, τ

)

− ω2(1; τ )z

)

.

(4.12)
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Turning back to the functions En(t, 1, q), one �nds recursively that for n > 1

En(t, 1, q) = (2πi)n−1
Γ̃

(
0 . . . 0 1
0 . . . 0 0
︸ ︷︷ ︸

n

; z, τ

)

+ Pn(z, q), (4.13)

where Pn(z, q) is the polynomial of degree n− 1 in z

Pn(z, q) = −(2πi)n−1ω2(1; τ )
zn−1

(n− 1)!
+

n∑

j=2

(2πi)n− jE j(1, 1, q)
zn− j

(n− j)!
. (4.14)

In equation (4.19), the whole z dependence of En(t, 1, q) is expressed solely in terms of (poly-

nomials of) the regularised iterated integrals Γ̃with at most weight one, since z = Γ̃

(
0

0
; z, τ

)

.

The integration constantsEj(1, 1, q), given in (4.8) and appearing in the polynomialPn(z, q), can

be expressed as a linear combination of elliptic zeta values. The result can be obtained recur-

sively by evaluation of equation (4.19) at one. The full calculation is shown in the appendix C

and results in the explicit expression for n > 1

En(1, 1, q) = −
(
1

2
(1− (−1)n)Lin(1)+ (1− (−1)n)ELin,0(1, 1, q)

)

=







(2πi)n−1

(n−1)
2∑

k=0

d2k+1ωn+1−2k(1; τ ) n odd

0 n even,

(4.15)

cf equation (C.14), where dk is the sequence de�ned by

dk =







−1 k = 1

0 k even

−d1

k!
− d3

(k− 2)!
− · · · − dk−2

3!
k odd,

(4.16)

such that e.g.

d1 = −1 , d3 =
1

3!
, d5 =

1

5!
− 1

3!3!
, d7 =

1

7!
− 1

5!3!
− 1

3!5!
+

1

3!3!3!
.

(4.17)

Therefore, the polynomial Pn(z, q) can be rewritten in terms of elliptic zeta values as

Pn(z, q) = (2πi)n−1

⌊ n−1
2 ⌋
∑

j=0

j
∑

k=0

d2k+1ω2 j+2−2k(1; τ )
zn−1−2 j

(n− 1− 2 j)!
(4.18)
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and the sums En(t, 1, q) for n > 2 can entirely be expressed by means of the elliptic polyloga-

rithms on the torus

En(t, 1, q) = (2πi)n−1






Γ̃

(
0 . . . 0 1
0 . . . 0 0
︸ ︷︷ ︸

n

; z, τ

)

+

⌊ n−1
2

⌋
∑

j=0

j∑

k=0

d2k+1ω2 j+2−2k(1; τ )
zn−1−2 j

(n−1−2 j)!







.

(4.19)

Employing similar calculations, it is possible to relate iterated integrals Γ̃ of weight higher

than one to the ELi-functions. The q-expansions (B.3) and (B.4) of g(m+1) for m > 0 lead to

E0,−m(t, 1, q) =
m!

(2πi)m+1

(
g(m+1)(z, τ )+ (1+ (−1)m+1)ζm+1

)
(4.20)

and therefore, since En,m satis�es the same partial differential equation as En,

∂

∂z
En,m(z, 1, τ ) = 2πiEn−1,m(z, 1, τ ), (4.21)

the following relations can be identi�ed: for n = 1,m > 0

E1,−m(t, 1, q)=

∫ z

0

dz′
∂

∂z′
E1,−m(z

′, 1, τ )+ E1,−m(1, 1, q)

=
m!

(2πi)m
Γ̃(

m+ 1

0
; z, τ )+

m!

(2πi)m
(1+ (−1)m+1)ζm+1z+ E1,−m(1, 1, q),

(4.22)

for n = 2,m > 0

E2,−m(t, 1, q)=

∫ z

0

dz′
∂

∂z′
E2,−m(z

′, 1, τ )+ E2,−m(1, 1, q)

=
m!

(2πi)m−1
Γ̃

(
0m+ 1

0 0
; z, τ

)

+
m!

(2πi)m−1
(1+ (−1)m+1)ζm+1

z2

2

+ 2πiE1,−m(1, 1, q)z+ E2,−m(1, 1, q).

(4.23)

A recursion leads to the general formula for n > 0,m > 0

En,−m(t, 1, q) = m!(2πi)n−m−1
Γ̃

(
0 . . . 0m+ 1

0 . . . 0 0
︸ ︷︷ ︸

n

; z, τ

)

+ Pn,m(z, q), (4.24)

where

Pn,m(z, q) =m!(2πi)n−m−1(1+ (−1)m+1)ζm+1

zn

n!
+

n∑

j=1

(2πi)n− jE j,−m(1, 1, q)
zn− j

(n− j)!
. (4.25)

As in the case m = 0, evaluation of En,−m(t, 1, q) given in equation (4.26) and the fact that

En,−m(1, 1, q) vanishes for n+ m even leads to an expression of the integration constants
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En,−m(1, 1, q) in terms of elliptic zeta values. The calculation is shown in appendix C and the

result is given in equation (C.35), i.e.

En,−m(1, 1, q) =







m!(2πi)n−1−m
⌊ n2 ⌋∑

k=0

d2k+1ωn+1−2k(m+ 1; τ ) n+ m odd

0 n+ m even,

(4.26)

such that

En,−m(t, 1, q) =






m!(2πi)n−1−m











Γ̃(
0 . . . 0 m+ 1

0 . . . 0 0

︸ ︷︷ ︸

n

; z, τ ) +

⌊ n
2
⌋

∑

j=0

j∑

k=0

d2k+1ω2 j+1−2k(m+ 1; τ )
zn−2 j

(n− 2 j)!











m odd

m!(2πi)n−1−m











Γ̃(
0 . . . 0 m+ 1

0 . . . 0 0

︸ ︷︷ ︸

n

; z, τ ) +

⌊ n−1
2

⌋
∑

j=0

j∑

k=0

d2k+1ω2 j+2−2k(m+ 1; τ )
zn−1−2 j

(n− 1− 2 j)!











m even.

(4.27)

For example and latter purposes, we �nd in particular the relations

E1,0(t, 1, q) = Γ̃

(
1

0
; z, τ

)

− ω2(1; τ )+
1

2

(
Li1(t)+ Li1(t

−1)
)
, (4.28)

E2,0(t, 1, q) = 2πi

(

Γ̃

(
0 1

0 0
; z, τ

)

− ω2(1; τ )z

)

+
1

2

(
Li2(t)− Li2(t

−1)
)

(4.29)

and

E1,−1(t, 1, q) =
1
2πi

(

Γ̃

(
2

0
; z, τ

)

− ω1(2; τ )z

)

= 1
2πi

Γ̃

(
2

0
; z, τ

)

+ 1
πi
ζ2z.

(4.30)

Thus, we have established a direct connection between the functions En,−m on the Tate curve

and the iterated integrals of the form Γ̃

(
0 . . . m
0 . . . 0
︸ ︷︷ ︸

n

; z, τ

)

for n,m > 0, which are de�ned on the

torus.

On the other hand, the elliptic Bloch–Wigner function DE can be rewritten in terms of the

above examples E1,0, E2,0 and E1,−1. This involves the identities

∑

l>0

(
Li2(tq

l)− Li2(t
−1ql)

)
= −E2,0(t, 1, q) (4.31)

and
∑

l>0

log(|tql|)Li1(tql)−
∑

l>0

log(|t−1ql|)Li1(t−1ql)
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= − log(|t|)E1,0(t, 1, q)− log(|q|)E1,1(t, 1, q), (4.32)

which follow straightforwardly from the de�nition (4.1) of En,m(t, s, q). Therefore, the value of

DE can be expressed in terms of the iterated integrals Γ̃ on the torus as follows

DE(t, q) =
∑

l>0

Im
(
Li2(tq

l)− Li2(t
−1ql)

)

−∑
l>0

Im
(
log(|tql|)Li1(tql)− log(|t−1ql|)Li1(t−1ql)

)
+ D(t)

= − Im (E2(t, 1, q)) + log(|t|) Im (E1(t, 1, q)) + log(|q|) Im
(
E1,−1(t, 1, q)

)

= Im(τ ) Re

(

Γ̃

(
2

0
; z, τ

))

+ 2π Re

(

Γ̃

(
1 0

0 0
; z, τ

))

− 2π Re(z) Re

(

Γ̃

(
1

0
; z, τ

))

+ 2Re(z) (π Re (ω2(1; τ )) + ζ2 Im(τ )) ,

(4.33)

where the q-independent termD(t) is absorbed in the second equality by going fromEn,m(t, 1, q)

to En(t, 1, q) according to equation (4.3). The logarithmic factors with the absolute values of t

and q, respectively, yield contributions of the imaginary parts of z and τ , respectively. The �nal
expression explicitly involving the real part of z is obtained by using equations (4.28)–(4.30)

and the identity Re(z1z2)+ Im(z1)Im(z2) = Re(z1)Re(z2), where z1, z2 ∈ C, for the last

equality above. The translation of the elliptic Bloch–Wigner function DE from the torus, as

given by equation (4.33), to the projective elliptic curve is based on the results in reference

[44]. The iterated integrals Γ̃ on the torus can be expressed via the isomorphism ξτZ+Z,E in

terms of some iterated integrals on the projective elliptic curve, which are de�ned as follows

E3

(
n1 . . . nk
c1 . . . ck

; x,~e

)

=

∫ x

0

dx′ ϕn1(c1; x
′,~a)E3

(
n2 . . . nk
c2 . . . ck

; x′,~e

)

, E3(; x,~e) = 1,

(4.34)

with ci ∈ C ∪ {∞},~e = (e1, e2, e3) is the vector of the roots
17 of the Weierstrass equation and

the integration kernels ϕn(c; x,~e) are de�ned according to the construction of reference [44].

For example, the differential ϕ0(0, x,~e) dx is simply the holomorphic differential dx/y which
itself is the differential dz on the torus

ϕ0(0, x,~e) dx =
dx

y
=

d℘(z)

℘′(z)
= dz. (4.35)

The integration kernels ϕn(∞; x,~e) for n > 1 are de�ned as follows: �rst, de�ne the integral

of x/y with an additional term as follows

Z3(xP,~e) = −
∫ xP

e1

dx

(
x

y
+ 2

η1
y

)

. (4.36)

This de�nes the kernel for n = 1

ϕ1(∞; x,~e) =
1

y
Z3(x,~e). (4.37)

17Note that we use slightly different conventions than in reference [44], where the de�ning cubic equation of the

projective curve is written in standard form y2 = (x − a1)(x − a2)(x − a3) in contrast to our notation which only

involves the Weierstrass form.
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The kernels for higher n are de�ned by some polynomials Z
(n)
3 , which are of degree n in Z3(x)

with the coef�cients being polynomials in x and y and that do not have any poles in x. For

example in the case of n = 2, the integration kernel is de�ned as

ϕ2(∞; x,~e) =
1

y
Z
(2)
3 (x,~e) =

1

y

(
1

8
Z3(x,~e)

2 − x

2

)

. (4.38)

The (explicit) construction of Z
(n)
3 is exactly the same as the construction of g(n)(z, τ ) as a

polynomial in g(1)(z, τ ) with polynomial coef�cients in ℘(z) and ℘′(z), see reference [44]. This
leads to a very close relation between the kernels ϕn(∞; x,~e) and g(n)(z, τ ). For n = 0, we �rst

rewrite18

Z3(x,~e) = ζ(z)− 2η1z = g(1)(z, τ ) (4.39)

using equation (3.33), such that

ϕ1(∞; x,~e) dx = g(1)(z, τ ) dz. (4.40)

Thus, the construction of Z
(n)
3 ensures that the same result holds for n > 1

ϕn(∞; x,~e) dx = g(n)(z, τ ) dz, (4.41)

which is all that is needed to rewrite DE. With z0 being a zero of ℘ such that ℘′(z0) > 0, the

identi�cation x = ℘(z) and from the equations (4.35), (4.40) and (4.41) for the differentials,

the iterated integrals in equation (4.33) can be expressed as follows on the projective elliptic

curve

Γ̃

(
1 0

0 0
; z, τ

)

= E3

(
1 0

∞ 0
; x,~e

)

+ Γ̃

(
1 0

0 0
; z0, τ

)

, (4.42)

Γ̃

(
2

0
; z, τ

)

= E3

(
2

∞ ; x,~e

)

+ Γ̃

(
2

0
; z0, τ

)

, (4.43)

Γ̃

(
1

0
; z, τ

)

= E3

(
1

∞ ; x,~e

)

+ Γ̃

(
1

0
; z0, τ

)

, (4.44)

as well as

z = E3

(
0

0
; x,~e

)

+ z0. (4.45)

18Note that for this calculation, we choose the sign of y = ±
√

4x3 − g2x − g3 in Abel’s map (3.17) such that we

indeed obtain equation (4.39) and not the negative of the right-hand side, i.e. Z3(x,~e) = −g(1)(z, τ ).
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Therefore, the elliptic Bloch–Wigner function takes the following form on the projective

elliptic curve

DE(t, q) = Im(τ ) Re

(

Γ̃

(

2

0
; z, τ

))

+ 2π Re

(

Γ̃

(

1 0

0 0
; z, τ

))

− 2π Re(z) Re

(

Γ̃

(

1

0
; z, τ

))

+2 Re(z) (π Re (ω2(1; τ )) + ζ2 Im(τ ))

= Im(τ ) Re

(

E3

(

2

∞ ; x,~e

)

+ Γ̃

(

2

0
; z0, τ

))

+ 2π Re

(

E3

(

1 0

∞ 0
; x,~e

)

+ Γ̃

(

1 0

0 0
; z0, τ

))

−2π Re

(

E3

(

0

0
; x,~e

)

+ z0

)

Re

(

E3

(

1

∞ ; x,~e

)

+ Γ̃

(

1

0
; z0, τ

))

+2 Re

(

E3

(

0

0
; x,~e

)

+ z0

)

(π Re (ω2(1; τ )) + ζ2 Im(τ )) .

(4.46)

The constant terms involving the iterated integrals on the torus evaluated at z0 and 1,

respectively, drop out once the elliptic Bloch relation (3.57) is formed.

4.2. Higher elliptic polylogarithms

The translation procedure from the Tate curve to the torus described in the previous section is

applicable to elliptic generalisations of higher polylogarithms. In this subsection we present

two such families, both of which include the elliptic Bloch–Wigner function, and show how

they can be expressed in terms of the elliptic integrals Γ̃ on the torus. These families of functions

are not independent, the �rst one is actually a subclass of the second.

The �rst construction of higher elliptic polylogarithms is based on the averaging pro-

cess over the Tate curve which was used to de�ne the elliptic Bloch–Wigner function in

equation (3.53). The single-valued polylogarithms that are to be averaged were �rst described

by Ramakrishnan [35] and generalise the Bloch–Wigner function to higher orders. They are

de�ned by

Ln(t) = Rn

(
n−1∑

k=0

2kBk

k!
logk(|t|)Lin−k(t)

)

, (4.47)

where Rn denotes the imaginary or real part if n is even or odd, respectively, and Bk the kth

Bernoulli number. The Bloch–Wigner function D is obtained for n = 2, and these functions

also satisfy a similar inversion relation as D, namely

Ln(t
−1) = (−1)n−1Ln(t). (4.48)

The elliptic generalisation used in reference [32] and proposed in reference [36], as linear

combinations of the more general class described below, is

LE
n (t, q) =

∑

l∈Z
Ln(tq

l) =

n−1∑

k=0

2kBk

k!
Rn

(
∑

l>0

logk(|tql|)Lin−k(tql)

+ (−1)n−1
∑

l>0

logk(|t−1ql|)Lin−k(t−1ql)

)

+ Ln(t), (4.49)
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such that in particular LE
2 = DE. By a similar calculation as for DE, which e.g. involves the

identity

∑

l>0

logk(|tql|)Lin−k(tql)+ (−1)n−1
∑

l>0

logk(|t−1ql|)Lin−k(t−1ql)

= −
k∑

m=0

(
k

m

)

logk−m(|t|)logm(|q|)En−k,−m (4.50)

generalising equations (4.31) and (4.32), the elliptic polylogarithms LE
n turn out to be related

to the functions En,−m according to

LE
n (t, q) = −

k∑

m=0

(
k

m

)
2kBk

k!
logk−m(|t|)logm(|q|)Rn

(
En−k,−m

)
+ Ln(t). (4.51)

Just like in the dilogarithmic case of n = 2, this result can immediately be expressed in terms

of the iterated integrals on the torus and the projective curve using the results of the previous

section.

The more general class of single-valued elliptic polylogarithms, introduced in reference

[36] and used in reference [58] in the context of modular graph functions for one-loop closed

string amplitudes, can be constructed from the single-valued sum

Da,b(t) = (−1)a−1

a+b−1∑

n=a

(
n− 1

a− 1

)
(−2 log(|t|))a+b−1−n

(a+ b− 1− n)!
Lin(t)

+ (−1)b−1

a+b−1∑

n=b

(
n− 1

b− 1

)
(−2 log(|t|))a+b−1−n

(a+ b− 1− n)!
Lin(t), (4.52)

which satis�es Da,b(t) = Db,a(t), where the overline denotes complex conjugation. The func-

tions Ln above are linear combinations of Da,b and hence, a subclass of the latter [36]. For

example,

D1,2(t) = 2iD(t)+ 2 log(|t|) log(|1− t|), (4.53)

such that the Bloch–Wigner function can be written as D(t) = 1
4i

(
D1,2(t)− D2,1(t)

)
. The ellip-

tic generalisation is similar to the previous average over the Tate curve and given by [36]

DE
a,b(t, q) =

∑

l>0

Da,b(tq
l)+ (−1)a+b

∑

l>0

Da,b(t
−1ql)+

(4π Im(τ ))a+b−1

(a+ b)!
Ba+b(u), (4.54)

where Bn is the nth Bernoulli polynomial and z = uτ + v with u, v ∈ [0, 1]. For example, the

elliptic Bloch–Wigner function can be expressed as

DE(t, q) = −1

2
Im(DE

2,1(t, q)). (4.55)

In order to express the functions DE
a,b in terms of En,m, the relevant prefactor in D

E
a,b(t, q) for the

translation has to be determined. This is the factor obtained by plugging the right-hand side of
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the de�nition (4.52) of Da,b into equation (4.54) and pushing the sum over l to the logarithmic

functions depending on this summation index, i.e.

∑

l>0

(
log (|tql|)a+b−1−nLin(tq

l)+ (−1)a+b log (|t−1ql|)a+b−1−nLin(t
−1ql)

)

= −
a+b−1−n∑

m=0

(
a+ b− 1− n

m

)

log (|t|)a+b−1−n−m log (|q|)mEn,−m(t, 1, q) (4.56)

where we used equation (4.50). This leads to an expression of DE
a,b(t, q) as a linear combination

of terms of the form En,−m and complex conjugates thereof, such that, according to the previ-

ous section, it is indeed a linear combination of (powers of) the iterated integrals Γ̃ and their

complex conjugates. The explicit result is rather lengthy and can be found in appendix D. In

particular, it matches the result for DE given in equation (4.33).

Let us make a comment about the K-theoretic use of the elliptic Bloch–Wigner function

DE in the construction of a regulator map R : K2(E)→ C in equation (8.1.1) of reference [33],

where K2(E) is the second K-group associated to an elliptic curve E over C. The non-elliptic

version of the map R generalised to higher K-groups is of particular interest in the formulation

of the conjectures of reference [32], which relate the Dedekind zeta function ζF(m) of a number

�eld F to special values of the single-valued polylogarithms Lm, and which are also used in

the description of the mth Bloch group. The elliptic version R can be used in the construction

of the second elliptic Bloch group, see e.g. reference [32], and its imaginary part is the elliptic

Bloch–Wigner function DE. In order to describe its real part, let

J(t) = log(|t|) log(|1− t|), (4.57)

such that the real part of the regulator map R is given by

JE(t, q) =
∑

l>0

J(tql)−
∑

l>0

J(t−1ql). (4.58)

Comparing equations (4.53) and (4.57) as well as the de�nitions of their elliptic generalisations

(4.54) and (4.58), leads to the conclusion that

JE(t, q) =
1

2
Re(DE

1,2(t, q))+
(4π Im(τ ))2

6
B3(u). (4.59)

Therefore, according to equation (4.55), the regulator map R equals one half of DE
1,2 up to the

last term in equation (4.59), such that, as for its imaginary part, i.e. the elliptic Bloch–Wigner

function, the whole regulator map R can immediately be translated to the iterated integrals on

the torus and the projective elliptic curve, as described above.

4.3. The elliptic Bloch relation on the torus

The connections between the different notions of elliptic (multiple) polylogarithms found in the

previous subsections 4.1 and 4.2 can be exploited to translate and to compare various concepts

and structures among them. In this section we show how the elliptic Bloch relation (3.57)

translates to the torus, discovermore general relations thereon and hence, provide an alternative

proof of the elliptic Bloch relation. In doing so, we will show, how the Bloch relation can be

interpreted in terms of differentials of iterated integrals or, more generally, in terms of the

elliptic symbol calculus introduced in reference [31].
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Let F be an elliptic function on the Tate curve with the following divisor

Div(F) =
∑

i

di(ai) ,
∑

i

di = 0 ,
∏

i

a
di
i = 1. (4.60)

Formulated on the torus the above equation translates into,

Div(F) =
∑

i

di(Ai) ,
∑

i

di = 0 ,
∑

i

diAi = 0. (4.61)

where ai = e2πiAi . Using equation (3.14), one can expressF in terms of a product ofWeierstrass

σ functions

F(z) = sA
∏

i

σ(z− Ai)
di = sA exp

(
∑

i

di

∫ z−Ai

0

dz′ ζ(z′)

)

(4.62)

for some scaling sA ∈ C∗ of F. Similarly, for a given κ ∈ C∗, κ− F can be represented by19

κ− F(z) = sB
∏

j

σ(z− B j)
e j = sB exp

(
∑

j

e j

∫ z−B j

0

dz′ζ(z′)

)

, (4.63)

where sB ∈ C∗. For notational convenience, let us split the set of zeros and poles of F and

κ− F, denoted by I and J, respectively, into the zeros ofF, I′ = {Ai|d i > 0}, the zeros of κ− F,

J′ = {Bj|ej > 0}, and the common set of poles K = {Ai|d i < 0} = {Bj|ej < 0}. Using these

conventions, the elliptic Bloch relation (3.57) can be rewritten by means of equation (4.33) as

0 =
∑

i, j

die jD
E
(
ai
b j
, q
)

= −2π
∑

i, j

die j

(

Re

(

Γ̃

(

1 0
0 0

;Ai − B j, τ

))

(4.64a)

+ Re
( τ

2πi

)

Re

(

Γ̃(
2
0
;Ai − B j, τ )

)

(4.64b)

−Re(Ai − B j) Re

(

Γ̃(
1
0
;Ai − B j, τ )

))

, (4.64c)

where Bj is given by b j = e2πiB j and the summation indices (i, j) run over I× J, unless

mentioned otherwise.

We give an alternative proof of equation (4.90), which we refer to as the elliptic Bloch

relation on the torus, in the following paragraphs by showing that the sums over the single

iterated integrals Γ̃ occurring in the above formula vanish separately (and for the �rst two

also their imaginary parts, yielding two holomorphic analogues of the elliptic Bloch relation).

Note that since we are interested in generating functional equations we consider the zeros and

poles Ai and Bj as well as the scaling factors sA and sB to be (not independent) variables, e.g.

depending on variable coef�cients of the rational function on the elliptic curve that determine

F, cf the examples in subsection 3.4.

Let us start with the �rst term of the elliptic Bloch relation on the torus, equation (4.64a):

naturally, the zeros and poles satisfy the constraints
∑

id iAi = 0 and
∑

jejBj = 0 as functional

19Note that here, the ej do not denote the roots of a Weierstrass equation, but the orders of the zeros and poles of the

elliptic function κ− F.
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identities. Hence, the functional identity

κ = κ− F(Ai) = sB
∏

j

σ(Ai − B j)
e j (4.65)

holds for i ∈ I′, such that taking the total differential of both sides and using equation (3.33),

i.e. ζ(z) = g(1)(z, τ )+ 2η1z, as well as the representations (4.62) and (4.63) the differential

equation

∑

j

e jg
(1)(Ai − B j)d(Ai − B j) = −d log(sB)− c1

∑

j

e jB jdB j (4.66)

can be obtained. For k ∈ K, a functional identity involving the residue instead of the in�-

nite value κ− F(Ak) can be used for a similar calculation: since by convention σ′(0) = 1, the

residue of κ− F at Ak is

ResAk (κ− F) = sB
∏

j6=k
σ(Ak − B j)

e j , (4.67)

which implies that

∑

j6=k
e jg

(1)(Ak − B j)d(Ak − B j) = d log
(
ResAk (κ− F)

)
− d log(sB)− c1

∑

j

e jB jdB j.

(4.68)

Two similar differential equations for sums over I can be found, the �rst one starting from

κ = F(Bj), where j ∈ J′,

∑

i

dig
(1)(Ai − B j)d(Ai − B j) = −d log(sA)− c1

∑

i

diAidAi. (4.69)

With k ∈ K and using that ResAk (F) = −ResAk (κ− F), the last such differential equation turns

out to be

∑

i 6=k
dig

(1)(Ak − Ai)d(Ak − Ai) = d log
(
ResAk (κ− F)

)
− d log(sA)− c1

∑

i

diAidAi. (4.70)

Going through an elaborate calculation, whose details we have outsourced to appendix E,

the four differential equations (4.66) and (4.68)–(4.70) can be combined into the differential

equation

∑

i, j

die j(Ai − B j)g
(1)(Ai − B j, τ )d(Ai − B j) = 0. (4.71)

For integration pathswith dτ = 0, the differential of the iterated integral Γ̃

(
1 0

0 0
; z, τ

)

is given

by

dΓ̃

(
1 0

0 0
; z, τ

)

= zg1(z, τ )dz. (4.72)

35



J. Phys. A: Math. Theor. 53 (2020) 245201 J Broedel and A Kaderli

Accordingly, equation (4.71) implies that

∑

i, j

die jΓ̃

(
1 0

0 0
;Ai − B j, τ

)

= c2 (4.73)

for some constant c2 ∈ C. In general, the zeros and poles of F are only constrained by
∑

id iAi = 0 =
∑

id i, thus, it may be assumed that they can be split in a way such that

the divisor of F consists of triplets with two of them being unconstrained and the third one

being given by A3 = −A1 − A2. An alternative way of saying this is that divisors of the form

(A1)+ (A2)− (0)− (A1 + A2) span the set of principal divisors, which was encountered in

subsection 3.3, cf equation (3.52). Thus, by continuity, the above equation can be evaluated at

the point where all Ai = 0 to determine

c2 =
∑

j

e jΓ̃

(
1 0

0 0
;−B j, τ

)
∑

i

di = 0. (4.74)

Therefore, we �nd a holomorphic analogue of the elliptic Bloch relation

∑

i, j

die jΓ̃

(
1 0

0 0
;Ai − B j, τ

)

= 0. (4.75)

Similar arguments apply for the term (4.64c) involving the iterated integral z Γ̃

(
1

0
; z, τ

)

in the elliptic Bloch relation on the torus (4.90). Let i ∈ I′ and write

κ = κ− F(Ai) = sB exp

(
∑

j

e j

∫ Ai−B j

0

dzg(1)(z, τ )+
c1

2

∑

j

e jB
2
j

)

, (4.76)

such that

∑

j

e jΓ̃

(
1

0
;Ai − B j, τ

)

= log(κ)− log(sB)−
c1

2

∑

j

e jB
2
j − 2πim1, (4.77)

for somem1 ∈ Z, which holds for Γ̃(
1

0
;Ai − B j, τ ) being the regularised or unregularised iter-

ated integral, because the factor
∑

jej = 0 cancels the logarithmic singularity. For k ∈ K and

with σ(z) = sC exp
(∫ z

z0
dz′ζ(z′)

)

such that σ′(0) = 1, the same calculation as before leads to

ResAk (κ− F) = sBsC exp




∑

j6=k
e j

∫ Ak−B j

z0

dzζ(z)





= sBsC exp




∑

j6=k
e j

∫ Ak−B j

0

dzg(1)(z, τ )+
c1

2

∑

j

e jB
2
j +

∫ z0

0

dzζ(z)



 (4.78)

which implies that
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∑

j6=k
e j

∫ Ak−B j

0

dzg(1)(z, τ ) = log(ResAk (κ− F))−log(sC)−log(sB)−
c1

2

∑

j

e jB
2
j

−
∫ z0

0

dzζ(z)− 2πim2, (4.79)

where m2 ∈ Z, and analogously for the sum over I\{k}
∑

i 6=k
di

∫ Ak−Ai

0

dzg(1)(z, τ ) = log(ResAk (F))− log(sC)− log(sA)−
c1

2

∑

i

diA
2
i

−
∫ z0

0

dzζ(z)− 2πim3, (4.80)

for m3 ∈ Z. A similar result holds for j ∈ J′,

∑

i

diΓ̃(
1

0
;Ai − B j, τ ) = log(κ)− log(sA)−

c1

2

∑

i

diA
2
i − 2πim4, (4.81)

where m4 ∈ Z. Since log(ResAk (F)) = log(ResAk (1− F))+ iπ, equations (4.79) and (4.80)

lead to

∑

j

e jΓ̃(
1

0
;Ak − B j, τ )−

∑

i

diΓ̃(
1

0
;Ak − Ai, τ )

= −iπ(1+ 2m2 − 2m3)+ log(sA)+
c1
2

∑

i

diA
2
i − log(sB)− c1

2

∑

j

e jB
2
j .

(4.82)

Finally, using the equations (4.77) and (4.79)–(4.81) all together, the identities

∑

i, j

die jRe
(
Ai − B j

)
Re

(

Γ̃

(
1

0
;Ai − B j, τ

))

= 0 (4.83)

and
∑

i, j

die j Im
(
Ai − B j

)
Re

(

Γ̃

(
1

0
;Ai − B j, τ

))

= 0. (4.84)

can be obtained, see appendix E for the calculation.

Now, we are left with the term (4.64b) involving Γ̃

(
2

0
; z, τ

)

. Let us take the partial deriva-

tive of equation (4.77) with respect to τ and use the partial differential equation (3.35) of the

integration kernel, i.e. 2πi ∂
∂τ
g(1)(z, τ ) = ∂

∂z
g(2)(z, τ ), to �nd

∑

j

e jg
(2)(Ai − B j, τ ) = −2πi

∂

∂τ

c1

2

∑

j

e jB
2
j − 2πi

∑

j

e jg
(1)(Ai − B j, τ )

∂

∂τ
(Ai − B j), (4.85)

valid for i ∈ I′. A similar result holds for j ∈ J′

∑

i

dig
(2)(Ai − B j, τ ) = −2πi

∂

∂τ

c1

2

∑

i

diA
2
i − 2πi

∑

i

dig
(1)(Ai − B j, τ )

∂

∂τ
(Ai − B j) (4.86)

and for k ∈ K
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∑

j

e jg
(2)(Ak − B j)−

∑

i

dig
(2)(Ak − Ai) = −2πi

∂

∂τ

c1

2

∑

i

diA
2
i − 2πi

∂

∂τ

c1

2

∑

j

e jB
2
j

− 2πi
∑

j

e jg
(1)(Ak − B j)

∂

∂τ
(Ak − B j)

+ 2πi
∑

i

dig
(1)(Ak − Ai)

∂

∂τ
(Ak − B j). (4.87)

The equations (4.85)–(4.87) imply that for paths with dτ = 0 the differential equation

d
∑

i j

die jΓ̃

(
2

0
;Ai − B j, τ

)

= 0 (4.88)

holds, the explicit calculation is shown in the appendix E. By the same argument as for

equation (4.75), we therefore �nd another functional identity which can be interpreted as a

holomorphic analogue of the elliptic Bloch relation on the torus

∑

i, j

die jΓ̃

(
2

0
;Ai − B j, τ

)

= 0. (4.89)

To summarise, we managed to express the elliptic Bloch relation (4.90) in terms of iterated

integrals on the torus.

Let us comment on the two holomorphic functional equations (4.75) and (4.89) respectively,

in terms of the iterated integrals Γ̃ on the torus which have the same structure as the original

elliptic Bloch relation: in the language of reference [33], it turns out that the iterated integrals

Γ̃(
1 0
0 0

; z, τ ) and Γ̃(
2
0
; z, τ ) are Steinberg functions. However, we have to be careful when using

these functional identities: these iterated integrals are multi-valued and in order to reproduce

equations (4.75) and (4.89) they have to be evaluated on the representatives of the zeros and

poles of F and κ− F which satisfy
∑

id iAi = 0 =
∑

jejBj, and not only such that these sums

lie in the latticeΛ. These equations have been obtained by differential calculus of iterated inte-

grals, which is simply the symbol calculus of an iterated integral with depth 1. Thus, together

with equation (4.83) we provide an interpretation of the elliptic Bloch relation using the elliptic

symbol calculus of the iterated integrals Γ̃ on the torus.

4.4. The elliptic Bloch relation in the projective formulation

By means of equations (4.42)–(4.45), the elliptic Bloch relation (4.90) can also be expressed

on the projective elliptic curve

0 =
∑

i, j

die jD
E
(
ai
b j
, q
)

= −2π
∑

i, j

die j

(

Re

(

Γ̃(
1 0
0 0

;Ai − B j, τ )

)

+Re
(

τ
2πi

)
Re

(

Γ̃(
2
0
;Ai − B j, τ )

)

− Re(Ai − B j) Re

(

Γ̃(
1
0
;Ai − B j, τ )

))

= −2π
∑

i, j

die j

(

Re

(

E3(
1 0
∞ 0

; xi j,~e)

)

+ Re
(

τ
2πi

)
Re

(

E3(
2
∞ ; xi j,~e)

)

− Re(E3(
0

0
; xi,~e)− E3(

0

0
; x j,~e)) Re

(

E3(
1
∞ ; xi j,~e)

))

,

(4.90)
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where xi = ℘(Ai), xj = ℘(Bj) and xi j = ℘
(
Ai − B j

)
. Similarly, the holomorphic functional

relations (4.75) and (4.89) translate to

∑

i, j

die jE3

(
1 0

∞ 0
; xi j,~e

)

= 0 (4.91)

and

∑

i, j

die jE3

(

2
∞ ; xi j,~e

)

= 0. (4.92)

5. Conclusions

In this article, we have investigated the elliptic Bloch–Wigner function DE in order to obtain

functional relations of the iterated integrals Γ̃ on the torus and especially to formulate an elliptic

analogue of the �ve-term identity on the torus. This analysis led to several results:

• The elliptic Bloch–Wigner function DE, which is usually de�ned on the Tate curve, has

been translated into the language of iterated elliptic integrals Γ̃ on the torus. This was the

precondition for the application of the elliptic symbol calculus.

• We have been extending the translation to the torus for two additional classes of func-

tions: the �rst class are the sums DE
a,b [36] on the Tate curve de�ned in equation (4.54).

These functions play a crucial role in the calculation of modular graph functions [58].

The �nal formulæ can be obtained by combining equation (D.1) with equations (4.5),

(4.19), (4.20) and (4.26). The representation of functions DE
a,b in terms of Γ̃’s on the torus

allows for series expansions and therefore the investigation of relations between different

modular graph functions. In particular, those representations might shed some light on

the explicit construction of a representation of a single-valued map for genus-one string

amplitudes as suggested in reference [59].

The second class is a particular subclass of the former and is given by the functionsLE
n ,

de�ned in equation (4.51), which are based on Ramakrishnan’s single-valued polyloga-

rithms: their representation on the torus follows from a combination of equation (4.51)

with equations (4.5), (4.19), (4.20) and (4.26).

• Once representations on the torus do exist, it is just one further step to translate [44] those

into representations in the projective formulation of the elliptic curve. In particular, we

have chosen to express the elliptic Bloch–Wigner function in terms of iterated integrals

E3 on the projective elliptic curve. For the two general classes of functions mentioned

above this can be done in a straightforward manner as well.

The above expressions on the Tate curve and on the torus can be extended to the projec-

tive elliptic curve as well. In the case of the elliptic Bloch–Wigner function DE, we have

found equation (4.46), which expresses the value of DE on the Tate curve, the torus and

the projective curve.

• Employing the above translations, we have taken the elliptic Bloch relation (3.57), which

is de�ned in terms of the elliptic Bloch–Wigner function DE, from the Tate curve to the

torus and the projective elliptic curve: the result is noted in equation (4.90).
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• The investigation of the elliptic Bloch relation on the torus led to the holomorphic ana-

logues of the elliptic Bloch relation given by equations (4.75) and (4.89) as well as the

non-holomorphic equations (4.83) and (4.84). Since validity of those equations can be

proved using the elliptic symbol calculus on the torus, we hereby found an alternative

proof and interpretation of the elliptic Bloch relation.

• Translating the elliptic Bloch relation even one step further to the projective elliptic curve

yields a possibility to write down functional equations in terms of algebraic arguments.

However, this is possible only when restricting the parametrising rational function to lines.

Beyond lines, the complexity of the calculation of zeros of the parametrising rational

function prevents the corresponding functional relation from being purely algebraic in

the arguments.

In particular, this applies to the elliptic analogue of the �ve-term identity, i.e. the func-

tional relation induced via the elliptic Bloch relation by the elliptic generalisation (3.79)

of the rational function (2.21) parametrising the classical �ve-term identity.

In general, due to the complexity of Abel’s map, it can not be expected, that generic

functional relations generated by the Bloch relation may be formulated explicitly in terms

of algebraic arguments on the torus or the Tate curve, respectively.

In the classical case, the �ve-term identity is conjectured to generate all other functional

identities between the dilogarithm. It would be interesting to investigate, whether a simi-

lar conjecture can be formulated for the elliptic case. As described at the end of subsec-

tion 3.4, Gangl and Zagier state [32] that the elliptic Bloch relation, the symmetry and the

duplication relation are expected to generate all the functional relations of the elliptic Bloch

group associated to the elliptic Bloch–Wigner function. However, the construction of higher

elliptic Bloch groups and in particular the corresponding group of functional relations awaits

further investigation.

In particular it would be nice, if this conjecture came along with a geometric interpretation

of the elliptic analogue of the �ve-term identity, similar, but for sure more complicated, to the

classical case.

While the elliptic Bloch relation is capable of providing a large class of functional relations,

it is not clear, whether there might exist other structures or similar mechanisms generating

further relations, for example based on functions beyond the elliptic Bloch–Wigner function.

Based on the experience gained from the current implementation and the investigations in this

article, a straightforward generalisation seems unlikely.

In the context of Feynmandiagrams leading to elliptic polylogarithms, themain recent focus

was usually on evaluating the integrals. Despite the lack of a dedicated application of the func-

tional relations investigated in this article, we hope that our results will facilitate simpli�cations

and unravel new structures in further elliptic Feynman calculations to come.
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Appendix A. Group addition on E(C)

The geometric picture of the addition on the elliptic curve is that two distinct points P1 =

[x1 : y1 : 1] and P2 = [x2 : y2 : 1] with y1 6= ±y2 form a line which intersects the elliptic curve

y2 = 4x3 − g2x − g3 at a third point −P3 = [x3 :−y3 : 1]. The sum P3 = P1 + P2 is de�ned

as being the projection of−P3 = [x3 :−y3 : 1] to the negative y-coordinateP3 = [x3 : y3 : 1].

Thus, two points with their y-coordinate being of the opposite sign are indeed the inverse of

each other with ∞ = [0 : 1 : 0] being the unit element since the line de�ned by P3 and −P3

intersects the elliptic curve only at in�nity. The algebraic description is the following. For P1

and P2 as above, the line intersecting them is given by y = λx + µ, where

λ =
y2 − y1

x2 − x1
, µ =

y1x2 − y2x1

x2 − x1
. (A.1)

The x-coordinate of the third point −P3 = [x3 :−y3 : 1] intersecting the line and the elliptic

curve is the third solution (besides x1 and x2) of the cubic equation (λx + µ)2 = 4x3 − g2x −
g3, which is in terms of x1 and x2

x3 = −x1 − x2 +
λ2

4
. (A.2)

The y coordinate of P3 is then simply the negative of the y coordinate determined by the line

and x3,

y3 = −λx3 − µ. (A.3)

The last case we need to consider is if the points P1 and P2 are identical and not the unit

element, i.e. P1 = P2 = P = [xP : yP : 1]. For yP 6= 0, the above description of taking the line

intersecting P1 and P2 degenerates to taking the tangent on the elliptic curve at P. The sum

2P = P+ P = [x2P : y2P : 1] is then again the projection of the second point lying on this

tangent and the elliptic curve with respect to the x-coordinate. Algebraically, this corresponds

to

λ =
12x2P − g2

2yP
, µ = yP − λxP (A.4)

and

x2P = −2xP +
λ2

4
, y2P = −λx2P − µ (A.5)

as before. In the case of yP = 0, the point P is inverse to itself, such that P+ P = P− P = ∞.

These addition rules exactly agree with the well-known addition formula of the Weierstrass ℘
function

℘(x1 + x2) = −℘(x1)− ℘(x2)+
1

4

(
℘′(x2)− ℘′(x1)

℘(x2)− ℘(x1)

)2

(A.6)

for x1 6= x2 and similar for its derivative. This ensures that ξΛ,E de�ned in equation (3.16) is

indeed a homomorphism.
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Appendix B. q-expansion of integration kernels and elliptic polylogarithms

Starting from the q-expansion of the Jacobi θ function, the q-expansion of the integration

kernels are obtained via the generating Eisenstein–Kronecker series [52] and are given by

g(0)(z, τ ) = 1, (B.1)

g(1)(z, τ ) = π cot(πz)+ 4π
∑

k,l>0

sin(2πkz)qkl (B.2)

and for m > 0 by

g(2m)(z, τ ) = −2ζ2m − 2
(2πi)2m

(2m− 1)!

∑

k,l>0

cos(2πkz)l2m−1qkl, (B.3)

as well as by

g(2m+1)(z, τ ) = −2i
(2πi)2m+1

(2m)!

∑

k,l>0

sin(2πkz)l2mqkl. (B.4)

The (n− 1)-fold integration of the regularised integral (3.36), i.e.

Γ̃reg

(

1
0
; z, τ

)

= log(1− e2πiz)− πiz+ 4π
∑

k,l>0

1

2πk
(1− cos(2πkz)) qkl,

(B.5)

and the n-fold integration of the above integration kernels g(m)(z, τ ) for m > 1 can be deter-

mined analytically. This yields the following ef�cient method to write down their q-expansion

and, hence, for their numerical evaluation. The central observation is that for n > 0 the 2n-fold

integration of sin(2πkz) with k ∈ Z is given by

∫ z

0

dz1

∫ z1

0

dz2 . . .

∫ z2n−1

0

dz2n sin(2πkz2n) =
(−1)n

(2πk)2n
sin(2πkz)

+

n∑

j=1

(−1)n− j

(2πk)2n+1−2 j

z2 j−1

(2 j− 1)!
(B.6)

and the (2n+ 1)-fold integration by

∫ z

0

dz1

∫ z1

0

dz2 . . .

∫ z2n

0

dz2n+1 sin(2πkz2n+1) =
(−1)n+1

(2πk)2n+1
cos(2πkz)

+

n∑

j=0

(−1)n− j

(2πk)2n+1−2 j

z2 j

(2 j)!
. (B.7)

A similar result holds for the iterative integration of cos(2πkz),
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∫ z

0

dz1

∫ z1

0

dz2 . . .

∫ z2n−1

0

dz2n cos(2πkz2n) =
(−1)n

(2πk)2n
cos(2πkz)

+

n−1∑

j=0

(−1)n+1− j

(2πk)2n−2 j

z2 j

(2 j)!
(B.8)

and

∫ z

0

dz1

∫ z1

0

dz2 . . .

∫ z2n

0

dz2n+1 cos(2πkz2n+1) =
(−1)n

(2πk)2n+1
sin(2πkz)

+

n∑

j=1

(−1)n− j

(2πk)2n+2−2 j

z2 j−1

(2 j− 1)!
. (B.9)

Combining the above results yields the following q-expansions of the elliptic polylogarithms

of the form Γ̃

(
0 . . . 0m
0 . . . 0 0
︸ ︷︷ ︸

n

; z, τ

)

for n > 1:

Γ̃

(
0 . . . 0 1
0 . . . 0 0
︸ ︷︷ ︸

2n

; z, τ

)

= − 1
(2πi)2n−1Li2n(e

2πiz)+
∑2n−1

j=1

ζ j+1

(2πi) j
z2n−1− j

(2n−1− j)!
− πi z

2n

(2n)!

+(−1)n4π
∑

k,l>0

1
(2πk)2n

(

sin(2πkz)+
∑n

j=1
(−1) j

(2πk)1−2 j
z2 j−1

(2 j−1)!

)

qkl,

(B.10)

Γ̃

(
0 . . . 0 1
0 . . . 0 0
︸ ︷︷ ︸

2n+1

; z, τ

)

= − 1
(2πi)2n

Li2n+1(e
2πiz)+

∑2n
j=1

ζ j+1

(2πi) j
z2n− j

(2n− j)!
− πi z2n+1

(2n+1)!

+ (−1)n+14π
∑

k,l>0

1
(2πk)2n+1

(

cos(2πkz)+
∑n

j=0
(−1) j+1

(2πk)−2 j
z2 j

(2 j)!

)

qkl

(B.11)

and for m > 1 and n > 0

Γ̃

(
0 . . . 0 2m
0 . . . 0 0
︸ ︷︷ ︸

2n

; z, τ

)

= −2ζ2m
z2n

(2n)!
+ (−1)n+12 (2πi)2m

(2m−1)!

∑

k,l>0

1
(2πk)2n

×
(

cos(2πkz)+
∑n−1

j=0
(−1)1+ j

(2πk)−2 j
z2 j

(2 j)!

)

l2m−1qkl,

(B.12)

Γ̃

(
0 . . . 0 2m
0 . . . 0 0
︸ ︷︷ ︸

2n+1

; z, τ

)

= −2ζ2m
z2n+1

(2n+1)!
+ (−1)n+12 (2πi)2m

(2m−1)!

∑

k,l>0

1
(2πk)2n+1

×
(

sin(2πkz)+
∑n

j=1
(−1) j

(2πk)1−2 j
z2 j−1

(2 j−1)!

)

l2m−1qkl,

(B.13)
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as well as

Γ̃

(
0 . . . 0 2m+ 1

0 . . . 0 0
︸ ︷︷ ︸

2n

; z, τ

)

= (−1)n+12i (2πi)
2m+1

(2m)!

∑

k,l>0

1
(2πk)2n

×
(

sin(2πkz)+
∑n

j=1
(−1) j

(2πk)1−2 j
z2 j−1

(2 j−1)!

)

l2mqkl,

(B.14)

Γ̃

(
0 . . . 0 2m+ 1

0 . . . 0 0
︸ ︷︷ ︸

2n+1

; z, τ

)

= (−1)n2i (2πi)
2m+1

(2m)!

∑

k,l>0

1
(2πk)2n+1

×
(

cos(2πkz)+
∑n

j=0
(−1)1+ j

(2πk)−2 j
z2 j

(2 j)!

)

l2mqkl

(B.15)

where, in the above formula, we denote the integration kernels by

Γ̃

(
0 . . . 0m
0 . . . 0 0
︸ ︷︷ ︸

0

; z, τ

)

= g(m)(z, τ ).

Appendix C. Integration constants as elliptic zeta values

This section is dedicated to the calculation of the integration constants from subsection 4.1,

i.e.

En,−m(1, 1, q) = −(1− (−1)n+m)ELin,−m(1, 1, q) (C.1)

for n > 1 and m > 0, where

ELin,m(1, 1, q) =
∑

k,l>0

1

kn
1

lm
qkl, (C.2)

in terms of the elliptic zeta values

ωn(m; τ ) = Γ̃

(
0 . . . 0m
0 . . . 0 0
︸ ︷︷ ︸

n

; 1, τ

)

(C.3)

de�ned in equation (3.41).

Let us begin with the case m = 0, where we consider for n > 2

En(1, 1, q) = −1

2
(1− (−1)n) ζn + En,0(1, 1, q) =

{

0 n even

−ζn − 2ELin,0(1, 1, q) n odd
(C.4)

as de�ned in equation (4.3). While En(1, 1, q) vanishes for even n, for odd n > 3 the integration

constants En(1, 1, q) will turn out to be linear combinations of ω1(1; τ ),ω3(1; τ), . . . ,ωn(1; τ ),
which we derive similarly as the result for n = 1 given by equation (4.11)

2ELi1,0(1, 1, q) = ω2(1; τ )+
πi

2
. (C.5)
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In order to do so, let n > 4 be even. In this case, the recursion given by equation (4.19) evaluated

at one, which is based on the partial differential equation (4.6),

∂

∂z
En(z, 1, τ ) = 2πiEn−1(z, 1, τ ), (C.6)

takes the explicit form

0 = En(1, 1, q) = 2πi

∫ 1

0

dz0En−1(z0, 1, τ )

= (2πi)2
∫ 1

0

dz0

∫ z0

0

dz1En−2(z1, 1, τ )+ 2πiEn−1(1, 1, q)

= (2πi)4
∫ 1

0

dz0

∫ z0

0

dz1

∫ z1

0

dz2

∫ z2

0

dz3En−4(z3, 1, τ )

+
(2πi)3

3!
En−3(1, 1, q)+ 2πiEn−1(1, 1, q)

= (2πi)n−2

∫ 1

0

dz0

∫ z0

0

dz1 . . .

∫ zn−4

0

dzn−3E2(zn−3, 1, τ )

+
(2πi)n−3

(n− 3)!
E3(1, 1, q)+ · · ·+ 2πiEn−1(1, 1, q). (C.7)

Plugging in

E2(t, 1, q) = 2πi

(

Γ̃(
0 1

0 0
; z, τ )− ω2(1; τ )z

)

(C.8)

from equation (4.12), and solving for En−1(1, 1, q) leads to the recursive formula

En−1(1, 1, q) = (2πi)n−2

(
ω2(1; τ )

(n− 1)!
− ωn(1; τ )

)

− (2πi)n−4

(n− 3)!
E3(1, 1, q)− · · · − (2πi)2

3!
En−3(1, 1, q). (C.9)

The �rst examples are n = 4

E3(1, 1, q) = (2πi)2
(
ω2(1; τ )

3!
− ω4(1; τ )

)

, (C.10)

n = 6

E5(1, 1, q) = (2πi)4
(
ω2(1; τ )

5!
− ω6(1; τ )

)

− (2πi)2

3!
E3(1, 1, q)

= (2πi)4
(
ω2(1; τ )

5!
− ω6(1; τ )

)

− (2πi)2

3!
(2πi)2

(
ω2(1; τ )

3!
− ω4(1; τ )

)

= (2πi)4
((

1

5!
− 1

3!3!

)

ω2(1; τ )+
1

3!
ω4(1; τ )− ω6(1; τ )

)

(C.11)
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and n = 8

E7(1, 1, q) = (2πi)6
(
ω2(1; τ )

7!
− ω8(1; τ )

)

− (2πi)4

5!
E3(1, 1, q)−

(2πi)2

3!
E5(1, 1, q)

= (2πi)6
(
ω2(1; τ )

7!
− ω8(1; τ )

)

− (2πi)4

5!
(2πi)2

(
ω2(1; τ )

3!
− ω4(1; τ )

)

− (2πi)2

3!
(2πi)4

((
1

5!
− 1

3!3!

)

ω2(1; τ )+
1

3!
ω4(1; τ )− ω6(1; τ )

)

= (2πi)6
((

1

7!
− 1

5!3!
− 1

3!5!
+

1

3!3!3!

)

ω2(1; τ )

+

(
1

5!
− 1

3!3!

)

ω4(1; τ )+
1

3!
ω6(1; τ )− ω8(1; τ )

)

. (C.12)

This recursive structure can be expressed explicitly in terms of the series

dk =







−1 k = 1

0 k even

−d1

k!
− d3

(k− 2)!
− · · · − dk−2

3!
k odd

(C.13)

with the �nal result being for any natural number n > 1

E2n+1(1, 1, q) = (2πi)2n
n∑

k=0

d2k+1ω2n+2−2k(1; τ ), (C.14)

which can be checked inductively as follows: �rst, note that the series dk begins with

d1 = −1 , d3 = − 1

3!
(−1) =

1

3!
, d5 = − 1

5!
(−1)− 1

3!

1

3!
=

1

5!
− 1

3!3!
(C.15)

and

d7 =
1

7!
− 1

5!

1

3!
− 1

3!

(
1

5!
− 1

3!3!

)

=
1

7!
− 1

5!3!
− 1

3!5!
+

1

3!3!3!
, (C.16)

such that for n = 1, 2, 3 the explicit formula (C.14) is indeed in agreement with the �rst three

examples (C.10)–(C.12). For the general case, let n > 1 and assume that the explicit formula

(C.14) holds for n− 1, such that the recursive formula (C.9) implies

E2n+1(1, 1, q) = (2πi)2n
(

ω2(1; τ )

(2n+ 1)!
− ω2n+2(1; τ )

)

− (2πi)2n−3

(2n− 1)!
E3(1, 1, q)− · · · − (2πi)2

3!
E2n−1(1, 1, q)

= (2πi)2n
(

ω2(1; τ )

(2n+ 1)!
− ω2n+2(1; τ )

)
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− (2πi)2n−2

(2n− 1)!

(

(2πi)2
1∑

k=0

d2k+1ω4−2k(1; τ )

)

− . . .

− (2πi)2

3!

(

(2πi)2n−2

n−1∑

k=0

d2k+1ω2n−2k(1; τ )

)

= (2πi)2n

(
n−1∑

l=0

l∑

k=0

(−d2k+1)

(2n+ 1− 2l)!
ω2l+2−2k(1; τ )− ω2n+2(1; τ )

)

= (2πi)2n

(
n−1∑

k=0

n−1∑

l=k

(−d2k+1)

(2n+ 1− 2l)!
ω2(l−k)+2(1; τ )− ω2n+2(1; τ )

)

= (2πi)2n

(
n−1∑

k=0

n−k−1∑

m=0

−d2k+1

(2(n− m)+ 1− 2k)!
ω2m+2(1; τ )− ω2n+2(1; τ )

)

= (2πi)2n

(
n−1∑

m=0

(
n−m−1∑

k=0

−d2k+1

(2(n− m)+ 1− 2k)!

)

ω2m+2(1; τ )− ω2n+2(1; τ )

)

= (2πi)2n

(
n−1∑

m=0

d2(n−m)+1ω2m+2(1; τ )− ω2n+2(1; τ )

)

= (2πi)2n
n∑

m=0

d2(n−m)+1ω2m+2(1; τ ) = (2πi)2n
n∑

k=0

d2k+1ω2n+2−2k(1; τ ),

(C.17)

where we used the de�nition (C.13) of d2n+1 for n > 1, i.e.

d2n+1 =

n−1∑

k=0

−d2k+1

(2n+ 1− 2k)!
. (C.18)

This calculation proves the explicit formula (C.14).

For m 6= 0, the two trivial cases, where the En,−m(1, 1, q) vanish by de�nition, are n and m

both being either even or both being odd and have to be distinguished. Starting with the former

and using the partial differential equation (4.21)

∂

∂z
En,m(z, 1, τ ) = 2πiEn−1,m(z, 1, τ ), (C.19)

a similar recursion formula as above, which corresponds to the evaluation of equation (4.26)

at one, can be obtained for even m > 1, n > 4

0 = En,−m(1, 1, q)

= 2πi

∫ 1

0

dz0En−1,−m(z0, 1, τ )

= (2πi)2
∫ 1

0

dz0

∫ z0

0

dz1En−2,−m(z1, 1, τ )+ 2πiEn−1,−m(1, 1, q)
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= (2πi)4
∫ 1

0

dz0

∫ z0

0

dz1

∫ z1

0

dz2

∫ z2

0

dz3En−4,−m(z3, 1, τ )

+
(2πi)3

3!
En−3,−m(1, 1, q)+ 2πiEn−1,−m(1, 1, q)

= (2πi)n−2

∫ 1

0

dz0

∫ z0

0

dz1 . . .

∫ zn−4

0

dzn−3E2,−m(zn−3, 1, τ )

+
(2πi)n−3

(n− 3)!
E3,−m(1, 1, q)+ · · ·+ 2πiEn−1,−m(1, 1, q). (C.20)

This can be solved for En−1,−m(1, 1, q) using the result from equation (4.23) for m even, i.e.

E2,−m(t, 1, q) =
m!

(2πi)m−1
Γ̃(

0m+ 1

0 0
; z, τ )+ 2πiE1,−m(1, 1, q)z, (C.21)

which leads to

E1,−m(1, 1, q) = − m!

(2πi)m
ω2(m+ 1; τ ) (C.22)

upon evaluation at one, such that

En−1,−m(1, 1, q) = m!(2πi)n−m−2

(
ω2(m+ 1; τ )

(n− 1)!
− ωn(m+ 1; τ )

)

− (2πi)n−4

(n− 3)!
E3,−m(1, 1, q)− · · · − (2πi)2

3!
En−3,−m(1, 1, q). (C.23)

This evaluates e.g. for n = 4 to

E3,−m(1, 1, q) = m!(2πi)2−m
(
ω2(m+ 1; τ )

3!
− ω4(m+ 1; τ )

)

(C.24)

and for n = 6 to

E5,−m(1, 1, q) = m!(2πi)4−m
(
ω2(m+ 1; τ )

5!
− ω6(m+ 1; τ )

)

− (2πi)2

3!
E3,−m(1, 1, q)

= m!(2πi)4−m
(
ω2(m+ 1; τ )

5!
− ω6(m+ 1; τ )

)

− (2πi)2

3!
m!(2πi)2−m

(
ω2(m+ 1; τ )

3!
− ω4(m+ 1; τ )

)

= m!(2πi)4−m
((

1

5!
− 1

3!3!

)

ω2(m+ 1; τ )+
1

3!
ω4(m+ 1; τ )− ω6(m+ 1; τ )

)

.

(C.25)

Since this recursion is the same as the one for m = 0 up to the factor m!(2πi)−m and the

higher elliptic zeta values, the explicit formula solving this recursion corresponds to the pre-

vious formula given in equation (C.14) and can immediately be written down and proven as
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before. The result is that for any natural number n > 0 and even m > 1

E2n+1,−m(1, 1, q) = m!(2πi)2n−m
n∑

k=0

a2k+1ω2n+2−2k(m+ 1; τ ). (C.26)

The remaining case is m > 1, n > 3 both odd. The recursive formula can be obtained as

before

0 = En,−m(1, 1, q) = 2πi

∫ 1

0

dz0En−1,−m(z0, 1, τ )

= (2πi)2
∫ 1

0

dz0

∫ z0

0

dz1En−2,−m(z1, 1, τ )+ 2πiEn−1,−m(1, 1, q)

= (2πi)n−1

∫ 1

0

dz0

∫ z0

0

dz1 . . .

∫ zn−3

0

dzn−2E1,−m(zn−2, 1, τ )

+
(2πi)n−2

(n− 2)!
E2,−m(1, 1, q)+ · · ·+ 2πiEn−1,−m(1, 1, q). (C.27)

As above, we can plug in E1,−m(t, 1, q) given by equation (4.22) for m odd, i.e.

E1,−m(t, 1, q) =
m!

(2πi)m

(

Γ̃(
m+ 1

0
; z, τ )+ 2ζm+1z

)

, (C.28)

and solve for En−1,−m(1, 1, q), which yields the recursive formula

En−1,−m(1, 1, q) = m!(2πi)n−m−2

(

−2
ζm+1

n!
− ωn(m+ 1; τ )

)

− (2πi)n−3

(n− 2)!
E2,−m(1, 1, q)− · · · − (2πi)2

3!
En−3,−m(1, 1, q).

(C.29)

Evaluation of equation (C.28) at one, or considering the q-expansion (B.13), leads to the

following connection between the even zeta values and the elliptic zeta values

ω1(m+ 1; τ ) = −2ζm+1, (C.30)

such that the above recursion can be expressed in the more familiar form

En−1,−m(1, 1, q) = m!(2πi)n−m−2

(
ω1(m+ 1; τ )

n!
− ωn(m+ 1; τ )

)

− (2πi)n−3

(n− 2)!
E2,−m(1, 1, q)− · · · − (2πi)2

3!
En−3,−m(1, 1, q).

(C.31)

This yields for n = 3

E2,−m(1, 1, q) = m!(2πi)1−m
(
ω1(m+ 1; τ )

3!
− ω3(m+ 1; τ )

)

(C.32)

49



J. Phys. A: Math. Theor. 53 (2020) 245201 J Broedel and A Kaderli

and for n = 5

E4(1, 1, q) = m!(2πi)3−m
(
ω1(m+ 1; τ )

5!
− ω5(m+ 1; τ )

)

− (2πi)2

3!
E2,−m(1, 1, q)

= m!(2πi)3−m
(
ω1(m+ 1; τ )

5!
− ω5(m+ 1; τ )

)

− (2πi)2

3!
m!(2πi)1−m

(
ω1(m+ 1; τ )

3!
− ω3(m+ 1; τ )

)

= m!(2πi)3−m
((

1

5!
− 1

3!3!

)

ω1(m+ 1; τ )+
1

3!
ω3(m+ 1; τ )− ω5(m+ 1; τ )

)

.

(C.33)

Thus, the explicit solution can combinatorially be deduced as the ones above, which leads

for n > 1 a natural number and m > 1 odd to

E2n,−m(1, 1, q) = m!(2πi)2n−1−m
n∑

k=0

d2k+1ω2n+1−2k(m+ 1; τ ). (C.34)

The above results (C.26) and (C.34) for m 6= 0 can conveniently be summarised in one

single formula: the values En,−m(1, 1, q) for n,m > 1 can be expressed as the following linear

combinations of elliptic zeta values

En,−m(1, 1, q) =







m!(2πi)n−1−m
⌊ n2 ⌋∑

k=0

d2k+1ωn+1−2k(m+ 1; τ ) n+ m odd

0 n+ m even.

(C.35)

Appendix D. DE
a,b on the torus

In the following equation the functions DE
a,b, de�ned in equation (4.54), are related to the sums

En,−m as introduced in equation (4.1):

DE
a,b(t, q) =

∑

l>0

Da,b(tq
l)+ (−1)a+b

∑

l>0

Da,b(t
−1ql)+

(4π Im(τ ))a+b−1

(a+ b)!
Ba+b(u)

= (−1)a−1

a+b−1∑

n=a

(
n− 1

a− 1

)
(−2)a+b−1−n

(a+ b− 1− n)!

∑

l>0

(
log (|tql|)a+b−1−nLin(tq

l)

+(−1)a+b log (|t−1ql|)a+b−1−nLin(t
−1ql)

)

+ (−1)b−1

a+b−1∑

n=b

(
n− 1

b− 1

)
(−2)a+b−1−n

(a+ b− 1− n)!

∑

l>0

(

log (|tql|)a+b−1−n

×Lin(tql )+ (−1)a+b log (|t−1ql|)a+b−1−nLin(t−1ql )
)

+ Da,b(t)+
(4π Im(τ ))a+b−1

(a+ b)!
Ba+b(u)
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= (−1)a
a+b−1∑

n=a

(
n− 1

a− 1

)
(−2)a+b−1−n

(a+ b− 1− n)!

×
a+b−1−n∑

m=0

(
a+ b− 1− n

m

)

log (|t|)a+b−1−n−m log (|q|)mEn,−m(t, 1, q)

+ (−1)b
a+b−1∑

n=b

(
n− 1

b− 1

)
(−2)a+b−1−n

(a+ b− 1− n)!

×
a+b−1−n∑

m=0

(
a+ b− 1− n

m

)

log (|t|)a+b−1−n−m log (|q|)mEn,−m(t, 1, q)

+ Da,b(t)+
(4π Im(τ ))a+b−1

(a+ b)!
Ba+b(u). (D.1)

The sumsEn,−m can be written in terms of the iterated integrals on the torus as shown in subsec-

tion 4.1. This provides an explicit translation of DE
a,b on the Tate curve to the elliptic integrals

Γ̃ on the torus.

Appendix E. Vanishing sums over integration kernels

In this section we show some explicit calculations used in the main part of this article. First,

let us show how we can get from equations (4.66), (4.68)–(4.70) to equation (4.71), i.e.

∑

i, j

die j(Ai − B j)g
(1)(Ai − B j, τ )d(Ai − B j) = 0. (E.1)

In order to apply the initial equations, the sum has to be split correctly, the equations have to be

plugged in, and the sum pulled together again, such that
∑

id iAi = 0 =
∑

jejBj can be used.

Explicitly, this is the following calculation

∑

i, j

die j(Ai − B j)g
(1)(Ai − B j, τ )d(Ai − B j)

=
∑

i∈I′
diAi

∑

j∈J
e jg

(1)(Ai − B j, τ )d(Ai − B j)+
∑

k∈K
dkAk

×
∑

j∈J\{k}
e jg

(1)(Ak − B j, τ )d(Ak − B j)

−
∑

j∈J′
e jB j

∑

i∈I
dig

(1)(Ai − B j, τ )d(Ai − B j)−
∑

k∈K
dkAk

×
∑

i∈I\{k}
dig

(1)(Ak − Ai, τ )d(Ak − Ai)

=
∑

i∈I′
diAi

∑

j∈J
e jg

(1)(Ai − B j, τ )d(Ai − B j)−
∑

j∈J′
e jB j

∑

i∈I
dig

(1)(Ai − B j, τ )d(Ai − B j)
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+
∑

k∈K
dkAk




∑

j∈J\{k}
e jg

(1)(Ak−B j, τ )d(Ak−B j)−
∑

i∈I\{k}
dig

(1)(Ak − Ai, τ )d(Ak − Ai)





=
∑

i∈I′
diAi

(

−d log(sB)−c1
∑

j∈J
e jB jdB j

)

−
∑

j∈J′
e jB j

(
∑

i∈I
− d log(sA)−c1

∑

i∈I
diAidAi

)

+
∑

k∈K
dkAk

(

d log (sA)− d log (sB)+ c1
∑

i∈I
diAidAi − c1

∑

j∈J
e jB jdB j

)

= −
∑

i∈I
diAi

(

d log(sB)+ c1
∑

j∈J
e jB jdB j

)

+
∑

j∈J
e jB j

(
∑

i∈I
d log(sA)+ c1

∑

i∈I
diAidAi

)

= 0. (E.2)

A similar calculation leads from equations (4.77), (4.79)–(4.81) to the equation

∑

i, j

die jRe
(
Ai − B j

)
Γ̃(

1

0
;Ak − B j, τ )

= −iπ Re

(

2m1

∑

i∈I′
diAi − 2m4

∑

j∈J′
e jB j + (1+ 2m2 − 2m3)

∑

k∈K
dkAk

)

,

(E.3)

which implies equation (4.83) upon taking the real part. Equation (4.84) can be obtained by

the same calculation with Re(Ai − Bj) being replaced by Im(Ai − Bj). Note that the following

sum is valid for the regularised as well as for the unregularised version of Γ̃

(

1
0
; z, τ

)

. With

this in mind, let us calculate (E.3) and split the sum as before to �ndz

∑

i, j

die jRe
(
Ai − B j

)
Γ̃(

1

0
;Ak − B j, τ )

=
∑

i∈I′
diRe (Ai)

∑

j∈J
e jΓ̃(

1

0
;Ai − B j, τ )+

∑

k∈K
dkRe (Ak)

×
∑

j∈J\{k}
e jΓ̃unreg(

1

0
;Ak − B j, τ )−

∑

j∈J′
e jRe

(
B j

)∑

i∈I
diΓ̃(

1

0
;Ai − B j, τ )

−
∑

k∈K
dkRe (Ak)

∑

i∈I\{k}
diΓ̃unreg(

1

0
;Ak − Ai, τ )

=
∑

i∈I′
diRe (Ai)

(

−2πim1 + log(κ)− log(sB)−
c1

2

∑

j

e jB
2
j

)

−
∑

j∈J′
e jRe

(
B j

)

(

−2πim4 + log(κ)− log(sA)−
c1

2

∑

i

diA
2
i

)

+
∑

k∈K
dkRe (Ak) (−iπ(1+ 2m2 − 2m3)− log(κ)+ log(sA)
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+
c1

2

∑

i

diA
2
i + log(κ)− log(sB)−

c1

2

∑

j

e jB
2
j

)

= Re

(
∑

i∈I
diAi

)(

log(κ)− log(sB)−
c1

2

∑

j∈J
e jB

2
j

)

−e jRe
(
∑

j∈J
B j

)(

log(κ)− log(sA)−
c1

2

∑

i∈I
diA

2
i

)

−iπ Re



2m1

∑

i∈I′
diAi − 2m4

∑

j∈J′
e jB j + (1+ 2m2 − 2m3)

∑

k∈K
dkAk





= −iπRe



2m1

∑

i∈I′
diAi − 2m4

∑

j∈J′
e jB j + (1+ 2m2 − 2m3)

∑

k∈K
dkAk



 .

(E.4)

The last calculation of this kind is the step getting from equations (4.85)–(4.87) to

equation (4.88), i.e.

d
∑

i, j

die jΓ̃(
2

0
;Ai − B j, τ ) = 0. (E.5)

Here, we have to apply the above splitting of the sum twice to obtain for dτ = 0

d
∑

i, j

die jΓ̃(
2

0
;Ai − B j, τ )

=
∑

i, j

die jg
(2)(Ai − B j, τ )d(Ai − B j)

=
∑

i∈I′
didAi

∑

j∈J
e jg

(2)(Ai − B j, τ )−
∑

j∈J′
e jdB j

∑

i∈I
dig

(2)(Ai − B j, τ )

+
∑

k∈K
dkdAk

(
∑

j∈J
e jg

(2)(Ak − B j, τ )−
∑

i∈I
dig

(2)(Ak − Ai, τ )

)

=
∑

i∈I′
didAi

(

−2πi
∂

∂τ

c1

2

∑

j∈J
e jB

2
j − 2πi

×
∑

j∈J
e jg

(1)(Ai − B j, τ )
∂

∂τ
(Ai − B j)

)

−
∑

j∈J′
e jdB j

×
(

−2πi
∂

∂τ

c1

2

∑

i∈I
diA

2
i − 2πi

∑

i∈I
dig

(1)(Ai − B j, τ )
∂

∂τ
(Ai − B j)

)

+
∑

k∈K
dkdAk

(

−2πi
∂

∂τ

c1

2

∑

i∈I
diA

2
i − 2πi

∂

∂τ

c1

2

∑

j∈J
e jB

2
j

−2πi
∑

j∈J
e jg

(1)(Ak − B j)
∂

∂τ
(Ak − B j)+2πi

∑

i∈I
dig

(1)(Ak − Ai)
∂

∂τ
(Ak − B j)

)
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=
∑

i j

die j
∂

∂τ
(Ai − B j)g

(1)(Ai − B j, τ )d(Ai − B j)

= 0,

(E.6)

where for the last equality, we split the sum once again and proceed as in the calculation of

equation (E.2).
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