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We classify the central simple finite-dimensional noncommutative Jordan superalgebras
of degree > 1 over an algebraically closed field of characteristic p > 2. The case of
characteristic 0 was considered by the authors in the previous paper [24]. In particular,
we describe Leibniz brackets on all finite dimensional central simple Jordan superalge-
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1 Introduction

The problem of classification of the simple finite-dimensional noncommutative Jordan
superalgebras was posted in [6, Problem 3.100 a)] (see [26] as well). The present article con-
tinues our previous articles [23]–[24], where we classified the central simple finite-dimensional
noncommutative Jordan superalgebras of characteristic 0. Now we consider the remaining
modular case.

The class of noncommutative Jordan algebras is extremely extensive: it includes alter-
native, Jordan, quasi-associative, quadratic flexible, and anticommutative algebras.

The classification of finite dimensional simple noncommutative Jordan algebras of charac-
teristic 0 was done by R. Schafer [27], who proved that these algebras are either commutative

∗∗Corresponding author.
E-mail addresses: app@math.nsc.ru (A.P. Pozhidaev), shestak@ime.usp.br (I.P. Shestakov).
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Jordan algebras or quasi-associative algebras or flexible algebras of degree 2. R. Oehmke [21]
extended the Schafer classification to the case of flexible strictly power-associative algebras
of characteristic 6= 2, 3; K. McCrimmon [18, 19] did it for noncommutative Jordan algebras
of degree > 2 and of characteristic 6= 2, and K. Smith [31] described such algebras of degree
two. The case of nodal simple algebras of positive characteristic was mainly considered by
L. Kokoris [15, 16], and the case of infinite-dimensional noncommutative Jordan algebras
was studied in the papers by I. P. Shestakov [28] and V. G. Skosyrskiy [30].

The finite-dimensional simple Jordan superalgebras over algebraically closed fields of
characteristic zero were classified by V. Kac [10] and I. Kantor [11]. The study of Jordan
superalgebras of positive characteristics was initiated by I. Kaplansky [13]. M. Racine and
E. Zelmanov [25] classified the finite-dimensional simple Jordan superalgebras of characteris-
tics 6= 2 with semisimple even part; C. Martinez and E. Zelmanov considered the case when
the even part is not semisimple but unital [17], and E. Zelmanov did it for the remaining
nonunital case [32].

In the first section of our paper we give some known results on the noncommutative
Jordan superalgebras needed further. In particular, we present their defining identities,
the Peirce decomposition, the coordinatization theorem, and some facts about such simple
superalgebras.

In the second section we reduce the classification problem to the problem of description
of Leibniz brackets on the simple Jordan superalgebras with n < 3 connected orthogonal
idempotents and on B(m,n). To this end we prove an analog of Oehmke’s theorem.

In sections 3 – 5 we investigate the required cases of simple Jordan superalgebras. In
particular, we describe Leibniz brackets on central simple finite-dimensional Jordan super-
algebras (up to Leibniz brackets on Kan(B(m,n)) of mixed type).

In what follows, U denotes a noncommutative Jordan superalgebra (not necessarily finite-
dimensional) over F , where F always stands for a ground field of characteristic 6= 2. The
symbol := denotes an equality by definition, (x, y, z) := (xy)z − x(yz), and 〈Y 〉 := 〈Y 〉F is
the linear span of a set Y over F .

2 Preliminaries

Let U = U0̄ ⊕ U1̄ be a superalgebra, (−1)xy := (−1)p(x)p(y), where p(x) is the parity
of x, that is, p(x) = i if x ∈ Uī. In what follows, if the parity of an element appears in
a formula then this element is assumed to be homogeneous; the idempotents are assumed
to be even. Denote by Lx and Rx the left and right multiplication operators by x ∈ U :
yRx := yx, yLx := (−1)xyxy; [x, y] := xy − (−1)xyyx, x ◦ y := 1

2
(xy + (−1)xyyx).

A superalgebra U is called a noncommutative Jordan superalgebra (or NJ-superalgebra
for short) provided that the operator identities

[Rx◦y, Lz] + (−1)x(y+z)[Ry◦z, Lx] + (−1)z(x+y)[Rz◦x, Ly] = 0, (1)

[Rx, Ly] = [Lx, Ry] (2)

hold for all x, y, z ∈ U . The second operator identity defines the class of flexible superalge-
bras. Note that (2) follows from (1) if U possesses the unity. If we assume that all elements
in U are even then we arrive at a noncommutative Jordan algebra definition.
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The flexibility identity may be written in the following forms:

(−1)xyLxy − LyLx = Ryx −RyRx, (3)

(x, y, z) = −(−1)xy+xz+yz(z, y, x). (4)

Let Γ be the Grassmann superalgebra in generators 1, ξi, i ∈ I, where we admit the
case I = Ø. If I = {1, . . . , n} then we denote this superalgebra by Γn.

If U = (U, ·) is a superalgebra and λ ∈ F then the λ-mutation of U is the superalgebra

U (λ) = (U, ·λ), where x ·λ y = λx · y + (−1)xy(1− λ)y · x. Put U (+) := U ( 1
2

).

Lemma 1. ([23].) U is a NJ-superalgebra iff U is a flexible superalgebra such that U (+) is
a Jordan superalgebra.

Recall some usual facts about Peirce decompositions [1, 18, 23]. Let e be an idempotent
of U . Put Ui = {x : ex+ xe = ix} with i = 0, 1, 2. Using the standard argument we get

U = U0 ⊕ U1 ⊕ U2. (5)

Denote by Pi the associated projections on Ui. Note that U0, U1, and U2 satisfy the
following relations:

U2
i ⊆ Ui, UiU1 + U1Ui ⊆ U1, U0U2 = U2U0 = 0, (6)

x ∈ Ui ⇒ xe = ex =
1

2
ix (i = 0, 2); x, y ∈ U1 ⇒ x ◦ y ∈ U0 + U2. (7)

Given λ ∈ F , define U
[λ]
1 (e) = {x ∈ U1 | ex = λx}. One can easily check that the subspace

S
[φ]
1 (e) = U

[λ]
1 (e) + U

[1−λ]
1 (e) is uniquely defined by φ = λ(1 − λ), namely: S

[φ]
1 (e) = {u ∈

U1 | eue = φu}. For a pair of orthogonal idempotentes ei, ej we put S
[φ]
ij := S

[φ]
1 (ei)∩S[φ]

1 (ej).

We say that ei and ej are evenly connected if there are φ ∈ F and even vij, uij ∈ S[φ]
ij such

that vijuij = uijvij = ei + ej, i < j. We say that ei and ej are oddly connected if there are

φ ∈ F and odd vij, uij ∈ S[φ]
ij , such that vijuij = −uijvij = ei − ej, i < j. The idempotents

ei and ej are said to be connected if they are either evenly or oddly connected.

A split quasiassociative superalgebra is a mutation D(λ) of an associative superalgebra D.
A superalgebra U is quasiassociative if there is an extension Ω of F such that UΩ is a split
quasiassociative superalgebra over Ω: UΩ = D(λ) for λ ∈ Ω.

The following theorem and lemmas from [23]–[24] we use further.

Theorem 1. ( Coordinatization theorem.) Let U be a NJ-superalgebra. Assume that the
unity 1 =

∑n
i=1 ei ∈ U is a sum of n ≥ 3 connected orthogonal idempotents. Then either U

is a commutative Jordan superalgebra or U = D(λ)
n is a split quasi-associative superalgebra

determined by the superalgebra Dn of n×n matrices with entries in D, where D is associative.

Lemma 2. If ui ∈ Ui (i = 0, 2), z1, w1 ∈ U1 then

2e(z1 ◦ u0) = 2ez1 ◦ u0 = z1u0, 2(u0 ◦ z1)e = 2u0 ◦ z1e = u0z1; (8)

2e(u2 ◦ z1) = 2u2 ◦ ez1 = u2z1, 2(z1 ◦ u2)e = 2z1e ◦ u2 = z1u2; (9)

2P2(ez1 ◦ w1) = 2P2(z1 ◦ w1e) = P2(z1w1), 2P0(w1 ◦ ez1) = 2P0(w1e ◦ z1) = P0(w1z1); (10)

P1(z1w1) ◦ ui = P1(z1(w1 ◦ ui)) = (−1)w1uiP1((z1 ◦ ui)w1). (11)
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Lemma 3. Let (A, ·) be a flexible superalgebra. If A(+) possesses the unity 1 =
∑n

i=1 ei for
some orthogonal even idempotents ei then A possesses the same property.

Lemma 4. The mapping d = [·, x] is a superderivation in U (+) for every x ∈ U .

Lemma 5. If U is simple then U (+) is differentiably simple.

A super-anticommutative binary operation { , } we will call a Leibniz bracket on a super-
algebra (A, ·) provided that

{a · b, c} = (−1)bc{a, c} · b+ a · {b, c} (Leibniz identity) (12)

holds for all homogeneous a, b, c ∈ A.
In [23]–[24] we called these brackets generalized Poisson brackets, but this term was used

also by V. Kac in [4] for another algebra.

The category of NJ-superalgebras is isomorphic to the category of Jordan superalgebras
with Leibniz (super)brackets.

Lemma 6. Let (J ; ◦) be a Jordan superalgebra equipped with a Leibniz bracket { , }. Then
the operation ab = a ◦ b + 1

2
{a, b} equips J with the structure of an NJ-superalgebra U

such that U (+) = J . Conversely, if U is an NJ-superalgebra then the supercommutator [ , ]
is a Leibniz bracket on the Jordan superalgebra U (+). Furthermore, the multiplication in U
can be recovered from the Jordan multiplication ◦ in U (+) and the Leibniz bracket [ , ] via
ab = a ◦ b+ 1

2
[a, b].

3 An analog of Oehmke’s theorem

Let B(m) be the algebra of truncated polynomials in m variables, i.e., B(m) is a quotient
algebra of the polynomial algebra F [t1, . . . , tm] by the ideal generated by tpi , i = 1, . . . ,m.
Let Γn be the Grassmann algebra in n variables ξ1, . . . , ξn.

Theorem. (Cheng-Kac Theorem [5].) Let A be a finite-dimensional differentially simple
superalgebra over an algebraically closed field F of characteristic 0. Then A ∼= S ⊗F Γn,
where S is some simple superalgebra.

Slightly changing the proof of this theorem we obtain its modular analog:

Theorem. Let A be a finite-dimensional differentially simple superalgebra over an alge-
braically closed field F of characteristic p ≥ 0. Then A ∼= S⊗F B(m,n), where S is a simple
superalgebra and B(m,n) := B(m)⊗ Γn.

Thus, the adjoined Jordan superalgebra U (+) of a simple NJ-superalgebra U over an
algebraically closed field F of characteristic p 6= 2 is a tensor product of a simple Jordan
superalgebra and a superalgebra B(m,n).

Proposition 1. Let U be a simple finite-dimensional NJ-superalgebra such that U (+) ∼=
J ⊗ B(m,n), and let J = J0 ⊕ J1 ⊕ J2 be the Peirce decomposition of the simple Jordan
superalgebra J for some idempotent e ∈ J . If for every nonzero a ∈ Ji, i = 0, 1, 2, there
exists ua ∈ J1 such that a ◦ ua 6= 0 then m = n = 0, and U (+) = J is simple.
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Proof. Denote B := B(m,n) and let B+ denote the augmentation ideal of the superal-
gebra B, that is, B+ is the subsuperalgebra of B generated by all 1 ⊗ ξi and tj ⊗ 1; then
B = F+B+. Assume that B+ 6= 0, that is, either m 6= 0 or n 6= 0. Show that I := J⊗B+�U .

We have Uk = Jk ⊗ B, k = 0, 1, 2. Let Ik = Jk ⊗ B+, then I = I2 + I1 + I0. It is clear
that I � U (+). Thus it suffices to prove that IU ⊆ I.

From (8) and (9) we get

IkU1 ⊆ I ◦ U ⊆ I for k ∈ {0, 2}. (13)

Furthermore, by (6) we have IkUj = 0 for k 6= j ∈ {0, 2}. Therefore, it sufficent to prove
that I1U ⊆ I and that IkUk ⊆ I for k = 0, 2.

To prove (13) for k = 1, in view of (10) it suffices to show that P1(xy) ∈ I when
x ∈ I1, y ∈ U1. Assume that P1(xy) = z0 ⊗ 1 +

∑
zi ⊗ fi for some zi ∈ J1, z0 6= 0, fi ∈ B+.

Denote tp−1
1 . . . tp−1

m ⊗ξ1 . . . ξn by tξ. Take h = e⊗ tξ. Then h◦P1(xy) 6= 0, which contradicts
(11).

Let us next prove that the subspace J1⊗ tξ is invariant by multiplication on e. It is clear
that (J1 ⊗ tξ) ◦ e ⊆ J1 ⊗ tξ, hence it suffices to show that [J1 ⊗ tξ, e] ⊆ J1 ⊗ tξ.

Observe that

[e⊗ a, e] = 0 for any a ∈ B. (14)

In fact, it follows easily from the Leibniz identity that

[a2, x] = 2[a, a ◦ x] for any a ∈ U0̄.

Therefore,

[e⊗ a, e] = [e⊗ a, e2] = 2[(e⊗ a) ◦ e, e] = 2[e⊗ a, e],

which proves (14). Let now u ∈ J1, consider

[u⊗ tξ, e] = 2[(u⊗ 1) ◦ (e⊗ tξ), e] = 2(u⊗ 1) ◦ [e⊗ tξ, e]± 2(e⊗ tξ) ◦ [u⊗ 1, e] =

= ( by (14)) = ±2(e⊗ tξ) ◦ [u⊗ 1, e] ∈ (e⊗ tξ) ◦ (J1 ⊗B) ∈ J1 ⊗ tξ.

Let now u ∈ I0 ∪ I2. By (8), (9) we have

u(J1 ⊗ tξ) ⊆ u ◦ ((J1 ⊗ tξ)e) + u ◦ (e(J1 ⊗ tξ)) ⊆ u ◦ (J1 ⊗ tξ) = 0,

since evidently I ◦ (J ⊗ tξ) = 0. Therefore,

(I0 + I2)(J1 ⊗ tξ) = (J1 ⊗ tξ)(I0 + I2) = 0. (15)

The same arguments show that

(U0 + U2)(J1 ⊗ tξ) + (J1 ⊗ tξ)(U0 + U2) ⊆ J1 ⊗ tξ. (16)

Prove now that I1(J1 ⊗ tξ) = 0. For any a ∈ J1, f ∈ B+ and h ∈ J1 ⊗ tξ we have

(a⊗ f)h = (a⊗ f) ◦ h+ 1
2
[a⊗ f, h] = 1

2
[a⊗ f, h] = [(a⊗ 1) ◦ (e⊗ f), h] =

= (a⊗ 1) ◦ [e⊗ f, h]± (e⊗ f) ◦ [a⊗ 1, h].
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By (15), [e⊗ f, h] ∈ [I2, J1 ⊗ tξ] = 0. Furthermore,

(e⊗ f) ◦ [a⊗ 1, h] = (e⊗ f) ◦ P2([a⊗ 1, h]) + (e⊗ f) ◦ P1([a⊗ 1, h])).

By (10),

P2([a⊗ 1, h]) = 2P2((a⊗ 1) ◦ (eh± he)) ∈ P2((a⊗ 1) ◦ (J1 ⊗ tξ)) ⊆ J2 ⊗ tξ,

hence (e⊗ f) ◦ P2([a⊗ 1, h]) ∈ I2 ◦ (J2 ⊗ tξ) = 0. Similarly, by (11),

P1([a⊗ 1, h]) ◦ (e⊗ f) = P1((a⊗ 1)(h ◦ (e⊗ f))± ((e⊗ f) ◦ h)(a⊗ 1)) = 0.

Therefore,

I1(J1 ⊗ tξ) = 0. (17)

Take now a ∈ Ik, b ∈ Ui, i ∈ {0, 2}. Assume that ab = c⊗ 1 + f , where 0 6= c ∈ Jk, f ∈ I.
Take h = uc ⊗ tξ, then h ◦ (ab) = (uc ◦ c)⊗ tξ 6= 0. On the other hand,

h ◦ (ab) = h ◦ (a ◦ b) + 1
2
h ◦ [a, b].

It is clear that h ◦ (a ◦ b) ∈ h ◦ I = 0. Furthermore, by (16)

h ◦ [a, b] = [h ◦ a, b]± a ◦ [h, b] = ± a ◦ [h, b] ∈ a ◦ (J1 ⊗ tξ) = 0.

Hence h ◦ (ab) = 0 and c = 0. Therefore, Ik(U0 + U2) ⊆ I.

We say that a noncommutative Jordan superalgebra U is of degree k if k is a maximal
possible number of pairwise orthogonal idempotents in U ⊗F F̄ , where F̄ is the algebraical
closure of the ground field F .

The theorem below was proved in [23, Theorem 2.4] for superalgebras over a field of
characteristic zero, but the same proof is valid for the case of characteristic p 6= 2; one has
only to use the mentioned above modular modification of the Cheng-Kac Theorem instead
of the original theorem.

Theorem 2. Let U be a finite dimensional central simple NJ-superalgebra of characteristic
p 6= 2. Then one of the following cases holds:

(a) U is a superalgebra of degree ≤ 2;

(b) U is a quasi-associative superalgebra;

(c) U is a Jordan superalgebra.

The next theorem is an analog of the well-known Oehmke’s theorem from [21]:

Theorem 3. Let U be a finite-dimensional central simple NJ-superalgebra of degree > 1
over an algebraically closed field F of characteristic p 6= 2. Then U (+) is simple.

Proof. By Lemma 3, the superalgebra U (+) has the same degree as U . Hence it suffices to
verify that the assumptions of Proposition 1 are fulfilled for all simple Jordan superalgebras
of degree > 1.

We recall the list of these superalgebras (see [17, 25, 29, 32] for the definitions):
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• Jordan matrix superalgebras: M
(+)
n|m, Mn[

√
1](+) ( or P (n)), Josp(n, 2m) =

H(Mn,2m, osp), Jtrp(n) = H(Mn|n, trp) ( or Q(n));

• Superalgebra of bilinear form J(V, f);

• Kaplansky superalgebra K3 and 4-dimensional superalgebra Dt;

• Kac superalgebras K10 and K9 (the last in the case char F = 3);

• Kantor doubles Kan(B(m,n)), n > 0, m ≥ 0, (m > 0 only if char F > 0),

• Exceptional matrix superalgebras H3(B(1, 2)), H3(B(4, 2)), char F = 3;

• Cheng-Kac superalgebra CK(Z, d), char F > 0;

• Semi-unital superalgebra V1/2(Z, d), char F > 0.

For every case the verification is simple, it suffices to consider the Peirce decomposition
and make simple computations.

In the next sections we will determine the structure of a simple NJ-superalgebra U
according to the type of the simple Jordan superalgebra J = U (+).

Some of the cases were already investigated in [23] and [24] when char F = 0. We will
refer to these cases when they are the same for the modular case.

4 Superalgebras of degree ≥ 3

Consider first simple NJ-superalgebras U of degree ≥ 3 for which the superalgebra U (+)

is of matrix type. As we have already observed, by Lemma 3 the degree of U (+) is also ≥ 3.

By Theorem 2, if U 6= U (+) then U is quasi-associative. In this case U ⊆ A(λ) for an
associative superalgebra A, hence the superalgebra U (+) ⊆ A(+) is special. Therefore, if U (+)

is one of the exceptional matrix superalgebras B(1, 2), B(4, 2) then U is Jordan, U = U (+).

If U (+) is one of the superalgebras M
(+)
n|m (n + m > 2), Mn[

√
1](+) (n > 2) and U 6= U (+)

then U is quasi-associative, U ∼= M
(λ)
n|m or U ∼= Mn[

√
1](λ).

Now, let U (+) ∼= Josp (n, 2m) = H(Mn,2m, osp) where n + m > 2. Assume that U is

quasi-associative, then U = M
(λ)
p|q or U = Mk[

√
1](λ). In the second case (U (+))0̄ = M

(+)
k

is a simple algebra while Josp (n, 2m)0̄ = H(Mn, trp) ⊕ H(M2m, sp) is a direct sum of two

simple algebras, a contradiction. Furthermore, if U = M
(λ)
p|q then (U (+))0̄ = M

(+)
p ⊕M (+)

q =

H(Mn, trp)⊕H(M2m, sp). But it is easy to see that the alebra H(Mn, trp) is not isomorphic

to any algebra M
(+)
p . In fact, in case of isomorphism these algebras should have the same

degree, that is, n should be equal to p, but then n2 = dimM
(+)
n 6= n(n+1)

2
= dimH(Mn, trp),

a contradiction.

Consider now the case U (+) = Jtrp(n) = H(Mn|n, trp). Then (U (+))0̄
∼= M

(+)
n , and

the odd part (U (+))1̄ considered as a Jordan bimodule over (U (+))0̄ is a direct sum of two
irreducible bimodules, corresponding to the subspaces of symmetric and skewsymmetric n×n
matrices. If U were quasi-associative then evidently U = Mn[

√
1](λ). In this case we would

have (U (+))0̄
∼= M

(+)
n again, but the odd part (U (+))1̄ in this case would be an irreducible
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bimodule over (U (+))0̄ isomorphic to the regular bimodule RegM
(+)
n . Therefore, U is not

quasi-associative and U = U (+).

It remains to consider a superalgebra U of degree 3 for which U (+) ∼= K10. Since K10 is
an exceptional supperalgebra, U can not be quasi-associative. Therefore, by Theorem 2, U
is Jordan and U = U (+).

Remark 1. The last result is equivalent to the fact that the Jordan superalgebra K10 does
not admit a non-trivial Leibniz bracket. In the next section we will give a unified proof of
this fact for the superalgebras K10 and K9, where the last one is of degree 2 and can not be
handled by Theorem 2.

We summarize the obtained results in the following theorem:

Theorem 4. Let U be a finite-dimensional central simple NJ-superalgebra of degree > 2
over an algebraically closed field F of characteristic p 6= 2. Then U = U (+) is Jordan,
except the cases U (+) ∈ {M (+)

n|m, Mn[
√

1](+)} when it is possible that U were quasi-associative,

U ∈ {M (λ)
n|m, Mn[

√
1](λ)}.

5 Superalgebras of degree 2

5.1 The cases U (+) ∼= Dt, K3, M
(+)
1|1 , Josp(1, 2), (M2[

√
1])(+), Jtrp(2).

Recall that Dt = (Fe1 + Fe2) + (Fx+ Fy) with (Dt)0̄ = Fe1 + Fe2, (Dt)1̄ = Fx+ Fy,
where e2

i = ei, e1 ◦ e2 = 0, ei ◦x = 1
2
x, ei ◦ y = 1

2
y, x ◦ y = e1 + te2, t ∈ F, x ◦x = y ◦ y = 0.

In order to determine NJ-superalgebras U for which U (+) ∼= Dt, it suffices to classify
possible Leibniz (super)brackets {, } on Dt. It is easy to see that {ei, ej} = 0. Let {e1, x} =
αx+ βy, {e1, y} = γx+ δy; α, β, γ, δ ∈ F . We have

0 = {e1, x ◦ y} = x ◦ {e1, y}+ {e1, x} ◦ y = (α + δ)(x ◦ y) = (α + δ)(e1 + te2),

from where δ = −α. Let, furthermore, {x, x} = λe1 + µe2. We have

1
2
{x, x} = {x, e1 ◦ x} = e1 ◦ {x, x}+ {x, e1} ◦ x = λe1 + β(x ◦ y) = (λ+ β)e1 + βte2,

which implies λ = −2β, µ = 2βt, that is, {x, x} = −2β(e1 − te2). Similarly, we obtain
{y, y} = 2γ(e1 − te2), {x, y} = 2α(e1 − te2). Therefore, the Leibniz bracket {, } on Dt is
completely determined by the action of e1 on (Dt)1 via z 7→ {e1, z}, that is, by the parameters
α, β, γ. We denote the corresponding NJ-superalgebra as Dt(α, β, γ).

If F is algebraically closed then we can find a Jordan basis x′, y′ of (Dt)1̄, where the
matrix of this action has one of the form:(

α 1
0 α

)
,

(
α 0
0 γ

)
. (18)

Dividing x′, y′ on the determinant of the matrix of their coordinates in the base (x, y), we will
have that x′ ◦y′ = x◦y, hence without lost of generality we may assume that x = x′, y = y′.
Our previous consideration show that in the first matrix in (18) we should have α = 0, and
in the second γ = −α. Resuming, we have
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Theorem 5. Let U be a simple central NJ-superalgebra over a field F of characteristic 6= 2
for which U (+) ∼= Dt. Then U is isomorphic to the superalgebra Dt(α, β, γ). Moreover, is
F is algebraically closed then U is isomorphic to one of the NJ-superalgebras defined by the
following nonzero Leibniz brackets on Dt:

• {e1, x} = αx, {e1, y} = −αy, {x, y} = −{y, y} = 2α(e1 − te2), α ∈ F ;

• {e1, x} = y, {x, x} = −2(e1 − te2).

We denote the corresponding NJ-superalgebras as Dt(α) and NDt.

Recall that the Kaplansky superalgebra K3 may be identified with the subspace Fe1 +
Fx + Fy of the superalgebra D0 which in this case is an algebra direct summond of D0:
D0
∼= K3 ⊕ Fe2. Using this fact, we obtain easily the following

Corollary 1. Let U be a simple central NJ-superalgebra over an algebraically closed field
F of characteristic 6= 2 for which U (+) ∼= K3. Then U is isomorphic to one of the NJ-
superalgebras K3(α), NK3, defined by the restriction of the Leibniz brackets from Theorem
5 on the subalgebra K3 of D0.

Furthermore, one can easily check the isomorphisms:

M
(+)
1|1
∼= D−1, Josp(1, 2) ∼= D

−1
2
.

Therefore, we have

Corollary 2. Let U be a simple central NJ-superalgebra over an algebraically closed field F
of characteristic 6= 2 for which U (+) ∼= M

(+)
1|1 or U (+) ∼= Josp(1, 2). Then U is isomorphic to

the NJ-superalgebras D−1(α), ND−1 or to D
−1

2
(α), ND

−1
2
, respectively.

Finally, we refer the following result:

Theorem 6. [24]. Let U be a simple central NJ-superalgebra over an algebraically closed
field F of characteristic 6= 2.

a) If U (+) ∼= (M2[
√

1])(+) then U = (M2[
√

1])(λ) is quasi-associative.
b) If U (+) ∼= Jtrp(2) then U = U (+) is Jordan.

5.2 The cases U (+) ∼= K9, K10.

Recall the definitions of the simple Jordan superalgebras K10 and K9 over a field F (see
[20, 29]).

The odd part ofK10 isM = 〈u, v, w, z〉, the even part A = A1⊕A2 = 〈e1, uz, vz, uw, vw〉⊕
〈e2〉 is a direct sum of ideals (of A). The unity in A1 is e1, and ei ·m = 1

2
m for every m ∈M .

Now,
u · z = uz, u · w = uw, v · z = vz, v · w = vw,

z · w = e1 − 3e2, uz · w = −u, vz · w = −v, uz · vw = 2e1,

and the remaining nonzero products may be obtained either by applying the skew-symmetries
z ↔ w, u ↔ v, or by the substitution z ↔ u, w ↔ v. For the convenience of reader, we
write them:

vw · z = v, vw · u = −w, uz · v = z, uw · z = u, uw · v = w, vz · u = −z,
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uw · vz = −2e1, u · v = e1 − 3e2.

If the characteristic of F is not 3, the superalgebra K10 is simple; but in the case of
characteristic 3 it contains a simple subsuperalgebra K9 = A1 ⊕M .

Note that the following theorem was formulated in [23], but it was given without a proof,
and here we give a proof, which is independent of the characteristic, and it works even in
the case of K9.

Theorem 7. Let U be a noncommutative Jordan superalgebra such that either U (+) ∼= K10

or U (+) ∼= K9. Then U ∼= K10 or K9, respectively.

Proof. For the proof we show that every Leibniz bracket on J := K10 (K9) is zero. We
give the proof for the case of K10, since in the case of the superalgebra K9 the proof is the
same (indeed, it is easier since we don’t have to think about the idempotent e2).

From the multiplication table in K10 we have:

Au ⊆ 〈u,w, z〉, Az ⊆ 〈z, u, v〉, Av ⊆ 〈v, z, w〉, Aw ⊆ 〈w, u, v〉.

By properties of Leibniz bracket we get:

{u, u} = {uw · z, u} = uw · {z, u} − {uw, u}z ∈ uw · A+ uA · z + wA · z
⊆ 〈e1, e2, vz, uz, uw〉.

Similarly, {u, u} = −{uz · w, u} ∈ 〈e1, e2, vw, uz, uw〉, and {u, u} = αe1 + βe2 + γuw + δuz
for some α, β, γ, δ ∈ F .

Analogously, {v, v} = α′e1 + β′e2 + γ′vw + δ′vz for some α′, β′, γ′, δ′ ∈ F .
Consider now

{u, v} = {uw · z, v} = uw · {z, v}+ z{uw, v} ∈ uw · A+ (uA+ wA) · z
⊆ 〈e1, e2, vz, uz, uw〉.

Similarly, {u, v} = −{uz · w, v} ∈ 〈e1, e2, vw, uz, uw〉, and {u, v} ∈ 〈e1, e2, uz, uw〉. Sub-
stituting v = vw · z = −vz · w, we analogously get {u, v} ∈ 〈e1, e2, vw, vz〉, and finally
{u, v} = λ1e1 + λ2e2 for some λ1, λ2 ∈ F .

Furthermore,

0 = {uv, uv} = u{v, uv}+ {u, uv}v
= −u(u{v, v}) + u({v, u}v)− (u{u, v})v + ({u, u}v)v

= −u(u(γ′vw + δ′vz)) +
λ1 + λ2

2
uv − λ1 + λ2

2
uv + ((γuw + δuz)v)v

= γ′uw + δ′uz + γwv + δzv.

Therefore, γ = δ = γ′ = δ′ = 0, and we have

{u, u} = αe1 + βe2, {v, v} = α′e1 + β′e2.

Similarly, {z, z}, {w,w}, {z, w} ∈ 〈e1, e2〉.
Since e1 and e2 are idempotents, {ei, a} = 0 for all a ∈ A, i = 1, 2. Therefore,

0 = {uv, uz} = u{v, uz}+ {u, uz}v
= −{v, u · uz}+ {v, u}uz + {u, uz · v} − uz{u, v} = {u, z}.
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Analogously, {v, z} = {u,w} = {v, w} = 0.
Furthermore,

{v, v} = {vw · z, v} = ({v, v}w)z =
α′ + β′

2
(3e2 − e1) = α′e1 + β′e2;

0 = {v, z} = {v, uz · v} = {v, uz}v + uz{v, v}

= ({v, u}z)v + uz{v, v} =
λ1 + λ2

2
zv + α′uz,

whence α′ = β′ = 0, λ1 + λ2 = 0. Then {u, v} = {uw · z, v} = ({u, v}w)z = 0. Now,

{u, u} = {uw · z, u} = ({u, u}w)z =
α + β

2
(3e2 − e1);

0 = {u, z} = {u, uz · v} = {u, uz}v = {u, u}zv = −α + β

2
zv.

Therefore, {u, u} = 0.
Similarly, {z, z} = {z, w} = {w,w} = 0. Since M generates J, {J, J} = 0.

5.3 The case U (+) ∼= CK(Z, d).

Recall the definition of the simple Jordan Cheng — Kac superalgebra CK(Z, d), where
Z is a unital associative commutative algebra, and d : Z 7→ Z is a derivation (see [17]).

The even part is A = 〈1, w1, w2, w3〉, and the odd part is M = 〈x, x1, x2, x3〉, which are
free Z-modules of rank 4. The multiplication ◦ in A is Z-linear, wi ◦ wj = 0 when i 6= j,
w2

1 = w2
2 = 1, w2

3 = −1. Denote xi×i = 0, x1×2 = −x2×1 = x3, x1×3 = −x3×1 = x2, x3×2 =
−x2×3 = x1, and do analogously with i× s (i, s ∈ S := {1, 2, 3}). The A-bimodule structure
on M is given by

◦ g gwj
fx (fg)x (fgd)xj
fxi (fg)xi (fg)xi×j

The product on M is defined by the rules

◦ gx gxj
fx fdg − fgd −(fg)wj
fxi (fg)wi 0

The superalgebra CK(Z, d) is simple iff Z is D-simple. Therefore, in the modular case
by [3] we may assume that Z ∼= B(m).

Observe that e1 = 1−w1

2
, e2 = 1+w1

2
are orthogonal idempotents in CK(Z, d) and e1 +e2 =

1, hence CK(Z, d) is of degree 2.

Proposition 2. Let Z be a d-simple associative commutative ring (d ∈ Der(Z), d 6= 0). Let
{ , } be a Leibniz bracket on Z such that

{fd, g} = {f, g}d = {f, gd} (19)

hold for all f, g ∈ Z. Then {Z,Z} = 0.

11



Proof. It is easy to see that Z has no absolute divisors of zero (for example, see[22]).
Assume that {Z,Z} 6= 0. Act by d on {fg, h} = {f, h}g + f{g, h} and use (19). For all
f, g, h ∈ Z, we obtain

{fg, hd} = {f, hd}g + {f, h}gd + fd{g, h}+ f{g, hd},
{f, h}gd + fd{g, h} = 0, {f, h}fd = 0. (20)

Now, by (20) 0 = {f, gd}fd = {fd, g}fd for all f, g ∈ Z. Therefore, {ZdZd, Z} = 0.
Note that by the differential simplicity of Z we have ZdZ = Z and {Z,Z}Z = Z, whence

ZdZd 6= 0 and the equality x{Z,Z} = 0 implies x = 0.
If a 6= 0 and {a, Z} = 0 then by (20) ad{Z,Z} = 0 and ad = 0. Consequently, aZ = Z.
By above, there exists b = ad ∈ Zd such that b2Z = Z, i.e., bZ = Z. By (20) with f = a

we have {a, Z} = 0. Again by (20) with g = a we get {f, h}b = 0 and {f, h} = 0 for all
f, h ∈ Z, which is a contradiction.

Theorem 8. Let U be a central simple noncommutative Jordan superalgebra such that
U (+) ∼= CK(Z, d). Then U ∼= CK(Z, d).

Proof. We have to show that every Leibniz bracket { , } on J = CK(Z, d) is zero. Note
that if d = 0 and Z is the main field (by the centrality) then CK(Z, d) ∼= (M2[

√
1])(+). Thus,

we assume that d 6= 0.
As 1 is the unity in U (+), {1, u} = 0 for every u ∈ U . Since A is the even part, we have

{a, a} = 0 for all a ∈ A. Recall that supercommutator in U defines a Leibniz bracket in U (+)

and the superderivation {◦, u}(x) = {x, u} in U (+). Note that the description of derivations
of CK(Z, d) was obtained in [?].

Firstly, we prove that every Leibniz bracket { , } is zero on the Z-generators of U . In
what follows, we put w0 := 1, x0 := x, and we use i, j, k for some pairwise different indices
in S.

Let {wi, wj} =
∑3

r=0 αrwr for some αr ∈ Z. The relations 0 = {w2
i , wj} = 2{wi, wj} ◦wi

give (
∑3

r=0 αrwr) ◦ wi = α0wi ± αi = 0, i.e., {wi, wj} = αijwi×j, where αij = αji ∈ Z. Now,
0 = {w1 ◦w2, w3} = α13w1×3 ◦w2 +α23w1 ◦w2×3 = α13−α23; 0 = {w1 ◦w3, w2} = −α12 +α32.
Hence, α12 = α13 = α23 := κ ∈ Z. Thus,

{wi, wj} = κwi×j for all i, j ∈ S.

Let {x,wi} =
∑3

r=0 θ
(i)
r xr for some θ

(i)
r ∈ Z. Then

0 = {x ◦ wi, wi} = (
3∑
r=0

θ(i)
r xr) ◦ wi =

3∑
r=1

θ(i)
r xr×i ⇒ {x,wi} ∈ 〈x, xi〉Z ;

0 = {x ◦ wj, wi} = (θ
(i)
0 x+ θ

(i)
i xi) ◦ wj + x ◦ κwj×i = θ

(i)
i xi×j − κdxi×j.

Hence, θ
(i)
i = κd for all i ∈ S.

Let {xi, wj} =
∑3

r=0 γ
ij
r xr for some γijr ∈ Z. Then

0 = {xi, w2
j} ⇒ 0 = {xi, wj} ◦ wj =

3∑
r=1

γijr xr×j ⇒ {xi, wj} ∈ 〈x, xj〉Z .
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Therefore,

{wi, xj} = ±{wi, xk ◦ wi} = ±{wi, xk} ◦ wi = 0,

{wi, xi} = ±{wi, xj ◦ wk} = ±xj ◦ {wi, wk} = 0.

Since
κwi×j = {wi, wj} = {xi ◦ x,wj} = xi ◦ {x,wj} = xi ◦ (θ

(j)
0 x) = θ

(j)
0 wi;

therefore, κ = 0, θ
(j)
0 = 0 for all j ∈ S. Finally,

{x,wi} = {wi, ws} = {xi, ws} = 0

for all i, s ∈ S.
Let {x, x} =

∑3
i=0 δrwr. Then 0 = {x ◦wi, x} = δ0wi± δi with i ∈ S, whence {x, x} = 0.

Analogously, 0 = {x ◦ wi, xs} = {x, xs} ◦ wi, and {x, xs} = 0 for all s ∈ S.

Now, for every f ∈ Z we have {f, x} =
∑3

r=0 ψ
(r)
f xr for some ψ

(r)
f ∈ Z, whence 0 =

{fwi ◦ wj, x} = ({f, x} ◦ wi) ◦ wj and {f, x} = ψfx for ψf := ψ
(0)
f ∈ Z.

Let {f, xs} =
∑3

r=0 φ
s,r
f xr for some φs,rf ∈ Z. Then the equalities 0 = {f, xi ◦ xj} =

{f, xi} ◦ xj + xi ◦ {f, xj} imply φs,0f = 0 for all f ∈ Z, s ∈ S. Now, as above

0 = {fwi ◦ wj, xs} = ({f, xs} ◦ wi) ◦ wj and {f, xs} = 0.

Note that {f, wi} = {f, xi ◦ x} = xi ◦ ψfx = ψfwi, and {f, w2
i } = 2{f, wi} ◦ wi = ±2ψf ,

whence ψf = 0. Finally,

{f, x} = {f, xi} = {f, wi} = 0 for all i ∈ S.

Show that {xi, xj} = 0 for all i, j ∈ S.
Let {x1, x2} =

∑3
i=0 βiwi. Then

{x1, x2} = −{x1, x3 ◦ w1} = −{x1, x3} ◦ w1,

{x1, x3} = −{x1, x2 ◦ w1} = −{x1, x2} ◦ w1.

Therefore, {x1, x2} = ({x1, x2} ◦w1) ◦w1 = (β0w1 + β1) ◦w1 = β0 + β1 ◦w1. Analogously we
get

{x2, x1} = {x2, x3 ◦ w2} = {x2, x3} ◦ w2,

{x2, x3} = {x2, x1 ◦ w2} = {x2, x1} ◦ w2,

whence

{x1, x2} = β0, {x2, x3} = β0w2, {x1, x3} = −β0w1,

{x2, x3} = {x1 ◦ w3, x3} = {x1, x3} ◦ w3 = 0, and β0 = 0.

Finally, {xi, xi} = ±{xi, xj ◦ wk} = 0.
Note the following equalities

{x ◦ gwi, h} = {gdxi, h} = xi ◦ {gd, h},
{x ◦ gwi, h} = x ◦ {gwi, h} = x ◦ (wi ◦ {g, h}).
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Let {g, h} =
∑3

i=0{g, h}iwi, where {g, h}i ∈ Z. Then

x ◦ (wi ◦ {g, h}) = x ◦ ({g, h}0wi ± {g, h}i) = {g, h}d0xi ± {g, h}ix.

Since xi ◦ {gd, h} ∈ 〈x1, x2, x3〉Z , we have {g, h}i = 0 for all i ∈ S and g, h ∈ Z, i.e.,
{g, h} ∈ Z for all g, h ∈ Z. We also infer that (19) hold in Z. Hence, by Proposition 2
{Z,Z} = 0. As we see, all defined above Leibniz brackets are zero. Since a Leibniz bracket
is completely defined by its values on the generators (and Z, in our case), {x, y} = 0 for all
x, y ∈ J . Thus, every Leibniz bracket on CK(Z, d) is zero.

6 The cases U (+) ∼= J(V, f ), Kan(A), V1/2(Z, d), B(m,n)

6.1 The case J(V, f), V = V1̄.

The case when U is a simple noncommutative Jordan superalgebra such that U (+) ∼=
J(V, f) is a Jordan superalgebra determined by a supersymmetric nondegenerate bilinear
form f on the superspace V = V0̄ + V1̄ was considered in [23, Lemma 4.4]. It was proved
there that this condition is always true when J(V, f) is of degree 2. Here we consider the
remaining subcase when J(V, f) is of degree 1. In this case J(V, f) = F ⊕ V , where V = V1̄

is the odd part of J (dimV ≥ 2) and f(v, v) = 0 for every v ∈ V .

Proposition 3. Let U be a simple noncommutative Jordan superalgebra such that U (+) ∼=
J(V, f)⊗B(m,n), where V = V1̄. Then m = n = 0 and U (+) ∼= J(V, f).

Proof. As above, denote by B+ the augmentation ideal of the superalgebra B = B(m,n),
that is, the subsuperalgebra in B generated by all 1 ⊗ ξi and tj ⊗ 1. As in Section 3, show
that I := J(V, f) ⊗ B+ � U . Put I1 := {g ∈ I : g =

∑
gi ⊗ bi, bi ∈ B1̄}. Write a ≡I b

if a − b ∈ I (analogously for I1). Let { , } be a Leibniz bracket on J := U (+). Show that
{J, J} ⊆ I.

Let {u, u} ≡I1 1⊗ a, {u, v} ≡I1 1⊗ b, where u and v are arbitrary linearly independent
elements in V , a, b ∈ B0̄. Then

0 = {u ◦ v, u} = −{u, u} ◦ v + u ◦ {v, u} ≡I1 −v ⊗ a+ u⊗ b,

whence a = b = 0. Note that if m = n = 0 then we infer that { , } is zero on J . Assume
further that either m 6= 0 or n 6= 0. Let v ∈ V and {v, ti} ≡I vi ⊗ 1 for some vi ∈ V . Then

0 = −{v ◦ vti, vti} = {v, vti} ◦ vti − v ◦ {vti, vti} ≡I2

−(v ◦ {v, ti}) ◦ vti − v ◦ ({v, vti} ◦ ti + v ◦ {ti, vti}) ≡I2

−(v ◦ vi) ◦ vti − v ◦ ((−v ◦ {v, ti}) ◦ ti + v ◦ ({ti, v} ◦ ti)) ≡I2

−(v ◦ vi) ◦ vti + v ◦ ((v ◦ vi) ◦ ti + v ◦ (vi ◦ ti)) =

−(v ◦ vi) ◦ vti + 2v ◦ (v ◦ vi)ti = (v ◦ vi)vti.
(Here and further, vb stands for v⊗b for v ∈ V, b ∈ B). Therefore, v◦vi = 0. Now, take some
v, u ∈ V such that u ◦ v = 1. We have {v, ti} = {vti ◦ u, v} = −{vti, v} ◦ u+ vti ◦ {u, v} ≡I
−({v, v} ◦ ti) ◦ u − (v ◦ {ti, v}) ◦ u ≡I (v ◦ {v, ti}) ◦ u, whence vi = (v ◦ vi) ◦ u = 0. Thus,
{v, ti} ≡I 0.
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Let {v, ξi} ≡I1 1⊗gi, {u, ξi} ≡I1 1⊗hi, where u and v are arbitrary linearly independent
elements in V , gi, hi ∈ B0̄. Then

0 = {v ◦ u, ξi} = −{v, ξi} ◦ u+ v ◦ {u, ξi};−u⊗ gi + v ⊗ hi = 0,

whence gi = hi = 0.
Now, fix i, j and let {ti, ξj} = 1⊗a+u⊗1+

∑
vi⊗hi, where a ∈ B1̄, vi, u ∈ V, hi ∈ B0̄, hi

is not invertible for every i. Take v ∈ V such that v ◦ u = 1. Then

{ti, ξj} = {v ◦ uti, ξj} = −{v, ξj} ◦ uti + v ◦ {uti, ξj} ≡I v ◦ ({u, ξj} ◦ ti + u ◦ {ti, ξj}) ≡I

v ◦ (u ◦ {ti, ξj}) = v ◦ (u⊗ a+
∑

(u ◦ vi)⊗ hi) ≡I 1⊗ a,

whence u = 0. Moreover,

{v ◦ uti, utj} = {ti, u ◦ tj} ≡I u ◦ {ti, tj};

{v ◦ uti, utj} = v ◦ {uti, utj} − {v, utj} ◦ uti ≡I v ◦ {uti, utj};

{uti, utj} ≡I u ◦ {ti, utj} ≡I u ◦ (u ◦ {ti, tj}) ≡I 0,

i. e., u◦{ti, tj} ≡I 0, and {ti, tj} ≡I 0. We proceed analogously with ξi, ξj. Thus, {J, J} ⊆ I,
U2 ⊆ I and I = J(V, f)⊗B+ � U . Hence U is simple, we have I = 0 and U (+) = J(V, f).

The Proposition 3 and [23, Lemma 4.4] imply

Theorem 9. Let U be a noncommutative Jordan superalgebra such that U (+) is the Jor-
dan superalgebra J(V, f) = F + V of a nondegenerate supersymmetric bilinear superform f
on a vector superspace V . Realizing a quadratic extension of the field F if necessary, the
multiplication in U is given by

uv = f(u, v) + u× v,

where u×v is a superanticommutative multiplication on V such that f(u×v, w) = f(u, v×w)
for any u, v, w ∈ V .

We will denote the superalgebra constructed in this theorem as J(V, f,×). An example
of a simple superalgebra of type J(V, f,×) one can obtain by taking for (V,×) a classical
semisimple Lie superalgebra and for f the Killing form on V .

6.2 U (+) ∼= Kan(A).

Recall the definition of Kantor double Kan(A).
Let A = A0̄ ⊕ A1̄ be an associative super-commutative superalgebra. Assume that on A

another operation { , } (a bracket) is defined which is super-anticommutative. Consider the
direct sum of vector spaces

Kan(A) = A⊕ Ā,

where Ā is an isomorphic copy of A. Define a product on Kan(A). Given a, b ∈ A, their
product in Kan(A) coincides with the product ab in A, and

ab̄ = ab, b̄a = (−1)aba, āb̄ = (−1)b{a, b}.
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The superalgebra structure on J = Kan(A) is given by: J0̄ = A0̄ ⊕ Ā1̄, J1̄ = A1̄ ⊕ Ā0̄.
The obtained superalgebra is called the Kantor double of A. The bracket {, } on A is called
Jordan if Kan(A) is a Jordan superalgebra. Some important properties of Jordan brackets
may be found in [14]. In particular, the superalgebra Kan(A) is simple if and only if A is
bracket simple, that is, A does not contain nontrivial {, }-invariant ideals. Moreover, if {, }
is a Jordan bracket in A then the mapping D : a→ {a, 1} is a derivation of A that satisfies
the identity

{ab, c} − a{b, c} − (−1)bc{a, c}b− abD(c) = 0. (21)

Two important particular examples of Jordan brackets are Poisson bracket when D = 0 (see
[12]), and vector type bracket which has a form {a, b} = D(a)b−aD(b). A superalgebra with
a Poisson bracket is called a Poisson superalgebra.

The smallest Poisson superalgebra with a non-trivial odd part is the Grassmann super-
algebra Γ1 = F ⊕ Fξ, where ξ is an odd element, ξ2 = 0, {ξ, ξ} = 1. One can check that

Kan(Γ1) ∼= D−1
∼= M

(+)
1|1 .

Let {, } be a bracket on a superalgebra A. Denote by Z(A, {, }) = {z ∈ A | {z, A} = 0}
the bracket–center of the superalgebra A. If A is a Poisson superalgebra then its bracket-
center is a subsuperalgebra, but in general it is not true. Nevertheless, we have

Lemma 7. Let {, } be a Jordan bracket on the superalgebra B = B(m,n). If Kan(B) is
simple then the bracket–center Z(B, {, }) coincides with F .

Proof. We have already notice above that if Kan(B) is simple then B is bracket–simple,
that is, B does not contains ideals invariant with respect to the bracket {, }. Let z ∈
Z(B, {, }), then for any a, b ∈ B we have by (21)

{za, b} = z{a, b}+ zaD(b) ∈ zB,

which shows that the ideal zB of B is {, }-invariant. Therefore, zB = B and z is invertible,
z = α+ n, where 0 6= α ∈ F and n is nilpotent. Finally, n = z − α ∈ Z(B, {, }) hence n = 0
and z ∈ F .

Let U (+) ∼= Kan(A). Fix an element α ∈ Kan(A)0̄ and define a new product [, ] = [, ]α
on Kan(A) by the rules:

[a, b] = [ā, b] = [a, b̄] = 0, [ā, b̄] = (−1)bab α.

It is easy to check (see also [24, Theorem 3]) that the product [, ]α is a Leibniz bracket on
Kan(A). We will denote the corresponding NJ-superalgebra U as Kan(A,α).

Let [x, y] be a Leibniz bracket on J = Kan(A). Observe that in general this bracket
is not homogeneous with respect to the Z2-grading of J given by bar: J = A ⊕ Ā; that
is, for instance, [A,A] may not lie in A. We know only that [Jī, Jj̄] ⊆ Jī+j̄. Therefore, we
have [, ] = [, ]0 + [, ]1, where [, ]i is a bracket homogeneous of degree i with respect to the
Z2-grading J = A⊕ Ā. In other words,

[A,A]0 + [Ā, Ā]0 ⊆ A, [A, Ā]0 ⊆ Ā,

[A,A]1 + [Ā, Ā]1 ⊆ Ā, [A, Ā]1 ⊆ A.
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It is easy to check that the two brackets [, ]0 and [, ]1 satisfy the Leibniz identity (12), that
is, the both are Leibniz brackets on J .

Consider first the case of an even Leibniz bracket [, ] on Kan(A). Observe that for any
a ∈ A we have

ā1̄ = {a, 1} = D(a). (22)

Denote [a, 1̄] = E(a)1̄, then E : A→ A is an even derivation of the superalgebra A. Set also
α = [1̄, 1̄] ∈ A0̄.

Proposition 4. Let [, ] be an even Leibniz bracket on Kan(A). Then for any a, b, c ∈ A the
following identities hold

[ā, b̄] = (−1)b(abα− aD(E(b))−D(E(a)b)−D([a, b])), (23)

[a, b̄] = (E(a)b+ [a, b])1̄, (24)

[{a, b}, c] = −E({a, b})c− aE(b)D(c)− aD(E(b))c− aD([b, c])

+ E(a)bD(c) +D(E(a))bc+ (−1)bcD([a, c])b, (25)

{[a, b], c} = D([a, b])c+ [a, b]D(c) + E(a)D(b)c+D(E(a))bc

+ D(a)bE(c)−D(a)[b, c]− E(a){b, c} − (−)bc{E(a), c}b, (26)

[{a, b}, c] = {a, [b, c]− bE(c)} − (−1)ab({b, [a, c]− aE(c)}). (27)

Conversely, let [, ] be a Leibniz bracket on A and E be an even derivation of A which satisfy
idenities (25), (26), (27). Then for any α ∈ A0̄ the super-anticommutative extension of [, ]
on Kan(A) given by (23) and (24) defines a Leibniz bracket on Kan(A).

Proof. Let a, b ∈ A, consider

[ā, b̄] = [a1̄, b1̄] = a[1̄, b1̄] + (−1)b̄[a, b1̄]1̄ =

= (−1)babα + a([1̄, b]1̄)− (−1)b+ab(b[a, 1̄])1̄− (−1)b([a, b]1̄)1̄

= (−1)babα− (−1)baD(E(b))− (−1)bD(E(a)b)− (−1)bD([a, b]),

which proves (23). Furthermore,

[a, b̄] = [a, b1̄] = (−1)abb[a, 1̄] + [a, b]1̄ = (E(a)b+ [a, b])1̄,

proving (24).
Consider now

[āb̄, c̄] = ā[b̄, c̄] + (−1)b̄c̄[ā, c̄]b̄ = (−1)cā(bcα− bD(E(c))−D(E(b)c)−D([b, c]))

+ (−1)b̄c̄+c(acα− aD(E(c))−D(E(a)c)−D([a, c]))b̄

= (−1)b(abcα− abD(E(c))− aE(b)D(c)− aD(E(b))c− aD([b, c]))1̄

+ ((−1)b̄(abcα− abD(E(c))− E(a)bD(c)−D(E(a))bc) + (−1)bc+bD([a, c])b)1̄

= (−1)b(−aE(b)D(c)− aD(E(b))c− aD([b, c]) + E(a)bD(c) +D(E(a))bc

+ (−1)bcD([a, c])b)1̄.

On the other hand,

[āb̄, c̄] = (−1)b[{a, b}, c1̄] = (−1)b([{a, b}, c]1̄ + (−1)c(a+b)c[{a, b}, 1̄])

= (−1)b([{a, b}, c] + E({a, b})c)1̄.
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Thus we have an equality

[{a, b}, c] + E({a, b})c = −aE(b)D(c)− aD(E(b))c− aD([b, c])

+ E(a)bD(c) +D(E(a))bc+ (−1)bcD([a, c])b,

which implies (25).
Consider next

[ab̄, c̄] = a[b̄, c̄] + (−1)b̄c̄[a, c̄]b̄ = (−1)ca(bcα− bD(E(c))−D(E(b)c)−D([b, c]))

+ (−1)b̄c̄+b{([a, c] + E(a)c), b}.

On the other hand,

[ab̄, c̄] = [ab, c̄] = (−1)c(abcα− abD(E(c))−D(E(ab)c)−D([ab, c])),

which implies

0 = (−1)c(−aD(E(b))c− aE(b)D(c)− aD([b, c]))

− (−1)bc+c({([a, c], b}+ E(a){c, b}+ (−1)bc{E(a), b}c+ E(a)cD(b))

+ (−1)c((E(a)b+ aE(b))D(c) +D(E(a)b+ aE(b))c+D(a[b, c] + (−1)bc[a, c]b))

= −(−1)bc+c({([a, c], b}+ E(a){c, b}+ (−1)bc{E(a), b}c
+ (−1)c(E(a)bD(c) +D(E(a))bc+D(a)E(b)c

+ D(a)[b, c] + (−1)bcD([a, c])b+ [a, c]D(b))

or

E(a)bD(c) +D(E(a))bc+D(a)E(b)c+D(a)[b, c] + E(a){b, c} − {E(a), b}c
= (−1)bc({[a, c], b} −D([a, c])b− [a, c]D(b)).

proving (26). Finally, consider

[āb̄, c] = ā[b̄, c] + (−1)b̄c[ā, c]b̄

= (−1)cā(([b, c]− bE(c))1̄) + (−1)bc(([a, c]− aE(c))1̄)b̄

= (−1)b({a, [b, c]− bE(c)} − (−1)ab({b, [a, c]− aE(c)})).

On the other hand,

[āb̄, c] = (−1)b[{a, b}, c],

which implies (27).
The last statement of the proposition follows easily from the proof of identities (25), (26),

(27).

Consider now the case when the Leibniz bracket [, ] is odd. In this case we have [A,A] +
[Ā, Ā] ⊆ Ā and [Ā, A] ⊆ A. Denote

[1̄, 1̄] = α1̄, [a, 1̄] = aE, [a, b] = 〈a, b〉1̄ = 〈a, b〉,

then α ∈ A1̄, E : A → A is an odd derivation of A, and 〈a, b〉 is an odd Leibniz bracket on
A, that is,

E(Ai) ⊆ A1−i, (ab)E = abE + (−1)baEb,

〈Ai, Aj〉 ⊆ Ai+j−1, 〈ab, c〉 = a〈b, c〉+ (−1)bc+b〈a, c〉b.
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Proposition 5. Let [, ] be an odd Leibniz bracket on Kan(A). Then for any a, b, c ∈ A the
identities hold

[ā, b̄] = (−1)b(abα− (ab)E)1̄, (28)

D(〈a, b〉) = 0, (29)

[a, b̄] = (−1)baEb, (30)

〈{a, b}, c〉 = 0, (31)

{a, b}Ec = (−1)c+1({a, bcα− (bc)E} − (−1)ab{b, acα− (ac)E}). (32)

Conversely, let 〈, 〉 be an odd Leibniz bracket on A and E be an odd derivation of A which
satisfy idenities (31), (32). Then for any α ∈ A1̄ the super-anticommutative bracket [, ]
on Kan(A) given by relations [a, b] = 〈a, b〉1̄, (28), (30), defines an odd Leibniz bracket on
Kan(A).

Proof. Consider

[ā, b̄] = [a1̄, b1̄] = a[1̄, b1̄] + (−1)b̄[a, b1̄]1̄

= a((−1)bbα1̄ + [1̄, b]1̄) + (−1)b̄+abbaE 1̄ + (−1)b̄(〈a, b〉1̄)1̄

= (−1)b(abα− abE − (−1)baEb−D(〈a, b〉))1̄
= (−1)b(abα− (ab)E −D(〈a, b〉))1̄.

On the other hand,

[ā, b̄] = −(−1)āb̄[b̄, ā] = (−1)ab+b+a+a(baα− (ba)E −D(〈b, a〉))1̄
= (−1)b(abα− (ab)E +D(〈a, b〉))1̄,

which implies (28) and (29).
Furthermore,

[a, b̄] = [a, b1̄] = (−1)abbaE + [a, b]1̄ = (−1)baEb+D(〈a, b〉) = (−1)baEb,

proving (30). Now

[āb̄, c] = ā[b̄, c] + (−1)b̄c[ā, c]b̄

= (−1)c+1ā(bcE) + (−1)b̄c+c+1(acE)b̄

= (−1)b(abcE)1̄ + (−1)b+1(abcE)1̄ = 0.

On the other hand,

[āb̄, c] = (−1)b[{a, b}, c],

hence [{a, b}, c] = 0, proving (31).
Finally, consider

[āb̄, c̄] = ā[b̄, c̄] + (−1)b̄c̄[ā, c̄]b̄ = (−1)cā((bcα− (bc)E)1̄) + (−1)b̄c̄+c((acα− (ac)E)1̄)b̄

= (−1)b+1{a, bcα− (bc)E}+ (−1)c̄b̄+c+b{acα− (ac)E, b}
= (−1)b+1({a, bcα− (bc)E} − (−1)ab{b, acα− (ac)E}).
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On the other hand,

[āb̄, c̄] = (−1)b[{a, b}, c1̄] = (−1)b([{a, b}, c]1̄ + (−1)c(a+b)c[{a, b}, 1̄])

= (−1)bD(〈{a, b}, c〉) + (−1)c+b{a, b}Ec = (−1)c+b{a, b}Ec,

which proves (32).
To prove the last statement, one has to check only that [ab̄, c̄] = a[b̄, c̄] + (−1)b̄c̄[a, c̄]b̄. In

fact,

a[b̄, c̄] + (−1)b̄c̄[a, c̄]b̄ = (−1)ca((bcα− (bc)E)1̄) + (−1)b̄c̄+caEcb̄

= (−1)c(abcα− a(bc)E)1̄ + (−1)b+1aEbc1̄ = (−1)c(abcα− (abc)E)1̄.

On the other hand,

[ab̄, c̄] = [ab, c̄] = (−1)c(abcα− (abc)E)1̄

= (−1)c(abcα− a(bc)E)1̄ + (−1)b+1aEbc1̄ = (−1)c(abcα− (abc)E)1̄,

proving the proposition.

6.2.1 U (+) ∼= Kan(A), the case of Poisson brackets.

Let us call a unital Poisson superalgebra A over a field F central if its bracket-center
Z(A, {, }) coincides with F .

Theorem 10. Let A = (A, ·, {, }) be a central Poisson superalgebra over a field F such that
dimA1̄ > 1. Then every Leibniz bracket [, ] on Kan(A) has a form [, ]α where α = [1̄, 1̄] ∈ A0̄.

Proof. We will prove that every even Leibniz bracket [, ] on Kan(A) has a form [, ]α and
every odd Leibniz bracket is trivial.

Consider first the case of even bracket. We have D = 0, hence (23) implies

[ā, b̄] = (−1)bab α,

where α = [1̄, 1̄] ∈ A0̄. Furthermore, putting b = 1 in (27) we get {E(a), c} = 0, which
means that E(A) ⊆ Z(A, {, }) = F . In particular, E(A1̄) = 0. Assume that E(A0̄) 6= 0 and
let a ∈ A0̄, E(a) 6= 0. Since E is a derivation, we have E(a2) = 2aE(a) which implies that
a ∈ F . But E(1) = 0 since E is a derivation, hence E(F ) = 0 and E(a) = 0, a contradiction.
Therefore, E = 0. Now from (26) we have {[a, b], c} = 0, that is, [A,A] ⊆ F . As a corollary,
[A1̄, A0̄] = 0. Assume that [A,A] 6= 0 and let a, b ∈ A0̄ such that [a, b] 6= 0. Then F 3
[a, b2] = 2[a, b]b and b ∈ F , a contradiction. Hence [A0̄, A0̄] = 0. Furthermore, assume that
[x, x] 6= 0 for some x ∈ A1̄. Then for any y ∈ A1̄ we have [x, x]y = [x, xy]− (−1)xy[x, y]x =
−(−1)xy[x, y]x, which implies that A1̄ = Fx, a contradiction. Hence [A,A] = 0.

Finally, by (24) [a, b̄] = [a, b] = 0, hence [A, Ā] = 0 and [, ] = [, ]α.

Consider now the case when the Leibniz bracket [, ] is odd. In this case we have [A,A] +
[Ā, Ā] ⊆ Ā and [Ā, A] ⊆ A. Denote, as above,

[1̄, 1̄] = α1̄, [a, 1̄] = aE, [a, b] = 〈a, b〉1̄ = 〈a, b〉,
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then α ∈ A1̄, E : A → A is an odd derivation of A, and 〈a, b〉 is an odd Leibniz bracket on
A.

Substituting b = c = 1 in (32), we get {a, α} = 0, that is, α ∈ Z(A, {, }) = F , which gives
α = 0. Now for b = 1 the same identity gives {a, cE} = 0, that is, AE ⊆ F , In particular,
we have (A0̄)E = 0.

Assume that there exists x ∈ A1̄ with xE 6= 0. Then for any y ∈ A1̄ we have 0 = (xy)E =
xyE − xEy, which implies y ∈ Fx and dimA1̄ = 1, a contradiction. Therefore, E = 0, and
from (28), (30) we have

[A, Ā] = [Ā, Ā] = 0.

Finally, consider

(−1)c{〈a, b〉, c} = 〈a, b〉c̄ = [a, b]c̄ = [a, bc]− (−1)abb[a, c̄] = 0,

which implies 〈A,A〉 ⊆ F . In particular, we have

[A0̄, A0̄] = [A1̄, A1̄] = 0.

Assume that there exist a ∈ A0̄, x ∈ A1̄ such that F 3 〈a, x〉 6= 0. Then for any y ∈ A1̄ we
have

〈a, x〉y = 〈a, xy〉 − x〈a, y〉 = −x〈a, y〉,

which implies that dimA1̄ = 1, a contradiction. Therefore, [A,A] = 0, proving the theorem.

Observe that the restriction dimA1̄ > 1 is essential for the theorem. In fact, for the
Grassmann superalgebra Γ1 we have dimΓ1 = 1 and the superalgebra Kan(Γ1) ∼= M

(+)
1|1 has

nontrivial odd Leibniz brackets different from [, ]α (see Corollary 2 and Theorem 5).

Corollary 3. Let {, } be a Poisson bracket on B = B(m,n) such that Kan(B) is a simple
superalgebra. Then every Leibniz bracket on Kan(B) has form [, ]α for some α ∈ B0̄ except

the case m = 0, n = 1, when KanB ∼= M
(+)
1 | 1 and Leibniz brackets on it are determined by

Corollary 2 and Theorem 5.

Proof. Since Kan(B) is simple, the superalgebra B is bracket–simple, that is, it is a
simple Poisson superalgebra. In this case the bracket-center Z(B, {, }) ⊆ B0̄ is a field, which
coincides with F (since B = F + B+ where B+ is a nilpotent ideal). Thus B is central and
by the theorem we may assume that dimB1̄ = 1, Clearly, this means that n = 1,m = 0, and
KanB ∼= M

(+)
1 | 1 .

The following result was proved in [24], but the case of odd Leibniz bracket was not
considered there.

Corollary 4. Let U (+) ∼= Kan(Γn) for n > 1, then U ∼= Kan(Γn, α) for some α ∈ (Γn)0̄.

For the proof it suffices to note that the only possible Jordan bracket on Γn is a Poisson
bracket (see [10, 11]).
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6.2.2 U (+) ∼= Kan(A), the case of vector brackets.

Recall that a bracket {, } on a commutative superalgebra A is called of vector type if
there exists a derivation D ∈ Der A such that {a, b} = D(a)b− aD(b). It is known that in
this case Kan(A) is simple if and only if A is D-simple, that is A does not contain non-trivial
D-invariant ideals. Moreover, if A is D-simple then A = A0̄ [14] and A is unital [22].

Theorem 11. Let U (+) ∼= Kan(A) where (A,D) is a D-simple commutative algebra with the
bracket of vector type. If A is bracket-central, that is, Z(A, {, }) = F , then U ∼= Kan(A,α)
for some α ∈ A = A0̄.

Proof. Let [, ] be a Leibniz bracket on Kan(A). Denote again [1, ā] = E(a)1̄, [1̄, 1̄] = α,
then E ∈ Der A and α ∈ A. We will show that E = 0 and [A,A] = [A, Ā] = 0.

From (25) for c = 1 we get

E({a, b}) = −aD(E(b)) +D(E(a))b,

Returning to (25), we have

[{a, b}, c] = −aE(b)D(c) + bE(a)D(c)− aD([b, c]) + bD([a, c]),

which for b = 1 gives

[D(a), c] = E(a)D(c) +D([a, c]) (33)

Substituting in the previos identity {a, b} = D(a)b− aD(b), we get

D(a)[b, c] + [D(a), c]b− a[D(b), c]− [a, c]D(b) =

= −aE(b)D(c) + bE(a)D(c)− aD([b, c]) + bD([a, c]),

which in view of (33) gives

D(a)[b, c]−D(b)[a, c] = 0.

Now we have

D(a)[b, c] = D(b)[a, c] = D(c)[a, b] = D(a)[c, b] = 0,

that is, D(A)[A,A] = 0. Since A is D-simple, this implies [A,A] = 0. Then (33) gives
E(A)D(A) = 0, implying E(A) = 0. Finally, (23) gives [A, Ā] = 0 and (23) finishes the
proof.

One can easily check that every Jordan bracket on the polynomial algebra F [x] (or on
the truncated algebra F [x]/(xp) in case of characteristic p > 0) is of vector type for the
derivation D = {x, 1} d

dx
. Therefore, we have

Corollary 5. If U (+) ∼= Kan(B(1, 0)) where Kan(B(1, 0)) is a simple Jordan superalgebra
then U ∼= Kan(B(1, 0), α) for some α ∈ B(1, 0).
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It is easy to see that in general the NJ-superalgebras Kan(B(m,n), α) are non-
isomorphic for different α. For example, we may take α = 1, n ≥ 1, and in this case
the Leibniz bracket is zero on some subspace in Kan(B(m,n), α) of codimension > 1; but
for the case α = tp−1

1 . . . tp−1
m ⊗ ξ1 . . . ξn (n = 2k ≥ 2) this codimension is 1.

At the moment, we have no examples of Leibniz brackets on Kan(B(m,n)) different from
[, ]α except of the case B(0, 1) mentioned in Corollary 3.

Problem 1. Describe Leibniz brackets on Kan(B(m,n)) in general case.

Propositions 4 and 5 may be useful in such a description.

6.3 U (+) ∼= V 1
2
(A,D).

Recall the definition of the semi-unital Jordan superalgebra V 1
2
(A,D).

Let (A,D) be again an associative commutative algebra with a derivation D. Consider
the direct sum of vector spaces

V 1
2
(A,D) = A⊕ Ā,

where Ā is an isomorphic copy of A, and extend on it the product in A via

ab̄ = b̄a = 1
2
ab, āb̄ = −b̄ā = {a, b},

with the vector bracket {a, b} = D(a)b − aD(b). If we put V 1
2
(A,D)0̄ = A, V 1

2
(A,D)1̄ = Ā

then V 1
2
(A,D) became a commutative superalgebra which turns out to be a Jordan super-

algebra. Moreover, if A is D-simple then the superalgebra V 1
2
(A,D) is simple. Observe that

the unit 1 of A acts on Ā as 1
2
, that is why we call this superalgebra semi-unital.

Theorem 12. Let U (+) ∼= V 1
2
(A,D) where (A,D) is a D-simple commutative algebra with

the bracket of vector type. If A is bracket-central, that is, Z(A, {, }) = F , then U ∼= V 1
2
(A,D).

Proof. Let [, ] be a Leibniz bracket on V 1
2
(A,D), we will prove that it is trivial. The

proof follows that of Theorem 11. Set again

[a, 1̄] = E(a)1̄ = 1
2
E(a), [1̄, 1̄] = α.

Observe that E is a derivation of A. We have

[ā, b̄] = 4[a1̄, b1̄] = 4a[1̄, b1̄]− 4[a, b1̄]1̄ =

= 4ab[1̄, 1̄] + 4a([1̄, b]1̄)− 4(b[a, 1̄])1̄− 4([a, b]1̄)1̄

= 4abα− 2aD(E(b))−D(E(a)b)− 2D([a, b]),

[a, b̄] = 2[a, b1̄] = 2(E(a)b+ [a, b])1̄.

Consider

[āb̄, c̄] = ā(4bcα− 2bD(E(c))−D(E(b)c)− 2D([b, c]))

+ (−4acα + 2aD(E(c)) +D(E(a)c) + 2D([a, c]))b̄

= (−aD(E(b)c) + bD(E(a)c)− 2aD([b, c]) + 2bD([a, c]))1̄.
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On the other hand,

[āb̄, c̄] = [{a, b}, c̄] = 2(E({a, b})c+ [{a, b}, c])1̄,

which gives

2(E({a, b})c+ [{a, b}, c]) = −aD(E(b)c) + bD(E(a)c)− 2aD([b, c]) + 2bD([a, c]). (34)

Putting here c = 1 we get

2E({a, b}) = −aD(E(b)) + bD(E(a)).

Returning to (34) we have

[{a, b}, c] = −aE(b)D(c) + bE(a)D(c)− 2aD([b, c]) + 2bD([a, c]),

which for b = 1 gives

[D(a), c] = E(a)D(c) + 2D([a, c]). (35)

Substituting in the previos identity {a, b} = D(a)b− aD(b), we get

D(a)[b, c] + [D(a), c]b− a[D(b), c]− [a, c]D(b) =

= −aE(b)D(c) + bE(a)D(c)− 2aD([b, c]) + 2bD([a, c]),

which in view of (35) gives

D(a)[b, c] = D(b)[a, c].

As in the proof of Theorem 11, this implies [A,A] = 0. Now (35) gives E(A)D(A) = 0 and
E = 0.

Finally, consider

α = 2[1 · 1̄, 1̄] = 2[1̄, 1̄]− 2[1, 1̄]1̄ = 2α− 2(E(1)1̄)1̄ = 2α,

hence α = 0 and the braket [, ] is trivial.

6.4 U (+) ∼= B(m,n).

It remains to consider the case when U is a simple noncommutative Jordan superalgebra
such that U (+) ∼= B(m,n).

Fix three sets of elements

A = {aij = −aji ∈ B(m,n)0̄, 1 ≤ i < j ≤ m},
B = {bij = bji ∈ B(m,n)0̄, i, j = 1, . . . , n},
C = {cij ∈ B(m,n)1̄, i = 1, . . . ,m, j = 1, . . . , n},

and define a Leibniz braket on B(m,n) by setting

[ti, tj] = aij, [ti, ξk] = cik, [ξk, ξl] = bkl; (36)

i, j = 1, . . . ,m; k, l = 1, . . . , n. (37)
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then the space B(m,n) with the multiplication a ∗ b = a · b + 1
2
[a, b] forms a nodal NJ-

superalgebra B(m,n)(A,B, C) (compare [15, 16]).
For every i = 1, . . . ,m; , j = 1 . . . , n define even and odd derivations on B(m,n)(A,B, C) :

Di : x→ [x, ti], (38)

Ek : x→ [x, ξk]. (39)

Then the superalgebra B(m,n)(A,B, C) is simple iff the superalgebra B(m,n) is D-simple
relative to the set of derivations D = {Di, Ek, | 1 ≤ i ≤ m, 1 ≤ k ≤ n}.

Theorem 13. Let A be a NJ-superalgebra such that A(+) ∼= B(m,n). Then A ∼=
B(m,n)(A,B, C) for certain A ∈Mm(B(m,n)0̄), B ∈Mn(B(m,n)0̄), C ∈Mm,n(B(n,m)1̄).

Note that by analogy with [24] we may effectively answer the question about the D-
simplicity of B(m,n) for every fixed derivation D of B(m,n). Also some examples of non-
isomorphic superalgebras B(m,n)(D) for different D may be found in [24].

Finally, we may state the main theorem of the article.

Theorem 14. Let U be a finite-dimensional central simple NJ-superalgebra over an al-
gebraically closed field field F of characteristic 6= 2. Assume that U is neither quasi-
associative nor supercommutative. Then either U ∼= K3(α), NK3, Dt(α), NDt, J(V, f,×),
Kan(B(m,n), α), B(m,n)(A,B, C) or U ∼= (Kan(B(m,n)), [, ]) where the Leibniz bracket
[, ] on Kan(B(m,n)) is not of type [, ]α.

We do not have examples of Leibniz bracket of the last type except the case Kan(B(0, 1))
considered in Corollary 2. As we have seen, it may appear only when the Jordan bracket on
B(m,n) is of mixed (nor Poisson neither vector) type. In particular, for n > 1 one should
necessary have m > 0.
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