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Abstract

A classically scale-invariant 6d analog of the 4d Yang-Mills theory is the 4-derivative (∇F )2+

F 3 gauge theory with two independent couplings. Motivated by a search for a perturbatively

conformal but possibly non-unitary 6d models we compute the one-loop β-functions in this

theory. A systematic way of doing this using the background field method requires the (pre-

viously unknown) expression for the b6 Seeley-DeWitt coefficient for a generic 4-derivative

operator; we derive it here. As an application, we also compute the one-loop β-function in

the (1,0) supersymmetric (∇F )2 6d gauge theory constructed in hep-th/0505082.
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1 Introduction

Like Einstein theory in 4 dimensions, the 6d Yang-Mills theory with the standard F 2 action has

dimensional coupling and is not power-counting renormalizable. A 6d analog of the classically

scale invariant and renormalizable R2 + C2 4d gravity is the 4-derivative (∇F )2 + F 3 gauge

theory. Such 4-derivative terms are induced as counterterms when considering the standard

scalars, fermions or YM vectors coupled to a background gauge field in 6d [1]. While non-

unitary, this model may serve as a building block of possible higher-derivative (super)conformal

theories in 6 dimensions.1 Similar 4-derivative 6d gauge theories were discussed, e.g., in [5, 6, 7,

8, 9, 10, 11, 12, 13].

The aim of the present paper is to compute the one-loop β-functions in the Euclidean 6d

theory with the action2

S = −
1

g2

∫

d6x Tr
[

(∇mFmn)2 + 2γFmnFnkFkm

]

=
1

2g2

∫

d6x
[

(∇mF a
mn)2 + γfabcF a

mnF b
nkF c

km

]

.
(1.1)

Here g and γ are the two independent dimensionless coupling parameters.3

In general, the UV logarithmically divergent part of the 6d one-loop effective action Γ1 in a

gauge field background may be written as4

Γ1∞ = −
log Λ

(4π)3

∫

d6x tr
[

−
1

60
β2 (∇mFmn)2 +

1

90
β3FmnFnkFkm

]

, (1.2)

1 In 4 dimensions the F 2 + (∇F )2 + F 3 theory was studied in [2] and later in [3]. The result of [2] for the

one-loop divergences in this 4d theory was corrected in [4] making it in agreement with that of [3].
2 We use m, n, k, ... = 1, ..., 6 for coordinate indices and flat Euclidean 6d metric so that the position of

contracted indices is irrelevant. The gauge group generators are normalized as tr(tatb) = −TRδab, [ta, tb] =

fabctc, where TR = 1
2

in the fundamental representation of SU(N) (we denote the trace in this case as Tr) and

TR = C2 = N in the adjoint representation.
3 Two other possible 4-derivative ∇F ∇F invariants are related to the above two by the Bianchi identity, e.g.,

Fmn∇2Fmn = −2 (∇mFmn)2 + 4FmnFnkFkm + total derivative.
4 Here tr is the trace over the matrix indices of a particular representation to which the quantum field belongs;

for example, in the gauge theory case it is in the adjoint representation Aab
m = facbAc

m, facdfbcd = C2δab.
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where the 1-loop β-function coefficients β2, β3 depend on the field content of the theory. As we

shall find below, their values in the case of the 4-derivative theory (1.1) are given by the following

functions of the coupling γ (1-loop coefficients do not depend on the overall g2 coupling)

β2A = 249 , β3A = 9 − 900γ +
405

2
γ3 . (1.3)

Somewhat surprisingly, the coefficient β2A of the (∇F )2 divergence turns out to be independent

of the coupling γ.

The total values of β2, β3 in a 6d renormalizable model containing the gauge theory (1.1)

minimally coupled to the ordinary-derivative “matter” fields – N0 real scalars, N 1
2

Weyl fermions,

N1 YM vectors and NT self-dual tensors (interacting with Am as in [12]) are then [1, 12]5

β2 = β2A − 27 NT − 36 N1 + N0 + 16 N 1
2

,

β3 = β3A − 57 NT + 4 N1 + N0 − 4 N 1
2

.
(1.4)

Note that for the ordinary spin 0, 1/2, 1 fields their contributions to β3 are proportional to the

number of dynamical degrees of freedom. The same is true also for the 4-derivative gauge theory

(1.1) with γ = 0: β3A = 9 is the number of d.o.f. of a 4-derivative gauge vector in 6d.6 As a

consequence one should get β3 = 0 in a supersymmetric theory; this is consistent with the non-

existence of a super-invariant containing tr(FmnFnkFkm). Indeed, for the standard 2-derivative

6d (1,0) SYM theory (N1 = 1, N 1
2

= 1) and for the scalar (hyper) multiplet (N0 = 4, N 1
2

= 1)

one finds

β2 (1,0) SYM
= −20 , β2 scal = 20 , β3 (1,0) SYM

= β3 scal = 0 . (1.5)

Since ∇mFmn = 0 on the standard YM equations of motion the (1,0) SYM theory is 1-loop

finite on shell. The sum of the contributions of the two multiplets in (1.5) corresponds to the

(1,1) SYM theory in 6d (and thus to N = 4 SYM in 4d) which is 1-loop finite even off-shell [1]

β2 (1,1) SYM
= β3 (1,1) SYM

= 0 . (1.6)

In the (1, 0) supersymmetric 4-derivative gauge theory with the action given by the super-

extension [5] of tr (∇mFmn)2 (containing also interacting /∇
3

Weyl fermion and three ∇2 scalars)

we will find below that

β2 (1,0) = 220 , β3 (1,0) = 0 . (1.7)

This result is in agreement (modulo notation change) with the one given in the recently revised

version of [5]. This theory is non-unitary and is also formally inconsistent having a chiral

anomaly [6] (the same as in the (1,0) 6d SYM theory containing Weyl fermion). One may still

hope to cancel all of its anomalies by adding some higher derivative 6d “matter” multiplets (cf.

[14, 15, 16]).

The calculation of the β-functions (1.3) is most straightforward in the background field

method and using the heat kernel expansion to extract the log divergences of the determi-

nants. This requires the knowledge of the corresponding b6 Seeley-DeWitt coefficient for the

5 Here all the fields are taken for simplicity in the adjoint representation; in the case of other representations

one is to rescale the numbers Ns by TR/C2. We corrected misprints in [1] mentioned in [12]. Note that the vector

N1 terms here are formal: they indicate the 6d YM contribution in the absence of higher-derivative terms in (1.1).

In the combined F 2 + (∇F )2 + F 3 theory discussed below in Appendix B the values of β2 and β3 are the same

as in the theory (1.1) without the YM F 2 term.
6 While the 2-derivative YM vector in d dimensions has 1

2
2(d − 1) − 1 = d − 2 dynamical d.o.f., for the

4-derivative gauge vector in (1.1) one finds 1
2
4(d − 1) − 1 = 2d − 3, i.e. 5 in d = 4 and 9 in d = 6.
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4-derivative operator ∆4 = ∇4 + ... in a gauge field background. While b6 is available for the 2-

derivative ∆2 operators [17], its expression for ∆4 was not known so far. The main new technical

result of this paper is the computation of b6(∆4). We shall use the same strategy as employed

previously in [2] to obtain b4(∆4) from the known expression for b4(∆2) by considering special

factorized cases of the operator ∆4.

The rest of the paper is organized as follows. In section 2 we present the general form of the

one-loop effective action of the theory (1.1). In section 3 the result for the heat kernel coefficient

b6 that controls the logarithmic divergence of the determinant of a generic 4-derivative operator

is given. In section 4 this expression is applied to compute the one-loop divergences in the

bosonic gauge theory (1.1) and its (1,0) supersymmetric extension (with γ = 0). Details of the

derivation of b6(∆4) are described in Appendix A. In Appendix B we discuss divergences of the

combined 2- and 4-derivative 1
g2 [κ2F 2 +(∇F )2 +γF 3] gauge theory and its (1,0) supersymmetric

version: adding F 2 does not change the β-functions (1.3) for g and γ but leads to the γ-dependent

β-function for κ.

2 One-loop effective action

The derivation of the one-loop effective action in the 4-derivative theory (1.1) in 6d follows the

same steps as in the 4d case discussed in Appendix C of [2] (for a review, see also [4]). Expanding

the invariants in (1.1) near a classical background Aa
m → Aa

m + Ãa
m we get

Tr (∇mFmn)2 → −
1

2
Ãa

m

[

δmn∇4 + 4Fmn∇2 − 2
(

∇kFkm δnr + 2∇kFk[n δr]m

)

∇r

− 2∇n∇kFkm + 4FmkFkn

]ab
Ãb

n −
1

2
(∇mÃa

m)∇2(∇nÃa
n) , (2.1)

Tr(FmnFnkFkm) → Ãa
m

[(3

2
F

(r
[m δ

k)
n] −

3

4
Fmnδrk

)

∇r∇k + 3∇kF
[r

[m δ
n]
k] ∇r

−
(3

4
[Fmk, Fkn] +

3

4
Fr(mFn)r +

3

8
FrkFrkδmn

)]ab
Ãb

n , (2.2)

where Fmn and ∇m depend on the background Am and a, b are indices in the adjoint represen-

tation. Then the quadratic part of the fluctuation Lagrangian in (1.1) may be written as

L(2) =
1

2g2
Ãa

m (∆4A)ab
mn Ãb

n +
1

2g2
(∇mÃa

m)
(

− ∇2)

(∇nÃa
n) . (2.3)

The second term here can be cancelled by adding a gauge-fixing (∇mÃm = f(x)) term averaged

with the operator −∇2. The 4-derivative operator ∆4A acting on Ãa
m can be written in the

following “symmetric” form

∆4 = ∇4 + ∇rV̂rk∇k + N̂k∇k + ∇kN̂k + Û , V̂rk = V̂kr , (2.4)

where V̂rk, N̂k, Û are local covariant matrices in the internal (a, m), (b, n) indices reading

(V̂rk)mn = (4 + 3γ)Fmnδrk − 6γF
(r

[m δ
k)
n] ,

(N̂k)mn =
1

2

(

2 + 3γ
)

∇rFrkδmn −
1

2

(

4 + 3γ
)

∇rFr(mδn)k −
3

2
γ∇(mFn)k , (2.5)

(Û)mn = −
1

2

(

4 + 3γ
)

FknFmk +
3

2

(

4 + 3γ
)

FkmFnk +
3

2
γFrkFrkδmn + 3∇2Fmn .
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The operator that appears in the effective action after path-integral is performed (i.e. ∆4A in

(2.3)) should be self-adjoint and this is so for (2.4) with (2.5).7

The 1-loop effective action is then given by

Γ1 =
1

2
log

det ∆4A

(det ∆gh)2 det H
=

1

2
log det ∆4A −

3

2
log det ∆2,0 , ∆2,0 = −∇2 , (2.6)

where ∆gh = −∇2 is the ghost operator and H = −∇2 is the gauge-condition averaging operator

required to cancel the last term in (2.3). Using the proper-time cutoff, the log divergent part of

a determinant can be expressed (in general dimension d) in terms of the corresponding Seeley-

DeWitt coefficient Bd
8

Γ1∞(∆) =
1

2
(log det ∆)∞ = −

log Λ

(4π)d/2
Bd(∆) , Bd =

∫

ddx bd(∆) . (2.7)

The values of bp for 2-derivative Laplacian ∆2 (in general curved space and gauge field back-

ground) are known up to p = 10 (see, e.g., [17, 18]) while for the 4-derivative operator ∆4 only

b2 and b4 were found so far [19, 2, 20, 21]. Thus to compute the divergent part of (2.6) we need

first to determine the coefficient b6 for ∆4 in (2.4). This will be the subject of the next section

and Appendix A.

3 Heat kernel coefficient b6(∆4)

In general, given an elliptic differential operator ∆ℓ of an even order ℓ in d dimensions one has

log det ∆ℓ = −
∫

ddx

∫ ∞

ε

dt

t
tr 〈x|e−t∆ℓ |x〉 , (3.1)

where tr is the trace over internal indices of the operator. The heat kernel has an asymptotic

expansion for t → 0 so that (see, e.g., [20, 18, 21])

tr 〈x|e−t∆ℓ |x〉 ≡ tr K(t; x, x; ∆ℓ) ≃
∑

p≥0

2

(4π)d/2 ℓ
t(p−d)/ℓ bp(∆ℓ) . (3.2)

The Seeley-DeWitt coefficients bp are local invariant expressions of dimension p constructed out

of the background metric and gauge field (below we shall consider them up to total derivative

terms). Using the proper-time cutoff ε = Λ−ℓ we obtain for the divergent part of (3.1)9

(log det ∆ℓ)∞ = −
2

(4π)d/2

[

d−1
∑

p=0

Bp(∆ℓ)

d − p
Λd−p + Bd(∆ℓ) log

Λ

µ

]

,

Bp(∆ℓ) =

∫

ddx bp(∆ℓ) .

(3.3)

The renormalization scale µ in log will be sometimes left implicit below. For example, for

the 2-derivative operator defined on a vector bundle with the covariant derivative ∇m and the

7 Note that (2.4) is a completely general form for a fourth-order elliptic differential operator without the three-

derivative term. The self-adjointness can be imposed via the following additional conditions on the coefficients

V̂ †
mn = V̂mn, N̂†

m = −N̂m, Û† = Û where † is transposition if the field is real, and hermitian conjugation if the

field is complex.
8 Here we ignore boundary terms. Note also that in the dimensional regularization one is to replace log Λ →

− 1
d−d

where d is integer and d < d is its analytic continuation.
9 Note that the form of (3.3) is universal for any order ℓ of the differential operator – that is the reason for

the above normalization of the Seeley-DeWitt coefficients.
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curvature Fmn = [∇m, ∇n] one has10

∆2 = −∇2 + X, (3.4)

b6(∆2) = tr
[

−
1

60
(∇mFmn)2 +

1

90
FmnFnkFkm −

1

12
XFmnFmn +

1

12
X∇2X −

1

6
X3

]

. (3.5)

To find b6(∆4) for the operator in (2.4) we will use the same idea as in [2] and consider several

special cases of factorized operators ∆4 for which

∆4 = ∆2 ∆′
2 , det ∆4 = det ∆2 det ∆′

2 , bp(∆2 ∆′
2) = bp(∆2) + bp(∆′

2) . (3.6)

The 4-derivative operator that we are interested in is given in (2.4). As explained in Appendix A,

a general expression for its b6 coefficient is (V̂ ≡ V̂mm)

b6(∆4) = tr
[

k̂1(∇mFmn)2 + k̂2FmnFnkFkm

+ k̂3V̂mnV̂nkV̂km + k̂4V̂mnV̂mnV̂ + k̂5V̂ V̂ V̂ + k̂6V̂mn∇(n∇k)V̂km

+ k̂7V̂mn∇2V̂mn + k̂8V̂mn∇m∇nV̂ + k̂9V̂ ∇2V̂ + k̂10V̂mnV̂nkFmk

+ k̂11Fmn∇(m∇k)V̂kn + k̂12V̂ FmnFmn + k̂13V̂mnFmkFnk

+ k̂14Fmn∇mN̂n + k̂15V̂mn∇mN̂n + k̂16V̂ ∇mN̂m + k̂17N̂mN̂m + k̂18Û V̂
]

.

(3.7)

In contrast to what happens in the case of ∆2 in (3.5), some of the coefficients in (3.7) in general

depend on the number of dimensions d. In the case of d = 6 we are interested in here one finds

k̂1 = −
1

30
, k̂2 =

1

45
, k̂3 =

1

360
, k̂4 =

1

480
, k̂5 =

1

2880
, k̂6 = −

1

120
,

k̂7 =
1

120
, k̂8 =

1

60
, k̂9 =

1

240
, k̂10 = −

1

24
, k̂11 = 0, k̂12 =

1

24
,

k̂13 = −
1

6
, k̂14 = −

1

3
, k̂15 = 0, k̂16 = 0, k̂17 = −

1

6
, k̂18 = −

1

12
.

(3.8)

4 Divergences of 4-derivative 6d gauge theories

Let us now apply the above general expression (3.7), (3.8) for b6(∆4) to the gauge theories of

interest.

4.1 Bosonic theory

Starting with the explicit form of the coefficient functions (2.4), (2.5) in the operator ∆4A and

applying (3.7), (3.8) as well as (3.5), we can compute the coefficient b6 in the divergent part of

the effective action (2.6), (2.7) of the 4-derivative bosonic 6d gauge theory (1.1)11

b6 = b6(∆4A) − 3b6(∆2,0) , (4.1)

b6(∆4A) = tr
[

−
21

5
(∇mFmn)2 +

( 2

15
− 10γ +

9

4
γ3

)

FmnFnkFkm

]

, (4.2)

10 Here we will somewhat abuse the notation and adopt the same labels for the connection, covariant derivative

and its curvature of the vector bundle as in the gauge theory (Am, ∇m, Fmn) with an implicit understanding that

the connection in the differential operators ∆ℓ may take more general values that in a particular representation

of a gauge group.
11 In applying (3.7) to the gauge field case, the trace there is acting on the full internal index structure of the

operator ∆4A, i.e. involving both spacetime and gauge indices (cf. footnote 10).
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b6(∆2,0) = tr
[

−
1

60
(∇mFmn)2 +

1

90
FmnFnkFkm

]

. (4.3)

Thus finally

b6 = tr
[

−
83

20
(∇mFmn)2 +

( 1

10
− 10γ +

9

4
γ3

)

FmnFnkFkm

]

. (4.4)

Comparing to (1.2) we end up with the values of the one-loop β-function coefficients β2A, β3A

quoted in (1.3). It is remarkable that the divergence proportional to (∇F )2 turned out to be

independent of the parameter γ: various terms in b6 in (3.7) generically do give γ-dependent

(∇F )2 contributions and they cancel out only when combined together weighted with the k̂i

coefficients in (3.8).

The corresponding RG equations for the renormalized couplings g(µ) and γ(µ) in (1.1) may

be written as (t = 1
(4π)3 log µ2, C2(SU(N)) = N)

dg−2

dt
= β2AC ,

dγ

dt
= βγCg2 , C ≡

1

60
C2 , (4.5)

β2A = 249 , βγ = −γβ2A −
1

3
β3A =

3

2
(−2 + 34γ − 45γ3) . (4.6)

The flow of g is independent of the parameter γ and the sign of β2A corresponds to asymptotic

freedom. The fixed points of the flow of γ are the solutions of βγ = 0, i.e. γ1 ≃ −0.897, γ2 ≃

0.059, γ3 ≃ 0.838. Since βγ > 0 for γ < γ1 or γ2 < γ < γ3, we have that γ1 and γ3 are

attractive fixed points of the flow. As the sign of the F 3 term in (1.1) is not a priori constrained

by the requirement of positivity of the Euclidean action we formally define a second coupling

h2 = γ−1g2 that may assume positive as well as negative values. Then near the fixed points h2

also goes to zero in the UV, i.e. like g2 the second coupling is also asymptotically free.

In Appendix B we shall present also the one-loop β-functions for the combined YM plus

4-derivative gauge theory with L = 1
g2

[

κ2F 2 + (∇F )2 + γF 3
]

.

4.2 (1,0) supersymmetric theory

Let us now consider the 6d supersymmetric version of the theory (1.1) constructed in [5]. In

this case γ = 0 since, in general, there is no supersymmetric extension of the F 3 term.12 The

field content includes the 4-derivative gauge field Am, the 3-derivative 6d Weyl spinor Ψ, and

the three 2-derivative real scalars ΦI (I = 1, 2, 3).13 In total, one has 9 + 3 bosonic and 3 × 4

fermionic on-shell degrees of freedom (for each value of the internal index).

Using an off-shell harmonic superspace formulation ref. [5] found the following (1,0) super-

symmetric 6d action14

S(1,0) = −
1

g2

∫

d6x Tr
[

(∇mFmn)2 − iΨ̄ /∇∇2Ψ − (∇mΦI)2

−
i

2
Ψ̄ΓkΓmn∇k [Fmn, Ψ] + 2i∇mFmnΨ̄ΓnΨ + O

(

ΦΨ2, Φ3)

]

.

(4.7)

12 This can be easily understood using, e.g., the standard N = 1 4d superspace formulation: the YM field

strength Fmn is part of the spinor superfield strength Wα and thus constructing an invariant cubic in Wα is not

possible.
13 In the case of the standard (1,0) SYM theory (corresponding to N = 2 SYM theory in 4d) the latter

correspond to the auxiliary scalars.
14 Our notation differ significantly from that of [5] (where, e.g., the scalar kinetic term is defined using ǫij to

raise the indices and thus implicitly is negative definite). Here, the Dirac matrices Γm are 8×8 hermitian complex

matrices satisfying Γ(mΓn) = 1
2
{Γm, Γn} = δmn and Γmn ≡ Γ[mΓn].
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We suppressed interactions that are more than second order in the scalars and fermions, as they

will not contribute to the one-loop divergences in a gauge-field background. Note that with

our definition of the coupling constant g (i.e. the choice of the overall sign of the action) the

gauge field term in (4.7) is positive definite (cf. (1.1)) but the scalar term is not, and this is one

indication of the non-unitarity of the theory.15

The 4-derivative operator for the fluctuations of the gauge field is given by (2.4), (2.5) with

γ = 0, i.e. it is ∆
(0)
4A ≡ ∆4A

∣

∣

γ=0
, while the 3-derivative fermion and the 2-derivative scalar

operators in gauge field background may be written as16

∆3Ψ = i /∇∇2 +
i

2
/∇ΓmnFmn + iΓn(∇mFmn) = i /∇

3
+ iΓn(∇mFmn) ,

∆2Φ = −∇2 = ∆2,0 .
(4.8)

Here i /∇
3

is the cube of the Dirac operator ∆1Ψ = −i /∇ = −iΓm∇m whose square is

∆2Ψ = − /∇
2

= −∇2 −
1

2
ΓmnFmn . (4.9)

As a result, the one-loop effective action of the supersymmetric theory (4.7) is the following

generalization of the bosonic case (2.6)

Γ1 (1,0) =
1

2
log

det ∆
(0)
4A

[

det ∆2Φ

]3

[

det ∆2,0
]3

det ∆3Ψ

=
1

2
log det ∆

(0)
4A −

1

2
log det ∆3Ψ . (4.10)

Here the contributions of the ghost and gauge-averaging operators in (2.6) got canceled against

the contribution of the three scalars ΦI . We also used that det ∆Ψ is defined for the Dirac 6d

spinors so that the factor 1
2 accounts for the fact that the fermion Ψ is a Weyl spinor. As a

result, the coefficient of the log divergent part of the effective action (2.7) is given by (cf. (4.1))

b6 (1,0) = b6(∆
(0)
4A) − b6(∆3Ψ) . (4.11)

Setting γ = 0 in (4.2) gives

b6(∆
(0)
4A) = tr

[

−
21

5
(∇mFmn)2 +

2

15
FmnFnkFkm

]

. (4.12)

To compute the fermionic contribution, let us first construct a 4-derivative operator by taking

the product of ∆3Ψ in (4.8) with the standard Dirac operator ∆1Ψ = −i /∇

∆4Ψ ≡ ∆1Ψ ∆3Ψ = /∇
4

+ /∇Γn(∇mFmn) , b6(∆3Ψ) = b6(∆4Ψ) − b6(∆1Ψ) . (4.13)

∆4Ψ is then a 4-order operator of the form (2.4) with the coefficients17

V̂rk = ΓmnFmn δrk , N̂k =
1

2
ΓkΓn∇mFmn ,

Û =
1

2
Γmn∇2Fmn +

1

4
ΓmnΓrkFmnFrk +

1

2
ΓkΓn∇k∇mFmn .

(4.14)

15 In [5] the opposite overall sign was chosen so that their coupling is related to ours by g2 → −g2. This

translates into the opposite sign of the β-function for g in (4.17). Note that here there is thus no “preferred”

choice of the sign of the action (redefining the scalars ΦI → iΦI leads to imaginary Φ3 interaction, i.e. to

non-hermiticity of the action). For a review of related issues in higher-derivative theories see [22].
16 In the first form of ∆3Ψ the derivative in the second term acts all the way to the right while the third term

term it acts only on Fmn.
17 Notice that this operator is not self-adjoint, i.e. the symmetry requirements in footnote 7 are not satisfied.

8



Applying the general expression for b6(∆4) that we found in (3.7), (3.8) (where now the connec-

tion and its curvature are understood to include also the internal spinor indices, see footnote 10)

and also using that squaring ∆1Ψ one obtains (4.9), for which b6 can then found from (3.5), we

end up with

b6(∆3Ψ) = b6(∆4Ψ) −
1

2
b6(∆2Ψ) = tr

[

−
8

15
(∇mFmn)2 +

2

15
FmnFnkFkm

]

. (4.15)

Combining the bosonic (4.12) and the fermionic (4.15) contributions to (4.11) we conclude that

the F 3 terms cancel as expected and finally

b6 (1,0) = −
11

3
tr (∇mFmn)2 . (4.16)

This is the same result as quoted in (1.2), (1.7). The resulting renormalized coupling in (4.7) is

thus (cf. (2.7), (4.7))
1

g2(µ)
=

1

g2(Λ)
−

22

3

C2

(4π)3
log

Λ

µ
, (4.17)

corresponding to an asymptotically free behaviour. This agrees with the (recently revised)

result of [5] (cf. footnote 15). Note that the computation of the β-function in [5] was done in

the scalar field ΦI background while here we used the gauge field background, thus providing

an independent check of the result.

For comparison, let us recall the result [1] of a similar computation in the ordinary-derivative

(1,0) 6d SYM theory

S
(1,0) SYM

= −
κ2

g2

∫

d6x Tr
(1

2
FmnFmn + iΨ /∇Ψ − ΦIΦI

)

, (4.18)

where Ψ is a Weyl spinor, ΦI are 3 auxiliary fields (cf. (4.7)) and κ is a mass scale. The analog

of the one-loop effective action in a gauge field background (4.10) here is

Γ1(1,0) SYM
=

1

2
log

det ∆2A
[

det ∆2,0
]2

det ∆1Ψ

, (∆2A)mn = −δmn∇2 − 2Fmn . (4.19)

Using (3.5) we get

b6(∆2A) = tr
[17

30
(∇mFmn)2 +

1

15
FmnFnkFkm

]

,

b6(∆2,0) = tr
[

−
1

60
(∇mFmn)2 +

1

90
FmnFncFcm

]

, (4.20)

b6(∆1Ψ) =
1

2
b6(∆2Ψ) = tr

[ 4

15
(∇mFmn)2 +

2

45
FmnFncFcm

]

.

As a result, the one-loop logarithmic divergence is given by (2.7) with

b6(1,0) SYM
= b6(∆2A) − 2b6(∆2,0) − b6(∆1Ψ) =

1

3
tr (∇mFmn)2 . (4.21)

Once again, the F 3 divergence cancels, and (4.21) implies the value of β2 = −20 in (1.2), (1.5).

Since here ∇mFmn = 0 is an equation of motion, the divergence (4.21) vanishes on-shell, i.e.

the (1,0) 6d SYM theory is finite on-shell18 though is not renormalizable off-shell. The (1,1)

6d SYM found by combining the (1,0) SYM with a scalar multiplet (cf. (1.5)) is one-loop finite

even off-shell [1] (cf. also [24]).

18 The coefficient in (4.21) here is, in fact, gauge-dependent, see also [23].
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Let us also note that it is easy to check the cancellation of F 3 divergences in the (1,0)

supersymmetric gauge theory (4.7) by restricting the background to satisfy ∇mFmn = 0 (which

is a special on-shell background also in this theory). Then ∆3Ψ in (4.8) becomes simply (∆1Ψ)3 =

i /∇
3

and also the vector field operator in (2.4), (2.5) (with γ = 0) becomes a square of the

standard YM operator in (4.19), i.e. ∆4A = (∆2A)2. As a result, the effective action (4.10)

reduces to

Γ1 (1,0) =
1

2
log det (∆2A)2 −

1

2
log det (∆1Ψ)3

= 2 ·
1

2

[

log det ∆2A − 2 log det ∆2,0 − det ∆1Ψ

]

+
1

2

[

4 log det ∆2,0 − det ∆1Ψ

]

= 2 Γ1 (1,0) SYM
+ Γ1 scal , (4.22)

i.e. equal to the sum of twice the effective action of the standard (1,0) SYM in (4.19) with the

effective action of the scalar (hyper) multiplet (containing 4 real scalars and one Weyl fermion).

Each of these do not contribute to the F 3 divergent terms according to (1.5).
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Note added

After this paper was submitted to the arXiv we learned about the earlier work [25] (see also

[26]) in which a diagrammatic computation of the two-loop β-functions in the 6d gauge theory

(1.1) coupled to standard fermions was performed.19 After correcting a mistake in the original

version of this paper we found that our result (1.3), (1.4) for the β-functions of the theory (1.1)

coupled to fermions is in full agreement with the one-loop β-functions in [25].20

A Derivation of the expression for b6(∆4)

The operator that we shall consider is

∆4 = ∇4 + Vmn∇m∇n + 2Nm∇m + U, Vmn = Vnm , (A.1)

which is the most general fourth-order elliptic differential operator operator without 3-derivative

term. It is related to the “symmetrized” operator in (2.4) by

Vmn = V̂mn , Nm = N̂m +
1

2
∇mV̂mn , U = Ũ + ∇mN̂m . (A.2)

19We are grateful to I. Klebanov for drawing our attention to this paper.
20The translation between the notation in [25] and ours is as follows. Instead of (∇mFmn)2 in (1.1) the action

in [25] contained (∇kFmn)2 with the two invariants related as in footnote 3. As a result, the couplings g1 and g2

in [25] are related to ours as g1 = g, g2 = 3g(1 + γ) (using also that g2 → −g2 due to apparent sign difference

in notation for Fmn). For the gauge theory (1.1) coupled to Weyl fermions in generic representation our result

(1.3), (1.4) for the β-functions reads (cf. (4.5), (4.6)): βg ≡ dg
dt

= − 1
120

C2β2, βγ ≡ dγ
dt

= − 1
120

C2(2γβ2 + 2
3
β3)g2,

β2 = 249 + N 1

2

, β3 = 9 − 900γ + 405
2

γ3 − 4N 1

2

, N 1

2

= TR

C2
Nf . Then the β-functions for the above g1 and g2, i.e.

βg1
= dg1

dt
= βg , βg2

= dg2

dt
= 3βg(1 + γ) + 3gβγ match the expressions in [25].
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The general expression for its coefficient b6 including only independent invariants may be written

as (V ≡ Vmm)

b6(∆4) = tr
[

k1 (∇mFmn)2 + k2FmnFnkFkm

+ k3VmnVnkVkm + k4VmnVmnV + k5V V V + k6Vmn∇(n∇k)Vkm

+ k7Vmn∇2Vmn + k8Vmn∇m∇nV + k9V ∇2V + k10VmnVnkFmk

+ k11Fmn∇(m∇k)Vkn + k12V FmnFmn + k13VmnFmkFnk

+ k14Fmn∇mNn + k15Vmn∇mNn + k16V ∇mNm + k17NmNm + k18UV
]

,

(A.3)

where the trace is over internal indices and ki are real coefficients.21 Their values in d = 6 found

below are

k1 = −
1

30
, k2 =

1

45
, k3 =

1

360
, k4 =

1

480
, k5 =

1

2880
, k6 =

1

30
,

k7 =
1

120
, k8 = −

1

40
, k9 =

1

240
, k10 = −

1

12
, k11 =

1

6
, k12 =

1

24
,

k13 = −
1

6
, k14 = −

1

3
, k15 = −

1

6
, k16 =

1

12
, k17 = −

1

6
, k18 = −

1

12
.

(A.4)

To determine ki we shall exploit the factorization property (3.6), i.e.

b6(∆4) = b6(∆2) + b6(∆′
2) , ∆4 = ∆2∆′

2 , (A.5)

where b6(∆2) is given by (3.5). One needs to identify enough special cases and consistency

conditions to fix all ki. When comparing the two sides of the b6-relation in (A.5) it is important

to take into account (i) that they are defined up to total derivatives (which we drop in discussing

UV divergences), (ii) that the terms can be cyclically permuted because they appear under an

overall trace, and (iii) relations between the invariants (implied, e.g., by the Bianchi identity).

Considering ∆2 = −∇2 + X and ∆′
2 = −∇2 + X ′ their product is given by (A.1) with

Vmn = −δmn(X + X ′), Nm = −∇mX ′, U = XX ′ − ∇2X ′, V = −6(X + X ′) . (A.6)

Using (3.5) and comparing with (A.3) gives

k1 = −
1

30
, k3 + 6k4 + 36k5 =

1

36
, k13 + 6k12 =

1

12
, k17 = −

1

6
,

k2 =
1

45
, k6 + 6k7 + 6k8 + 36k9 =

1

12
, k15 + 6k16 =

1

3
, k18 = −

1

12
.

(A.7)

Next, let us assume that

∆4 = ∆+∆−, ∇±
m ≡ ∇m ± Km , (A.8)

∆± = −(∇±
m)2 = −∇2 ∓ 2Km∇m ∓ (∇mKm) − KmKm . (A.9)

Here ∇mKn = ∂mKn + [Am, Kn] (Km is in the adjoint representation of the gauge group). The

coefficient functions in the corresponding operator ∆4 = ∆+∆− in (A.1) read

Vmn = −4∇(mKn) + 2K2δmn − 4K(mKn), V = −4∇nKn + 8K2 ,

Nm = −∇2Km − ∇m∇nKn + ∇mK2

+ KmK2 − K2Km − 2Kn∇nKm − Km∇nKn + 2KnFnm,

U = −∇2∇nKn + ∇2K2 − 2Km∇m∇nKn + 2Km∇mK2 − (∇nKn)2 + K4

+ (∇nKn)K2 − K2∇nKn − 2∇mKnFmn − 2KmKnFmn + 2Km∇nFmn.

(A.10)

21 The relations between the ki and k̂i in (3.8) are, using (A.2), k̂6 = k6 + 1
2
k15 − 1

4
k17, k̂8 = k8 + 1

2
k16, k̂10 =

k10 − 1
2
k15 + 1

4
k17, k̂11 = k11 + 1

2
k14, k̂15 = k15 − k17, k̂16 = k16 + k18 with k̂i = ki otherwise.
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Using (3.5) and the relations

F ±
mn ≡ [∇±

m, ∇±
n ] = Fmn + [Km, Kn] ± (∇mKn − ∇nKm) , (A.11)

∇±
mF ±

mn = ∇m

[

Fmn + [Km, Kn] ± (∇mKn − ∇nKm)
]

±
[

Km, Fmn + [Km, Kn] ± (∇mKn − ∇nKm)
]

,
(A.12)

one can compute b6(∆±) and then compare to b6(∆4) in (A.5).

It is enough to consider the following special cases:

1. Abelian gauge group, ∇nKm = ∂nKm, [Fmn, Kk] = 0. In (A.5) we consider the terms with

∂rKm, r = 0, 1, 4 that can always be uniquely cast into the form

K6, K4∂mKm , (∂mKm)∂2(∂nKn) , Km∂4Km . (A.13)

Then comparing also the coefficients of FnmK2∂nKm and FnmKm∂nK2 (the latter does

not actually appear) one obtains

32k3 + 16 · 12k4 + 512k5 + 8k18 = 0 , k15 + 4k16 − k17 + 4k18 = 0 ,

4k6 + 8k7 + 2k15 − k17 =
1

30
, 12k18 + 256 · 3k5 + 16 · 18k4 + 48k3 = 0 ,

12k6 + 8k7 + 16k8 + 16k9 + 6k15 + 8k16 − 3k17 + 4k18 = −
1

30
.

(A.14)

2. Kn constrained by ∇mKn = 0, implying 2∇[k∇m]Kn = [Fkm, Kn] = 0. This leads to a

number of nontrivial relations, e.g., tr([Km, Kn]FnkFkm) = 0. All the remaining invariants

can be uniquely written as a combination of

K6 , KmKnKkKmKnKk , K2KmK2Km , KmKnKmKkKnKk ,

K2FmnFmn , K2KmKnKmKn , KmKnFmkFnk , FmnKmKnK2 .
(A.15)

Their coefficients can then be compared to get ((KmKnKp)2 and (KmKpKm)2 give the

same equation)

24k3 =
1

15
, −8k3 + 64k4 + 512k5 + 8k18 − 2k17 = −

2

45
,

k13 − k17 = 0 , 64k4 + 48k3 + 2k17 = −
1

15
, 24k3 + 64k4 =

1

5
,

− k17 + 2k18 = 0 , 8k12 + 2k13 = 0 .

(A.16)

3. General unconstrained Kn, comparing the terms with one Km or two of them contracted

together. A basis of such tensors contains

Km∇2∇nFmn, KmFnk∇nFkm, KmFmn∇kFkn,

Km∇nFkmFnk, Km∇kFknFmn, Km∇4Km,

Km∇kFkn∇nKm, K2FknFkn, KmFknKmFkn.

(A.17)

In this case we obtain (the two KKFF terms give the same equation)

2k11 + k14 = 0 , 8k12 + 2k13 = 0 , 2k11 − 2k13 + 2k14 = 0 ,

4k6 + 8k7 + 2k15 − k17 =
1

30
, 2k6 + 16k7 + 2k10 + 8k12 + 2k13 =

1

30
,

4k6 + 16k7 + 4k10 = −
1

15
, 2k6 + 16k7 + 2k10 =

1

30
, k11 + k13 = 0 .

(A.18)
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The final system of equations is given by (A.7), (A.14), (A.16) and (A.18). This system is

over-determined, with the unique solution for ki given by (A.4). That some of the equations are

actually redundant gives a non-trivial consistency check of the calculation. We also checked some

of the coefficients ki by explicit diagrammatic calculations of the corresponding UV divergences.

B One-loop divergences in F 2 + (∇F )2 + F 3 theory

It is straightforward to generalize the expression for the effective action (2.6) to the case when

one adds to the action (1.1) the standard YM term, i.e. the first term in (4.18)

Γ1 =
1

2
log

det ∆′
4A

[

det (−∇2)
]2

det (−∇2 + κ2)
, ∆′

4A = ∆4A + κ2∆2A . (B.1)

Here ∆2A is given in (4.19). The quadratic and logarithmic divergences of (B.1) are determined

by the total b4 and b6 coefficients (cf. (3.3))

Γ1∞ = −
1

(4π)3

(1

2
B4Λ2 + B6 log Λ

)

, (B.2)

Bp =

∫

d6x bp , bp = bp(∆′
4A) − 2 bp(−∇2) − bp(−∇2 + κ2) . (B.3)

The expression for b4 is known for both for ∆2 (3.4) and ∆4 (A.1) operators22

b4(∆2) = tr
[ 1

12
FmnFmn +

1

2
X2

]

, (B.4)

b4(∆4) = tr
[1

6
FmnFmn + p1VmnVmn + p2V V − U

]

. (B.5)

While the coefficients in (B.4) are universal, i.e. the same in any dimension d [17], the coefficients

p1 and p2 in (B.5) are dimension-dependent. In d = 4 their values are [2] p1 = 1
24 , p2 = 1

48 while

for general d we found

p1 = −
8 − 8d + d2

16 d (d − 1)
, p2 =

1

16 (d − 1)
, p1

∣

∣

∣

d=6
=

1

120
, p2

∣

∣

∣

d=6
=

1

80
. (B.6)

The coefficient b4 controls the logarithmic divergences in the corresponding 4d theory where

their computation was done in [2] (see also [4]). For the operators in (B.1) we get in d = 6 (here

tr is in the adjoint representation and Fmn is the gauge field strength)23

b4(−∇2 + κ2) =
1

12
tr FmnFmn +

1

2
κ4 C2 , (B.7)

b4(∆′
4A) = −

(

3 + 14γ +
12

5
γ2

)

tr FmnFmn + 3 κ4 C2 . (B.8)

Similarly, using (3.5) and (3.7), (3.8) we find

b6(∆′
4A) = −

21

5
tr(∇mFmn)2 +

( 1

10
− 10γ +

9

4
γ3

)

tr FmnFnkFkm

+
(3

2
+ 9γ + 3γ2

)

κ2 tr FmnFmn − κ6C2 , (B.9)

22 Here tr and Fmn are the general trace and the curvature on the bundle, cf. footnote 10.
23 b4(∆′

4A) has two sources of dependence on space-time dimension d: the operator itself and the coefficients

in b4 in (B.5),(B.6). The gauge fixing contributions are independent of d. As a result, in 4d theory the coefficient

β1A in (B.13) below is given by β1A = −2(43 + 108γ + 27γ2) (cf. [2, 4]).
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b6(−∇2 + κ2) = −
1

60
tr(∇mFmn)2 +

1

90
tr FmnFnkFkm −

1

12
κ2 tr FmnFmn −

1

6
κ6C2 . (B.10)

As a result, the total values of the coefficients of the quadratic and logarithmic divergences in

(B.2) in d = 6 are (omitting field-independent terms)

b4 =
1

12
β1 tr FmnFmn , (B.11)

b6 = κ2βκ tr FmnFmn −
1

60
β2A tr(∇mFmn)2 +

1

90
β3A tr FmnFnkFkm , (B.12)

β1A = −39 − 168γ −
144

5
γ2 , βκ,A =

19

12
+ 9γ + 3γ2 , (B.13)

where β2A and β3A in (B.12) are the same as in (1.3). Ignoring non-universal quadratic diver-

gence (absent in dimensional regularization), the logarithmic renormalization of κ is controlled

by βκ,A with the RG equation (cf. (4.5), (4.6))24

dκ2

dt
= −

(

βκ,A +
1

60
β2A

)

2κ2g2C2 =
(175

12
− 18γ − 6γ2

)

κ2g2C2 . (B.14)

Near both the attractive fixed points γ1 ≃ −0.897 and γ3 ≃ 0.838 of βγ in (4.6), the r.h.s of

(B.14) is negative and thus κ2 → 0 in the UV.

Let us now consider the log divergence in the (1,0) supersymmetric extension of this bosonic

model, i.e. the (1, 0) SYM combined with the (1,0) theory (4.7). Here the operators in the 1-loop

effective action (4.10) get κ-dependent terms as in (B.1) (with γ = 0)

∆
′(0)
4A = ∆

(0)
4A + κ2∆2A , ∆′

3Ψ = ∆3Ψ + κ2∆1Ψ , ∆′
2Φ = ∆2Φ + κ2 , (B.15)

where ∆1Ψ = −i /∇ and ∆2Φ = −∇2. Explicitly, we get (cf. (4.10), (B.1))

Γ′
1(1,0) =

1

2
log

[ det ∆
′(0)
4A

[det(−∇2)]2 det(−∇2 + κ2)

[det ∆′
2Φ]3

det ∆′
3Ψ

]

=
1

2
log

[det ∆
′(0)
4A

det ∆′
3Ψ

[det(−∇2 + κ2)]2

[det(−∇2)]2

]

.

(B.16)

For the gauge field and scalar determinants the expressions for b4 and b6 are given by (B.7)–

(B.10) with γ = 0 while for the fermion contribution we get as in (4.13),

b6(∆′
3Ψ) = b6(∆1Ψ∆′

3Ψ) − b6(∆1Ψ) = b6(∆3Ψ) +
14

3
κ2 tr FmnFmn −

4

3
κ6C2. (B.17)

As a result, the analog of (B.13) is

b6 = κ2βκ (1,0) tr FmnFmn −
1

60
β2 (1,0) tr (∇mFmn)2 ,

βκ (1,0) = −
29

6
, β2 (1,0) = 220 .

(B.18)

where β2 (1,0) is the same as in (4.16), (1.7). Since the combination βκ (1,0) + 1
60β2A is negative,

as a result of (B.14) we do not have asymptotic freedom in the supersymmetric case.

Let us note also that on ∇mFmn = 0 background (B.16) becomes the following generalization

of (4.22)

Γ′
1 (1,0) =

1

2

[

log det ∆2A − 2 log det ∆2,0 − det ∆1Ψ

]

24 Recall that the coefficient of the YM term is chosen as κ2

g2 , cf. (4.18).
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+
1

2

[

log det(∆2A + κ2) − 2 log det(∆2,0 + κ2) − det(∆1Ψ + κ)
]

+
1

2

[

4 log det(∆2,0 + κ2) − det(∆1Ψ + κ)
]

, (B.19)

i.e. the sum of contributions of massless (1,0) SYM, its massive analog, and massive analog of

scalar multiplet. From (B.19) it is easy to compute the quadratic divergence coefficient b4 (B.4)

or β1 coefficient in (B.11) in the effective action (B.16) or (B.19)25

β1 (1,0) SYM = −12, β1 (1,0) scal = 12 , β1 (1,0) = β′
1 (1,0) = −12 − 12 + 12 = −12 . (B.20)

The coefficient of the field independent κ4 quadratic divergence is proportional to the number

of degrees of freedom and thus vanishes in supersymmetric cases.
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