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Abstract 24 
 25 
The atmospheric concentration of the potent greenhouse gases methane and nitrous oxide (N2O) 26 

has increased drastically during the last century. Methylomirabilis bacteria can play an import 27 

role in controlling the emission of these two gases from natural ecosystems, by oxidizing 28 

methane to CO2 and reducing nitrite to N2 without producing N2O. These bacteria have an 29 

anaerobic metabolism, but are proposed to possess an oxygen-dependent pathway for the 30 

activation of methane. Methylomirabilis bacteria reduce nitrite to NO, and are proposed to 31 

dismutate NO into O2 and N2 by a putative NO dismutase (NO-D). The O2 produced in the cell 32 

can then be used for the activation of methane by a particulate methane monooxygenase. So 33 

far, the metabolic model of Methylomirabilis bacteria was based mainly on (meta)genomics 34 

and physiological experiments. Here we applied a complexome profiling approach to determine 35 

which of the proposed enzymes are actually expressed in Methylomirabilis lanthanidiphila. To 36 

validate the metabolic model, we focused on enzymes involved in respiration, and nitrogen and 37 

C1 transformation. All complexes proposed to be involved in nitrite-dependent methane 38 

oxidation, were identified in M. lanthanidiphila, including the putative NO-D. Furthermore, 39 

several complexes involved in nitrate reduction/ nitrite oxidation and NO reduction were 40 

detected, which likely play a role in detoxification and redox homeostasis. In conclusion, 41 

complexome profiling validated the expression and composition of enzymes proposed to be 42 

involved in the energy, methane and nitrogen metabolism of M. lanthanidiphila, thereby further 43 

corroborating the metabolically unique and environmentally relevant process of nitrite-44 

dependent methane oxidation. 45 

  46 
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Introduction 47 
 48 

Methane and nitrous oxide are potent greenhouse gases. Their emission has increased 49 

drastically since the industrial revolution due to application of synthetic nitrogenous fertilizers 50 

in agriculture [1]. Increased run-off of these fertilizers into both surface and ground waters led 51 

to an increase in nitrogen availability in the form of ammonium and nitrate resulting in water 52 

pollution and eutrophication [2, 3]. These nitrogen compounds are not only used as a nitrogen 53 

source by microorganisms, but can also be used as terminal electron acceptors in respiration. 54 

Anaerobic methane oxidation coupled to nitrate and nitrite reduction was first discovered in a 55 

microbial enrichment culture dominated by ANME-2d archaea and NC10 phylum bacteria [4]. 56 

Further studies showed that both the archaeon, ‘Candidatus Methanoperedens nitroreducens’, 57 

and the bacterium, ‘Candidatus Methylomirabilis oxyfera’, were capable of methane oxidation 58 

independent of each other, coupling it to nitrate and nitrite reduction, respectively [5-7]. Since 59 

their discovery, Methylomirabilis bacteria have been detected in various ecosystems ranging 60 

from fresh water [8, 9] to marine environments [10], reviewed by Welte et al. [11]. 61 

Methylomirabilis bacteria couple the anaerobic oxidation of methane to CO2 with the reduction 62 

of nitrite to dinitrogen gas (eq. 1). Metagenomic, transcriptomic and whole cell proteomic data 63 

combined with physiological studies on M. oxyfera allowed for the prediction of the metabolic 64 

model of nitrite-dependent methane oxidation [6]. This model was further supported by the 65 

analyses of the (meta)genomes of M. limnetica [9] and M. lanthanidiphila [12]. Surprisingly, 66 

these anaerobic bacteria possess the complete aerobic methane oxidation pathway, and are 67 

postulated to produce intracellular oxygen   to activate methane. 68 

3𝐶𝐻$ + 8𝑁𝑂)* + 8𝐻+ = 3𝐶𝑂) + 4𝑁) + 10𝐻)𝑂      (1) 69 

∆𝐺2, = −929𝑘𝐽/𝑚𝑜𝑙𝐶𝐻$ 70 

2𝑁𝑂 = 𝑁) + 𝑂)          (2) 71 

∆𝐺2, = −173𝑘𝐽/𝑚𝑜𝑙𝑂) 72 

Based on the genomes of M. lanthanidiphila and M. oxyfera, a metabolic model for the central 73 

energy metabolism of Methylomirabilis bacteria was constructed (eq. 1) [6, 12, 13]. In the 74 

proposed metabolic pathway, nitrite is first reduced to nitric oxide by cytochrome cd1 nitrite 75 

reductase (cd1-NIR, catalytic component encoded by NirS). Then, it is hypothesized that two 76 

molecules of nitric oxide are disproportionated to O2 and N2 by the putative nitric oxide 77 

dismutase (NO-D) (eq. 2) [14]. Subsequently, part of the produced O2 is used by particulate 78 

methane monooxygenase (pMMO) to oxidize methane into methanol, and the remainder is 79 
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consumed by a terminal oxidase [15]. Methanol is oxidized by methanol dehydrogenase (MDH) 80 

either to formaldehyde [16] or directly to formate, an activity that is especially high in the 81 

lanthanide-dependent XoxF-type MDH [17]. Besides MDH, Methylomirabilis bacteria encode 82 

two additional dedicated systems to oxidize formaldehyde to formyl/formate: a 5,6,7,8-83 

tetrahydromethanopterin and a 5,6,7,8-tetrahydrofolate dependent one. This formyl/formate is 84 

oxidized to CO2 by formate dehydrogenase as the final step in methane oxidation. 85 

 86 

Both formaldehyde and formate oxidation systems produce NADH, which can be recycled by 87 

the membrane-bound NADH dehydrogenase (NDH-1). NDH-1 couples the oxidation of NADH 88 

to the reduction of quinone and the translocation of protons. Re-oxidation of quinones is 89 

performed by the cytochrome bc1 complex, again coupled to proton translocation. Reduced 90 

cytochrome c can either donate its electrons to cd1-NIR or to a terminal oxidase [13]. Several 91 

NO reductases, which catalyze the reduction of NO to N2O, are also present in the genome 92 

possibly preventing harmful NO concentrations and maintaining a proper redox balance [18]. 93 

The proton-motive force (pmf) produced by the various respiratory complexes is utilized by the 94 

F1Fo ATP synthase to drive the production of ATP. Although Methylomirabilis bacteria are 95 

assumed to be unable to couple methane oxidation to nitrate reduction [5], all Methylomirabilis 96 

bacteria studied so far encode at least one nitrate reductase in their genome [6, 9, 12]. 97 

In addition to the oxygen-dependent methane oxidation pathway, Methylomirabilis bacteria are 98 

characterized by an apparent genomic redundancy in catabolic enzymes. So far, described 99 

Methylomirabilis species encode multiple NO reductases, two putative NO dismutases, two 100 

pathways for formaldehyde oxidation and at least two cytochrome bc1 complex variants. The 101 

proteins involved in this model metabolic pathway are conserved in the genomes of all three 102 

available Methylomirabilis bacteria, although there is some variation in the apparent 103 

redundancy of the enzymes involved in various pathways. Here we use a complexome profiling 104 

approach to identify which proteins are functionally expressed in M. lanthanidiphila and which 105 

distinct complexes are formed. Complexome profiling has been an important tool in 106 

mitochondrial research to study the assembly and composition of respiratory complexes in both 107 

healthy and diseased cells [19-22]. Recently, this method has also been applied to study the 108 

respiratory complexes of a sulfate-reducing bacterium [23] and an anaerobic ammonium-109 

oxidizing bacterium [24]. These studies demonstrate that complexome profiling can be a 110 

powerful tool in environmental microbiology to validate predictions inferred from 111 

(meta)genome analyses. Here, complexome profiling was applied to validate the catabolic 112 
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model of M. lanthanidiphila by focusing on the identification of protein complexes involved in 113 

the methane, nitrogen and energy metabolism.   114 

Materials and methods 115 
 116 
Enrichment culture 117 
A 16 l (liquid volume, 10 l) Methylomirabilis lanthanidiphila enrichment culture (~80% 118 

enriched) was run as a continuous sequencing batch reactor (Applikon Biotechnology). The 119 

culture was originally inoculated with sediment from an Ooijpolder ditch [5]. The reactor was 120 

operated anoxically by continuous flushing of the vessel with a mixture of methane and carbon 121 

dioxide (95:5 v/v) and the medium with argon and carbon dioxide (95:5 v/v). The medium 122 

composition was: 0.649 mM MgSO4·7 H2O, 1.63 mM CaCl2·2 H2O, 0.73 mM KH2PO4, 0.5 µM 123 

ZnSO4·7 H2O, 0.25 µM CoCl2·6 H2O, 2.51 µM CuSO4, 0.40 µM NiCl2·6 H2O, 0.11 µM H3BO3, 124 

0.51 µM MnCl2·4 H2O, 0.03 µM Na2WO4·2 H2O, 0.20 µM Na2MoO4·2 H2O, 0.12 µM SeO2, 125 

0.03 µM CeCl3·7 H2O, and 5.4 µM FeSO4·7 H2O. Nitrite was added as an electron acceptor to 126 

the medium in a range of 20-40 mM, depending on the consumption rate of the culture. 127 

Concentrations of nitrite in the reactor remained below 100 µM. The temperature of the reactor 128 

was kept constant at 30 °C and the reactor was stirred at 100 rpm. Using a level sensor-129 

controlled pump, the reactor volume was kept at 10 liters with sequential feeding and resting 130 

cycles.  131 

Membrane preparation and solubilization 132 
M. lanthanidiphila cells (200 ml) were harvested from the enrichment culture and centrifuged 133 

at 10,000 x g for 15 min at 4 °C. The cell pellet was resuspended in 30 ml of sample buffer, 134 

which contained 50 mM imidazole/HCl, 50 mM NaCl, 5 mM 6-aminocaproic acid, 1 mM 135 

EDTA at pH 7.0, and sonicated on ice for 8 minutes in a 5s on/ 25s off interval. After removal 136 

of the cell debris by centrifuging at 10000 x g 10 min at 4 °C, the cell-free extract was subjected 137 

to ultracentrifugation (162,000 x g, 1 hour, 4 °C). The membrane pellet was resuspended in 138 

sample buffer and diluted to a concentration of 10 mg/ml. Membrane proteins were solubilized 139 

with either n-dodecyl β-D-maltoside (DDM) or digitonin with a protein to detergent ratio of 5:2 140 

(w/w) or 6:1 (w/w), respectively. After 5 min incubation on ice, the samples were centrifuged 141 

at 22,000 x g, 10 min, 4 °C and the supernatant containing the solubilized membrane proteins 142 

was used for Blue Native gel electrophoresis.  143 

Blue Native gel electrophoresis and tryptic digestion 144 
Blue Native (BN) polyacrylamide gel electrophoresis (PAGE) was performed according to 145 

Wittig et al. [25] using a 6-16% BN gradient gel (4% stacking gel). Per lane, 200 µg membrane 146 

protein sample was loaded (duplicates were run for both DDM and digitonin solubilized 147 
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samples) after the addition of glycerol to a 10% final concentration and sample additive (750 148 

mM 6-aminocaproic acid, 5% Coomassie Brilliant Blue G-250) to a 8:1 detergent:dye ratio. 149 

Bovine heart mitochondria solubilized with either digitonin or DDM (6:1 or 3:1 w/w detergent 150 

to protein ratio, respectively) were used as molecular size markers. Gels were run at 100 V for 151 

30 min to allow the samples to enter the separating gel. Then the voltage was increased to 400 152 

V until the dye front reached ~1/3 of the gel. At this point, the cathode buffer B (50 mM tricine, 153 

7.5 mM imidazole, 0.02% Coomassie blue G-250, pH 7.0) was replaced with a clear cathode 154 

buffer (50 mM tricine, 7.5 mM imidazole, pH 7.0) and the run was continued at 500 V until the 155 

dye front reached the end of the gel. After electrophoresis, the gel was washed twice with 156 

ultrapure water, fixed in 50% methanol, 10% acetic acid, 10 mM ammonium acetate for 30 157 

minutes and stained with Coomassie blue. After washing twice with ultrapure water for 30 158 

minutes, the lanes (two replicates each for both DDM and digitonin solubilized samples) were 159 

cut into 60 even slices of 2 mm. Each slice was diced into small pieces and transferred to a 96-160 

well filter plate containing 150 µl of destaining solution (50% methanol, 50 mM ammonium 161 

hydrogen carbonate). In-gel digestion of the BN gel was performed according to Heide et al. 162 

[26]. Briefly, the gel pieces were washed three times for 30 minutes to remove the Coomassie 163 

dye and in between destaining solution was removed by centrifugation at 600 x g, 3 min at 164 

room temperature. To reduce disulfide bridges, the gel pieces were incubated in 120 µl 5 mM 165 

DTT for 60 minutes. After removing the DTT solution by centrifugation (600 x g, 3 min, RT) 166 

120 µl of 15 mM chloroacetamide was added. After 45 min incubation chloroacetamide was 167 

removed by centrifugation (600 x g, 3 min, RT), and the gel pieces were dried at RT. 20 µl 5 168 

ng/µl trypsin in 50 mM ammonium hydrogen carbonate, 1 mM CaCl2 was added to the dried 169 

gel pieces, and they were incubated for 30 min at 4 °C. Then, 50 µl 50 mM ammonium hydrogen 170 

carbonate was added to cover the gel pieces, and they were incubated overnight at 37 °C. 171 

Peptides were eluted by centrifugation (600 x g, 3 min, RT) and collected in a new 96-well 172 

plate. The gel pieces were washed with 30% acetonitrile, 3% formic acid for 20 min to elute 173 

the remaining peptides. The peptide-containing solution was dried in a Concentrator Plus 174 

(Eppendorf) and peptide pellets were resuspended in 20 µl 5% acetonitrile, 0.5% formic acid.  175 

LC-MS/MS and complexome profiling 176 
Peptides were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) 177 

using a Q-Exactive mass spectrometer (Thermo Fisher Scientific) equipped with a nano-flow 178 

high-performance liquid chromatography Easy nLC-1000 system (Thermo Fisher Scientific) at 179 

the front end. LC-MS/MS parameters were set as described previously [22]. Briefly, peptides 180 

were separated in 30 minutes linear gradients of 5 to 35% acetonitrile in 0.1% formic acid using 181 
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a 100 µm ID x 150 mm length PicoTip electrospray emitter tip packed with 3 µm C18 reverse 182 

phase silica beads. The mass spectrometer was operated in a Top 20 dependent, positive 183 

ionization mode switching automatically between MS and MS/MS. Full scan MS mode (400 to 184 

1400 m/z) operated at a resolution of 70000 with an automatic gain control (AGC) target of 1 185 

× 106 ions and a maximum ion transfer time of 20 ms. For MS/MS fragmentation experiments 186 

the following parameters were used: resolution 17500; AGC target of 1 × 105; maximum ion 187 

transfer of 50 ms; 4.0 Th isolation window; for higher-energy collisional dissociation (HCD) a 188 

normalized collision energy of 30% was used with dynamic exclusion time of 30.0 s. A lock 189 

mass ion (m/z=445.12) was used for internal calibration.  190 

Raw files were analyzed by MaxQuant software (version 1.5.0.25). Spectra were matched 191 

against the protein database of Methylomirabilis lanthanidiphila [12] with the addition of the 192 

sequences of known contaminants and reverse decoy with a strict FDR of 0.01% at both peptide 193 

level and protein level. In the database search, the standard mass window of 20 ppm was used 194 

for matching FTMS MS/MS peaks to theoretical ion series. Trypsin was selected as the protease 195 

allowing two missed cleavages. N-terminal acetylation and oxidation of methionine were 196 

included as dynamic modifications. Cysteine carbamidomethylation was set as fixed 197 

modification. Unique and razor peptides were considered for quantification of proteins. 198 

Migration profiles of proteins (two replicates each for both DDM and digitonin solubilized 199 

samples) were reconstructed considering their intensity-based absolute quantification (iBAQ) 200 

values and individual migration profiles were normalized on the highest intensity for each 201 

protein. Profiles were hierarchically clustered with Cluster 3.0 software by distance measures 202 

based on Pearson correlation coefficient (uncentered) using average linkage. Visualization of 203 

the interaction heatmaps was done with NOVA v0.5 [27] or Microsoft Excel. Apparent 204 

molecular masses of membrane proteins were estimated using DDM- or digitonin-solubilized 205 

oxidative phosphorylation complexes from bovine heart mitochondria as molecular mass 206 

standards. The apparent molecular masses of soluble proteins were estimated by dividing the 207 

membrane protein interpolation values by a factor of 0.8 as described previously [28]. 208 

Results and Discussion 209 
 210 
The metabolic model of intra-aerobic methane oxidation by Methylomirabilis bacteria is based 211 

on (meta)genomic data combined with physiological experiments and supported by whole cell 212 

transcriptomic and proteomic studies [4, 6, 9, 12]. Here, we used complexome analyses to 213 

determine which complexes and proteins were expressed by M. lanthanidiphila in particular 214 

those involved in respiration as well as methane and nitrogen transformations. Isolation of the 215 
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membrane proteins with DDM or digitonin resulted in the identification and migration profile 216 

of 1002 proteins out of the 3013 possible open reading frames (Supplementary Table 1, a 217 

conversion table of “mela” loci to their respective NCBI accession number is given in 218 

Supplementary Table 2).  219 

Nitrite reduction 220 
Nitrite is reduced to nitric oxide in Methylomirabilis bacteria by a cytochrome cd1 type nitrite 221 

reductase as the first step in their metabolism (cd1-NIR) [6, 9, 12]. Known cd1-NIRs are 222 

homodimers [29, 30], in the complexome, however, cd1-NIR (mela_0586) migrated 223 

predominantly at its monomer size (60 kDa) (Figure 1). As the heme to heme distances between 224 

c-hemes of the monomer subunits are too long for efficient electron transfer and each subunit 225 

functions independently [31], the formation of a dimer might not be necessary for a functional 226 

enzyme and in M. lanthanidiphila cd1-NIR might thus be present as a monomer. However, 227 

since a small amount was detected as a dimer, it is most likely that the association of the 228 

monomers in M. lanthanidiphila is fragile and is mostly disrupted during the experimental 229 

procedures. 230 

Nitric oxide dismutation 231 
A unique feature of Methylomirabilis bacteria is the hypothesized intracellular oxygen 232 

production for methane oxidation. Here, two molecules of nitric oxide are proposed to be 233 

dismutated into molecular oxygen and dinitrogen gas by a putative NO dismutase enzyme (eq. 234 

2) [14]. This reaction is thermodynamically feasible, but the complex bond rearrangements 235 

make this most likely the rate-limiting step in the metabolism of Methylomirabilis [11]. Two 236 

candidate enzymes (NO-D1 and NO-D2) that might perform this oxygenic reaction have been 237 

identified [6]. These putative NO-Ds are homologous to the respiratory quinol-dependent nitric 238 

oxide reductases, but have amino acid substitutions in the catalytic site, quinol binding site and 239 

proton channel [14]. These amino acid substitutions are conserved in the NO-D sequences of 240 

both M. limnetica [9] and M. lanthanidiphila [12], which suggests that NO-Ds have a different 241 

catalytic center, and cannot accept external electrons and H+ from outside the protein [14]. 242 

These amino acid substitutions would likely impede NO reduction to N2O, but could facilitate 243 

their role as NO dismutases.  244 

In the complexome, the abundance of NO-D2 (mela_2434), as estimated by the total intensity 245 

based absolute quantification (iBAQ) values, was in the same order of magnitude as cd1-NIR 246 

(mela_0586), amongst the top 20 most abundant proteins, whereas NO-D1 (mela_2433) was 247 

about 25-fold less abundant, in line with previously performed transcriptome experiments [6, 248 

32]. The complexome profiling showed the migration of NO-D2 predominantly as a dimer in 249 
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the DDM sample, whilst a small fraction was present at the monomer size (Figure 1). In the 250 

digitonin sample NO-D2 migrated predominantly at a trimer size, although a small fraction was 251 

still detected at the dimer size. NO-D1 (mela_2433) had a similar profile as NO-D2 in the DDM 252 

sample, but was apparently dissociated in the digitonin sample. Only a minor fraction of NO-253 

D1 was found at the dimer size and the majority was detected at ~50 kDa, even below the size 254 

of a monomer (~90 kDa) (Figure 1). This could either be due to degradation of NO-D1, or 255 

because of a less reliable estimation of the apparent mass from the Blue-Native gel 256 

electrophoresis due to lack of complexes suitable for calibration in the lower mass range. Since 257 

NO-D1 was found to migrate differently from NO-D2 in the digitonin sample it could be 258 

concluded that both isoforms of NO dismutase form homodimers/trimers. The formation of 259 

functional dimers has also been reported for the closely related cytochrome c-dependent nitric 260 

oxide reductase [33]. Although the high abundance of the putative NO-Ds in the complexome 261 

indicates an importance for the metabolism of Methylomirabilis bacteria, their role as NO 262 

dismutases remains hypothetical. Rigorous characterization of these enzymes is necessary to 263 

shed light on their role within the metabolism of Methylomirabilis species as well as other 264 

microorganisms, such as gammaproteobacterial HdN1, the flavobacterium Muricauda 265 

ruestringensis and the eukaryortic foraminifera species Globobulimina, which encode NO-D 266 

like enzymes [14, 34].  267 

Nitric oxide reduction 268 
Besides the proposed potential to dismutate nitric oxide, M. lanthanidiphila encodes for a 269 

canonical quinol-dependent nitric oxide reductase (qNOR, mela_00936) and two proteins 270 

belonging to novel NOR types: an sNOR (mela_02377-2378) and a gNOR (mela_02626-2627) 271 

[12, 18, 35]. Of these NORs, the qNOR was detected migrating solely as a dimer (Figure 1). 272 

For the sNOR, only subunit II (mela_2377) was identified in the complexome, migrating as 273 

both a monomer and dimer complex in the DDM and mainly as a dimer complex in the digitonin 274 

sample (Figure 1). The observation of sNOR subunit II at the monomer and dimer complex size 275 

strongly suggested the presence of the entire complex. Based on their iBAQ values, both qNOR 276 

and sNOR subunit II appear about ~300 and 500 times less abundant than NO-D2, respectively, 277 

and were most likely involved in the detoxification of nitric oxide, to prevent nitrosative stress 278 

[18]. Quinol functions as electron donor for qNOR [36], whereas cytochrome c is the electron 279 

donor for sNOR [37]. By expressing both q- and sNOR, M. lanthanidiphila could tap into two 280 

different electron pools to prevent NO accumulation. In addition, both sNOR and qNOR are 281 

electrogenic enzymes [37, 38], so besides avoiding toxic NO levels, NO reduction might 282 

contribute to the maintenance of a pmf, thereby linking NO detoxification to ATP production. 283 
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Nitrate reduction 284 
Nitrate-dependent methane oxidation by Methylomirabilis bacteria is suggested to be unfeasible 285 

due to a redox imbalance [18], and accordingly M. oxyfera has been shown incapable of nitrate 286 

reduction with methane as the electron donor under tested growth and experimental conditions 287 

[5]. Still, the genome of M. lanthanidiphila encodes for one periplasmic NapAB (mela_00582-288 

583) and two membrane-bound Nar-type nitrate reductases (mela_00628-630 & mela_2381-289 

2385) [12]. Surprisingly, all three nitrate reductases were detected in the complexome (Figure 290 

1). NapA migrated to 120 kDa in the gel, the expected size of a functional NapAB heterodimer 291 

(100 kDa), even though the small NapB subunit was not detected in the gel. Furthermore, the 292 

first nar cluster (mela_00628-630), of which the NarG contains a TAT signal for translocation 293 

of the mature protein to the periplasm, was detected at the expected size of a NarGH-1complex 294 

(mela_00628-9; 170 kDa), indicating that NarGH might have dissociated from the membrane-295 

associated NarI-1 subunit during the experimental procedures. Unaltered migration between 296 

both DDM and digitonin samples supported the dissociation of NarGH from NarI, since its 297 

migration was unaffected by the type of detergent applied. The second nar cluster 298 

(mela_02381-2385) did not contain a TAT signal and thus would stay oriented to the cytoplasm. 299 

Here, NarG (mela_02381) and NarH (mela_02383) seemed to co-migrate, but the size they 300 

were detected at matched neither the NarGH-2 (200 kDa) nor the NarGHI-2 complex (225 301 

kDa). Both subunits were predominantly detected at 150 kDa in the DDM sample, the size of 302 

the NarG2 subunit, indicating dissociation of the complex. In the digitonin sample both subunits 303 

were detected predominantly at the top of the gel, indicating they were probably insufficiently 304 

solubilized in this detergent. All three nitrate reductases were, however, not very abundant in 305 

the complexome, with total iBAQ values of roughly 120, 160 and 650 times lower than the cd1-306 

NIR for NapA, NarG1 and NarG2, respectively.  307 

The role these enzymes play in the metabolism of M. lanthanidiphila remains unknown. The 308 

enrichment culture was not fed with nitrate and the nitrate concentration stayed below the 309 

detection level (~80 µM). Still, three systems to reduce nitrate to nitrite were detected in the 310 

complexome, albeit in low abundance. These systems might be induced by the presence of 311 

nitrite, as has been shown for both NAP and NAR of E. coli [39]. They might have a role in 312 

balancing the redox state in the cell by shuttling electrons on nitrate, although this nitrate has 313 

to be produced first, since it is not added externally to the bioreactor. The NarGH-2 might also 314 

function as a nitrite oxidoreductase (NXR), as the NarGHI-2 gene cluster (mela_02381-2385) 315 

is closely related to the NXR of nitrite oxidizers including anaerobic ammonium-oxidizing 316 

(anammox) bacteria [12]. Many aerobic and anaerobic nitrite-oxidizing bacteria such as 317 
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Nitrotoga fabula, N. moscoviensis and K. stuttgartiensis encode NXRs that are bidirectional, 318 

i.e. these microorganisms has been shown to be capable of reducing nitrate using the same 319 

protein complex [40-42] and as such their function is dependent on the presence of substrate 320 

(either nitrate or nitrite) and alternative electron donors or acceptors. Therefore, it cannot be 321 

predicted from sequence analyses whether they function as nitrite-oxidizing or nitrate-reducing 322 

protein complexes. Combined, these NAP and NAR/NXR systems in M. lanthanidiphila might 323 

work together to either provide or consume electrons, depending on the redox state of the cell. 324 

Furthermore, they could enable these microorganisms to grow on nitrate reduction or nitrite 325 

oxidation, depending on the availability of these substrates. However, currently there is no 326 

experimental evidence to support either of these functions.  327 

 328 
Methane oxidation 329 
Methane is oxidized in M. lanthanidiphila by the membrane-bound copper-dependent 330 

particulate methane mono-oxygenase (pMMO). Due to the hydrophobic nature of methane, it 331 

is calculated to partition in the membrane bilayer at a molar ratio of ~10:1 [43], increasing its 332 

effective concentration accessible for pMMO. This enzyme consists of three subunits: pmoB 333 

(mela_02441), pmoA (mela_02442) and pmoC (mela_03065), which form a functional α3β3γ3 334 

homotrimer [44] and oxidize methane to methanol. All three pMMO subunits were identified 335 

comigrating predominantly as a α3β3γ3 homotrimer in the DDM and a α4β4γ4 homotetramer in 336 

the digitonin sample (Figure 2). Both DDM and digitonin profiles also showed a small 337 

population migrating at higher apparent molecular mass, fitting with (α3β3γ3)2 and (α3β3γ3)4 338 

stoichiometries for DDM, and (α4β4γ4)2 and (α4β4γ4)4 stoichiometries for digitonin.  339 

Methanol oxidation 340 
Methanol is oxidized in M. lanthandiphila by an XoxF-type MDH (mela_00916; [12]. These 341 

XoxF-type MDHs were shown to be homodimeric enzymes, binding lanthanides in their active 342 

site [17] in contrast to their calcium binding heterotetrameric MxaFI counterpart [45].  XoxF 343 

was found smeared throughout the gel (Figure 2), with the majority migrating at very high 344 

molecular mass, indicating a large oligomeric state far above the functional dimer. This might 345 

be due to aggregation of MDH which was also observed during the purification of M. 346 

fumariolicum MDH, when the buffers were not supplemented with methanol [17]. XoxF has 347 

been shown to readily oxidize not only methanol but also formaldehyde [17].  348 

Formaldehyde oxidation 349 
Besides the XoxF-type MDH, M. lanthanidiphila encodes for two additional systems to oxidize 350 

formaldehyde: one 5,6,7,8-tetrahydromethanopterin (H4MPT) and one 5,6,7,8-tetrahydrofolate 351 
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(H4F) dependent protein [12]. FAE, MTD and MCH (Fae, mela_2741; Mtd, mela_2742; Mch, 352 

mela_2748), the three enzymes responsible for the sequential formation of 5-formyl-H4MPT 353 

were all identified in the complexome. FAE migrated dominantly to 60 kDa in the DDM sample 354 

(Figure 2), similar to the expected mass shown for the homopentameric conformation in M. 355 

extorquens [46]. In addition, a population was shown to migrate at an apparent mass of 120 356 

kDa, indicating a decamer formation. MCH are reported either as homodimeric [47, 48] or 357 

homotrimeric enzymes [49-51]. In M. lanthanidiphila however, MCH was predominantly 358 

detected at its monomer size (30 kDa), suggesting that its quaternary structure was disrupted 359 

during sample preparation. MTD from Methylomirabilis has been proposed to couple either 360 

5,10-methylene-H4MPT or 5,10-methylene-H4F oxidation to reduction of NAD(P)+ to sustain 361 

both catabolic and anabolic reactions [18]. M. lanthanidiphila MTD migrated mainly at its 362 

monomer size (30 kDa), but a small part was detected in tetrameric conformation (120 kDa, 363 

Figure 2), which is distinct from the homotrimeric MtdA [52] and homohexameric MtdB [53]. 364 

Phylogenetically Methylomirabilis Mtd clusters between MtdA and MtdB [54] and it thus also 365 

seems to adopt a different quaternary structure. The presence of a dedicated formaldehyde 366 

oxidation system in the proteome of M. lanthanidiphila indicated that at least some, if not all 367 

the methanol would be converted into formaldehyde instead of formate by the XoxF-type 368 

MDH. Therefore, unlike the verrucomicrobial M. fumariolicum, M. lanthanidiphila might not 369 

necessarily skip free formaldehyde as an intermediate in methane oxidation [17, 55]. 370 

Formate/ formyl oxidation 371 
Methylomirabilis species possess a unique formyl oxidation system, comprising of the four-372 

subunit 5-formyl-H4MPT:methanofuran formyltransferase system (FhcBADC, mela_2743-47) 373 

known from aerobic methylotrophs [56] with an additional FwdD subunit [9, 12, 18]. 374 

Furthermore, the FhcB subunit shares homology with the archaeal FwdB, including the residues 375 

required for binding a 4Fe-4S cluster and a pterin cofactor, indicating a possible function as 376 

formylmethanofuran dehydrogenase (Reimann et al., 2015). In M. lanthanidiphila this complex 377 

was detected as a FwdDFhcBADC dimer and as a FwdDFhcBAC monomer (Figure 2). The 378 

loss of the FhcD subunit and subsequent loss of dimer formation has also been observed in M. 379 

extorquens [57]. 380 

Besides the aforementioned formyl transferase/ hydrolase system, M. lanthanidiphila possesses 381 

another formate oxidation system consisting of FdhA (mela_1504) and FdhB (mela_1503) [12]. 382 

These proteins migrated predominantly as a heterodimer (Figure 2).    383 

 384 
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RuBisCo 385 
In contrast to the characterized proteobacterial methanotrophs, Methylomirabilis bacteria are 386 

autotrophic and employ the Calvin-Benson-Bassham (CBB) cycle for CO2 fixation [58]. The 387 

first step in carbon fixation via the CBB cycle is the carboxylation of ribulose-1,5-bisphosphate 388 

catalyzed by the RuBisCo enzyme. There are four forms of the enzyme found in nature (I, II, 389 

III and IV) [59] and phylogenetic analysis of the large RuBisCo subunit of M. oxyfera classified 390 

it as type Ic [58]. Form I RuBisCos are octameric complexes consisting of a catalytic core of 8 391 

large subunits, with 8 small subunits lining the top and bottom of the core [60]. In M. 392 

lanthanidiphila the RuBisCo complex migrated at 560 kDa in the DDM sample (Figure 2), 393 

which was in agreement with the expected size of a L8S8 octameric complex (560 kDa). In the 394 

digitonin sample, the CbbL was found to be smeared throughout the gel and did not seem to 395 

comigrate with CbbS, which is most likely due to dissociation by the applied detergent. 396 

 397 

NADH dehydrogenase  398 
In M. lanthanidiphila NADH is (re)generated by the oxidation of formaldehyde and formate, 399 

which can be recycled by an NADH dehydrogenase (NDH-1) and thereby fuel respiration. All 400 

NDH subunits are encoded twice in the genome of M. lanthanidiphila, with the exception of 401 

the NADH oxidizing N-module (NdhE, NdhF and NdhG), which is only present as a single 402 

copy [12]. In the complexome, all NDH-1(1) subunits except NdhJ (mela_0376), NdhK 403 

(mela_0377) and NdhE (mela_0387) were detected (Figure 3). However, a complete NDH 404 

complex (complex I) could not be detected. For example, NDH-1 seemed to be partially 405 

dissociated. Subunits NdhA, NdhC, NdhD, NdhH, NdhM, NdhN, NdhI, NdhB comigrated to 406 

approximately 290 kDa in the DDM treated sample, which was in line with the combined 407 

masses of these subunits. In the digitonin treated sample the majority of the subunits migrated 408 

to 750 kDa, which was too large for just the complete NDH-1(1) complex (490 kDa, or 450 409 

kDa with the missing NdhJ, NdhK and NdhE subunits) and implied the comigration with 410 

another protein complex. However, no apparent complexes were found to comigrate with NDH-411 

1(1) in the digitonin sample. Of the second NADH dehydrogenase (NDH-1(2)) only NdhD and 412 

NdhJ were detected, which migrated together with the NdhF subunit of NDH-1(1) in the DDM 413 

sample at 600 kDa, but did not clearly comigrate in the digitonin treated sample.  414 

 415 
Cytochrome bc1 complexes  416 
Cytochrome bc1 complexes couple the oxidation of quinols to the reduction of cytochrome c 417 

and contribute to the maintenance of the pmf via a unique mechanism called the proton-motive 418 
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Q-cycle [61]. Most organisms contain at least one version of the cytochrome bc1 complex, since 419 

it can be inserted into any respiratory chain operating with quinones that has a sufficient redox 420 

span for the turnover of three enzymes [62]. Some organisms, including M. lanthanidiphila, 421 

encode for multiple cytochrome bc1 complexes. Although most organisms containing multiple 422 

versions are poorly studied, dedicated roles under different growth conditions or a bias in 423 

forward or reverse electron transfer has been proposed [63]. In the anammox bacterium 424 

Kuenenia stuttgartiensis complexome profiling showed that two different cytochrome bc1 425 

complexes were present under standard laboratory growth conditions. Both complexes were 426 

speculated to perform dedicated roles in anammox energy metabolism [24]. The genome of M. 427 

lanthanidiphila encodes for a cytochrome bc1 complex containing a nonaheme c subunit 428 

(mela_01529-01531) and a complex containing an octaheme c subunit (mela_01456-01459). 429 

Of the former complex, only the nonaheme c subunit is detected, which did not migrate as a 430 

focused band. The latter complex has a b6f-like architecture with a split cytochrome b subunit 431 

and a conserved cysteine residue proposed to be involved in the binding of heme ci [63]. In the 432 

complexome this complex was identified at a size of ~560 kDa, the additional membrane 433 

spanning subunit IV however was not detected (Figure 4). Still, the migration of the three other 434 

subunits at such a high molecular mass indicated the presence of a complete cytochrome bc1 435 

complex. The observed apparent mass of 560 kDa was too large for the commonly observed 436 

dimer (~360 kDa), but would fit the size of a supercomplex of dimeric cytochrome bc1 complex 437 

with a terminal oxidase dimer (~580 kDa), a supercomplex which has been observed in 438 

mitochondria [64] and various aerobic prokaryotes [65, 66]. A high resolution structure of this 439 

supercomplex from Mycobacterium smegmatis was recently reported [67]. However, no 440 

terminal oxidase subunits were detected comigrating with the cytochrome bc1 complex 441 

subunits.  442 

Terminal oxidase 443 
Methylomirabilis bacteria couple the oxidation of methane to the reduction of nitrite in a 3:8 444 

stoichiometry (eq. 1). The eight molecules of nitrite produce four molecules of oxygen, whereas 445 

only three are consumed in the oxidation of methane. This leaves four electrons and one oxygen 446 

molecule, which can be consumed by a terminal oxidase proposed to be a quinol-dependent 447 

bo3-type oxidase [15]. Reevaluation of the sequence of this bo3-type oxidase revealed that it 448 

belonged to a novel clade of nitric oxide reductases: gNOR (mela_02626-2627; [18], although 449 

a function as an O2 reductase cannot be excluded. However, no subunits of the gNOR were 450 

detected in the membrane complexome. The only HCO in M. lanthanidiphila that can be 451 

reliably annotated as an O2 reductase is an aa3-type cytochrome c oxidase (mela_00198-200). 452 
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All three subunits of this oxidase co-migrated at a size of 150 kDa in the DDM sample and 200 453 

kDa in the digitonin sample, respectively (Figure 4). For the digitonin sample, this indicated 454 

the formation of a dimer, whereas in the DDM sample the apparent mass was ranged in the 455 

middle between a monomer and dimer formation. Regardless of the oligomeric state, this 456 

indicated that M. lanthanidiphila could employ the low affinity, high efficiency aa3-type 457 

oxidase to respire the surplus oxygen. This oxidase however is usually expressed under high 458 

oxygen concentrations. Its lower affinity for oxygen would make it a less efficient competitor 459 

for the pMMO for oxygen, ensuring sufficient turnover of methane. Alternatively, the internally 460 

produced oxygen in the membrane of M. lanthanidiphila might provide a high enough local 461 

oxygen concentration to effectively feed the oxidase.  462 

ATP synthase 463 
M. lanthanidiphila encodes for a single F-type ATP synthase to harvest the pmf and form ATP. 464 

All detected subunits migrated at ~700 kDa, apart from the membrane-embedded AtpB 465 

(mela_00382) subunit (Figure 4), which was not detected. Although not all subunits were 466 

detected, the apparent mass of the detected complex indicated the presence of a fully assembled 467 

ATP synthase (620-690 kDa, depending on the number of c subunits). The number of c subunits 468 

in the bacterial ATP synthase can vary between 9-15 [68, 69].  469 

Conclusions 470 
 471 
Here the complexome of M. lanthanidiphila was examined for protein complexes involved in 472 

respiration, methane, C1 and nitrogen transformations. All protein complexes that were 473 

proposed to be involved in the anaerobic, oxygen-dependent oxidation of methane coupled to 474 

nitrite reduction were identified in the complexome, including the two putative NO-Ds (Figure 475 

5). Remarkably, three protein complexes potentially involved in nitrate reduction were 476 

identified, one periplasmic nitrate reductase (NAP) and two membrane-bound nitrate 477 

reductases/ nitrite oxidoreductases (NAR/NXR). The role of these proteins remained unknown, 478 

since neither nitrite oxidation to nitrate nor nitrate-dependent methane oxidation by any 479 

Methylomirabilis species has so far been shown. Furthermore, two nitric oxide reductases 480 

(qNOR and sNOR) were present in the complexome, which might be involved in NO 481 

detoxification and intracellular redox balance. Finally, the unique formyl oxidation system, 482 

including an FwdD subunit was identified. All in all, the (meta)genomic-based model was 483 

validated on a complexome level. The next step would be the physiological and biochemical 484 

characterization of the energy metabolism, by purifying and characterizing the relevant 485 

enzymes, such as the enigmatic NO-D.   486 
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 718 

Figure Legends 719 

Figure 1: Enzymes involved in the nitrogen metabolism of M. lanthanidiphila detected with 720 

complexome profiling in DDM (top) or Digitonin (bottom) solubilized membrane samples. 721 

Migration profiles using normalized iBAQ values are shown color coded from 0 (black) to 1 722 

(red). The identified proteins with their corresponding identifiers are: NirS (mela_0586), No-723 

d1 (mela_2433), No-d2 (mela_2434), NorZ (mela_0936), sNorII (mela_2377), NapA 724 

(mela_0583), NarH2 (mela_2383), NarG2 (mela_2381), NarH1 (mela_0629) and NarG1 725 

(mela_0628). 726 

 727 
Figure 2: Protein complexes involved in methane oxidation and carbon fixation from M. 728 

lanthanidiphila. Migration profiles of identified subunits in DDM (top) and digitonin (bottom) 729 

solubilized membranes are reported using normalized iBAQ values, ranging from 0 (black) to 730 

1 (red). The identified proteins with their corresponding identifiers are: PmoC (mela_3065), 731 

PmoA (mela_2442), PmoB (mela_2441), XoxF (mela_0916), Fae (mela_2741), MtdB 732 

(mela_2742), Mch (mela_2748), FhcD (mela_2746), FhcC (mela_2747), FhcA (mela_2745), 733 

FhcB (mela_2744), FwdD (mela_2743), FdhA (mela_1504), FdhB (mela_1503), CbbL 734 

(mela_1610) and CbbS (mela_1609). 735 

 736 
Figure 3: Migration profiles of the NADH dehydrogenase subunits in DDM (top) or digitonin 737 

(bottom) solubilized membranes of M. lanthanidiphila.  Hierarchical clustering of all identified 738 

subunits was performed using normalized iBAQ values, ranging from 0 (black) to 1 (red). The 739 

detected subunits of NDH-1(1) with their corresponding identifiers are: NdhA (mela_0372), 740 

NdhC (mela_0373), NdhD (mela_0374), NdhH (mela_0375), NdhL (mela_0378), NdhM 741 

(mela_0379), NdhN (mela_0380), NdhF (mela_0388), NdhG (mela_2531), NdhI (mela_2529), 742 

NdhB (mela_2530). Of NDH-1(2) only the NdhD (mela_0386) and NdhJ (mela_0390) subunits 743 

were detected.  744 

 745 
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Figure 4: Migration profiles of the other respiratory complexes in DDM (top) or digitonin 746 

(bottom) solubilized membranes of M. lanthanidiphila. Hierarchical clustering of all identified 747 

subunits was performed using normalized iBAQ values, ranging from 0 (black) to 1 (red). The 748 

detected proteins with their corresponding identifiers are: Qcr1 (mela_1459), CytB 749 

(mela_1458), CytC (mela_1457), Cox2 (mela_0200), Cox3 (mela_0198), AtpA (mela_0104), 750 

AtpC (mela_0100), AtpD (mela_0101), AtpE (mela_0383), AtpF (mela_0106), AtpG 751 

(mela_0102), and AtpH (mela_0105).  752 

 753 
Figure 5: Model of the central energy metabolism in M. lanthanidiphila that couples oxygen-754 

dependent methane oxidation to nitrite reduction. Nitrite is reduced to nitric oxide (NO) by 755 

cytochrome cd1 nitrite reductase (cd1-NIR). NO is then potentially dismutated to O2 and N2 by 756 

a putative NO dismutase (NO-D). This O2 is consumed by cytochrome c oxidase (COX) and 757 

used for methane oxidation to methanol by particulate methane monooxygenase (pMMO). 758 

Methanol is then oxidized to formaldehyde by methanol dehydrogenase (MDH). Formaldehyde 759 

is oxidized to formate or possibly CO2 by formyltransferase/hydrolase complex (FHC) after 760 

being coupled to tetrahydromethanopterin (H4MPT) via the consecutive action of formaldehyde 761 

activating enzyme (FAE), NAD(P)-dependent methylene-tetrahydromethanopterin 762 

dehydrogenase (MTD) and methenyl-tetrahydromethanopterin cyclohydrolase (MCH). 763 

Formate is oxidized by formate dehydrogenase (FDH). NADH produced by formaldehyde/ 764 

formate oxidation is used by a type 1 NADH dehydrogenase (NDH) to produce reduced 765 

quinone. These quinones are oxidized by the cytochrome bc1 complex producing reduced 766 

soluble cytochromes, which can donate electrons to COX or cd1-NIR. The proton-motive force 767 

generated by the various respiratory complexes is harvested by ATP synthase to produce ATP. 768 

In addition, NO can be reduced to nitrous oxide (N2O) by nitric oxide reductase (NOR) to 769 

prevent nitrosative stress. Theoretically, nitrite can be oxidized to nitrate by nitrite-nitrate 770 

oxidoreductase (NXR) or nitrate can be reduced to nitrite by the periplasmic nitrate reductase 771 

(NAP) or membrane associated nitrate reductase (NAR), and the responsible protein complexes 772 

performing these reactions were detected. However, these last two reactions have not yet been 773 

observed in Methylomirabilis cells grown under routine growth conditions. 774 

 775 
 776 
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