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cyclic subgroups. We show for many groups, including for example, one-relator groups,

acylindrically hyperbolic groups, 3-manifold groups and CAT.0/ cube groups, that they

do not admit a finite model for this classifying space unless they are virtually cyclic. This

settles a conjecture due to Juan-Pineda and Leary for these classes of groups.
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Introduction

Given a group G, we denote by
xx
EG D EVCY.G/ a G-CW-model for the classify-

ing space for the family of virtually cyclic subgroups. The space
xx
EG is character-

ized by the property that the fixed point set
xx
EGH is non-empty and contractible

for all virtually cyclic subgroups H of G and empty otherwise. In the formula-
tion of the Farrell–Jones Conjecture

xx
EG plays an important role (see for example

[8, 21] for more information). Due to this, there has been a growing interest in
studying

xx
EG, see for example [6, 14, 16, 19, 20]. Recall that a G-CW-complex X

is said to be finite if it has finitely many orbits of cells. Similarly, X is said to be
of finite type if it has finitely many orbits of cells of dimension n for any n. In [14,
Conjecture 1], Juan-Pineda and Leary formulated the following conjecture:

Conjecture A ([14, Juan-Pineda and Leary]). Let G be a group admitting a finite

model for
xx
EG. Then G is virtually cyclic.

The conjecture may be surprising at the beginning as there are many examples
of groups with a finite model for the classifying space for the family consisting
only of the trivial subgroup or for the family of finite subgroups. Juan-Pineda

Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer Allianz- bzw. Nationallizenz
frei zugänglich. /  This publication is with permission of the rights owner freely accessible due to an

Alliance licence and a national licence respectively.
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and Leary demonstrated the validity of the conjecture for hyperbolic groups [14,
Corollary 12]. Later, Kochloukova, Martínez-Pérez and Nucinkis verified the
conjecture for elementary amenable groups [16]. Groves and Wilson gave a
simplified proof for elementary amenable groups [11]. So far, almost all the proofs
boil down to analyzing whether

xx
EG has a finite 0-skeleton. It turns out that having

a finite 0-skeleton for
xx
EG is equivalent to the following purely algebraic condition

(see Lemma 1.3)

(BVC) G has a finite set of virtually cyclic subgroups ¹V1; V2; : : : ; Vnº such that

every virtually cyclic subgroup of G is conjugate to a subgroup of some Vi .

Following Groves and Wilson, we shall call this property BVC and the finite
set ¹V1; V2; : : : ; Vnº a witness to BVC for G. In this paper, we give a systematic
study of the property BVC. Our main theorem can be stated as follows

Theorem. The following classes of groups satisfy Conjecture A:

(a) HNN extensions of free groups of finite rank (Theorem 2.11),

(b) one-relator groups (Theorem 2.12),

(c) acylindrically hyperbolic groups (Proposition 3.2),

(d) 3-manifold groups (Proposition 3.6),

(e) CAT.0/ groups that contain a rank-one isometry or Z2 (Theorem 4.13), in

particular CAT.0/ cube groups (Corollary 4.16).

In fact, we show that any finitely generated group in these classes has BVC
if and only if it is virtually cyclic. Our result also suggests that the following
conjecture could be true.

Conjecture B. Let G be a finitely presented group which has BVC. Then G is

virtually cyclic.

Remark. (a) The assumption of having a finitely presented group is necessary
here since Osin [27] has constructed finitely generated torsion-free groups with
exactly two conjugacy classes. In particular these groups have BVC.

(b) We do not know whether Conjecture B holds for all elementary amenable
groups. Groves and Wilson showed that solvable groups satisfy it [11].

(c) If we knew the Flat Closing Conjecture, then it would follow that any
CAT.0/ group satisfies Conjecture B. See Remark 4.14 for more information.

Our paper is organized as follows. In Section 1, we first summarize what we
already know about groups admitting a finite model for

xx
EG, then we study basic

properties of groups with BVC and deduce that many groups cannot have this
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property. In Section 2, we study HNN extension of groups and show for example
that any HNN extension of a finitely generated free group does not have BVC.
Using this, we prove that any non-cyclic one-relator group does not have BVC.
In Section 3, we show that acylindrically hyperbolic groups and finitely generated
non virtually cyclic 3-manifold groups do not have BVC. In the last section, we
study groups acting on CAT.0/ spaces. We show for example, that CAT.0/ cube
groups do not have BVC unless they are virtually cyclic.

Results of this paper will also appear as a part of the first author’s thesis.

Acknowledgements. The first author was supported by an IMPRS scholarship of
the Max Planck Society. The second author would like to thank the Max Planck
Institute for Mathematics at Bonn for its support. We also want to thank Yongle
Jiang for helpful comments.

1. Properties of groups admitting a finite model for
xx
EG

In this section we first review properties of groups admitting a finite model for

xx
EG. We then proceed to prove many useful lemmas for groups with BVC. We
also use these lemmas to show many groups cannot have BVC.

We denote by
x
EG, resp. EG the G-CW classifying space for the family of

finite subgroups resp. for the family consisting only of the trivial subgroup. We
summarize the properties of groups admitting a finite model for

xx
EG as follows

Proposition 1.1. Let G be a group admitting a finite model for
xx
EG, then

(a) G has BVC;

(b) G admits a finite model for
x
EG;

(c) for every finite subgroup of H � G, the Weyl group WGH is finitely pre-

sented and of type FP1. Here WGH WD NG.H/=H , where NG.H/ is the

normalizer of H in G;

(d) G admits a finite type model for EG. In particular, G is finitely presented;

(e) G has finitely many conjugacy classes of finite subgroups. In particular, the

order of finite subgroups of G is bounded.

Proof. Note that if G has a finite or finite type model for
x
EG, then G is finitely

presented and has finitely many conjugacy classes of finite subgroups [18, 4.2].
Now (a), (b), (c) can be found for example in [16, Section 2]. Part (d) can be
deduced from (c) by taking H to be the trivial group. �

Remark 1.2. If one replaces finite by finite type in the assumptions of the above
proposition, then the conclusions still hold except one has to replace finite by finite
type in (b).
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The following lemma is well-known to experts.

Lemma 1.3. Let G be a group. Then there is a model for
xx
EG with finite 0-skeleton

if and only if G has BVC.

Proof. Suppose X is a G-CW model for
xx
EG with a finite 0-skeleton. Let

�1; �2; : : : ; �n be a set of representatives for each orbit of 0-cell. Let V1; V2; : : : ; Vn

be the corresponding virtually cyclic stabilizers. Since for every virtually cyclic
subgroup V , the set of fixed points XV is non-empty, there exists some vertex
of X that is fixed by V . Since this vertex stabilizer is a conjugate to some Vi ,
the subgroup V is subconjugate to Vi . Conversely, suppose G has BVC, and
let V1; V2; : : : ; Vn be witnesses. We can construct a model for

xx
EG with finite

0-skeleton as follows. Consider the G-set S WD
`n

iD1 G=Vi . The complete graph
�.S/ spanned by S , i.e., the simplicial graph that contains an edge for every two
elements in �.S/, carries a cocompact simplicial G-action. The first barycentric
subdivision x�.S/ of �.S/ is a G-CW-complex. Note that x�.S/ is again cocom-
pact. Moreover, x�.S/H is nonempty when H is virtually cyclic and empty oth-
erwise. Now we can add equivariant cells of dimension � 1 to x�.S/ and make
x�.S/H contractible for all virtually cyclic subgroup by induction using [17, Propo-
sition 2.3]. This way we obtain a model for

xx
EG with finite 0-skeleton. �

The following structure theorem about virtually cyclic groups is well known,
see for example [14, Proposition 4] for a proof.

Lemma 1.4. Let G be a virtually cyclic group. Then G contains a unique maximal

normal finite subgroup F such that one of the following holds

(a) the finite case, G D F ;

(b) the orientable case, G=F is the infinite cyclic group;

(c) the nonorientable case, G=F is the infinite dihedral group.

Note that the above lemma implies that a torsion-free virtually cyclic group is
either trivial or isomorphic to Z. Thus we have the following

Corollary 1.5. Let G be a torsion-free group, then G has BVC if and only if there

exist elements g1; g2; : : : gn in G such that every element in G is conjugate to a

power of some gi .

The following lemma is key to many of our proofs.

Lemma 1.6. Let V be a virtually cyclic group and let g; h 2 V be two elements

of infinite order, then there exist p; q 2 Z such that gp D hq . Furthermore, there

exists v0 2 V such that for any v 2 V of infinite order there exist nonzero p0; p

such that v
p0

0 D vp with p0

p
2 Z.
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Proof. By Lemma 1.4, there exists an finite normal subgroup of F such that V=F

is isomorphic to Z or Z Ì Z=2. We denote the quotient map by q. Then if g

is of infinite order and V=F Š Z Ì Z=2, then q.g/ 2 Z Ì ¹0º. Thus we can
always assume V=F Š Z. In this case V Š F Ìf Z, where Z acts on F

via the automorphism f . Now for any g D .x; m/ 2 F Ìf Z we can choose
k D jF jjf j where jF j is the order of the finite group F and jf j is the order of
the automorphism f , then gk D .0; km/. Let h D .y; n/, then hk D .0; kn/.
Now we see that gkn D hkm. If we choose v0 D .0; 1/ 2 F Ìf Z then for any
v D .x; m/ 2 V , vmk

0 D vk. �

Note that in any virtually cyclic group there are only finitely many distinct
finite subgroups up to conjugacy (using Lemma 1.4 or the fact that virtually cyclic
groups are CAT.0/). Using this fact one immediately obtains

Lemma 1.7. If a group G has BVC, then G has finitely many conjugacy classes

of finite subgroups. In particular, the order of finite subgroups in G is bounded.

In a group G, we call an element g primitive if it cannot be written as a proper
power. Then Corollary 1.5 implies the following

Lemma 1.8. Let G be a torsion-free group. If G has infinitely many conjugacy

classes of primitive elements, then G does not have BVC.

Note that without the assumption of G being torsion-free, the previous lemma
does not hold. In fact, even a virtually cyclic group could contain infinitely many
conjugacy classes of primitive elements.

Example 1.9. Let Sn be the symmetric group of order n with n � 2, then Sn � Z

has infinitely many primitive conjugacy classes. In fact, let .xi ; 2i / 2 Sn � Z

with xi an odd element in Sn. Then .xi ; 2i/ is primitive for any i � 1. Since if
.xi ; 2i/ D .x; y/k for some k > 1, then ky D 2i . In particular, k is even and thus
xk cannot equal the odd element xi . The elements .xi ; 2i / cannot be conjugate to
each other since the second coordinate is different.

Lemma 1.10. Let G D A � B be a free product with A and B nontrivial, then G

has BVC if and only if G is virtually cyclic.

Proof. If A and B are finite groups, then A � B is a virtually free group and hence
hyperbolic. So the lemma holds in this case. Now we assume that A is not finite,
then A�B is not virtually cyclic. Let a1; a2 : : : ; an; : : : ; be a sequence of different
elements in A and let b 2 B be a non-trivial element. Then ¹aib j i � 1º in
G form infinitely many conjugacy classes of primitive elements in G. Moreover,
when i ¤ j , aib and any conjugates of aj b cannot lie in a virtually cyclic group.
In fact, if this were the case, by Lemma 1.6 we would have that .aib/m is conjugate



712 T. von Puttkamer and X. Wu

to .aj b/n in G for some m; n ¤ 0. But this is impossible by the choices of ai and
b and [22, IV.2.8]. Hence G does not have BVC in this case. �

Lemma 1.11 ([16, 5.6]). If a group G has BVC, then any finite index subgroup

also has BVC.

Combining this with the main result of [11], we have

Proposition 1.12. Virtually solvable groups have BVC if and only if they are

virtually cyclic.

Lemma 1.13 ([11, 2.2]). Let G be a group with property BVC. Then the following

assertions hold.

(a) The group G satisfies the ascending chain condition for normal subgroups.

(b) If L and M are normal subgroups of G with M < L and L=M a torsion

group, then there are only finitely many normal subgroups K of G such that

M � K � L.

(c) Let

1 D Gn � Gn�1 � � � � � G1 � G0 D G

be a series of normal subgroups of G. Then the number of factors Gi=Gi�1

that are not torsion groups is bounded by the number of infinite groups in a

witness to BVC for G.

The following lemma allows us to show that many groups cannot have BVC.

Lemma 1.14. Let � W G ! Q be a surjective group homomorphism. If Q is a

torsion-free group that does not have BVC, then G does not have BVC.

Proof. Suppose G has BVC and let V1; V2 : : : ; Vn be a witness for BVC of G.
Note that any quotient of a virtually cyclic group is again virtually cyclic. Hence
�.Vi / are virtually cyclic subgroups in Q. Since Q is torsion-free and does
not have BVC, we can find a nontrivial element q 2 Q such that q cannot be
conjugated to �.Vi / for any i . Now take g 2 G such that �.g/ D q, then we
can find c 2 G such that cgc�1 2 Vi for some i . But then we would have
�.c/�.g/�.c�1/ D �.c/q�.c�1/ 2 �.Vi / which is a contradiction. �

Corollary 1.15. If G is a group having BVC, then the abelianization H1.G;Z/ is

finitely generated of rank at most one.

Proof. Let A be the abelianization of G and let T be the torsion subgroup of A.
By Lemma 1.14 the torsion-free abelian group A=T has to be trivial or infinite
cyclic. Hence A D T or A Š T � Z. Now Lemma 1.13(b) implies that the torsion
group T has to be finite. �
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Example 1.16. The Thompson groups are a family of three finitely presented
groups, F � T � V . Thompson’s group F can be defined by the presentation
hA; B j ŒAB�1; A�1BA� D ŒAB�1; A�2BA2� D 1i. Since H1.F / Š Z2, it
follows that F does not have BVC. Since the order of finite subgroups in T and
V is unbounded, we see that T and V also do not have BVC. See [3] for more
information about Thompson groups.

Recall that a group satisfies the strong Tits alternative if any finitely generated
subgroup has a finite index subgroup which is either solvable, or has a non-abelian
free quotient. Since virtually solvable groups and free groups have BVC if and only
if they are virtually cyclic, we have the following by Lemma 1.11 and Lemma 1.14,

Lemma 1.17. If a group G satisfies the strong Tits alternative, then a finitely

generated subgroup of G has BVC if and only if it is virtually cyclic.

Since Coxeter group and right angled Artin groups are known to satisfy the
strong Tits alternative by [26] and [1, 1.6], we have the following

Corollary 1.18. Let G be a Coxeter group or a right angled Artin group, then a

finitely generated subgroup of G satisfies BVC if and only if it is virtually cyclic.

Note that Corollary 1.15 reduces the study of finitely generated groups with
BVC to the case where H1.G;Z/ is of rank one or zero. If H1.G;Z/ is of rank
one, then G surjects to Z and thus G becomes a semidirect product of the form
H Ì Z. We proceed to study groups of this type.

Given an automorphism � of G, we say that two elements g; h in G are �-
conjugate if g D xh�.x�1/ for some x 2 G. This is an equivalence relation
whose equivalence classes are called �-twisted conjugacy classes. For � D idG

one recovers the usual notion of conjugacy.

Lemma 1.19. Let � be an automorphism of H such that H has infinitely many

�-twisted conjugacy classes, then the semidirect product H Ì� Z does not have

BVC.

Proof. Note that in H Ì� Z, the elements .g; 1/ and .h; 1/ are primitive and they
are in the same conjugacy class if and only if g and h are in the same �-twisted
conjugacy class in H . In fact, .g; 1/ is conjugate to .h; 1/ in H Ì� Z if and only
if we can find .x; k/ such that .x; k/.g; 1/.x; k/�1 D .x�k.g/�.x�1/; 1/ D .h; 1/.
This is equivalent to saying that g is �-conjugate to �k.g/ in H . But g and �.g/

are �-conjugate in H since �.g/ D g�1g�.g/. Hence g and h are in the same �-
twisted conjugacy class in H if and only if .g; 1/ is conjugate to .h; 1/ in H Ì� Z.
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Since H has infinitely many �-twisted conjugacy classes, we have infinitely
many primitive elements of the form .g; 1/ 2 H Ì� Z that are not conjugate to
each other. If H Ì� Z has BVC, then we can choose infinitely many elements
.g1; 1/; .g2; 1/; : : : ; .gn; 1/; : : : that are not conjugate to each other, but they lie
in the same virtually cyclic subgroup. In particular the group V generated by
.g1; 1/; .g2; 1/; : : : ; .gn; 1/ : : : in G is virtually cyclic. But this is impossible.
Consider the quotient map qW H Ì Z� ! Z, which is onto when restricted to
V . Hence the kernel must be finite. This means V Š F ÌZ for some finite group
F and the image of .gi ; 1/ is of the form .fi ; 1/. This leads to a contradiction since
there are infinitely many .gi ; 1/ but only finitely many .fi ; 1/. �

Recall that a group is said to have property R1 if it has infinitely many �-
twisted conjugacy classes for any automorphism �.

Corollary 1.20. Let G be a group with the property R1, then any semidirect

product H Ì� Z does not have BVC.

Note that there are many groups with property R1, for example hyperbolic
groups that are not virtually cyclic, relatively hyperbolic groups and most gener-
alzied Baumslag-Solitar groups. For more information about groups with property
R1 and further examples, see [9].

2. HNN extension of groups and one-relator groups

In this section, we study HNN extension of groups. We first give a quick review
of basic results concerning the structure of these types of groups. Then we prove
that any non-ascending HNN extension of a group and any HNN extension of a
finitely generated free group do not have BVC. Using this, we are able to show
that one-relator groups have BVC if and only if they are virtually cyclic.

Recall that given a group H and an isomorphsim � W A ! B between two
subgroups A and B of H , we can define a new group H�� , called the HNN
extension of H along � , by the presentation hH; t j txt�1 D �.x/; x 2 Ai. In
the study of HNN extensions of groups, Britton’s Lemma and Collins’ Lemma
play an important rule. We give a quick review of the two lemmas and refer to
[22, IV.2] for more details.

Definition 2.1. A sequence g0; t �1; g1; : : : ; t �n; gn of elements with gi 2 H and
�i 2 ¹�1; C1º is said to be reduced if there is no consecutive sequence t; gi ; t�1

with gi 2 A or t�1; gj ; t with gj 2 B .

Lemma 2.2 (Britton’s Lemma). If the sequence g0; t �1; g1; : : : ; t �n; gn is reduced

and n � 1, then g0t �1g1 � � � t �ngn ¤ 1 in H�� .
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In the following we will not distinguish between a sequence of words as above
and the element it defines in the HNN extension H�� .

Give any g 2 H�� , we can write g in a reduced form. Let

w D g0t �1g1 � � � t �ngn ¤ 1

be any reduced word in H�� which represents g. The we define the length of g,
written as jgj, to be the number n of occurences of t˙ in w. Moreover we call an
element w D g0t �1g1 � � � t �ngn ¤ 1 cyclically reduced if all cyclic permutations
of the sequence g0; t �1; g1; : : : ; t �n; gn are reduced. Every element of H�� is
conjugate to a cyclically reduced element.

Lemma 2.3 (Collins’ Lemma). Let G D hH; t j txt�1 D �.x/; x 2 Ai be an HNN

extension. Let u D g0t �1g1 � � � t �ngn and v be cyclically reduced elements of G

that are conjugate, n � 1. Then juj D jvj, and u can be obtained from v by taking

a suitable cyclic permutation v� of v, which ends in t �n , and then conjugating by

an element z, where z 2 A if �n D 1, and z 2 B if �n D �1.

We are ready to prove the following:

Lemma 2.4. Let H be a group and let � W A ! B be an isomorphism between two

subgroups of H . If ŒH W A�; ŒH W B� � 2, then the corresponding HNN extension

G D H�� does not have BVC.

Proof. Choose ˛ 2 H n B and ˇ 2 H n A, define

wn D t�1˛tnC1ˇ

for n � 1. Note that the elements wn are of infinite order and cyclically reduced.
By Collins’ Lemma, they are not conjugate to each other. If G had BVC, there
would exist a virtually cyclic subgroup V � G such that there is an infinite
subsequence ¹wni

º with each wni
conjugate to an infinite order element of V .

But this cannot happen as w
pn
n is not conjugate to w

pm
m for any pn; pm ¤ 0

when n ¤ m. In fact, first note that w
pn
n is cyclically reduced for any n. So if

w
pn
n is conjugate to w

pm
m , their lengths must coincide by Collins’ Lemma. Hence

we have an equation jpnj.n C 2/ D jpmj.m C 2/. On the other hand, there is
a canonical quotient map qW G ! hti Š Z. If w

pn
n is conjugate to w

pm
m , then

q.w
pn
n / D q.w

pm
m /. This means pnn D pmm. But the two equations can never

hold at the same time when n; m � 1 unless n D m. Hence we have a contradiction
by Lemma 1.6. �

Now when H D A or H D B , we would have an ascending HNN extension.
It seems to us that this case cannot be handled as easily as before. In the following
we will analyze the case of an ascending HNN extension of a free group F of
finite rank in detail. We will first deal with the case that � W F ! F is injective
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with its image lying in the commutator subgroup of F . Given a group G, we will
write G0 for the commutator subgroup ŒG; G� and we will denote the r-th term in
the lower central series by �r .G/ D Œ�r�1.G/; G� where �1.G/ D G. Let us first
recall the following facts:

Lemma 2.5. The lower central series has the following properties:

(a) Œ�r.G/; �s.G/� � �rCs.G/ for any group G;

(b)
T

r�1 �r .F / D ¹1º for any free group F ;

(c) �r.F /=�rC1.F / is a free abelian group for any r and any free group F of

finite rank.

Proof. (a) can be found in [12, Corollary 10.3.5]. (b) and (c) can be found
in [12, Chapter 11]. �

Corollary 2.6. Let � W F ! F be an injective map of the finitely generated free

group F with the image of � lying in the commutator subgroup of F . If x 2 �r.F /,

then �.x/ 2 �2r .F /.

Proof. If x 2 �1.F / D F , then by assumption on � we have �.x/ 2 ŒF; F � D

�2.F /. Let r � 2 and suppose that for any s < r the claim holds. If
x 2 �r .F / D Œ�r�1.F /; F �, then by induction and Lemma 2.5 we get �.x/ 2

Œ�2.r�1/.F /; �2.F /� � �2r .F /. �

Lemma 2.7. Let G D hH; t j txt�1 D �.x/; x 2 H i be an ascending HNN

extension of a group H . Then any element of G can be written in the form t�phtq

with p; q � 0 and h 2 H . Moreover the normal closure hH iG of H in G is given

by hH iG D
S

i�0 t�iHt i .

Proof. The claim about the form elements of G take follows since for any h 2 H ,
th D �.h/t and similarly ht�1 D t�1�.h/ in G. For the second part, notice that
t�iHt i � hH iG for any i . Since G=hH iG Š hti, we have that if g D t�phtq 2

hH iG , then p D q. Thus hH iG D
S

i�0 t�iHt i . �

Lemma 2.8. Let G D hF; t j txt�1 D �.x/; x 2 F i be any ascending HNN

extension of a free group F of finite rank with im.�/ � ŒF; F �. Suppose that

x; y 2 F are non-primitive in G and generate a free subgroup of rank 2. Then xy

is primitive in G.

Proof. Suppose x, y and xy are all non-primitive. Let x D um; y D vn; xy D wl

for some u; v; w 2 G and m; n; l � 2. Let q be the canonical quotient map from G

to hti Š Z mapping F to 0. Then u; v; w lie in the kernel since x and y lie in the
kernel. Note that the kernel is just the normalizer of F in G. By Lemma 2.7, there



On the finiteness of the classifying space 717

exist some p � 0 such that u; v; w lie in the free subgroup t�pF tp. But by [23],
the equation umvn D wl has a solution in a free group only if u; v; w generate a
free subgroup of rank 1. This contradicts our hypothesis on x and y. �

We need the following lemma.

Lemma 2.9. Let f W A ! A be an automorphism of a free abelian group A. If

f .ka/ D la for some a ¤ 0 and positive integers k; l , then k D l .

Proof. We can assume without loss of generality that A has infinite rank, so
A Š

L

i2I Z for some infinite index set I . We call a non-trivial element a 2 A

prime if the common divisor of its finitely many non-zero coordinates is trivial.
Note that any non-trivial a 2 A can be written as a D d � x with x being prime.
Since f is an automorphism, it will preserve prime elements. So now suppose that
f .ka/ D la with k; l 2 N and a ¤ 0. We write a D dx as above with x prime.
Then kf .x/ D lx and by cancelling common factors we might as well assume
that k and l are coprime. Since k divides all coordinates of the prime element x

it has to equal to one and the same holds for l since f .x/ is prime. �

Proposition 2.10. Let G D hF; t j txt�1 D �.x/; x 2 F i be an ascending

HNN extension of a free group F of finite rank, where the image of � lies in the

commutator subgroup of F . If x; y 2 F n ŒF; F � generate a free subgroup of rank

2 in F and x is primitive, then the elements ¹xkyxky�1 j k � 2º form pairwise

distinct primitive conjugacy classes. In particular, G does not have BVC.

Proof. Note first that xkyxky�1 does not lie in ŒF; F � and is primitive when k � 2

by Lemma 2.8. Note that every element in G can be written in the form t�pwtq

for some p � 0; q � 0 and w 2 Fn by Lemma 2.7. Now if xkyxky�1 is conjugate
to xlyxl y�1 for some k ¤ l , then xkyxky�1 D t�pwtqxlyxl y�1t�qw�1tp for
some p; q � 0 and w 2 F . Hence �p.xkyxky�1/ D w�q.xlyxl y�1/w�1

If p ¤ q, the equation never holds. In fact, assume p > q. We can further
assume �q.x/ 2 �r .Fn/ n �rC1.F / for some r � 2 by Lemma 2.5(b). Then
�p.x/ 2 �rC1.F / by Corollary 2.6 and thus �p.xkyxky�1/ 2 �rC1.F /. On the
other hand, �q.xl / 2 �r .F /n�rC1.F / for any l > 0 since �r.F /=�rC1F is a free
abelian group by Lemma 2.5(c). Now �q.xlyxl y�1/ D �q.x2l /Œ�q.x�l /; �q.y/�

and Œ�q.x�l /; �q.y/� 2 �rC1.F / by Corollary 2.6, we have �q.xlyxl y�1/ 2

�r .F /n�rC1.F /. But the right hand side w�q.xl yxly�1/w�1 2 �r .F /n�rC1.F /,
hence the equation cannot hold.

If p D q, then the equation again cannot hold unless k D l . In fact,
assume �p.x/ 2 �r .F / n �rC1.F /, then both sides lie in �r .F / n �rC1.F /

by the same argument above. By taking the quotient by �rC1.F / we obtain
an equation in the free abelian group �r .F /=�rC1.F /. Then we would have
k.Œ�p.x/� C Œ�p.yxy�1/�/ D l.Œw�p.x/w�1� C Œw�p.yxy�1/w�1�/. Note that
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�r .F /=�rC1.F / is a free abelian group of infinite rank by Lemma 2.5(c) and the
action of w on �r .F /=�rC1.F / induced by conjugation is an isomorphism. Thus
the equation k.Œ�p.x/� C Œ�p.yxy�1/�/ D l.Œw�p.x/w�1� C Œw�p.yxy�1/w�1�/

can never hold unless k D l by Lemma 2.9. �

We are ready to prove the following.

Theorem 2.11. Let G be an HNN extension of a free group of finite rank, then G

does not have BVC.

Proof. By Lemma 2.4, we can assume G D hFn; t j txt�1 D �.x/; x 2 Fni,
where � W Fn ! Fn is injective, Fn is a free group of rank n. For n D 1 the group G

is solvable but not virtually cyclic. Thus G does not have BVC by Proposition 1.12.
So in the following we assume that Fn is a free group of rank bigger than 1.

Note first that we have an induced map N� W Fn=ŒFn; Fn� ! Fn=ŒFn; Fn� Š Zn.
Since the rank of the abelian group is finite, there exists some k � 1 such that
rank.ker. N�kC1// D rank.ker. N�k//. But since Zn is free abelian, it follows that
ker. N�kC1/ D ker. N�k/, and we will denote this group by K. This implies that N�k

induces an injective endomorphism of Zn=K. If K is a proper subgroup of Zn, we
consider the induced quotient map Fn��k ! .Zn=K/� N�k . Note that the quotient
is a torsion-free metabelian group which is not virtually cyclic. Hence Fn��k

does not have BVC by Proposition 1.12 and Lemma 1.14. As Fn��k is a finite index
subgroup of Fn�� (see for example [15, 2.2]) we conclude that the latter group
does not have BVC by Lemma 1.11.

If K D Zn, we are in the situation that the image of �k lies in the commutator
subgroup of Fn. By Proposition 2.10 the group Fn��k does not have BVC. Again
by Lemma 1.11 it follows that Fn�� does not have BVC. �

We now want to apply the previous results to verify Conjecture B for the class
of one-relator groups. Recall that a one-relator group is a group G which has a
presentation with a single relation, so G D hx1; : : : ; xn j ri where r is a word in
the free group F on the letters x1; : : : ; xn. The group G is torsion-free precisely
when r , as an element of the free group F , is not a proper power. If r D sn for
some maximal n � 2 and s 2 F , then s, considered as an element in G, is of order
n. In all cases there exists a finite G-CW model for

x
EG, see for example [19, 4.12].

For one-relator groups G with torsion, Newman’s Spelling Theorem [25] im-
plies that G is a hyperbolic group. In particular, the one-relator groups containing
torsion satisfy Conjecture B. However, our proof of the following theorem does
not depend on this fact.

Theorem 2.12. A one-relator group has BVC if and only if it is cyclic.
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Proof. Let G be a one-relator group.

If the one-relator presentation of G contained three or more generators then G

would surject to Z2, in particular G would not have BVC by Corollary 1.15. Thus
we can restrict to the case that G has two generators, so

G D ha; b j R.a; b/ D 1i

for some word R.a; b/ in the free group on the two generators a; b. By [22, Lemma
V.11.8] we can moreover assume that the exponent sum of one of the generators in
the single relator equals to zero, say for the generator a. The following rewriting
procedure, which we outline for the reader’s convenience, is standard. The proofs
of the mentioned facts can be found in [22, IV.5]. We let bi D aiba�i for all
i 2 Z. Then R can be rewritten as a cyclically reduced word R0 in terms of these,
so R0 D R0.bm; : : : ; bM / for some m � M , such that the elements bm, bM occur
in R0. If m D M , then R.a; b/ D bm for some m 2 Z and thus G Š Z or
G Š Z�Z=jmj where jmj � 2. Note that by Lemma 1.10 the latter group does not
have BVC. So in the following we can assume that m < M . We let

H D hbm; : : : ; bM j R0.bm; : : : ; bM / D 1i:

Moreover we define A to be the subgroup of H generated by bm; : : : bM �1 and
we let B to be the subgroup of H generated by bmC1; : : : bM . Then A and B

are free subgroups of the one-relator group H and G is isomorphic to the HNN
extension H�� where � W A ! B is the isomorphism defined by �.bi / D biC1 for
m � i < M .

If ŒH W A� � 2 and ŒH W B� � 2, then G does not have BVC by Lemma 2.4.
Otherwise G is an ascending HNN extension, say with H D A. Since A was free,
G is an ascending HNN extension of a finitely generated free group. The claim
now follows from Theorem 2.11. �

3. Groups with some hyperbolicity

In this section, we first show that acylindrically hyperbolic groups do not have
BVC. Using this we show that any finitely generated 3-manifold group does not
have BVC.

We first give a quick definition of acylindrically hyperbolic group and refer to
[13] and [28] for more information. Recall the action of a group G on a metric
space S is called acylindrical if for every " > 0 there exist R; N > 0 such that
for every two points x; y with d.x; y/ � R, there are at most N elements g 2 G

satisfying d.x; gx/ � " and d.y; gy/ � ". Given a hyperbolic space S , we use @S

to denote its Gromov boundary.
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Definition 3.1. A group G is called acylindrically hyperbolic if there exists a
generating set X of G such that the corresponding Cayley graph �.G; X/ is
hyperbolic, j@�.G; X/j > 2, and the natural action of G on �.G; X/ is acylindrical.

Proposition 3.2. An acylindrically hyperbolic group does not have BVC.

Proof. Let G be an acylindrically hyperbolic group. By [28, Theorem 1.2] this
is equivalent to saying that G contains a proper infinite hyperbolically embedded
subgroup. By [5, Lemma 6.14], we further have a subgroup K D F2 �K.G/ inside
G which is hyperbolically embedded, where K.G/ is some maximal normal finite
subgroup of G and F2 is the free group of rank 2. The following two statements
are copied from the proof of [13, VI.1.1] (they can be easily decduced from [5,
Proposition 4.33]): (1) every element of infinite order which is primitive in K is
also primitive in G; (2), if two elements of K of infinite order are conjugate in G,
they are conjugate in K. Now since K contains F2 as a direct factor, there exists
infinitely many primitive elements of infinite order g1; g2; : : : ; gn; : : : in F2 � K

such that gi is not conjugate to gj or g�1
j when i ¤ j . But any two such elements

or conjugates of them cannot lie in the same virtually cyclic subgroup. In fact, let
gi ; gj be two such elements and suppose gi , xgj x�1 lie in the same virtually cyclic
subgroup in G, where x 2 G. Then we have gm

i D xgn
j x�1 for some m and n by

Lemma 1.6. Thus gm
i and gn

j are conjugate in G. Hence they are also conjugate
in F2, which is a contradiction. Thus these primitive elements of infinite order
cannot lie in finitely many conjugacy classes of virtually cyclic subgroups. Hence
G does not have BVC. �

Corollary 3.3. The following classes of groups do not have BVC:

(a) hyperbolic groups that are not virtually cyclic;

(b) non-elementary groups that are hyperbolic relative to proper subgroups;

(c) the mapping class group MCG.†g ; p/ of a closed surface of genus g with

p punctures except for g D 0 and p � 3 (in these exceptional cases,

MCG.†g ; p/ is finite);

(d) Out.Fn/ where n � 2;

(e) groups which act properly on proper CAT.0/ spaces and contain rank-one

elements.

Proof. These groups are all acylindrically hyperbolic, we refer to [13, I.1, p. 4] and
[28, Section 8] for the detailed reference. �

Corollary 3.4. Let �W A ! G be a surjective group homomorphism and suppose

that G is an acylindrically hyperbolic group. Then A does not have BVC.
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Proof. As in the proof of Proposition 3.2, there exists infinitely many primitive
conjugacy classes of elements ¹giºi�1 inside a certain free group F2 � G such
that gi

pi is not conjugate to any gj
pj for i ¤ j and pi ; pj ¤ 0. Now we take

any preimage g0
i of gi in A. Then the g0

i are primitive and g0
i
p0

i is not conjugate

to any g0
j

p0

j for i ¤ j and p0
i ; p0

j ¤ 0. By Lemma 1.6, they cannot lie in finitely
many conjugacy classes of virtually cyclic subgroups in A. Hence A does not have
BVC. �

By a 3-manifold group we mean a group that can be realized as the fundamental
group of a 3-manifold, which may be open or have boundary. Note that, by Scott’s
theorem [31], every finitely generated 3-manifold group is itself the fundamental
group of a compact 3-manifold. Minsanyan and Osin prove in [24, 2.8] the
following:

Lemma 3.5. Let G be a subgroup of the fundamental group of a compact 3-

manifold, then exactly one of the following holds:

(a) G is acylindrically hyperbolic;

(b) G contains a normal infinite cyclic subgroup N such that G=N is acylindri-

cally hyperbolic;

(c) G is virtually polycyclic.

Now combining this with Proposition 1.12, Proposition 3.2, and Corollary 3.4,
we have the following result.

Proposition 3.6. Let G be the subgroup of the fundamental group of a compact

3-manifold, then G has BVC if and only if G is virtually cyclic. In particular, if

G is a finitely generated 3-manifold group, then G has BVC if and only if G is

virtually cyclic.

4. Groups acting on CAT(0) spaces

In this section, we study groups acting on CAT.0/ spaces and show that many
of them do not have BVC. We first give a quick review of properties of CAT.0/

spaces and groups that we may need and refer to [2] for more details.

Definitions 4.1. [2, II.6.1] Let X be a metric space and let g be an isometry of
X . The displacement function of g is the function dg W X ! RC D ¹r � 0 j

r 2 Rº defined by dg.x/ D d.gx; x/. The translation length of g is the number
jgj WD inf¹dg .x/ j x 2 Xº. The set of points where dg attains this infimum will
be denoted by Min.g/. More generally, if G is a group acting by isometries on X ,
then Min.G/ WD

T

g2G Min.g/. An isometry g is called semi-simple if Min.g/ is
non-empty. An action of a group by isometries of X is called semi-simple if all of
its elements are semi-simple.
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The following theorem is known as the Flat Torus Theorem [2, II.7.1].

Theorem 4.2. Let A be a free abelian group of rank n acting properly by semi-

simple isometries on a CAT.0/ space X . Then

(a) Min.A/ D
T

˛2A Min.˛/ is non-empty and splits as a product Y � En, here

En denotes Rn equipped with the standard Euclidean metric;

(b) every element ˛ 2 A leaves Min.A/ invariant and respects the product

decomposition; ˛ acts as the identity on the first factor Y and as a translation

on the second factor En;

(c) the quotient of each n-flat ¹yº � En by the action of A is an n-torus.

It is clear that the translation length is invariant under conjugation, i.e. one
has jhgh�1j D jgj for any g; h 2 G. Moreover, for g semi-simple, we have that
jgnj D jnj � jgj for any n 2 Z, e.g. by the Flat Torus Theorem. It turns out that the
translation length can also be defined by the following limit for g a semi-simple
isometry

jgj D lim
n!1

1

n
d.x; gnx/;

where x is an arbitrary point of the CAT.0/ space X [2, II.6.6].
Note that if a group acts properly and cocompactly on a CAT.0/ space via

isometries, we call the group a CAT.0/ group. In this case, the action is semi-
simple.

Proposition 4.3. If a group G acts properly and cocompactly by isometries on a

CAT.0/ space X , then

(a) G is finitely presented;

(b) G has only finitely many conjugacy classes of finite subgroups;

(c) Every solvable subgroup of G is virtually abelian;

(d) Virtually abelian subgroups of G satisfy the ascending chain condition.

(e) G has a finite model for
x
EG;

(f) There is a finite-dimensional model for
xx
EG.

Proof. (a)–(c) can be found in [2, III.�.1.1], (d) can be found in [2, II.7.5]. Since
G acts on X properly and cocompactly via isometry, X is proper by [2, I.8.4(1)].
With this (e) is implied by [29, Proposition A]. The last statement was proven
in [20]. Also Farley has given a construction of

xx
EG in [7] for some CAT.0/

groups, however without controlling the dimension. �

Lemma 4.4. Let V be an infinite virtually cyclic group which acts on a CAT.0/

space via semi-simple isometries. Then there exist an element v0 2 V such that

for any element v 2 V , the translation length jvj of v is an integer multiple of the

translation length of v0.
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Proof. When v is of finite order, then jvj D 0. So let us assume in the following
that v is of infinite order, in this case the translation length is strictly positive. If
vk D wk0

for some w 2 V and k; k0 2 Z, then jkjjvj D jvkj D jwk0

j D jk0jjwj.
Now by Lemma 1.6, there exist v0 2 V such that for any v 2 V , there exist
nonzero p; p0 such that v

p0

0 D vp with p0

p
2 Z. This implies that jvj is a multiple

of jv0j. �

The lemma leads us to define the following terminology.

Definition 4.5. We define a subset A of the real numbers to be finitely divisor

dominated if there are finitely many real numbers x1; x2; : : : ; xn such that every
a 2 A can be written in the form kxi for some k 2 Z, or equivalently

A �

n
[

iD1

Z � xi :

In this case we say that A is finitely divisor dominated by x1; x2; : : : ; xn.

Note that for a CAT.0/ group the set of translation lengths ¹ jgj j g 2 Gº is a
discrete subset of R [2, II.6.10 (3)]. We obtain first the key property of the set of
translation lengths for a group acting on a CAT.0/ space with BVC.

Lemma 4.6. Let G be a group acting properly on a CAT.0/ space via semi-simple

isometries. Let L D ¹jgj j g 2 Gº � R�0 be the set of translation lengths of G. If

G has BVC, then L is finitely divisor dominated.

Proof. Note first that if g and h are conjugate, then they have the same translation
length. Now assume G has BVC, and let V1; V2; : : : ; Vn be witnesses. We only
need to consider those Vi that are infinite since a finite order element has vanishing
translation length. By Lemma 4.4, we can choose for each Vi an element vi such
that the translation length of any infinite order element of Vi is a multiple of the
translation length jvi j. Now L is finitely divisor dominated by jv1j; jv2j; : : : ; jvnj.

�

Remark 4.7. For a hyperbolic group acting on its Cayley graph with respect
to some fixed generating set S , we define the algebraic translation length using
the limit jgj D limn!1

1
n
dS .1; gn/ [2, III.�.3.13], where dS denotes the word

metric with respect to S . Gromov [2, III.�.3.17] showed that the set of algebraic
translation lengths in this case is a discrete subset of the rational numbers and the
denominators are bounded. In particular, the set of algebraic translation lengths
of a hyperbolic group is finitely divisor dominated.
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We need do some preparation before we prove our main result in this section.

Lemma 4.8. Let x > 0; y � 0 be two rational numbers and let

A D ¹�n j �n D
p

x C .y C n/2; n 2 Nº:

Then A is not finitely divisor dominated.

Proof. Since x and y are rational numbers, we can choose d to be the smallest
positive integer such that 2yd and .y2 C x/d are integers. Then we can consider
the quadratic polynomial

f .n/ D d.x C .y C n/2/ D dn2 C 2ydn C .y2 C x/d

which has coprime integer coefficients. Note that f .n/ is irreducible over R since
d; x > 0. Now by an old result of Ricci [30], there exists infinitely many positive
integers n such that the integer f .n/ is square-free.

Now if A was finitely divisor dominated, there would exist finitely many
positive real numbers x1; x2; : : : ; xm such

A �

n
[

iD1

Z � xi

In particular, there exists some i0 and an infinite sequence n1; n2; : : : ; nj ; : : :

of natural numbers such that �nj
D kj xi0 , with kj 2 Z and f .nj / square-free.

This implies there are infinitely many kj > k1 such that

�2
nj

�2
n1

D
x C .y C nj /2

x C .y C n1/2
D

k2
j

k2
1

This further implies

n2
j C 2ynj C y2 C x D

k2
j

k2
1

.n2
1 C 2yn1 C y2 C x/

Multiplying both sides by d , we obtain

dn2
j C 2ydnj C .y2 C x/d D

k2
j

k2
1

.dn2
1 C 2ydn1 C .y2 C x/d/

Now since f .n/ D d.x C .y C n/2/ D dn2 C 2ydn C .y2 C x/d is a polynomial
in n with positive integer coefficients that have no common divisor, the left hand
side of the above equation must be a positive integer and f .n1/ D dn2

1 C2ydn1 C

.y2 C x/d is also a positive integer. But since kj > k1 are positve integers, the

value of f .nj / D
k2

j

k2
1

.dn2
1 C 2ydn1 C .y2 C x/d/ is not square-free. This leads

to a contradiction as we have chosen the nj such that f .nj / is square-free. �
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Lemma 4.9. Let n0; q0 2 N and x > 0; y � 0 be two real numbers, such that

there are infinitely many integers m > n0 with x2C.yCm/2

x2C.yCn0/2 D p2

q2
0

for some p 2 N.

Then y 2 Q, x2 2 Q.

Proof. Let m1; m2; : : : ; mi ; : : :, be an infinite sequence of positive integers greater

than n0 such that x2C.yCmi /2

x2C.yCn0/2 D
p2

i

q2
0

. Let us write x2 C .y C n0/2 D q2
0 t for some

t > 0, then x2 C .y C mi /
2 D p2

i t . Subtracting this by the previous equation, we
get

.mi � n0/.2y C mi C n0/ D .p2
i � q2

0/t:

Now comparing this with the same equality for mj , we obtain

.mi � n0/.2y C mi C n0/

.mj � n0/.2y C mj C n0/
D

p2
i � q2

0

p2
j � q2

0

(4.1)

Since mi ; mj ; n0; pi ; pj are all integers, we have y is rational unless

p2
i � q2

0

p2
j � q2

0

D
m2

i � n2
0

m2
j � n2

0

:

But this cannot happen as long as mi ¤ mj . In fact, note first that we can
assume without loss of generality that n0 D 0 (via shifting y by some integer).
Now let r D .p2

i � q2
0/=.p2

j � q2
0/. Then equation 4.1 above leads to

2y.mi � mj r/ D rm2
j � m2

i

We cannot solve for y if mi D mj r . But if this happens r D
m2

i

m2
j

D
mi

mj
, hence

mi D mj .
This also immediately implies x2 2 Q using the equation x2 C .y C n0/2 D

q2
0 t . �

Combining Lemma 4.8 and Lemma 4.9, we have the following

Corollary 4.10. Let x > 0; y � 0 be two real numbers and let A D ¹�n j �n D
p

x2 C .y C n/2; n 2 Nº. Then A is not finitely divisor dominated.

Proposition 4.11. Let G be a group acting properly on a CAT.0/ space X via

semi-simple isometries. If G contains Z2 as a subgroup, it does not have BVC.

Proof. Assume G has BVC, then the set of translation lengths L D ¹jgj j g 2 Gº

is finitely divisor dominated by Lemma 4.6. On the other hand, by the Flat Torus
Theorem, we have that Z2 acts on a flat plane E2 inside X and the translation
length of any g D .z; w/ 2 Z2 is just d.g; gx0/ for some base point x0 2 E2. Let
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a be the translation vector of .1; 0/ 2 Z2 and b for .0; 1/ 2 Z2. Let .a1; a2/; .b1; b2/

be the coordinate of a and b in the Euclidean plane E2. Without loss of generality,
we can assume a1 > 0; a2 � 0 and .b1; b2/ D .1; 0/. Then the translaton length of
.1; k/ 2 Z2 is the length of the vector a C kb D .a1; a2/ C k.0; 1/ D .a1; a2 C k/,
which is

�.1;k/ D

q

a2
1 C .a2 C k/2:

Now if a set is finitely divisor dominated, then any subset of it is also finitely

divisor dominated. In particular, the subset
®

q

a2
1 C .a2 C k/2

ˇ

ˇ k 2 N
¯

is finitely
divisor dominated for some a1 > 0; a2 � 0. But this contradicts Corollary 4.10.

�

Recall that a semi-simple isometry is called hyperbolic if it has positive transla-
tion length. Now if g acts properly on a CAT.0/ space X via a hyperbolic isometry,
by the Flat Torus Theorem, we have an axis E1 on which g acts via translation by
the length jgj.

Definition 4.12. Supppose g is a hyperbolic isometry of a CAT.0/ space X . Then
g is called rank one if no axis of g bounds a flat half plane in X .

Note that if a group acts on a CAT.0/ space X properly and cocompactly via
isometries, then X is proper [2, I.8.4(1)]. Combining this with Corollary 3.3(e)
and Proposition 4.11, we have the following

Theorem 4.13. Let G be a subgroup of a CAT.0/ group which contains a sub-

group ismorphic to Z2 or a rank-one isometry, then G does not have BVC.

Remark 4.14. The Flat Closing Conjecture [10, 6.B3] predicts that X contains
a d -dimensional flat if and only if G contains a copy of Zd as a subgroup. In
particular, it implies that a CAT.0/ group is hyperbolic if and only if it does not
contain a subgroup isomorphic to Z2. Thus the Flat Closing Conjecture together
with Theorem 4.13 would also imply that a CAT.0/ group has BVC if and only if
it is virtually cyclic.

Recall that a CAT.0/ cube group is a group which acts properly and cocom-
pactly on a CAT.0/ cube complex via isometries.

Lemma 4.15. Let G be a group which acts on a CAT.0/ cube complex X properly

and cocompactly via isometries and suppose that G is not virtually cyclic. Then

either G contains a rank one isometry or G contains a free abelian subgroup of

rank 2.
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Proof. This is essentially due to Caprace and Sageev [4]. Note first that X is
locally finite, see for example [2, I.8.4(1)]. Note also that G acts on X without fixed
points and essentially (see [4, 1.1] for the terminology). Now by [4, Theorem A]
and remarks below it, we have that either X is a product of two unbounded CAT.0/

cube subcomplexes or G contains an element acting on X as a rank one isometry.
Note that since G acts on X cocompactly, if X is a product of two CAT.0/ cube
complexes, by [4, Corollary D], it follows that X contains a free abelian subgroup
of rank 2. �

Corollary 4.16. Let G be a CAT.0/ cube group. Then G has BVC if and only if

G is virtually cyclic.
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