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Abstract
Hyper-Raman lines (HRL) resulting from strong-field light–matter interaction have been predicted
theoretically in the 1990s but never identified in high-order harmonic generation experiments. Here,
we use a combination of 800 and 400 nm laser pulses to control independently the two processes
required for the hyper-Raman emission: creation of a coherence between two electronic states and
laser-dressing of these states. As a result we observe simultaneously high-order harmonics, XUV free
induction decay andHRL.We investigate experimentally and numerically the properties of this novel
emission source. It can be of high interest, amongst others, for high-resolution spatio-temporal
spectroscopy of excited electronic states in the same fashion high-order harmonics generation
provides it for ground state.

1. Introduction

The interaction of strong laser fields with atoms results in the emission of coherent extreme ultraviolet (XUV)
radiation as high-order harmonics of the fundamental frequency [1, 2]. This process, which is at the foundation
of attosecond spectroscopy [3], has been successfullymodeled for several decades within the framework of the
Strong-Field Approximation [4], which provides an excellent description of themain features of the XUV
emission. One of the core assumptions of the SFA is to neglect the influence of bound excited states in the high-
harmonic generation.However, as experiments getmore sophisticated, coherent XUV emission processes
involving these states are being discovered and investigated: XUV free-induction decay, either excited by single-
photon [5, 6] ormultiphoton absorption [7], high-order harmonic generation (HHG) from excited Rydberg
states [8] or from frustrated tunnel ionization [9]. TheXUV emission constitutes a spectroscopic signature of the
strong-field dynamics involving the bound excited states, and could thus be used to resolve their dynamics. The
perspective of applying these strong-field spectroscopies of bound dynamics tomore complex cases, such as
molecules or solid targets, is very appealing.

In the early days ofHHG,many calculations of the emission spectrumof atoms in strong laser fields
predicted not only odd harmonics of the laser frequency, but also additional spectral features resulting from
multiphoton absorption from excited states [10–17]. Indeed, if coherences are created between the ground state
and excited states beside theHHGprocess, thewavepacket can be driven by the laserfield and recombine
coherently to the ground state, emitting photons at new frequencies. These spectral lines, located somewhere in
between the usual high-order harmonics, are called hyper-Raman lines (HRL). If the system is in a coherent
superposition of states (say states of energies E1 andE2), driven by a single color field of frequencyω0, the
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TheHRL are thus interpreted as originating froma high-order Raman process, wheremany photons are
absorbed from a state of energyE2, followed by the emission of a single higher energy photon to decay to the state
of energyE1. For this emission to be coherent, the states of energyE1 andE2must be in coherent superposition
prior to the high-order Raman process. A scheme of the simultaneous generation of high-order harmonics and
HRL is shown infigure 1(a). The creation of a coherence between the ground state and an excited state can also
lead to emission features from the Free-InductionDecay process in theXUV range (xFID) [5, 7].

There is a number of theoretical and numerical papers where frequency components given by equation (1)
are denoted asHRL [10–17]. Note, however, that in the spectroscopic community the termhyper-Raman
scattering is used to describe components with frequencies wW = - -( )q E Eq

HRL
0 2 1 , see, for instance

[18, 19]. In this process the initial state is the ground sate and thefinal one is the excited state, while in the process
corresponding to equation (1) it is the otherway around. In this paperwe study the generation of the frequency
components given by equation (1).

HRL have often been observed in simulations, while they have never been clearly identified experimentally.
Emission involving dressed autoionizing states has recently been observed inHHG from laser-ablated tin
plumes [20] but it has been interpreted a very different way using a four-stepmodel based on the usual strong-
fieldHHG three-stepmodel with an extra step of wavepacket recombination. This puzzling discrepancywas
interpreted as the result of the strict conditions required to observeHRL. First, one needs to be in a regimewhere
the coherent superposition of states triggered bymultiphoton resonant transitions is efficient [10]. Second, the
AC-Stark-shifts induce strong variations of the frequency of theHRLwith laser intensity. TheHRL are thus
strong andwell-definedwhen calculating the single-atom response, with a temporally flat-top pulse.However
the temporal and spatial variations of the laser intensity smears themout inmacroscopic calculations and in
experiments, where theymost likely appear as aweak continuous background between the harmonic peaks. This
effect of the Stark shift is expected to be evenmore critical at high laser intensity, in the regimewhereHHG is
optimized.Here, we avoid such effects byworkingwith ratherweak laser fields, and by decoupling the excitation
of electronic states and the generation ofHHGandHRL using two laser pulses with different colors (400 and
800 nm, seefigure 1(b)). This enables us to reveal unambiguously the signatures of hyper-Raman emission.

In thefirst part of themanuscript, we introduce the apparatus used in the experiment. In the second part we
expose two theoreticalmodels to understand the physical process. In the third part, we present the results and in
the last part we discuss them and conclude.

Figure 1. (a) Schematic of the simultaneous generation of high-order harmonics and hyper-Raman lines in a single-color strong-field
driven atom. The driving laser photons are represented as red arrows, theHHG emission is represented as blue arrows and theHRL
emission is represented as purple arrows. The double-sided black arrow represents the fact that the state of energyE1 andE2 are in
coherent superposition, leading to xFID emission at W = -( )E ExFID 2 1 . (b)Left: energy diagramof argon. Right : schematic of the
multiphoton processes experimentally detected in the two-color configuration presented. Light blue arrows represent the 400 nm
photons and red arrows the 800 nmphotons. Arrows corresponding to the final emission have been omitted for clarity. Harmonics
orders are denoted according to the 400 nm energy.

2

New J. Phys. 21 (2019) 073006 EBloch et al



2. Experimental set up

The experimental setup, sketched onfigure 2, is based on the 800 nmTi:Sa Aurore laser system atCELIA
delivering 7 mJ–25 fs pulses at 1 kHz repetition rate. The beamwas split in aMach–Zender interferometer into a
high-energy arm (90%) and a low-energy arm (10%). The formerwas frequency-doubled to 400 nm into a
200 μmthick BBO crystal. The latter was delayed by a pair ofmirrorsmounted on a translation stage and its
intensity was controlled using a half waveplate combinedwith a polarizer. The cross correlation between the
400 and the 800 nmpulse is estimated to be∼115fs. The two beamswere recombined using a dichroicmirror
and focused by a f=1.5 m lens into a 250 μmthick effusive gas jet of argonwith linear, parallel polarizations.
The thin nature of the gas jet ensures that processes involving the generation and reabsorption of XUV, as
studied in two-jet experiments [6], are negligible. TheXUV emission along the laser propagation axis was
monitored by a flat-field XUV spectrometermade of a 1200 grooves mm−1 cylindrical grating and a stack of two
microchannel plates (MCP) coupled to a phosphor screen. ACCD camera recorded the spatio-spectrally
resolved signal from the phosphor screenfluorescence.

3. Theory

3.1. Numerical time-dependent Schrödinger equation (TDSE) solution
The interaction of the atomwith the laserfield is simulated solving numerically the 3DTDSE in the single-active
electron approximation.We use themodel potential for argon suggested in [21] and the numerical approach is
described in [22]. The usedmodel potential reproduces correctly the ground state energy and the energies of the
two lowest excited states are close to the corresponding energies in the argon atom. The energies of the Rydberg
states are also correctly reproduced.However, the ground state in thismodel potential is s-state, opposite to the
p-state in argon. So, in real argon atomboth transitions from s- and d-states to the ground state lead to emission
of light, while in the numerical TDSE solution only transitions from the p-states are involved. Note that one can
overcome this drawback using soft-core potential [23]. However, the lattermodifies energies of the s-states and
might add some ‘artificial’ channels in themultiphoton resonance picture. To escape this we use themodel
potential from [21].

3.2. Two-levelmodel for transition to theRydberg state
Another theoreticalmodel whichwe have used in this study is the two-level system in the laser field.We solve
numerically Bloch equations (see, for instance [24]). Aswe describe the resonances with the Rydberg states, we
modify the approach used to study theHHGby the two-level system in the laser field [13, 16, 25]. This
modification takes into account the fact that the transitions from the ground to theRydberg states has rather low
dipolematrix elements, but the Rydberg states’ Stark-shift in the laser field is high. It was shown in [13, 25] that
the Schrödinger equation in the two-level approximation can bewritten as the equation of an oscillator with the
time-dependent frequency (i.e. as a parametric oscillator)driven by an external force (see equation (9) in [25]).
This frequency is the nonlinear term leading to the harmonic generation and it is written as

Figure 2. Sketch of the setup used for the experiment (see Experimental Set Up section for details). BS: beamsplitter,λ /2: half
waveplate, DM: dichroicmirror, BD: beamdump, FL: focusing lens, FM: foldingmirror.
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wW = + DW ( ), 210

whereω10 is the unperturbed transition frequency,ΔΩ is the Bloch–Siegert shift [24, 26] (atomic units are used
throughout this section)

wDW = ( ) ( )V t2 32
10

withV(t)=dE(t) that describes an interaction of the systemwith the laser field E(t), d is the dipolematrix
element of the transition.

Here we introduce the effective dipolemoment deff which is chosen so thatVeff(t)=deffE(t) leads to

DW = DW ( ), 4Stark

whereΔΩStark is the change of the transition frequency due to the time-dependent Stark shift in the driving field.
It is possible to satisfy equation (4) because both the Stark shift and the Bloch–Siegert shift are proportional to
the laser intensity. The Stark shift of a Rydberg state under our conditions is close to the kinetic energy of the free
electron oscillating in the laser field, and the Stark shift of the ground state can be neglected. So,

wDW = ( ) ( ) ( )aE t 2 , 5Stark
2 2

whereω is the driving laser frequency and a is a constant close to unity, a<1. In [7] it was found that for the
Rydberg state under consideration, the Stark shift is approximately 0.7UpwhereUp is the ponderomotive
energy.

From equations (3) and (4)we have

w
w

= ( )d
a

2
. 6eff

10

The generalization for the two-color field is straightforward. Note, however, that as deff depends on thefield
frequency, the interactionwith the twofieldsE1(t) andE2(t)with frequenciesω1 andω2 should bewritten
as w w+( ) ( )d E d Eeff 1 1 eff 2 2.

The effective dipolemoment given by equation (6) for 400 nm laserwavelength is 2.94 a.u. This is about an
order ofmagnitude higher than the dipolematrix elements of the transitions from ground toRydberg states in
argon [27]. This is an important difference with the previously suggested approaches [13, 16, 25, 28]where d is
the dipolemomentmatrix element. Aswewill see below, this leads to the pronounced nonlinearity of the
response for laser intensities around 1013 W cm−2, whilemore than an order ofmagnitude higher intensities
where considered in [28] to describe harmonic generation at the 5 photon resonance between 1s and 2p states of
hydrogen.

The assumption of the quasi-free oscillations of the Rydberg states in the field is applicable when the
amplitude of the oscillations ismuch less than the spatial extent of the electronicwave function in this state. This
is the case for the used fields’ parameters.

Note thatmaking assumption (4) is in some sense similar to the approach used in theKeldysh theorywhere
the transition probability is calculated using not the field-free upper state (i.e. the planewave), but the state in
which the interactionwith the laserfield is taken into account (theVolkov state) [29]. Herewe also use the upper
state (the Rydberg state) taking into account themodification of its energy by the laser field due to the Stark shift.

3.3.Discussion of the TDSE and the two-levelmodel applicability
Several Rydberg levels could contribute to the experimental signal. This feature should be reproduced by the
TDSE solution because the Rydberg states arewell-describedwithin this approach, while two-levelmodel has
only one excited state.Moreover, neither the one-electron TDSE, nor the two-levelmodel reproduces the
interference between the two channels of harmonic generation (via s–p and d–p transitions).

The observed bandwidth of the xFID line ismuch larger than the inverse radiation life-time of the excited
level because of the limited resolution of the XUV spectrometer (about 60 meV at 15 eV). Opposite to this,
within the TDSE approach this bandwidth is zero because this approach does not describe the spontaneous
processes. The number of quantumapproaches beyond the semi-classical approximation are developed recently
[30, 31] to describe such type of phenomena. In the calculations presented belowwe consider the TDSE
numerical solution at the limited time interval (0.5 ps), thus rendering very roughly the limited emission times.
The two-levelmodel allowsmore accurate (although semi-phenomenological) description of the limited
lifetimes. Namely, the decay time of the excited stateT1 (longitudinal decay time) and the decay time of the
dipolemoment (or decay time of the coherence, transverse decay time)T2 can be introduced in the Bloch
equations. TimeT1 for the considered levels should be of the order of picoseconds or nanoseconds. In our
calculations we setT1=10 ps and checked that longerT1 does not anyhow change the results. In [7] the
transverse decay time for the Rydberg states was studiedmonitoring the retrieval of the xFID signal with the
delay andT2 from6ps to 30pswere found. In the calculationwe setT2=3 ps.We use the value comparable
with the experimental result but shorter to avoid very long (i.e. heavy) calculations.
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The numerical solution for the two-levelmodel is not very cumbersome, sowewill use it to study the spatial
properties of the generated fields (this study requires calculation of the atomic response in numerous spatial
points). Opposite to this, the 3DTDSEnumerical solution is heavy becausewe have to describe correctly
Rydberg states which are large.

4. Results

4.1. Spatial structure
The spectrum emittedwhen argon atoms are driven usingmoderately strong (∼1013 W cm−2) 400 nmpulses is
shown infigure 3(a). Thewell-collimated emission around 15.5 eV and 21.7 eV are respectivelyH5 andH7
(harmonic 5 and 7 of the 400 nmdrivingfield). In addition to this conventionalHHGemission, one can clearly
notice the signature of XUV-Free InductionDecay (xFID) on the red-wing ofH5. Indeed,more divergent
narrow bandwidth spectral features at thefield-free energies of Rydberg states are also present and are associated
with xFID emission [7]. This xFID emission is a smoking-gun signature of the presence of a coherent
superposition of electronic states. In this case, the electronic wavepacket is composed of a coherent
superposition of the ground and fewRydberg states, identified respectively as 6s[3/2] and 4d[3/2] at 14.8 eV, 6s′
[1/2] and 4d′[3/2] at 15.0 eV and 7s[3/2] and 5d[3/2] at 15.2 eV (see figure 3(d)).

In our experimental scheme, wefirst optimized the 400 nmpulse parameter tomaximize the xFID emission
at the field-free energies of the Rydberg states. Because these states are accessible through a resonant 5 photons
transition, the intensity needed to induce xFID is below the one to efficiently generate non-resonantHHG.
Indeed,figure 3(a) shows that the spectrum is dominated byH5 and xFID signals when the 400 nmpulse is
alone. Because an experimental observable allows to directlymonitor the efficiencywithwhich the coherence
between ground andRydberg states is reached (xFID), it is straightforward tofind the optimized experimental
conditions that prepare the system in the required superposition of states.

Next we superimposed a 800 nmpulse that spatially and temporally overlaps with the 400 nmpulse. The
spectrumof the XUV light emitted by argon, when driven by the two-color field is shown in figure 3(b). Note
that the 800 nmfield alone is not intense enough to generateHHG.One can first notice the presence of even, odd
and half-integer harmonics (with respect to the 400 nmphoton energy). In this case, the generation of even
harmonics is allowed since the superposition of the 400 and the 800 nmfields is breaking the up-down
symmetry of the interaction (or the half-cycle periodicity of theHHGprocess). In addition to even and odd

Figure 3.Experimental simultaneous observation of hyper-Raman Lines (HRL) andHigh-orderHarmonics in argon, using two-color
laser pulses. In (a), a spatio-spectrally resolved spectrumof light emitted by argon driven by 400 nmpulses. In (b), same as in (a) but
the argon atoms are driven by a two-color (400 nm+ 800 nm)field, where the intensity of the 800 nm is 0.9× 1012 W cm−2. The two
pulses overlap in time. In (c), same as (b) but the intensity of the infraredwas increased to 2.25× 1012 W cm−2. Harmonics orders are
denoted according to the 400 nmenergy. (d)Energy levels of argon in the corresponding range. Dashed lines correspond to the
features shown on the upper panels.
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harmonics, we observe the presence of theHRLon the red-wings of harmonics adjacent toH5 (H4.5 andH5.5).
The contribution of theseHRLon the red-wings of harmonics gets even strongerwhen the IR intensity is further
increased (see figure 3(c)). Note that the spectral positions of theseHRLdonot correspond in energy to any field-
free atomic transitions and are located at±ÿω800 from the xFID emission ( W = -( ) )E ExFID 2 1 . The fact that
we observed clearHRL indicates that the IR induced Stark-shift is not sufficient to spectrally wash-out their
signature.

Infigure 3(c)we can see the curved spatio-spectral features near harmonic linesH4.5,H5 andH5.5. These
features are similar to the ones provided by the long electronic trajectories contribution to theHHG in intense
laserfields [32, 33]. The features infigure 3 cannot be directly attributed to these trajectories because the
rescattering picture is inapplicable, even qualitatively, for the relatively low intensities used in our experiments.
However, similar features should appear as soon as the harmonic response has a contributionwhose phase
depends on the laser intensity. Such dependence is typical for non-perturbativemicroscopic response [34] (and
not only for the rescattering picture). The non-perturbative behavior is expectable for the considered resonance-
induced phenomena under used laser intensities (which aremuch higher than typically used in conventional
nonlinear optics, although lower than ones used forHHG).

We have calculated the spatially resolved far-field XUV spectrum emitted by a two-levelmodel atom in the
two-colorfield.We assume that (i) the generating beams areGaussianwith the same size, (ii) the thickness of the
generatingmedium in the propagation direction is negligible (which is reasonable considering the effusive gas jet
used in the experiment is thin), (iii) themediumposition coincides with the beam focus. For the fields’
intensities used in our experiments the resonant (H5) harmonic intensity calculatedwith the two-levelmodel
exceeds the intensities ofH4.5 andH5.5 by orders ofmagnitude, in contradictionwith the experimental result.
This feature can be attributed to theweak non-resonant nonlinearity of the two-level system as following.
Emission of theH4.5 andH5.5 from the coherently-populated upper state involves one 800 nmphoton and one
400 mnphoton thus it is due to the third order nonlinearity. This non-resonant nonlinearity in the two-level
system ismuchweaker than in real atom, leading to thementioned disagreement. However, the spectrumof
every line separately is reasonably reproduced, see figure 4. The parameters of the calculation are the following:
the transition frequency is 15.36 eV (4.955 of the 400 nmphoton energy), deff=2.94 a.u. for the 400 nmdriving
field and deff=5.88 a.u. for the 800 nmone. The 400 nm intensity is 1.2×1013Wcm−2 and the 800 nm
intensity is 1012Wcm−2. The 800 nmpulse comes 50 fs later than the 400 nmone. Both driving pulses are 75 fs
long and have Lorentzian time envelope. Note that using Lorentzian pulse shape (but notGaussian or sin2) turns
out to be crucial for reproducing the experimentally observed properties. This is because thewidewings of the
Lorentzian pulse adequately reproduce the dressing by the strong laser field far from the pulse center, as it was
discussed in [20]. TheXUV signal presented infigure 4 is saturated at the level of half of themaximal intensity.

Infigure 4we see that bothH4.5 andH5have low-frequency satellites (respectively theHRL and xFID)
whose divergence is higher than the ones of the harmonics, in agreement with the experiment. However,
experimentally both satellites have comparable intensity and spectral widthwhile this is not the case in the
calculation for the xFID. This can be attributed to the limited resolution of the spectrometer. Experimentally,
this arises by smoothing narrow, high amplitude intowide, lower amplitude.

To understand the physical origin of the difference in the spatial width of the harmonics, theHRL and the
xFIDwe present infigure 5 the intensity and phase of the atomic response for the harmonics and theHRL and
xFID lines. In all cases the intensity demonstrates non-monotonic dependence on the radius, i.e. on the driving
intensity. The intensity of the atomic response for the harmonics and the satellites havemaximumat r≈0.3r0.
Thismaximum can be explained as following: the dependence of the driving intensity on r leads to the
dependence of the Stark shift of the upper state on r; themaximumoriginates from the exactmulti-photon

Figure 4. Spatially resolvedXUV spectra nearH4.5 (with respect to 400 nm) andH5 calculated using the two-levelmodel atomdriven
by a two-colorfield (see text formore details). One can see both harmonics and their low-frequency satellites, corresponding toHRL
(in the case ofH4.5) and xFID (in the case ofH5). The hyper-Raman Lines (HRL) ismore divergent than the non-resonantHHG.
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resonancewith the Stark-shifted level. Although specific position of thismaximumdepends on the used
parameters of the calculation (peak laser intensity, etc), in general the non-monotonous behavior of the
response due to intensity-dependent detuning from the resonance is rather general. Note that laser intensity-
dependent ponderomotive shift of states leads to resonant features in the photoelectronic spectrumof above-
threshold ionization known as Freeman resonances [35].

One can see that both intensity and phase behave remarkably similarly for theHRL (left panel) and xFID
(right panel). This is a strong evidence that the generation of both satellites (HRL and xFID) have the same
origin.

The phases of the harmonics and the ones of the satellites behave differently. Namely the harmonic
demonstrates total phase variation closeπwhen the Stark-shifted level passes themultiphoton resonance. The
satellites’ phase ismore sensitive to the driving intensity, the total phase variation is close to 2π. One can suppose
that this is because the satellite phase is controlled by the phase of the upper statewhich is accumulated during
thewhole driving pulse(s), so small change in the detuning (due to the Stark-shift dependence on the intensity)
leads to pronounced change in the phase. The pronounced dependence of the response phase leads to thewide
angular distribution of the satellite in the far-field shown infigure 4.

In order to gainmore insight about the build-up of the emission features, wewill experimentally and
theoretically investigate the influence of the IR pulse intensity and of the 400–800 nmdelay on theHRL
generation.

4.2. IR intensity scan
Figure 6(a) shows the spatially-integrated spectrumnear the ionization threshold as a function of the IR
intensity. Figure 6(c) shows the corresponding differential signal, where the signal induced by the 400 nmpulse
alone (the undressed emission) is subtracted for each intensity, so that within this differential spectrumnegative
(blue) signal comes from IR-induced depletion and that the red (positive) signal comes from emission induced
by the presence of the IR field.

As the IR intensity increases, the xFID and theH5 emission (between 15 and 15.5 eV) get depletedwhile the
H4.5,H5.5 and theirHRL satellite (around 13.5–14 eV and 16.4–17 eV respectively) get stronger. One can also
see an asymmetric behavior below- and above-threshold. Indeed, for IR intensity below 1.3× 1012 W cm−2, the
above-threshold emission is dominated byH5.5while the below-threshold emission ismade of equal
contribution betweenH4.5 and itsHRL satellites. This asymmetry is well reproduced by the 3D-TDSE
calculations, which are presented infigures 6(b) and (d). Note that the TDSE calculations presented do not aim
at exactlymatching the experiment, especially the exact resonant levels profile, which is very sensitive to the
potential used, or the exact cross sections. The goal was to grasp the principle of the dressing effect of the field,
one photon energy above and below, which is nicely reproduced here. One can see in both experimental results
and theoretical calculation that within this intensity range, theHRL are very stable against IR intensity. The
400 nmelectric field creates a coherent superposition of states while the required IRfield to driveHHG from the
laser-dressed system remainsweak and allows the observation of bothHHGandHRL.

4.3.Delay scan
Becausewe used two-color field, the relative delay between the 400 and 800 nm is also an other parameter that
we scan to gain information about the interplay betweenHHGandHRL. The experimental data are presented in
figure 7(a). The negative time delaysmean that the IR pulse comes before the 400 nmpulse. At large negative
delays, we observe delay-independent xFID emission around 15 eV. Thismeans that the IR is tooweak to excite

Figure 5. Intensity (solid line) and phase (dashed line) of the atomic response as a function of a distance from the axis. Calculation via
two-levelmodel for the exactH4.5,H5 harmonics (blue lines) and their low-frequency satellites corresponding toHRL and xFID (red
lines). r0 is the driving beam size (at the e−1 intensity level), other parameters are the same as infigure 4.
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the system alone. Around zero delay, one sees above-threshold features corresponding toH5.5. The fact that no
HRL is observed on the red-wings ofH5.5 at this intensity is due to the asymmetry of below- and above-
threshold emission, visible in the IR intensity scan (see figures 6(a) and (c)) but notwell understood yet.

Figure 6. Scaling of the emissionwith the increase of the IR intensity near the ionization threshold. (a)Experimentallymeasured
spatially integrated near-thresholdXUV spectrum as a function of the IR laser intensity. The 400 nmpulse parameter are kept
constant, and the time-delay between the two pulses is zero. (b) 3D-TDSE calculation of the near-thresholdXUV emission as a
function of the IR intensity. The IR intensity is scanned from0 to 3× 1012 W cm−2 and the 400 nm intensity was kept constant
(1013 W cm−2). The duration of both pulses were set to be 75 fs FWHM in the calculation. (c) and (d)Differential signal of (a) and (b),
with respect to the undressed (400 nmonly) spectrum, in percent of themaximumundressed emission.

Figure 7.Time-resolved near-threshold emission spectrum as a function of the delay between the 400 and the 800 nmpulses.
(a)Experimentallymeasured time-resolved near-thresholdXUV spectrum as a function of 400–800 nmdelay. The IR intensity is set
to∼0.45×1012 W cm−2. (b) 3D-TDSE calculation of the time-resolved near-thresholdXUV emission. The IR intensity is
3×1012 W cm−2 and the 400 nm intensity is (1013 W cm−2). The duration of both pulses were set to be 75 fs FWHMin the
calculation.
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Below-threshold, we observe the presence ofH4.5 andHRL satellites around time zero. One can see that the
HRL emission is delayed by∼20fs after the center of the cross-correlation. This is due to the fact that theHRL
lines are generated solely after the creation of a coherent superposition of states, which occurs at the peak
intensity of the 400 nmpulses. After the temporal overlap between the 800 and 400 nmpulses, the only spectral
features that last are the xFID andH5 emission. Thismeans that bothfields are necessary to observe significant
HRL emission. In the theoretical calculation presented infigure 7(b)we also see thatHRL, both below- and
above-threshold are generatedmainlywithin the cross-correlation.

As the ground state of the atomic system is spherically symmetric, the total number of photons being
absorbed by the systemmust be odd in order to reach a state which is allowed to emit dipole radiationwhen
being in a coherent superpositionwith the ground state. In our experiment, the xFID observed around 15 eV is
coming from a coherent superposition between the p- ground state and ns-/nd- Rydberg states which have been
created through 5 photons absorption. TheHRL lying 1.55 eVbelow- and above- this xFID emission cannot be
explained by a direct single IR emission/absorption from the Rydberg states, because it would imply that an even
number of photonswould have been absorbed (5×400 nmm1×800 nm), preventing the emission of XUV.
Indeed, theHRL lying 1.55 eVbelow- and above- the Rydberg states comes from the emission/absorption of
one 400 nmcombinedwith the absorption/emission of one 800 nm, from the Rydberg states
(5×400 nmm1×400 nm± 1×800 nm). This is why after the cross-correlation, when the 400 nm field is
off, the 800 nmfield itself does not generateHRL from the coherent superposition of states, which lives for
picoseconds.

A slight positive chirp (lower energies first)has been imposed to the 800 nmpulse so that its central
frequency getmodulated by∼0.6 eV ps−1 . One can see that the energy of the harmonics’ sidebands get tilted
(H4.5 andH5.5 respectively around 14 eV and 17 eVonfigure 7(a)). The slope of the energy of emissionwith
respect to the delay has been extracted (see table 1). This unambiguously gives us the number of 800 nmphotons
involved in the 400 nm/800 nmphotons combination leading to these sidebands. The tilt of the harmonics
generated at a given energy belowor above the thresholdH5 have opposite signs. Thismeans that these
harmonics are triggered by the absorption of 5×400 nmphotons, followed by absorption/emission of
photons from the 400 nmand/or the IR field. Except forH4 andH6 that come fromH5±2ÿω800, they all come
from the combination of the 400 and 800 nmfields, verifying that total number of photon involved remains odd.
Remarkably, the number of 400 and 800 nmphotons involved appears to be equal for theHRLnearH5.5 and
H6.5 aswell as nearH4.5 andH3.5.However, as seen onfigure 3(c), onlyHRL aroundH5.5 andH4.5 are clearly
visible experimentally. This intriguing asymmetry could be the signature of different dynamics of excitation in
theHRLprocess, and calls for additional experimental and theoretical investigations.

Note that interestingly, unlike the non-resonant features, theHRLdonot appear tilted, indicating a
fundamentally differentmechanism induced by the resonances. Fromour studies using the two-levelmodel we
see that theHRL emission is temporallymore confined near the peak of the IR pulse than the harmonic
emission. This can be attributed to the fact that the Stark shift of the Rydberg state due to the IR field is
comparable to the one due to the second harmonic field (the IR intensity is lower, but the shift is inverse
proportional to the frequency squared, see equation (5)). Taking into account the Stark shiftmeans considering
higher-ordermultiphotonprocesses:HRLat the red side ofH4.5 canbe generated as 5×400 nm–1×400 nm+
1×800 nmwhere 5×400 nmmeans the coherent excitationof theRydberg state; ifwewould like to take into
account the IR-field Stark-shiftedRydberg statewe should denote it as 5×400 nm+ 1×800 nm–1×800 nm.
So theHRL emission could be partly attributed to processes involvingmore thanone IRphoton, leading to a
temporal emissionmore confinednear the peak of the IRpulse. Thus the frequency of this line is given by the IR
frequencynear the peak of the IRpulse, i.e. the central IR frequency, resulting in less tilt of theHRL infigure 7(a).

Table 1.Central energy, experimentallymeasured energy slopewith respect to the 400 nmpulse–800 nmpulse
delay and the photon combination associatedwith it for each harmonic sideband betweenH3.5 andH6.5. A
∼0.6 eV ps−1 chirp has been imposed to the 800 nmpulse.

Line Central energy (eV) Energy slopewith delay (eV ps−1) Photon combination

H6.5 20.1 0.60 5×400 nm+ 400 nm+ 800 nm

H6 18.6 1.3 5×400 nm+ 2×800 nm
H5.5 17.0 −0.60 5×400 nm+ 400 nm–800 nm
H5 15.5 0 5×400 nm
H4.5 13.9 0.53 5×400 nm–400 nm+ 800 nm

H4 12.4 −1.3 5×400 nm–2×800 nm
H3.5 10.8 −0.63 5×400 nm–400 nm–800 nm
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An additional possible source of temporal confinement of the resonant processes could be the chirp of the
laser pulses. The instantaneous Stark shift of the resonant levels ismodulated along the laser pulse envelope. To
significantly excite these levels, the instantaneous photon frequencymustmatch the instantaneous level
position. In a chirped pulse, the photon frequencies arise at differentmoments in the pulse, such that the
resonance condition can be confined to only a portion of thewhole pulse duration.

5.Discussion and conclusions

The presence ofHRL (  wW = - + ¢( )E E q2HRL 2 1 0) together with high-order harmonics ( wW = q2HHG 0)
was predicted a long time ago bymany theoretical calculations. The generation ofHRL requires a system in a
coherent superposition of states (characterized by their energyE1 andE2, for example). In order to be observable
in an experiment, the spectral position of theHRL linesmust bemore or less constant as a function of time
within the laser pulse. However, they have never been identified experimentally, probably because of temporal
and spatial smearing of the lines resulting from the Stark-shift of the states in strong laser pulses.

Here, we partially decoupled the preparation of the coherent superposition of states and theHHG+HRL
emission by using a two color laser field. The electronic wavepacket is prepared using a resonant few-photon
transition (with a 400 nmpulse), fromwhich a relatively weak low-frequency field (800 nm) is drivingHHGand
HRL. These processes are efficient when the two laser pulse are temporally overlapped.We have scanned the
intensity of the 800 nmpulse and varied the delay between the 400 and 800 nmpulses in order to gain
information about the different behavior ofHRL andHHG.

The interest ofHRL in terms of technological application, for example as a photon source, still remains
uncertain since they are hard to observe experimentally. The light-driven spectrum ismore than often
dominated byHHG.However, for certain conditions the red-shifted satellites due toHRL could be a seeding for
high-order parametric processes considered theoretically in [34]. As it was shown in this paper, for specific
frequencies of the generated fields such processes are phase-matched, and the propagation leads to the
exponential growth of the red-shifted satellites; the effective generation of the red-shifted satellites of high
harmonics was observed in [36].

Moreover, the particular conditionswhere bothHRL andHHGare present in the spectrum is
fundamentally interesting to study. In the same fashion thatHigh-Harmonic Spectroscopy provides high-
resolution spatio-temporal informations about ground (valence) state electrons, HRL spectroscopymight
provide high-resolution spatio-temporal information about excited (Rydberg) state electrons. The link between
the far-field spatial profile of theHRL and the Freeman-type resonances can be the first step in this direction.
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