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1 Introduction

Like Einstein theory in 4 dimensions, the 6d Yang-Mills theory with the standard F?
action has dimensional coupling and is not power-counting renormalizable. A 6d analog
of the classically scale invariant and renormalizable R? 4+ C? 4d gravity is the 4-derivative
(VF)? + F3 gauge theory. Such 4-derivative terms are induced as counterterms when
considering the standard scalars, fermions or YM vectors coupled to a background gauge
field in 6d [1]. While non-unitary, this model may serve as a building block of possible
higher-derivative (super)conformal theories in 6 dimensions.! Similar 4-derivative 6d gauge
theories were discussed, e.g., in [5-13].

The aim of the present paper is to compute the one-loop g-functions in the Fuclidean
6d theory with the action?

1
S=-3 / Sz Tr [(Vman)2 + 27anFnkam}
1
= gg2 | [ (Tnn)® +9 0 Ei ]

Here g and ~ are the two independent dimensionless coupling parameters.>

Tn 4 dimensions the F? + (VF)? + F? theory was studied in [2] and later in [3]. The result of [2] for
the one-loop divergences in this 4d theory was corrected in [4] making it in agreement with that of [3].

We use m,n,k,... = 1,...,6 for coordinate indices and flat Euclidean 6d metric so that the position
of contracted indices is irrelevant. The gauge group generators are normalized as tr(t*t?) = —Tgrd,
[t*,t°] = f**°t°, where Tr = 3 in the fundamental representation of SU(N) (we denote the trace in this
case as Tr) and Tr = C2 = N in the adjoint representation.

3Two other possible 4-derivative VFVF invariants are related to the above two by the Bianchi identity,

e.8., FrnV2Fmn = =2 (Vo Frnn)? + 4Fpn Fyp From + total derivative.



In general, the UV logarithmically divergent part of the 6d one-loop effective action

I'; in a gauge field background may be written as*
log A 1 1
Floo - — (4i)3 /d6x tr |:_ @62 (vamn)Q + %53anFnkami| ) (12)

where the 1-loop SB-function coefficients (32, 83 depend on the field content of the theory.
As we shall find below, their values in the case of the 4-derivative theory (1.1) are given by
the following functions of the coupling ~ (1-loop coefficients do not depend on the overall
g? coupling)

405
Boa = 249 , B34 =9 — 900y + 773 . (1.3)

Somewhat surprisingly, the coefficient 824 of the (VF)? divergence turns out to be inde-
pendent of the coupling ~.

The total values of (2, B3 in a 6d renormalizable model containing the gauge the-
ory (1.1) minimally coupled to the ordinary-derivative “matter” fields — Ny real scalars,
N 1 Weyl fermions, N1 YM vectors and N self-dual tensors (interacting with A,, as in [12])
are then [1, 12]°

fo = faa —27T Ny —36 Ny + No + 16 N1 ,
? (1.4)
B3 = B3a — 57Nt +4 N1+ Ny —4N% .
Note that for the ordinary spin 0, 1/2, 1 fields their contributions to (3 are proportional
to the number of dynamical degrees of freedom. The same is true also for the 4-derivative
gauge theory (1.1) with v = 0: 34 = 9 is the number of d.o.f. of a 4-derivative gauge
vector in 6d.% As a consequence one should get 83 = 0 in a supersymmetric theory; this is
consistent with the non-existence of a super-invariant containing tr(Ey, FnkFim). Indeed,
for the standard 2-derivative 6d (1,0) SYM theory (N; =1, N 1= 1) and for the scalar
(hyper) multiplet (Ny = 4, N% = 1) one finds

52(1,0) SYM _207 62scal = 207 63(170) SYM 6350al =0. (1'5)

Since V, Finn = 0 on the standard YM equations of motion the (1,0) SYM theory is 1-loop
finite on shell. The sum of the contributions of the two multiplets in (1.5) corresponds to
the (1,1) SYM theory in 6d (and thus to N =4 SYM in 4d) which is 1-loop finite even
off-shell [1]

BZ(l,l)SYM = B3(1,1)SYM =0. (1.6)

“Here tr is the trace over the matrix indices of a particular representation to which the quantum
field belongs; for example, in the gauge theory case it is in the adjoint representation A% = fac®AS
facafoea = C20ap.

5Here all the fields are taken for simplicity in the adjoint representation; in the case of other repre-
sentations one is to rescale the numbers N, by Tr/C>. We corrected misprints in [1] mentioned in [12].
Note that the vector N; terms here are formal: they indicate the 6d YM contribution in the absence of
higher-derivative terms in (1.1). In the combined F? 4 (VF)? 4+ F?3 theory discussed below in appendix B
the values of 82 and B3 are the same as in the theory (1.1) without the YM F? term.

SWhile the 2-derivative YM vector in d dimensions has 22(d — 1) — 1 = d — 2 dynamical d.o.f., for the

2
4-derivative gauge vector in (1.1) one finds 34(d —1) —1=2d — 3,i.e. 5ind =4 and 9 in d = 6.



In the (1,0) supersymmetric 4-derivative gauge theory with the action given by the super-
extension [5] of tr (V,,F,,)? (containing also interacting v? Weyl fermion and three V?
scalars) we will find below that

B2 1,0) = 220, B3 1,0)=0. (1.7)

This result is in agreement (modulo notation change) with the one given in the recently
revised version of [5]. This theory is non-unitary and is also formally inconsistent having a
chiral anomaly [6] (the same as in the (1,0) 6d SYM theory containing Weyl fermion). One
may still hope to cancel all of its anomalies by adding some higher derivative 6d “matter”
multiplets (cf. [14-16]).

The calculation of the S-functions (1.3) is most straightforward in the background field
method and using the heat kernel expansion to extract the log divergences of the determi-
nants. This requires the knowledge of the corresponding bg Seeley-DeWitt coefficient for
the 4-derivative operator Ay = V44 ... in a gauge field background. While bg is available
for the 2-derivative Ay operators [17], its expression for Ay was not known so far. The
main new technical result of this paper is the computation of bg(A4). We shall use the
same strategy as employed previously in [2] to obtain bs(A4) from the known expression
for by(As) by considering special factorized cases of the operator Ay.

It would be interesting to extend the computation of the bg coefficient for the
4-derivative operators to the case of a curved metric background (finding the analog of
the corresponding expression for by in [2]). This would allow, in particular, to compute the
one-loop UV divergences in d = 6 conformal supergravity and verify the expectation [7, 8]
that the higher derivative (2,0) 6d conformal supergravity coupled to exactly 26 (2,0) tensor
multiplets has vanishing conformal anomaly.” Another important step would be to extend
the background field approach to the computation of UV divergences in 4-derivative gauge
theories to the two-loop level generalizing the methods of [20-22].

The rest of the paper is organized as follows. In section 2 we present the general form
of the one-loop effective action of the theory (1.1). In section 3 the result for the heat ker-
nel coefficient bg that controls the logarithmic divergence of the determinant of a generic
4-derivative operator is given. In section 4 this expression is applied to compute the one-
loop divergences in the bosonic gauge theory (1.1) and its (1,0) supersymmetric extension
(with v = 0). Details of the derivation of bg(A4) are described in appendix A. In ap-
pendix B we discuss divergences of the combined 2- and 4-derivative g% [K2F24+(VF)?+~F3)
gauge theory and its (1,0) supersymmetric version: adding F? does not change the S-
functions (1.3) for g and v but leads to the y-dependent S-function for .

2 One-loop effective action

The derivation of the one-loop effective action in the 4-derivative theory (1.1) in 6d follows
the same steps as in the 4d case discussed in appendix C of [2] (for a review, see also [4]).

"This is the 6d counterpart of the known fact of cancellation of the conformal anomaly in the 4d system
of N'=4 conformal supergravity coupled to 4 vector N'=4 multiplets [18, 19].



Expanding the invariants in (1.1) near a classical background A%, — A% + A% we get
1~
Tt (Vo Fon)” = =5 A1, [5mnv4+4anv2 9 (Vkam Sur+2ViFy, 5T]m) v,

ab . 1 ~ ~
2V, Vi AP Pl | A= 5(Vn A5 VA(VaAD), (2.1)

Tr(Fpn Foge Fom ) — A% [<2F[m ol — 3an57”k> V, Vi3V, UV,
3 3 3 ab _
- (4[kaaFkn]+4Fr(an)r+8FrkFrk5mn>:| AZ) (22)

where F,,, and V,, depend on the background A,, and a,b are indices in the adjoint
representation. Then the quadratic part of the fluctuation Lagrangian in (1.1) may be
written as 1

(Aaa)in An + 55 (Vi) (= V) (Vady) (2.3)

The second term here can be cancelled by adding a gauge-fixing (V,,A,, = f(z)) term
averaged with the operator —V2. The 4-derivative operator Ag4 acting on fi‘,’n can be
written in the following “symmetric” form

Ay =V 4V, Vi Vi + N Vi + Vi Ny, + U, Vike = Vir (2.4)
where Vji, Ni, U are local covariant matrices in the internal (a,m), (b, n) indices reading

( rk)mn - (4 + 37)an5rk - 6’7F[m (T(S,]j]) )

N 1 1 3
(Nk)m 5 (2 + 37)v Frk’dmn -3 (4 + 3’)/) VTFr(m(Sn)k - 7fyv(an)k ) (25)
. 3 3

The operator that appears in the effective action after path—integral is performed (i.e. Agq
n (2.3)) should be self-adjoint and this is so for (2.4) with (2.5).%
The 1-loop effective action is then given by

1 det Ay
(det Agp)? det H 2

3
Fl = log det A4A - = log det AQ 05 AQ’O = —VQ s (2.6)
where Agh = —V?2 is the ghost operator and H = —V?2 is the gauge-condition averaging
operator required to cancel the last term in (2.3). Using the proper-time cutoff, the log
divergent part of a determinant can be expressed (in general dimension d) in terms of the
corresponding Seeley-DeWitt coefficient By,”

é‘f)dAﬂ Ba(D). By = /dd:c ba(A). (2.7

8Note that (2.4) is a completely general form for a fourth-order elliptic differential operator without the

Iio(A) = %(log det A, =

three-derivative term. The self-adjointness can be imposed via the following additional conditions on the
coefficients Vrfm = an, N,Tn = —Nm, Ut = U where t is transposition if the field is real, and hermitian
conjugation if the field is complex.

9Here we ignore boundary terms. Note also that in the dimensional regularization one is to replace
log A — —ﬁ where d is integer and d < d is its analytic continuation.



The values of b, for 2-derivative Laplacian Ay (in general curved space and gauge field
background) are known up to p = 10 (see, e.g., [17, 23-26]) while for the 4-derivative
operator Ay only by and by were found so far [2, 27-29]. Thus to compute the divergent
part of (2.6) we need first to determine the coefficient bg for Ay in (2.4). This will be the
subject of the next section and appendix A.

3 Heat kernel coefficient bg(Ay)

In general, given an elliptic differential operator A, of an even order ¢ in d dimensions
one has

o dt
logdet Ay = —/dda: / " tr (zle”"2)z) | (3.1)
£

where tr is the trace over internal indices of the operator. The heat kernel has an asymptotic
expansion for ¢ — 0 so that (see, e.g., [25, 28, 29])

2

tr <x|e*mf\:c> =trK(tz, 25 Ap) ~ Z W

p=0

tP=D/Cp (A). (3.2)

The Seeley-DeWitt coefficients b, are local invariant expressions of dimension p constructed
out of the background metric and gauge field (below we shall consider them up to total

derivative terms). Using the proper-time cutoff ¢ = A~ we obtain for the divergent part
of (3.1)1Y

d—1
2 By(Ay) 4 A
logdet Ay)oo = — Y - SEEEATP 4 By(Ag)log = |

B,y(Ay) = / d%z by(Ay) .

The renormalization scale u in log will be sometimes left implicit below. For example, for
the 2-derivative operator defined on a vector bundle with the covariant derivative V,, and
the curvature Fy,, = [V, Vy] one has'!

Ay =—-V34+ X, (3.4)

1 1 1 1 1
be(Ag) =tr —@(Vman)2+%anFnkam—EXanan—|—EXV2X—6X3 . (3.5)

To find bg(A4) for the operator in (2.4) we will use the same idea as in [2] and consider
several special cases of factorized operators A4 for which

AVIEEWAY) AIQ , det A4 = det Ay det A/Q , bp(AQ AIQ) = bp(AQ) + bp(AIQ) . (36)

YNote that the form of (3.3) is universal for any order £ of the differential operator — that is the reason
for the above normalization of the Seeley-DeWitt coefficients.

"Here we will somewhat abuse the notation and adopt the same labels for the connection, covariant
derivative and its curvature of the vector bundle as in the gauge theory (A, Vi, Finn) with an implicit
understanding that the connection in the differential operators A, may take more general values that in a
particular representation of a gauge group.



The 4-derivative operator that we are interested in is given in (2.4). As explained in
appendix A, a general expression for its bg coefficient is (V = me)

b6(Ag) = t1 | k1 (Vin Fyn)* + k2 Fon Fr Fim
+ k3 Vinn Vit Viem 4+ k1 Vi Vinin VA ks VVV 4+ ki Vi V (2 V iy Vi
+ k7 Vi V2 Vi 4 ks Vi Vi Vi V + kg VY2V + 10 Vi Vi P (3.7)
k11 FnV (30 V iy Vien + k12V Frg Fr + k13 Vi Frk Fro
14 B Vo N s Vinn ¥ N -6V N -y N N+ s UV |
In contrast to what happens in the case of Ay in (3.5), some of the coefficients in (3.7) in

general depend on the number of dimensions d. In the case of d = 6 we are interested in
here one finds

N 1 ~ 1 N 1 N 1 ~ 1 ~ 1

! 300 2T a5 M T 3600 T 4800 P 28800 6 120°

~ 1 ~ 1 1 “ 1 “ R

_ _ L 2 _ _ 3.8

k7 120" kg 50’ ko 510" k10 o1’ ki1 =0, k12 1 (3.8)
. 1 . 1 . . . 1 . 1
fis=—=, hyu=—= k=0 firg = 0 fpr = —=.  hg = ——.
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4 Divergences of 4-derivative 6d gauge theories

Let us now apply the above general expression (3.7), (3.8) for bg(A4) to the gauge theories
of interest.

4.1 Bosonic theory

Starting with the explicit form of the coefficient functions (2.4), (2.5) in the operator Aya
and applying (3.7), (3.8) as well as (3.5), we can compute the coefficient b in the divergent
part of the effective action (2.6), (2.7) of the 4-derivative bosonic 6d gauge theory (1.1)!2

be = bs(A44) — 3bs(A2p) , (4.1)
21 ) 2 9 ,
b6(A4A) =tr _g (Vman) + B - 10'7 + 1’7 anFnkam ) (4'2)
1 1
bs(Aag) = tr | —— (Vi Foun)? + — Frn Fok Flom | - 4.
o(820) =10 | =G5 (VonFon P+ G P FotFin| (4.3
Thus finally
83 1 9
=tr |—— (Vi Fmn)? + [ — — 1 Z3) ErnFoie From | - 4.4
be tr[ 50V ) +<10 07+47> K F ] (4.4)

Comparing to (1.2) we end up with the values of the one-loop S-function coefficients S24,
B34 quoted in (1.3). It is remarkable that the divergence proportional to (VF)? turned

12T applying (3.7) to the gauge field case, the trace there is acting on the full internal index structure of
the operator Ayy4, i.e. involving both spacetime and gauge indices (cf. footnote 11).



out to be independent of the parameter ~: various terms in bg in (3.7) generically do
give v-dependent (VF)? contributions and they cancel out only when combined together
weighted with the k; coefficients in (3.8).

The corresponding RG equations for the renormalized couplings g(u) and y(p) in (1.1)
may be written as (t = ﬁ log 12, C2(SU(N)) = N)

dg—2 dry 9 1
dt 52A07 dt B'YCQ ) C 6002 ) ( 5)
1 3
Baa =249, By = =7B2a = 3Bsa = (=2 + 34y — 457%). (4.6)

The flow of g is independent of the parameter ~ and the sign of 824 corresponds to
asymptotic freedom. The fixed points of the flow of + are the solutions of 3, = 0, i.e.
v1 ~ —0.897, 2 ~ 0.059, 3 ~ 0.838. Since 3y > 0 for v < 71 or 72 < 7 < 73, we have
that 1 and ~3 are attractive fixed points of the flow.

As the sign of the F? term in (1.1) is not a priori constrained by the requirement of
positivity of the Euclidean action we formally define a second coupling h? = v~ !g? that
may assume positive as well as negative values. Then near the fixed points h? also goes to
zero in the UV, i.e. like g% the second coupling is also asymptotically free.

In appendix B we shall present also the one-loop B-functions for the combined YM
plus 4-derivative gauge theory with £ = g% [K2F? + (VF)? + vF3].

4.2 (1,0) supersymmetric theory

Let us now consider the 6d supersymmetric version of the theory (1.1) constructed in [5].
In this case v = 0 since, in general, there is no supersymmetric extension of the F term.'?
The field content includes the 4-derivative gauge field A,,, the 3-derivative 6d Weyl spinor
U, and the three 2-derivative real scalars ®; (I = 1,2,3).!* In total, one has 9+ 3 bosonic
and 3 x 4 fermionic on-shell degrees of freedom (for each value of the internal index).
Using an off-shell harmonic superspace formulation ref. [5] found the following (1,0)

supersymmetric 6d action'?

1 _
S0 Z—gQ/d% Tt [ (Vi Fyn)? 199 V20— (V0 0)° .
. 4.7

We suppressed interactions that are more than second order in the scalars and fermions,
as they will not contribute to the one-loop divergences in a gauge-field background. Note

13This can be easily understood using, e.g., the standard N = 1 4d superspace formulation: the YM field
strength [, is part of the spinor superfield strength W, and thus constructing an invariant cubic in W,
is not possible.

Tn the case of the standard (1,0) SYM theory (corresponding to N = 2 SYM theory in 4d) the latter
correspond to the auxiliary scalars.

50ur notation differ significantly from that of [5] (where, e.g., the scalar kinetic term is defined using €*
to raise the indices and thus implicitly is negative definite). Here, the Dirac matrices I',, are 8 X 8 hermitian
complex matrices satisfying I'(,,, I’y = %{Fm, I'n} = 0mn and Iy = T Iy



that with our definition of the coupling constant g (i.e. the choice of the overall sign of the
action) the gauge field term in (4.7) is positive definite (cf. (1.1)) but the scalar term is
not, and this is one indication of the non-unitarity of the theory.'6

The 4-derivative operator for the fluctuations of the gauge field is given by (2.4), (2.5)
with v = 0, i.e. it is Ag = Ay A"y=0’ while the 3-derivative fermion and the 2-derivative

scalar operators in gauge field background may be written as'”

Aoy = —V? = Agy.

(4.8)

Here iWS is the cube of the Dirac operator Ajy = —iy = —i['™V,,, whose square is

1
Aoy = -V = V2 — 5T Foun (4.9)

As a result, the one-loop effective action of the supersymmetric theory (4.7) is the following
generalization of the bosonic case (2.6)
1 det Af& [det qu)] 3 1

1
r = —log = — log det A0 2 log det Az . 4.10
0 2 [det AQ’O] 3 det qu; 2 44 2 ( )

Here the contributions of the ghost and gauge-averaging operators in (2.6) got canceled
against the contribution of the three scalars ®;. We also used that det Ay is defined for
the Dirac 6d spinors so that the factor % accounts for the fact that the fermion ¥ is a Weyl
spinor. As a result, the coefficient of the log divergent part of the effective action (2.7) is
given by (cf. (4.1))

b6 (1.0) = bo(AL)) — bo(Asw) . (4.11)

Setting v = 0 in (4.2) gives

21 2
-= (VinFon)? + ﬁR,an,ﬂF,m . (4.12)

To compute the fermionic contribution, let us first construct a 4-derivative operator by
taking the product of Azy in (4.8) with the standard Dirac operator Ay = —iV

Mg = A1y Asy = Y + Y0 (Vi Fn),  bs(Dsw) = bs(Agg) — bs(Arg) . (4.13)

A,y is then a 4-order operator of the form (2.4) with the coefficients!®

bs(AL) = tr

~

N 1
V}k = anan 6rk’ ) Nk = iFanvamn s
: X ) (4.14)

161 [5] the opposite overall sign was chosen so that their coupling is related to ours by g2 — —g¢?. This
translates into the opposite sign of the S-function for g in (4.17). Note that here there is thus no “preferred”
choice of the sign of the action (redefining the scalars ®; — i®; leads to imaginary ®* interaction, i.e. to
non-hermiticity of the action). For a review of related issues in higher-derivative theories see [30].

Yn the first form of Asy the derivative in the second term acts all the way to the right while in the
third term it acts only on Fi,,.

8Notice that this operator is not self-adjoint, i.e. the symmetry requirements in footnote 8 are not
satisfied.



Applying the general expression for bg(A4) that we found in (3.7), (3.8) (where now the
connection and its curvature are understood to include also the internal spinor indices, see
footnote 11) and also using that squaring Ay one obtains (4.9), for which bg can then
found from (3.5), we end up with

1 8 2
bs(Asw) = bo(Agw) — 5b(Azw) = tr —B(Vman)Z + 15 Frn FupeElom | - (4.15)
Combining the bosonic (4.12) and the fermionic (4.15) contributions to (4.11) we conclude
that the F® terms cancel as expected and finally

11
b6 (1,0) — _E tr (Vman)2 . (416)
This is the same result as quoted in (1.2), (1.7). The resulting renormalized coupling

in (4.7) is thus (cf. (2.7), (4.7))
1 1 -~ 22 Co A

P PA) B @ B

corresponding to an asymptotically free behaviour. This agrees with the (recently revised)

(4.17)

result of [5] (cf. footnote 16). Note that the computation of the S-function in [5] was done
in the scalar field ®; background while here we used the gauge field background, thus
providing an independent check of the result.

For comparison, let us recall the result [1] of a similar computation in the ordinary-
derivative (1,0) 6d SYM theory

2

1 _
Seoysvn = _HQ /dﬁx Tr <2anan A q>1q>1> : (4.18)
’ g

where U is a Weyl spinor, ®; are 3 auxiliary fields (cf. (4.7)) and x is a mass scale. The
analog of the one-loop effective action in a gauge field background (4.10) here is

r 1 og det Agy
1 =5 )
oy sym 2 [det AQ@] 2 det A1y

(Do) mn = —6mnV? = 2F ;. (4.19)

Using (3.5) we get

17

1
A - e mF‘mn2 7anFnFm )
be(Aza) = tr [30 (V ) + K F ]

1 , 1
be(A =tr|—— mPmn —FonFnclem ) 4.2
(Ban) =10 | =5 (VP + g ] (1.20)

4

1
bG(Al\Ij) = 5b6(A2\Ij) =1tr [15

2
(vamn)Q + 45F”mnF1’rch1cm:| .

As a result, the one-loop logarithmic divergence is given by (2.7) with
1

D610y syar = b6(A24) — 2b6(A2,0) — bs(A1w) = 5 tr (Vi Fin)” - (4.21)

3



Once again, the F? divergence cancels, and (4.21) implies the value of B2 = —20 in (1.2),
(1.5). Since here V,, Fy,,;, = 0 is an equation of motion, the divergence (4.21) vanishes on-
shell, i.e. the (1,0) 6d SYM theory is finite on-shell!? though is not renormalizable off-shell.
The (1,1) 6d SYM found by combining the (1,0) SYM with a scalar multiplet (cf. (1.5)) is
one-loop finite even off-shell [1] (cf. also [32]).

Let us also note that it is easy to check the cancellation of F'3 divergences in the (1,0)
supersymmetric gauge theory (4.7) by restricting the background to satisfy V., Fy, = 0
(which is a special on-shell background also in this theory). Then Ay in (4.8) becomes
simply (A1y)3 = i¥* and also the vector field operator in (2.4), (2.5) (with v = 0) becomes
a square of the standard YM operator in (4.19), i.e. Aga = (A24)2. As aresult, the effective
action (4.10) reduces to

1 1
i) = B log det (AQA)2 —5 log det (Al\p)g

1 1
=2. 3 [log det Agyq — 2logdet Ag g — det Alq;] + 3 [4 logdet Ag g — det Ay
=214 (1,0) SYM + 'y gcal (422)

i.e. equal to the sum of twice the effective action of the standard (1,0) SYM in (4.19) with
the effective action of the scalar (hyper) multiplet (containing 4 real scalars and one Weyl
fermion). Each of these do not contribute to the F divergent terms according to (1.5).
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Note added. After this paper was submitted to the arXiv we learned about the earlier
work [33] (see also [34]) in which a diagrammatic computation of the two-loop S-functions in
the 6d gauge theory (1.1) coupled to standard fermions was performed.? After correcting
a mistake in the original version of this paper we found that our result (1.3), (1.4) for the
p-functions of the theory (1.1) coupled to fermions is in full agreement with the one-loop
B-functions in [33].2!

9The coefficient in (4.21) here is, in fact, gauge-dependent, see also [31].

20We are grateful to I. Klebanov for drawing our attention to this paper.

21The translation between the notation in [33] and ours is as follows. Instead of (Vman)2 in (1.1)
the action in [33] contained (Vi Fm»)? with the two invariants related as in footnote 3. As a result, the
couplings g1 and g2 in [33] are related to ours as g1 = g, g2 = 3g(1 + ) (using also that go — —g2 due
to apparent sign difference in notation for F,,). For the gauge theory (1.1) coupled to Weyl fermions in
generic representation our result (1.3), (1.4) for the S-functions reads (cf. (4.5), (4.6)): By = % = —1-Cas,
By =9 = —1:Ca(2vB2 + 2P3)g°, B2 =249 + Ny, B3 =9-9007 + 40543 — ANy, Ny = 2 Ny. Then
the B-functions for the above g1 and go, i.e. B4, = %1 =By, Bgs = %2 = 3B84(1 + ) + 395, match the
expressions in [33].
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A Derivation of the expression for bg(A,)
The operator that we shall consider is
Ay =V + Vi Vi Vi + 2N, Vi, + U, Vinn = Vam » (A.1)

which is the most general fourth-order elliptic differential operator without 3-derivative
term. It is related to the “symmetrized” operator in (2.4) by

A A ~

Vinn = Vinn » N,, = N,,, + 5vmv,,m , U=U+V,,N,,. (A.2)

The general expression for its coefficient bg including only independent invariants may be
written as (V = V)
bo(Aa) =t [kt (Vi Fyun)*+ K Py Pk P

+k3vmnvnkvkm+k4vmnvmnv+k5vvv+kGanv(nvk)Vkm
+k11anv(mvk)an+k12Vanan+k13ankaFnk

+k14anvan +k15vmanNn+klﬁvvam +k17NmNm +k18UV] )

where the trace is over internal indices and k; are real coefficients.?? Their values in d = 6
found below are

h=-a, k=g k=g, k=g ks=goo ke=o
k‘?ZT;O, 8:_%, kgzﬁ, k1o = —%, ki = é leZi, (A.4)
k‘13=—é, k14=—é, k‘15=—%, k‘16=%, k17:_é, klsz—%-
To determine k; we shall exploit the factorization property (3.6), i.e
bo(As) = b(Az) + bg(A)), Ay = Ao, (A.5)

where bg(A2) is given by (3.5). One needs to identify enough special cases and consistency
conditions to fix all k;. When comparing the two sides of the bg-relation in (A.5) it is
important to take into account (i) that they are defined up to total derivatives (which we
drop in discussing UV divergences), (ii) that the terms can be cyclically permuted because
they appear under an overall trace, and (iii) relations between the invariants (implied, e.g.,
by the Bianchi identity).

Considering Ay = —V? + X and A} = —V? + X their product is given by (A.1) with

Viin = —6mn(X+X"), Np=-V, X', U=XX'-V?X', V=-6(X+X'). (A6)

22The relations between the k; and k; in (3 8) are, using (A 2), ke = k¢ - k:15 k17, ks = kg + ;kw,
k1o = k1o — le + k17, kin =k + 2 /f14, kis = k15 — k17, kig = kie + kis Wlth ki = k; otherwise.
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Using (3.5) and comparing with (A.3) gives

1 1 1 1
kr = —=, ks 4 6ka + 36ks = -, ki3 +6ki2 = —,  kir=—-,
30 36 12 6 (A7)
1 1 1 1 ’
kg—g, ke + 6k7 4+ 6kg + 36kg = IR kis + 6k1g = g, k’lg——ﬁ.
Next, let us assume that
Ay=A(A ., VE=V,+£K,, (A.8)
AL =—(VE)? = —V2 12K,V T (Vi EKm) — KK, - (A.9)

Here V,,, K}, = 0 K + [Am, K] (K, is in the adjoint representation of the gauge group).
The coefficient functions in the corresponding operator Ay = AL A_ in (A.1) read

Vinn = =4V (1 Ky + 2K 0 — 4K (1, Koy, V = -4V, K, + 8K,
N, = —V*K,, — ViV Ky + V,, K2
+ KpK? — K2K, — 2K,V Ky — KV Ky + 2K Fn, (A.10)

U=-V*V,K, +V?K? - 2K,V VK, + 2K,V K2 — (VoK) + K4
+ (VaKp)K? — K2V, Ky, — 2V 0 Ky Fpp — 2K K Fpn + 2K,V Fon.
Using (3.5) and the relations
Fi, = [VE,VE] = Fon + (Ko, K] £ (Von K — Vi Ko) | (A.11)

VEFE —V,, [an F [Komy K] £ (VoK — vnKm)}
(A.12)
:l: [Kmyan + [Kmy Kn] :l: (van - vnKm):| )

one can compute bg(A4) and then compare to bg(Ay4) in (A.5).
It is enough to consider the following special cases:

1. Abelian gauge group, V, K, = 0, Ky, [Finn, Kx) = 0. In (A.5) we consider the terms

with 0" K,,, r = 0,1,4 that can always be uniquely cast into the form
K", K0, K, , (Om K m)0*(0nKy) KoK, . (A.13)

Then comparing also the coefficients of Fi, K 20, K,y and Fyp KO K2 (the latter
does not actually appear) one obtains

32k3+16-12k4+512k5+8k15 =0, kis+4kie—ki7+4k1s =0,

1
Ake+8kr+2kis—ki7 = —
6+ k7 +2K15—K17 30’

12k +8k7+16ks+16kg+6k15+8k1 — 3k17+4ki1g = —

12k1g+256-3k5+16-18k4+48k3 =0, (A.14)
1
30°
2. K, constrained by V,, K, = 0, implying 2V V1 K}, = [Fim, K] = 0. This leads to
a number of nontrivial relations, e.g., tr([Kp, Kn]FupFrm) = 0. All the remaining
invariants can be uniquely written as a combination of
K6 ) KmKnKkaKnKk y KszKQKm y KmKnKkaKnKk )
K?FpnFrm, K?K,K,K,K,, KnKnFpiFrey, FonKnK,K?. (A.15)
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Their coefficients can then be compared to get ((K;,,K,K,)? and (K, K,Ky,)? give
the same equation)

1 2
ks = — —8kg+64ks+512ks+8kg— 2k = — —
3= 157 8k3+64ks+512k5+8ks 17 15
1 1
ki3—ki7=0, 6dka+48k3+2ki7 = — 7=, 24ka+64ks =<,
—k174+2k15=0, 8k12+2k13=0. (A.16)

3. General unconstrained K, comparing the terms with one K,, or two of them con-

tracted together. A basis of such tensors contains

Kmvzvnanu Kankvanma Kmankakna
KV o Fin Fo, K ViFinFpn,  KnViKgy, (A.17)
KnViFen VoK, — K*FenFin, Ko Fien Ko Fen.-

In this case we obtain (the two K K F'F' terms give the same equation)

2k11+k14 =0, 8k12+2k13 =0, 2k11—2k13+2k14 =0,
1 1
4ke+8k7+2k15— k17 = 30’ 2kg+16k7+2k19+8k12+2k13 = 30’
1 1
4ke+16kr+4k10= —T5 , 2ke+16k7+2k19 = % , k11+k13=0. (A.lS)

The final system of equations is given by (A.7), (A.14), (A.16) and (A.18). This system
is over-determined, with the unique solution for k; given by (A.4). That some of the
equations are actually redundant gives a non-trivial consistency check of the calculation.
We also checked some of the coefficients k; by explicit diagrammatic calculations of the

corresponding UV divergences.

B One-loop divergences in F2 4+ (VF)? + F3 theory

It is straightforward to generalize the expression for the effective action (2.6) to the case
when one adds to the action (1.1) the standard YM term, i.e. the first term in (4.18)

1 det A’
't = =log 4 , ha = Ay + K204 . (B.1)
277 [det (—V2) ] det (—V2 + 2) “

Here Agy is given in (4.19). The quadratic and logarithmic divergences of (B.1) are deter-
mined by the total by and bg coefficients (cf. (3.3))

1 (1,
Too = — (47‘(’)3 <2B4A + Bg 10gA> s (B2)
B, = [ &, by = bp(Bha) = 2b,(—V3) by (-V2 £ K2).  (B3)
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The expression for by is known for both for Ay (3.4) and A4 (A.1) operators?3

1 1
by(Ag) = tr [uanan + 5X2 : (B.4)

1
b4(A4) =tr [6anan + 21V Vinn + p2VV — U] . (B.5)

While the coefficients in (B.4) are universal, i.e. the same in any dimension d [17], the
coefficients p; and ps in (B.5) are dimension-dependent. In d = 4 their values are [2]
p1 = i, Py = % while for general d we found

8 —8d+d 1 1
16dd—1)" P716@-1" Plise 120

The coefficient by controls the logarithmic divergences in the corresponding 4d theory where

1

= —. B.6
d=6 80 (B.6)

b1 = ) p2‘

their computation was done in [2] (see also [4]). For the operators in (B.1) we get in d = 6
(here tr is in the adjoint representation and F,, is the gauge field strength)?*

by(—V? 4+ k%) = % t1 Fypp Frn + % Kt Cy, (B.7)
ba(A),) = — (3 + 14y + 15272> tr Fppp Frn + 362 Cy. (B.8)
Similarly, using (3.5) and (3.7), (3.8) we find
be(A)4) = —25—1tr(Vman)2+ (110 —107+273> tr Fyun Fk Flom
+ (§+97+372> k2 tr Foyn Fron — K8 Cl (B.9)

1 1 1 1
be(—V24k2) = ~50 tr(V o Fn )2 + o5 1% Fran Fuk Flom — ERZtranan— 6”602 . (B.10)

As a result, the total values of the coefficients of the quadratic and logarithmic divergences
in (B.2) in d = 6 are (omitting field-independent terms)

1
b4 = ﬁﬂl tI‘anan, (Bll)
1 1
bg = 5255 tr Fyn Fon — @/BQA tr(vamn)2 + %ﬁ?:A tr B Bk Fiem (B12)
144 19
Bia = —39 — 168y — ?72, Bra= 15 +97+39, (B.13)

where 24 and f34 in (B.12) are the same as in (1.3). Ignoring non-universal quadratic
divergence (absent in dimensional regularization), the logarithmic renormalization of & is
controlled by S, 4 with the RG equation (cf. (4.5), (4.6))*

dr? 175

ar” _ 1 20~ _ (175 o 9\ 29
P (/BK,A+60162A>2H902—<12 18~ 6’}/>f£g02. (B.14)

23Here tr and F,,., are the general trace and the curvature on the bundle, cf. footnote 11.

24b4(Aﬁl 4) has two sources of dependence on space-time dimension d: the operator itself and the coeffi-
cients in b4 in (B.5), (B.6). The gauge fixing contributions are independent of d. As a result, in 4d theory
the coefficient 814 in (B.13) below is given by B1a = —2(43 + 108y 4 2772) (cf. [2, 4]).

#5Recall that the coefficient of the YM term is chosen as ’;—s, cf. (4.18).
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Near both the attractive fixed points v, ~ —0.897 and 3 ~ 0.838 of 3, in (4.6), the r.h.s
of (B.14) is negative and thus x2 — 0 in the UV.

Let us now consider the log divergence in the (1,0) supersymmetric extension of this
bosonic model, i.e. the (1,0) SYM combined with the (1,0) theory (4.7). Here the operators
in the 1-loop effective action (4.10) get xk-dependent terms as in (B.1) (with v = 0)

AW = AN + K280, Ay =Asu + %A1, Abg = Agg + K7, (B.15)

where A1y = —iY¥ and Agp = —V?2. Explicitly, we get (cf. (4.10), (B.1))

L et A7) et Ay
10 T 2 %8 [det(—VE) 2 det (—V2 1 #2) det Al (B.16)
B.16
1 o det Ail(g) [det(—V? + K2))?
) det AL, [det(—V?2)]?

For the gauge field and scalar determinants the expressions for by and bg are given by (B.7)—
(B.10) with v = 0 while for the fermion contribution we get as in (4.13),

14 4
be(Aby) = bg(A1gAsy) — bs(Ary) = bs(Azy) + ?.;2 tr Fun Fonn — gmﬁcz. (B.17)

As a result, the analog of (B.13) is

1
bg = 5255 (1,0) tT FonFrnn — @ﬁ2 (1,0) tr (Vman)2 )
2 (B.18)

Br0) = B B2 (1,0) = 220.

where 519y is the same as in (4.16), (1.7). Since the combination By (10) + g5/324 is
negative, as a result of (B.14) we do not have asymptotic freedom in the supersymmetric
case.

Let us note also that on V,, Fi,,,, = 0 background (B.16) becomes the following gener-
alization of (4.22)

1
I L) = 3 [log det Agq — 2logdet Ay g — det A1\p:|
1
+ 5 [log det(Aga + £?) — 2log det(Ag g + k?) — det(Ary + &)
1
+5 [4 log det(Aagg + £2) — det(Ary + m)} , (B.19)

i.e. the sum of contributions of massless (1,0) SYM, its massive analog, and massive analog
of scalar multiplet. From (B.19) it is easy to compute the quadratic divergence coefficient
by (B.4) or By coefficient in (B.11) in the effective action (B.16) or (B.19)26

Braonsym=—12, Biaoseal =12, Bir10) =B = —12-12+12=-12.  (B.20)

The coefficient of the field independent x* quadratic divergence is proportional to the
number of degrees of freedom and thus vanishes in supersymmetric cases.

26Explicitly, one finds from (B.4) in general dimension d [1]: B1(A2,0) = 1, f1(A24) = d — 24, A1g =
—v, v=2l% 50 that in d = 6 we get B (1,0)sym = —12, B1(1,0)scal = 12, B1(1,1ysvm = 0.
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