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Graded manifolds of type A and
n-fold vector bundles
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Abstract

Vector bundles and double vector bundles, or 2-fold vector bundles,
arise naturally for instance as base spaces for algebraic structures such
as Lie algebroids, Courant algebroids and double Lie algebroids. It is
known that all these structures possess a unified description using the
language of supergeometry and Z-graded manifolds of degree < 2.
Indeed, a link has been established between the super and classical
pictures by the geometrization process, leading to an equivalence of
the category of Z-graded manifolds of degree < 2 and the category of
(double) vector bundles with additional structures.

In this paper we study the geometrization process in the case of Z"-
graded manifolds of type A, where A is a certain weight system and r
is the rank of A. We establish an equivalence between a subcategory
of the category of n-fold vector bundles and the category of graded
manifolds of type A.

1 Introduction

Graded manifolds of type A. A graded manifold of type A, a notion that we
introduce here, is a natural generalization of the notion of a non-negatively Z-
graded manifold of degree n. We work in the category of smooth or complex-
analytic graded manifolds and we use the language of sheaves and ringed
spaces as in the theory of supermanifolds [L, Man].

Z-graded manifolds of degree n were studied by various authors in for
instance the context of the theories of Lie algebroids, Courant algebroids,
double Lie algebroids and their higher generalizations [Vol, R, BCMZ, LS,
Vit, CM, JL, BGR]. We can define a non-negatively Z-graded manifold
of degree n as a ringed space which possesses an atlas with homogeneous
coordinates with weights (or degrees) labeled by integers 0, 1, ..., n, see [Vo2].
In this paper we study non-negatively Z"-graded manifolds, where r > 1.
Everywhere graded manifold of type A means Z"-graded manifold of type A,
where r is the rank of A.

In the case r > 1 the notion of a degree for graded manifolds is not
sufficient to characterize the corresponding category. For example, consider
the iterated tangent bundle T(T'(M)) of a manifold M. The structure sheaf



of T(T(M)) is naturally Z?-graded. Indeed, on T(T(M)) we can choose local
charts with coordinates in the following form:

zi, di(zg), do(xs), da(di(z)),

where (z;) are local coordinates on the manifold M which we assume have
weight (0,0). Here d; and dy are the first and second de Rham differentials.
Let the local coordinates d; (z;) and da(z5) and da(d;(x;)) have weights (1, 0)
and (0,1) and (1, 1), respectively. We see that this is a Z-graded manifold of
degree 2 = 1 + 1 with respect to the total degree. However in the Z2-graded
case we can be more precise and consider graded manifolds of multi-degree
(n1,m2), in the Z3-graded case we should consider graded manifolds of multi-
degree (n1, ny, n3) and so on. From this point of view T'(T'(M)) is a Z*-graded
manifold of degree (1, 1).

Another observation here is that the numbers (n;) are also not sufficient
to describe the whole picture. For example we can consider a category of
Z2-graded manifolds of degree (2,2) such that any object in this category
possesses an atlas with local coordinates of degrees (0,0), (2,0) and (0, 2).
We see that in this case we can specify the definition of a Z?-graded manifold
of degree (2,2) and consider the category of graded manifolds of type A =
{(0,0), (2,0),(0,2)}. In addition we can think about 2-tuples (0,0), (2,0)
and (0,2) as vectors in K2, where for convenience we assume that K = R or
C. We introduce a monoid or a weight system A C K2 that parametrizes
degrees of local coordinates, see Definition 1 for details.

Summing up in this paper we study a more precise notion of a non-
negatively Z"-graded manifold, i.e. the notion of a graded manifold of type
A. In addition we assume as in [Vo2| that local coordinates have parities
that are related but not determined by the weights. This approach suggests
a reduction of some questions about graded manifolds of type A to the study
of the combinatorics of the monoid A, as it is done for instance in this pa-
per. A further example here is the following. We consider the root system
Aj of the Lie algebra sl;. Then certain reflections in this root system corre-
spond to the dualizations of double vector bundles [GrMal, see Section 3.5
for details. Another benefit of this approach is the possibility to give a more
precise definition of an n-fold vector bundle. For instance this new definition
distinguishes between the categories of double vector bundles and of double
vector bundles with the trivial core. We introduce the notion of multiplicity
free weight system A and study n-fold vector bundles of type A, where n is
the rank of A, see Definitions 4, 5 and 6.

Geometrization process. A geometrization process is a functor from the cate-
gory of graded manifolds to the category of smooth (or holomorphic) man-
ifolds. Such functors are well-known, for example the functor of points for
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graded or supermanifolds and the linearisation functor [BGG]. Often it is
interesting to ask which classical manifolds arise from graded manifolds. The
goal of this paper is to answer this question for graded manifolds of type A.
For motivation, consider the following table of correspondences.

Geometric structures Supergeometric structures
base space / structure base space / structure
vector bundles Z-graded manifolds of degree 1
Lie algebroids Q,Q] =0
metric vector bundles symplectic Z-graded manifolds
of degree 2
Courant algebroids Q,Q] =0
metric double vector bundle Z-graded manifolds of degree 2
VB-Courant algebroids Q,Q] =0
Z-graded manifolds of degree n > 2 and
7 graded manifolds of type A
Q.Q1 =0

Here () is an odd homological vector field.

The first column of this table represents the world of the classical or
commutative geometry, while the second column characterizes the world of
supergeometry. In supergeometry together with usual “boson-type” or com-
muting or even variables one considers also “fermion-type” or anticommuting
or odd or ghost variables. Recently it was discovered that the language of
supergeometry is very useful for example in the theory of different types of
Lie algebroids. For instance A. Vaintrob [Va] established an equivalence be-
tween categories of Lie algebroids and Z-graded manifolds of degree 1 with
a homological vector field ) of degree +1. This equivalence is represented
in the first line of our table. Sometimes the super point of view leads to
an essential simplification of the theory of Lie algebroids. For example, the
definition of a Lie algebroid morphism is quite non-trivial, but this definition
has a natural reformulation in terms of homological vector fields.

The geometrization process is a “map” from the second column to the
first one. In the case of Lie algebroids however this process is trivial since
Z-graded manifolds of degree 1 are in one-to-one correspondence with vector
bundles. In this case the important part is the additional structure, i.e. the
homological vector field Q.



The second line of the table represents an equivalence between the cat-
egories of Courant algebroids and symplectic Z-graded manifolds of degree
2 with a certain homological vector field Q. The result is due to P. Severa
[S] and D. Roytenberg [R], independently. In this case the geometrization
process was used not directly. The category of Z-graded manifolds of degree
2 (not necessary symplectic) was studied by D. Li-Bland in [LB]. His result
corresponds to the third line of the table. This is an equivalence between the
category of Z-graded manifolds of degree 2 with a certain homological vector
field @ and the category of metric double vector bundles with the structure
of VB-Courant algebroid (VB means “vector bundle”). In other words, to
any Z-graded manifold of degree 2, Li-Bland assigned a usual manifold, i.e. a
metric double vector bundle, and he determined an additional structure that
corresponds to the homological vector field (). For more about applications of
Courant algebroids and VB-algebroids, see [ BCMZ, Cou, GrMe, Gu, KS, M2].

Other results in the direction of the third row of our table were obtained
in [BCMZ, CM, JL]. In these papers the authors assigned to a Z-graded man-
ifold of degree 2 a usual manifold, or more precisely a double vector bundle
with different types of additional structures. They also studied structures
determined by a homological vector field Q).

A natural question is to investigate the last line of this table. Thus, in
this paper we study more generally non-negatively Z"-graded manifolds of
type A. Due to the complexity we consider graded manifolds without any
additional vector fields (). This question is left for the future.

While this paper was in preparation, there appeared another result in this
direction [BGR], in which the authors study graded bundles of degree k that
are the special case r = 1 of our graded manifolds of type A. More precisely,
in [BGR] the authors constructed a functor, which they called the full lin-
earization functor, from the category of graded bundles of degree k (Z-graded
manifolds of degree k in our sense, i.e. the parities of coordinates do not nec-
essary coincide with the parities of degrees) to the category of symmetric
k-fold vector bundles with a family of morphisms that are parametrized by
the symmetric group Si. They showed that this functor is an equivalence of
categories. Note that in the present paper we consider a different category
of k-fold vector bundles, i.e. k-fold vector bundles of type A with a family
of odd commuting vector fields.

Main result. Our results can be described as follows. We fix a weight system
A C K" of rank . Further we choose the parities of the basic weights, see
Definition 1. Then we construct the corresponding multiplicity free weight
system A" = A’(A) of rank 7/, which is in general different from r. These
two weight systems determine the category AMan of graded manifolds of



type A and the category A'VB of r’-fold vector bundles of type A’. Further
we construct a functor F : AMan— A’VB, where the main idea is to use
the (1’ — r)-iterated tangent bundle T---T(N) of a graded manifold N.
(The authors in [BGR] introduced independently a similar construction of
the functor F, the linearisation functor, for the case r = 1.) We finally
define the subcategory A’VBVect of the category AMan, consisting of r’-fold
vector bundles of type A’ with (' — r) odd commuting homological vector
fields. These vector fields arise from the iterated de Rham differentials on the
structure sheaf of T'--- T(N'). We prove that the image of F coincides with
A’VBVect, and moreover that F determines an equivalence of the categories
AMan and A’VBVect.
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Brazil, FAPESP, grant 2015/15901-9, by SFB TR 191, Germany, and by the
Universidade Federal de Minas Gerais.

2 Graded manifolds of type A

About Z-graded manifolds of degree n see for instance in [BGR, CM, GR,
JL, LS, R, Vol].
2.1 A weight system

Roughly speaking a weight system A is a monoid that parametrizes weights
of local coordinates of a Z"-graded manifold. Let us explain this notion in
details.

We choose r formal parameters aq, . . . , a,., which we will call basic weights.
It is convenient to think about «; as vectors in R” or C".

Definition 1. A weight system is a subset
ACZau @ @ Za, (1)
satisfying the following properties:
1. A is finite;
2. {0} e Aand a; € A, wherei =1,...,7;

3. if 0 € A and § = a;q, where a; € Z, then a; > 0.



The number r is called the rank of A.

We also will assign a parity a; € {0,1} to any basic weight «;. If the
parities of «; are fixed for any i, the parities of all other elements from A are
determined by the rule é; + d = §; + 0s.

In the next section we will introduce graded manifolds of type A. This is
graded manifolds with an atlas such that local coordinates are parameterized
by elements from A. The first condition of Definition 1 means that local
coordinates of a graded manifold of type A may have only finite number of
different weights. It is a natural agreement for a finite dimensional graded
manifold. Further, the first part of the condition 2 means that, as in the
theory of Z-graded manifolds of degree n, we have an underlying manifold
which structure sheaf is indicated by 0 € A. The second part of the condition
2 is technical. The last condition shows that the structure sheaf of our graded
manifold is non-negatively Z"-graded.

Examples of weight systems are:

Ap, :={0, a1, ag, a1 + s}, Apn, =10, a1, 201, 304 }. (2)

The weight system Ap, corresponds to a double vector bundle Dy and the
weight system Ay, corresponds to a Z-graded manifold M3 of degree 3, see
Section 3.

Let us give two examples of the parity agreement which we will use in
this paper. Consider the weight system Ap,. In this case we have four
possibilities to assign parities for the basic weights «y and ay. Indeed, we
can assume that (1) a; =ay =0; (2) @y =@, = 1; (3) a@; =0 and ay = 1;
(4) @, = 1 and @y = 0. All these cases will lead to different categories of
graded manifolds of type Ap,. For example the first case corresponds to the
category of pure even double vector bundles, while in the second case we deal
with the category of double vector bundles such that both side bundles of
a double vector bundle are odd. Note that the third and the fourth cases
lead to isomorphic categories of graded manifolds. More information about
all these categories can be found in [Vo2].

In case of the weight system A, we have two possibilities for the assign-
ment of parity a;: @; = 0 and a; = 1. Usually in the literature one considers
only the second case and the corresponding graded manifolds are called Z-
graded manifold of degree 3. The first case corresponds to the category of
pure even Z-graded manifold of degree 3, which is less interesting and it is
usually omitted.

The construction of the functor, that we study in this paper, works for all
possible choices of parities for the basic weights of A. Note that a different



choice of parities for the basic weights of A leads to different categories of
graded manifolds of type A.

2.2 Definition of a graded manifold of type A

Let us take a weight system A as in Definition 1 and let us fix parities of
the basic weights. In other words, an r-tuple (aq,...,@.) € Z% is fixed.
Consider a finite dimensional vector space V over K, where K = R or C,
with a decomposition into a direct sum of vector subspaces Vs, where § € A.

In other words,
V=
seA

We say that elements from Vs \ {0} have weight ¢ and have the same parity
as 0. In other words, Vj is a vector subspace in V' of parity § and of weight 4.
Further, we denote by S*(V') the super-symmetric power of V. As usual the
weight of a product is the sum of weights of factors. For example the weight
of the following product

Vs, * Vs, € V51 "/:52 - S*(V)?

where vs, € Vj,, is equal to d; 4+ 5. The same agreement holds for parities.
Consider the Z"-graded ringed space U = (Uy, Oy), where Uy = V, and
the sheaf O, is given by the following formula:

Ou = .Fuo XK S*< @ %) (3)
seA\{0}

Here Fy, is the sheaf of smooth (the case K = R) or holomorphic (the case
K = C) functions on Uy = V. The ringed space U is a non-negatively Z’-
graded ringed space and A is the set of weights of its local coordinates. More
precisely, let us choose a basis (z;) in V; and a basis (£7) in any Vs. Then we
can consider the set (z;, 5?)56A\{0} as the set of local coordinates on U. We
assign the weight 0 and the parity 0 to any x; and the weight § and the parity
§ to any S?. We see that the weight system A parametrizes the weights of
local coordinates in U. We will call the ringed space U a graded domain of
type A, of parities (v, ...,q,) € Z and of dimension {dim Vs}sen. Note
that in this case the dimension is a set of numbers parametrized by the
elements from A.

Definition 2. e A graded manifold of type A, of parities (as,...,a,) € Z}
and of dimension {dim Vj}sea is a Z"-graded ringed space N' = (Ng, Oy),



that is locally isomorphic to a graded domain of type A, of parities (a, ..., &)
and of dimension {dim Vj}scn.

e A morphism of graded manifolds of type A and of parities (&, ..., &)
is a morphism of the corresponding Z"-graded ringed spaces.

We will denote the category of graded manifolds of type A and of parities
(@1,...,04) by Aga,,...a)Man or just by AMan, when the parity agreement
is clear from the context. Note that a graded manifold of type A is defined
only if we fix parities (aq,...,a,) € Z% of the basic weights in A; and to
different elements in (aq, ..., a,) € Z} we assign different categories of graded
manifolds of type A. If a particular choice of parities (ay,...,a,) is not
mentioned explicitely, this means that a statement or a construction hold for
any choice of the parities.

We can describe a graded manifold of type A in terms of atlases and
local coordinates. On a graded manifold N of type A there exists an atlas
such that in any local chart we can chose local coordinates of weights § € A
and we require that transition functions between any two charts preserve all
weights. Note that the structure sheaf of the underlying manifold Ny of N is
equal to (O ) and any homogeneous subsheaf (Oyr)s in Opr, where § € A,
is a (On)o-locally free sheaf on Nj.

3 Examples of graded manifolds of different
types

3.1 Example 1

Z-graded manifolds of degree n. An example of a graded manifold of type A
is a Z-graded manifold of degree n.

Definition 3. A Z-graded manifold of degree n and of parity aq € Zs is a
graded manifold M,, of type Ay, and of parity ay € Zs, where

AMn:{O,al,...,nal}CZal. (4)

The number n is called the degree of M,,.

3.2 Example 2

Double and r-fold vector bundles. Another example of graded manifolds of
type A is a double and more general an r-fold vector bundle. For instance



a double vector bundle is a graded manifold of type Ap,, see (2). A triple
vector bundle D3 has the weight system

Ap, ={0, a1, a9, a3, 1 + a2, 0q + a3, a2 + a3, 1 + a2 + as}

and so on. We can characterize the weight system Ap_ in the following way:

the weight system Ap, has rank r and it contains all linear combina-
tions of a; with coefficients 0 or 1, i.e. all linear combinations of a; without
multiplicities.

Definition 4. An r-fold vector bundle of parities (ay,...,&,) € Z% is a
graded manifold of type Ap, and of parities (ay, ..., a&,).

Remark. This definition of an r-fold vector bundle is equivalent to a classical
one as was shown in [GR, Theorem 4.1], see also [Vol].

In this paper we also will use a more general notion of an r-fold vector
bundle: an r-fold vector bundle of type A. For a motivation let us consider
an example. Let us take a double vector bundle Dy with trivial core (see
[M1] for definitions). In our notations this means that this double vector
bundle does not have local coordinates of weight a; 4+ a in a certain atlas.
Hence we can assume that the weight system of any double vector bundle
with trivial core has the form {0, a;,as}. For our purpose it is convenient
to distinguish these two categories: the category of double vector bundles
and the category of double vector bundles with trivial core. So we will speak
about the category of double vector bundles of type Ap, and the category
of double vector bundles of type {0, a1, as}. Summing up, in this paper we
will use the following definitions.

Definition 5. A weight system A is called multiplicity free if A contains
only linear combinations of a;, where ¢ = 1, ..., r, with coefficients 0 or 1. In
other words it contains only linear combinations of «; without multiplicities.

Clearly any multiplicity free weight system is contained in some Ap_ and
Ap, is the maximal multiplicity free system of rank r.

Definition 6. e An r-fold vector bundle of type A and of parities (ay, . .., &)
€ 74 is a graded manifold of type A and of parities (@, ..., &.), where A is
a multiplicity free weight system of rank r.

e A morphism of r-fold vector bundles of type A and of parities (a, . . ., a;)
€ Z% is a morphism of the corresponding graded manifolds.

Let A be a multiplicity free weight system of rank . We will denote the
category of r-fold vector bundles of type A and of parities (ay,...,a,) € Z}
by Ay,..a) VB or just by AVB.



Remark. In [Vol] the parity reversion functor is defined for r-fold vector
bundles of type Ap, . This functor establishes equivalences between all cate-
gories of r-fold vector bundles of parities (@, ..., a,) € Z5. In other words all
categories of graded manifolds of type Ap, and of parities (ay,...,a,) € Z}
are equivalent. The same holds for the category of r-fold vector bundles of
type A, where A is multiplicity free weight system, since the category AVB
is a subcategory of Ap VB.

Example. For more motivation for Definition 6, consider the category of
triple vector bundles, that is the category of graded manifolds of type Ap,,
see [GrMa] and [Vol, Example 3]. We can visualise a triple vector bundle D
in the following way

D D23
S S
D13 D3
D12 > D2
o S
D, M

Here all sides of this cube are double vector bundles with certain compatibi-
lity conditions. According to [GR] we can cover D, D;;, Dy and M with
local charts that have the following local coordinates

x, éal7é‘a2’§a3’ £a1+a2’ £a1+a3’ £a2+a3’ £a1+a2+a2).

( :

BN S ST SR F
D13 . (J}, é&al?gas, §a1+a3);
o (g g g,
( (

z,&); Do (x,6%?); Ds:  (2,6%); M : (z).

As usual superscript indicates the weight of a coordinate. We have omitted
subscripts in order to simplify notation. In these charts all projections are
given in a natural way. For example the map D — D5 in our coordinates is
given by

(l’, £a1,£a2’ fag’ £a1+a2’ £a1+a3’ £a2+a3’ £a1+a2+a2) — (x’ £a1’ £a2>€a1+a2)_

Consider for example the double vector bundle Dq5. It may happen that it
has trivial core. This means that the intersection of kernels of the projections
Dy — D; and D5 — D5 is trivial. In our coordinates this means that we
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do not have coordinates £ 72 of weight a; + ay. Hence if D1y has trivial
core, then D is a graded manifold of type

AIQ — {07 Qq, G, O3, (1 + Qag, (g + a3, (1 + (0% + 063}.

Here the weight oy + s is omitted. The category of triple vector bundles
such that D1, has trivial core is the category of graded manifold of type Aqs.

Another example is the category of triple vector bundles with trivial ul-
tracore. Recall that the ultracore of D is the intersection of kernels of the
projections D — D;;. The category of triple vector bundles with trivial
ultracore is the category of graded manifolds of type

Aoz = {0,019, a9, a3, 0q + a2, a1 + s, as + as}.

3.3 Example 3

Vector bundles over a graded manifold of type A shifted by a weight. Let
N be a graded manifold of type A. In the category AMan we can define a
vector bundle in the usual way: a vector bundle over N is a graded manifold
E of type A with a morphism E — N that satisfies the usual condition of
local triviality and that has Oxr-linear transition functions between the trivial
pieces. However sometimes it is more convenient to introduce an additional
formal basic weight, say 3, and to think about [E as about a graded manifold
of type Ag, where

Ap:=AU{B+6|6€A} (5)

In more details, let us choose local sections (e?) of E of weights § € A.
(The weights of local sections are indicated by the superscript.) Now in
any chart we replace the weight ¢ of e? by 8 4 9. Clearly, this operation
is well-defined and the Ojs-linearity of transition functions means that the
total weight of sections of E is preserved. In the literature this operation
is called the shift of a vector bundle by a weight § and is denoted by
E[5]. Below in Section 3.4 we consider the shift of a tangent bundle in more
details.

Summing up, if E is a vector bundle over a manifold NV of type A, we
will assume that E is of type (5) for some additional weight 5. We see that
the weight S has no multiplicity in (5), i.e. [ is contained in weights from
(5) with coefficients 0 or 1. Note that the converse statement is also true.
Indeed, let us take a graded manifold E of type A such that a certain basic
weight a; has no multiplicity in A. Then E is a vector bundle over a graded
manifold N of type

A:=AN @ Za;.
i
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The weight system A’ satisfies conditions of Lemma 1, see below. Hence N
is a well-defined graded manifold of type A

3.4 Example 4

The tangent bundle of a graded manifold of type A. Let us remind the
construction of the shift of a tangent bundle by a number or by a weight for
Z-graded manifolds of degree n in more details, see also Section 3.3. Let «
be the basic weight of Ayy,. Consider a Z-graded manifold M of degree n
and its tangent bundle T M. The shift of TM by k € Z is denoted usually
by T'[k]JM. Note that in the present notation it would be more precise to
write T'[ka) M for the shift of TM by k.

Let (z;,&5%), where s = 1,...,n, be local coordinates in M, where the
weights of z; and §;* are equal to 0 and sa, respectively. The corresponding
local coordinates in T'[k]M are (z;, &S, dz;, d€S'). The notion ”T M is shifted
by ka* means that the weight of dz; (and of d¢§®) is shifted by ka and
it is equal to the weight of z; plus ka (or it is equal to the weight of &£
plus ko, respectively). In other words we assume that the weight of dz;
is equal to ko and the weight of d&i* is equal to (s + k)a. We can easily
verify that this definition of the weight does not depend on the choice of local
coordinates. Another observation is that instead of the shift by ka, we can
shift the tangent bundle T M by an additional formal weight, say §. In this
case we get T'[S]M. This means that we assume that the weight of d§;* is
equal to sa 4+ 8 and the weight of dx; is equal to 5. In particular it follows
that the weight of the de Rham differential d = dyi is equal to [ in this
case since d sends a coordinate §;* of weight sa to the coordinate dg§;® of
weight sa + 5. Throughout this paper we also assume that the de Rham
differential d = d i is odd.

In this paper we study iterated tangent bundles shifted by different weights.
In fact the order of these shifts is not important and leads to isomorphic
graded manifolds. In more details consider the iterated tangent bundles
N = T[B)(T[B1]M) and N? := T[B](T[B2) M), where f3; are additional
weights. These two graded manifolds are naturally isomorphic. Indeed, let
1 be z; or £*. Then the standard local coordinates in ™" and in N* have
the following form respectively

(n,din,dyn,dy(din)) and (n,din,d3n,d3(din)),

where d} and d} are the first and the second de Rham differentials in N, If
v is the weight of 1, then the weights of these coordinates respectively are

VY + B, Y+ Bo, v+ B+ B2 and vy, v+ B, v+ B, v+ B2+ B
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An isomorphism N* ~ N? is given by the following formula

n=mn, din=dyn, &3n=din, dj(din) = —dy(din).

We will use a similar procedure in the case of graded manifolds of type
A. To simlify notation, we will omit ’s in itarated tangent bundles, since
the idea of the shifts will be clear from the context and all graded manifolds
that we will obtain are isomorphic. For the tangent bundle TN of a graded
manifold A of type A we will use a special agreement of shifts. More pre-
cisely, let A/ be a graded manifold of type A with tangent bundle TN, and
let a; € A be fixed. In what follows, we shall consider shifts of the tangent
bundle TN by 3 — «;, where 8 is an additional weight. The shift by 8 — o,
can be understood as the composition of a shift by —a; and by §. Explicitly,
we have T8 — auJN = T[B][—«;JN. Note that in this case the de Rham
differential d z must have the weight 8 — a; as it was pointed above. Since
the de Rham differential is odd, the weight § has the opposite parity to «;.

To illustrate our construction, let us consider a Z-graded manifold M of
degree n, see (4). Here we have only one basic weight a and consider the
shift by 8 — «, where § is an additional weight. The de Rham differential
dgr has the weight 5 — « and the weight system Apag of TM is given by the
following formula:

Arp ={0,0a,...,na, B —a, B, B+ a,...,0+ (n—1)a}.

We see that T'M is not a non-negatively graded manifold anymore. Indeed,
the weight system Arq contains weights with negative coefficients, for in-
stance, [ — a. Such shifts we will need further to construct a functor from
the category of graded manifolds to the category of r-fold vector bundles.

3.5 Example 5

Root systems of rank 2 and the corresponding graded manifolds. There are
the following types of root systems of rank 2:

Al X A1 ~ DQ, AQ, BQ ~ CQ and GQ.

Az B(Cy)

-2a-B

_a_ﬁ
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A1 >(A1
G,

B4

-3a-28

Denote by A a system of positive roots in any of these root systems.
Then we can consider the corresponding category of graded manifolds of
type AU {0}. Let us characterize these categories.

e Case A,. Let us choose a system of positive roots A = {a, 8, a + 8},
see picture above. By our definition, see Example 2, a graded manifold
of type AU {0} is a double vector bundle Dy:

D2 — A
l 1.
B — M

Here Dy — A, Dy — B, A — M and B — M are vector bundles, see
[M1] for precise definition.

The root system A; = AU —A U {0} has also a natural geometric
interpretation. Let us choose a chart on Dy with the following local

coordinates:
o B a+f
L, 7 gs » St :

Here z; are local coordinates of weight 0 and f? are local coordinates of
weight 0, where § € A. We use here the standard agreement that (x;)
are local coordinates on M, (z;, &) are local coordinates on A, (;, £9)
are local coordinates on B and (z;, & &8 & +8 ) are local coordinates
on Dy. Consider the cotangent space T*D,. It has the following local

coordinates in the corresponding chart on 7*Ds:

{xi’ fj, %7 %}EGA.

We assign the weight —d to the element 8%5 and the weight 0 to %.
j 2
Hence, T*Ds is a graded manifold of type As.
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Denote by 7D, the graded manifold of type A, with the structure
sheaf Oy.p, which is locally generated by the following elements:

0
Y S P
{ZEw YR 86;; }5€A
and with base M. (Clearly, O;.p, is a well-defined subsheaf in Or-p,.)

Further, the double vector bundle Dy possesses two dualization oper-
ations in the direction A and the direction B. We denote by D3 the
dual vector bundle in the direction A, i.e. D3* — A is the dual of the
vector bundle Dy — A. Similarly we obtain D3B. In fact, D® — B
is the dual of the vector bundle D, — B.

It is well-known (see [M1] and also [GrMa]) that DA and DB are
again double vector bundles, hence graded manifolds. We can describe
these graded manifolds using the root system As. Indeed, the weight
system of D34 is

A2 U {0}, where A ={a,—a—f§,—p}.

Here we can take the weights o and —a — [ as basic weights, then
—B = a+ (—a — B). Similar picture we have for D3B. The weight
system of D3B is

ABU{0}, where A™® ={B —a -3, —a}.

We can take the weights f and —a — 8 as basic weights. The structure
sheaves of D34 and D3B are subsheaves in the structure sheaf of T*Ds.

Summing up, consider the picture for A, above, where we marked the
roots «, B and —a — 3 by a cycle. We see that

all double vector bundles that we can obtain from Dy using dualizations
up to isomorphism correspond to systems of positive roots in As such
that any of these systems contain exactly two marked roots.

Case B,. Consider the following system of positive roots
A= {a,f,a+B,2a + B},

and the category of graded manifolds of type AU{0}. We see that the
weight 5 has no multiplicity in AU {0}, therefore any graded manifold
& of this type is a graded vector bundle over a graded manifold M of
type {0, a}, see Example 3.
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Consider the graded manifold T*E of type B, = AU —A U {0} that is
constructed as in case As. More precisely the structure sheaf of T*E is
locally generated by

{wi’ ?’ %}%A'

Further, we can take the dual vector bundle £* of £. It is a graded
manifold of type A* U {0}, where

A" ={a,—2a— 3, =3, —a — B}.

The basic weights here are @ and —2a — . Again we see that the
weight system A* can be obtained from A by a reflection in the root
system By. Note that the structure sheaves of £ and £* are subsheaves
in the structure sheaf of T*&.

e Case A; x A;. Consider the system of positive roots A = {«, 5}. This
weight system is multiplicity free, hence it determines the category of
certain double vector bundles. Such double vector bundles are called
double vector bundles with trivial core, see [M1] for definitions. In other
words it is just a sum of two vector bundles. Summing up, the category
of graded manifolds of type A U {0} is the category of double vector
bundles with trivial core. Again reflections o — —a and § — —f in
the weight system A; x A; correspond to dualizations of double vector
bundles in different directions.

e Case (5. The category of graded manifolds of type A U {0}, where
A ={a,f,a+ B,2a+ 5,3a + 3,3a + 25}.

We do not know any geometric interpretation in this case.

4 Constructions of graded manifolds of
different types and useful observations

4.1 Construction 1

Let us take a graded manifold A of type A. We can associate to N/ a family
of graded manifolds of different types. Let Ay be the underlying manifold
of N. In our notations, (Oy)g is the structure sheaf of Ny and (Oy)s are
(On)o-locally free sheaves on N, where 6 € A. Let us choose a subset
A’ C A that satisfies the following property:
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ifo € A and § = Z d; for some &; € A, then 6; € A" for any i. (6)

Lemma 1. Let us take a graded manifold N of type A. To any A’ satisfying
(6) we may assign the graded manifold Na: of type A'.

Proof. Consider a local chart on A with the structure sheaf in the form (3).
Clearly, we have the following inclusion of the sheaves

Fuoxs' (@ W) Fuexs( @ W)
seA\{0} seA\{0}

By (6) the transition functions between any such charts preserve this inclu-
sion. Gluing these charts together we get Nas.[J

Lemma 2. Let as take two weight subsystem A" and A" in A satisfying (6).
Then
A'NA" and A UA"

also satisfy (6) and determine graded manifolds of type AN A" and A"UA".

Proof we leave for a reader.[]

4.2 Construction 2

Another construction is the following. Let A be a weight system given by
(1), a; are basic weights and § = > a;o; ¢ A, where a; > 0, be a certain

element from lattice (1). We set

A= AU {5}

Assume that a graded manifold Na of type A is given. Our goal now is to
add the weight § and to construct another graded manifold N/ of type A’.

First of all we work with the graded manifold N of type A. The structure
sheaf of this graded manifold is Z"-graded, see Definition 2. This means that
we have the decomposition

ONA = @ (ONA)P‘

peZQl@"’@Zar

Here the sheaf (Oy, ), is the subsheaf of sections of Oy, of weight p. Note
that some subsheaves (Oy, ), are equal to 0. For instance (Ous), = 0 if

17



p = cicy, where ¢; < 0 for some j. At the same time, it may happen that

p ¢ A, however (Oy, ), is not trivial.

To construct a graded manifold Nas, we take two (O, )o-locally free
sheaves Os and &; on the underlying space (Na)o of M such that the se-
quence

0= (Onn)y = 05 = E—0 (7)

is exact. Note that we always can find such two sheaves. For existence,
note that we can take any locally free sheaf & on (Na)o and define Qs :=
(ONA) s @ Es. The choice of Os and &5 is not unique in general. Therefore the
construction of Mas depends on the graded manifold Na and on the choice of
the sequence (7). Note that any short exact sequence of locally free sheaves is
always locally split. Moreover in the category of smooth locally free sheaves
a global splitting always exists.

Let us take an atlas {U;} on (Na)o such that (7) is split over each U;, i.e.

Oslv, ~ (ONA)5

By definition of locally free sheaves, we may assume that any U; is small
enough such that the sheaf &|y, is free. Hence,

u’i = (U’L7 ONA

v, ®Es

U;-

Ui)
is a local chart on Na. Let us choose local coordinates (x;) in U;, local
homogeneous coordinates with non-trivial weights (£) in i; and a basis of

sections (n;) in Es|y, C Osly,. To each 1} we assign the weight §. So we are
ready to construct a local chart on Na.. We set

Vi= (Ui?FUi ®K S*(féaﬁi))

Now our goal is to define transition functions in any intersection V; NV;.
We take the transition functions z; = x;(z;) and & = & (x;, &) of Na
in the intersection of charts U; N U; together with the transition functions
m = (&L, m;) of Oslu,nu,- To be more precise, here 1] = (&L, 7;) is just
the expression of the section ng of 55]Uj C Og\Uj as a linear combination of
sections of (O, ) slo: © Elu, = Os|y,. Summing up, the transition functions
in VNV are x; = x;(x;), & = &(w;, &) and n = 1) (€2, n}). Clearly all total
weights are preserved and we get a graded manifold NMa: of type A’. We have
completed Construction 2.

4.3 A useful observation

Further we will need the following observation. Let us take two graded
manifolds N and A of type A with the same underlying space, i.e. Ny = N{.
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For simplicity of notations we denote the structure sheaves of A" and N’ by
O and O, respectively.

Proposition 1. Let us take two graded manifolds N" and N of type A with
the structure sheaves O and O, respectively, and with Ny = Njj. Assume
that the bundle isomorphisms are given s : Os — Of for any § € A. If for
any 0 € A the following diagram is commutative:

@ 051 ~O§2 e 05
01+02=0

#51°#5y l rptg (8)
/ / /
D 0 05, — 05
01+82=0
where the horizontal maps are natural inclusions and sums are taken over all

01,02 € A\ O, then N and N are isomorphic as graded manifolds of type A.

Proof. Let us define a sheaf isomorphism ® : O — O using (ps). It is
sufficient to define ® on all sections f € O|y, where U is a sufficiently small
open set. We put

L ®(f) =ws(f),if f € Os and 6 € A.

2. (I)(f) = ¢5l(f1)"'905k(fk)7 lff = fl"'fp and fz S O5¢

Let us prove that @ is well-defined. It may happen that f € Og|y and 0 € A,
and that f = fi--- f,, where f; € Os,|y and §; + - - - + I = I, where §; € A.
In this case both definitions coincide since Diagrams (8) are commutative.[]

U, 0; € A.

5 A functor F from AMan to A’'VB

In this section we construct a functor F : AMan — A’VB, where A’ is a
weight system that will be defined later. Recall that we denoted by AMan
the category of graded manifolds of type A and by A’VB the category of 7/-
fold vector bundles of type A’, where A’ is a multiplicity free weight system
and 7’ is the rank of A’. If N is a graded manifold, we denote by Oy its
structure sheaf.

5.1 Preliminaries

Let A be a weight system of rank r, o; be basic weights, see (1), and N be
a graded manifold of type A. By definition of a weight system, any weight
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0 € A has the form

<

5 = ai(é)ai, (9)

where a;(0) are non-negative integers. Denote by

= ; =1,...7. 1
n = max{a;(d)}, 1=1,...7 (10)
In other words n; is the maximal multiplicity of the basic weight «; in the
weight system A. Note that n; > 0. To construct the functor F, we will need
the following set of additional formal weights:

{ﬁji|j:2,...,ni,izl,...,r}. (11)
For our construction we will use sequentially the weights
ﬁ217 s 7ﬁn117 6227 s 767@27 ceey 521"7 s 7/8an' (12)

Let us take the first weight from Sequence (12). For simplicity we assume
that the first weight is (5. As above we denote by TN the tangent space
of N and we denote by dg,, : Orny — Oy the corresponding de Rham
differential. We assume that the map dg,, has the weight (31 — o; and we
indicate our assumption by the subscript 82; in dg,,. In other words, we have

d521 ((ON>5) C (OTN)5+521—041'

(Compare with Example 4, Section 3. We have seen there that such weight
agreements is well-defined.) Here (Oy)s is the subsheaf in Opr of weight 6.
Note that 0 is not necessary from A in this case. Using our assumption about
the weight of dg,,, we see that the weight system Aqns of TN is given by the
following formula:

ATNIAU{é—f—ﬁQl—Oq’éEA}. (13)

Compare this with Formula (5). As in Example 4, we see that Ay is not
a non-negatively graded manifold anymore. For instance Ar, contains the
weight (21 — ay that has a negative coefficient.

Further, let us take the next weight from Sequence (12). Say the next
weight is (31. Denote by

dgy, : Oy — Orrar

the de Rham differential on the tangent space TTN of TN. We assume
that dg,, has the weight 83; — ;. We denote the tangent prolongation of
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dg,, on Orry also by dg,,. (The map dg,, is a vector field on the graded
manifold TN. Hence the action of dg,, is defined on all tensors on T\ by the
Lie derivative.) By definition of the tangent prolongation the vector fields
dg,, and dg,, on Opry commute. Summing up on TTN we have two odd
homological commuting vector fields dg,, and dg,,. In other words, we have

d621 © d621 =0, d531 © d531 =0, [dﬁm’ dﬁ:n] = 0.

We continue this process. Altogether we iterate this procedure n times,
where

n = inz -, (14)
i=1

using sequentially the de Rham differentials

d5217"'7d5n117 d,3227"'7dﬁn227"'7 d[ggr,...,d/gn” . (15)

We assume that the de Rham differential dg;, has the weight 3;; — a;. The
result of this procedure is the following iterated tangent bundle:

N:=T---TN)

n

with n odd operators dg,, such that
[dg;:,dg,,] =0 for all (ji) and (5''). (16)

Further let R be a Z"-graded manifold that is not necessary non-negatively
graded. In this paper we consider only the case, when R is an iterated tan-
gent bundle of a graded manifold of type A. Denote by Jz the ideal in Og
that is generated by all elements with weights that have at least one negative
coefficient. To simplify notations usually we will write J~ instead of J .

5.2 Construction of F

We are ready to define the functor F. Let N be a graded manifold as above.
Our goal now is to construct an r'-fold vector bundle D, where 7’ is defined
below. Consider the sheaf O /J~, where N is defined in the previous
section. Clearly this is the structure sheaf of a certain non-negatively graded
manifold. We denote by A the weight system of this graded manifold and
by A’ C A its maximal multiplicity free subsystem. That is A’ is the weight
subsystem in A that contains all weights from A that have coefficients 0
or 1 before the basic weights «; and (;;. It is easy to see that A’ satisfies
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conditions of Lemma 1. We denote by Dy the corresponding graded manifold
of type A’, see the construction in Lemma 1.

Applying the rule (13), we see that o, 8; € A and we note that these
weights are multiplicity free. Hence, oy, 5;; € A" and the rank of A’ is equal
to r’ := n+r. Further, by definition the weight system A’ is multiplicity free,
hence, the graded manifold Dy is an r’-fold vector bundle, see Definition 6.
We put

F(N) := Dy (17)

Note that A’ depends only on A, but not on a particular choice of .

Further, let us take a morphism ® : N' — N; of two graded manifolds
N and N; of type A. By definition, ® preserves all weights. We have the
corresponding map in the iterated tangent bundles

(L---T®):T---T(N)—=T---T

n n n

(N1)7

that preserves all weights. Therefore, the map
(‘I)/)* : OJ\71/‘7/\:/’1 — Oﬁ/jj\:/
is well-defined. Here we use the following notations:

N :=T---T(N), Ny =T---T(NY),

n n

and we denote by J. & and J v the ideals in O and Of , respectively, that
1

are defined in the previous section, i.e. these ideals are generated by all
elements with weights that have at least one negative coefficient. Since (¢')*
preserves all weights, we get

(2)"(Op,, ) € Ob,-
Hence the map
F(®) : Dy — Dy,

is defined. Clearly, the correspondence ® — F(®) sends a composition of
morphisms to a composition of morphisms. Hence we obtain the following
theorem.

Theorem 1. The correspondence F is a functor from the category of graded
manifolds of type A to the category of r'-fold vector bundles of type A’
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5.3 Explicit description of A’ = A'(A)
Let us describe A’ = A’(A) explicitly. We take § € A with coefficients
a;(0) € Z as in (9), and we put

= Zﬂsz‘, where I; C {2,...,n;}.

s€l;

Proposition 2. Let A be a weight system and A" = A'(A) be the weight
system contracted in Section 5.2. We have

= J aj, (18)
dEA

where A} is given by the following formula:

Af = {5—1— Z — |Li|leg) | I; € {2,...,n;} such that
(19)

11, = ai(6) or |I;] = ai(6) — 1}.

Proof. Consider the weight system Arys that is given by Formula (13). If we
iterate this process we see that the weight system of A is given by

UA57 where Ay —{5—1—2 —|Lley) | || = 77%}

0€A

If we remove from Ay all weights with at least one negative coefficient and all
weights with non-trivial multiplicities, we get (19). This finishes the proof..]

Example. Consider the weight system A y,. Let us compute A" = A'(Apy, ).
According (11) in this case we need one additional weight (a1, since ny = 2.
Using (19), we have

Al = {O—l— (Br, — |Ii|laq) | Iy € {2} such that |I;| =0 or |[;]| = —1} = {0},

A;l = {al + (B, — [I1]a) | I € {2} such that |I;| =1 or || = O}

- {alaﬁ21}7
Ay, = {2&1 + (B, — |Lijew) | I € {2} such that |I,| = 2 or |I;] = 1} -
= {a; + fa1 }.
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Summing up, A" = {0, oy, B21, 1 + B21}. Therefore A’ = Ap, is the weight
system of a double vector bundle.

To clarify the behavior of the parities in this case, we need to consider
two cases. Firstly let us take @&; = 0. Recall that the de Rham differential
dg,, is odd and has weight a; — $2;. Therefore the parity of 3, is equal to
1. Secondly, we take @&; = 1. In this case the parity of 35 is equal to 0. In
general f3;; has always the opposite parity to a;.

Consider another example. Let us now compute A’ in the case that

A ={0, a1, ag, a1 + ag, 201 + s},

see Section 3.5, case By. In this case n; = 2 and ny = 1, hence we need one
additional weight fs1. Using (19), we have

AE) = {0}7 A:)q = {alaﬁﬂ}v A:)zg = {042},
A/alﬂw ={ar + g, a0+ fo1, ), Dby e, = {on + a2 + B}

Here 521 =01 + 1

6 Additional structures on Dy = F(N)

6.1 Odd commuting vector fields on Dy,

Recall that we denoted by N a graded manifold of type A and by N the
n-times iterated tangent bundle of V. It is a graded manifold of type Ag.

Further, n = v’ — r, where r is the rank of A and 7’ is the rank of A’. On N
there are n odd commuting homological vector fields dg;, of weights 3;; — a,
see Section 5.1. Our goal now is to show that these vector fields induce odd
commuting homological vector fields on D .

Proposition 3. The de Rham differentials (15) defined on N induce n odd
commuting homological vector fields on D s:

Dyis- -+ Dgys Dogas -3 Dpar o s Do, D, (20)

Proof. By our weight agreement any vector field dg,, preserves the ideal
J~. Hence dg,, determines the vector field Dg,, acting on the sheaf Og/J ™.
Furthermore, by definition we have Op,, C O JC// J~. We need to show that
Dg,, ((OD N)(s) C Op,, for any 6 € A’. Consider the following inclusion:

Dg,, ((Opy)s) = Dg,, (Ox/ T )s) (Ot /T )s485—an-
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Since ¢ is multiplicity free, the coefficient a;(d) before «; is equal to 0 or 1,
see (9) for notations. In case a;(d) = 0, the weight 6 + ;; — a; has a negative
coefficient, hence

(Oﬂ/j_)5+ﬁji—oéi = {0}
In case a;(9) = 1, the weight 6+ 3;; — ; has no negative coefficients. Since f;;
has no multiplicities in the weight system A, the sheaf (Og/J ™ )s48,,—a, 18
a product of subsheaves in Og/J~ with multiplicity free weights. Hence it
is a subsheaf in Op,,. The proof is complete.l]

Some properties of the vector fields Dg,, are described in the next propo-
sitions.

Proposition 4. The vector fields Dg,,, see (20), are (Op, )o-linear.

Proof. Let us take f € (Oj)o and a vector field dg,,. Then the weight of
dg,,(f) is equal to 3;;—a;. It is a weight with a negative coefficient, therefore,
Dg,,(f) = 0. The result follows from the Leibniz rule.C]

Let N and N'' be two graded manifolds of type A. Denote by Dg,, and
Déﬂ two vector fields given on Dy and on D1, respectively, and defined as
in Proposition 3.

Proposition 5. Let ¢ : N' — Nj be a morphism of graded manifolds of
type A and F(y)) : Dyr — Dy, be the corresponding morphism of r'-fold
vector bundles of type A’. Then

F(¢)* ° D}J’]Z = D/Bji OF<¢)*

Proof. This follows from the definition of F(¢)) and the fact that all mor-
phisms and the induced morphisms between tangent spaces commute with
de Rham differentials.[]

6.2 Description of Dy in local coordinates

Let us take § € A and &' = >, aia; + 3250585 € A, see (19) for the
definition of A§. Then there exists the unique up to sign operator Ds_s
that is equal to a composition of some Dg,, or equal to the identity such
that Ds_s(5) = 0. The operator D5 is explicitly given by Ds_ s =
+Dpg, ,, ©---0Dg, , , where this composition is taken over all J; ;, such that
bj.i, # 0 in the expression for §’. Let us choose a local chart & on N with
local coordinates (£9)sea. Here the superscript ¢ indicates the weight of
coordinates. By our construction of D, we obtain the following proposition.
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Proposition 6. The ringed space (Uy, Op, |u,) is & local chart on D, with
the following local coordinates:

U{Dsesr (&) | 6" € A3 (21)

JTAN

The coordinates (21) satisfy the following property. Let d, 6’ and Ds_,4
be as above. Then 7 := Ds_y(£)) satisfies the equation Dg, , (n)) = 0
for all Dg, , such that b;;, # 0 in the expression for §'. In other words,
nY € Ker Dg, . for all such 8;;,. This means that the local coordinates
of weight &' of our chart (Uy, Op,,|y,) satisfy the condition n}" € Ker Dg, ..
for all Bj,;, such that b; ;. # 0 in the expression for §’. Consider the sheaf
(O, )slu,- This sheaf is generated over (Op,.)oly, by the coordinates n}’
and by the sheaf

B (Op,)s (Ob, sl

8] 48, =6

where 9] # ¢’. The global version of this observation is stated in the following
Proposition.

Proposition 7. Let us take ' = a;,a;+ ) b;;3;; € A’. The sheaf (Op,,)s
i 7i
possesses the following decomposition:
(Oby)s = €D (Oby)s(Opy)s, + (Oby)s | KerDg,,,
& +8h=4" bjsis 70

where ¢, # ¢'.00

6.3 Properties of the structure sheaf of D),

Recall that ANV is a graded manifold of type A, N is the n-times iterated
tangent bundle of N, it is a graded manifold of type Ay, and Dy = F(N)
is a graded manifold of type A’, see Proposition 2 for the definition of A'.
If v is a certain weight in the weight lattice generated by «;, B3;;, then by
definition we put

dﬂji (7) = Dﬂjz‘ (7) =7+ ﬂji - Q4. (22)

Let us take a subset A = {vi,...,7,} in the set (11). Denote by A =
(71, .- -,7s) the same set A, but with a certain order, and by D" the following
composition:

DY Oy = Oy = Og/J~, DMi=d,o---0d, mod J~.  (23)
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Note that the underlying spaces Ny and (D)o of graded manifolds N and
D)y, respectively, coincide. Hence we can identify their structure sheaves
(On)o = (Op,)o. As in the proof of Proposition 4 we can see that the
map of sheaves D? is (Opb, )o-linear. Hence, D" is a morphism of sheaves of
(Op, )o-modules.

Let us take a weight § = > a;;, where a; > 0, in the weight lattice

=1
generated by a;. (Note that § is not necessary from A.) Then the weight

DA (8) is defined by (22). Let D(8) be multiplicity free and does not have
negative coefficients. Then we have the following morphism:

D" : (On)s = (Oby)pis)- (24)

Note that in (24) the weight D™(8) is not necessary from A’. However, for
any multiplicity free weight 6 we have (Op,.)g = (Og/T "~ )e-

Example. Consider a weight system A = {0,a1,3a7}. In this case Set
(11) is equal to {521,531}_and A = {0,0&1,621,631,0&1 + 521 + 531}' Let us
take 6 = 204 ¢ A. Let D*(§) be multiplicity free. Then for A we have the
following three possibilities up to order of 3’s.

e Ay = (a1, 831) and D51(2041) =201 +(B31— ) +(Bar — 1) = Bar + P
o Ay = (B21) and DAz(Zal) =21 + (B21 — 1) = a1 + Pax;
o As = (B31) and D (2a;) = 20 + (B51 — 1) = oy + Ba1.

For instance we see that D™(204) ¢ A’
For any graded manifold A of type A and the corresponding Dy = F(N),
we can consider the following maps

DZ\1 : (ON)Qoq — (ODN)521+531; DI\Q : <0N>2a1 — (OD/\/)aﬁ-ﬁm;
D% . (O/\/)%q — (ODN)ocH—,Bm'

Proposition 8 and 9 below establish some properties of these maps. More
precisely, we will show that the maps DAiL 1 = 1 — 3, are injective and in the
case ¢ = 2,3 we will find the image of D™ . For instance consider the map
DM ¢ (On)2ay — (Oby)psis - Let as take a graded domain U on N with
coordinates (z;, &, ,?;al) of weights 0, ar; and 3a, respectively. Assume that
a1 = 1. The sheaf (Ox)aq, is generated locally over (Oxr)o by the monomials

£ €Y where 1 # j. We have

? J

DM (gzl'll ’ 5;11) = dﬁm © dﬁ31 (gqu : f;‘ll) mod J~ = d521 (dﬁ:ﬁl (f?l) ’ 6?1_
5?1 ) d531 (62)) mod J~ = d531 (52041) ’ d621 (6311) - d621 (gf{l) ) d,331(€;¥1> mod J~.
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The element dg, () - dg,, (§5) — dg,, (§) - dps, (§51) mod J~ is not trivial
in (Op, )y 45> hence the restriction D [(Oxr)aq, is injective.

We will need the following proposition.

,
Proposition 8. Let us take 6 = Y a;a;, where a; > 0, and assume that
i=1

the weight D[\(é) is multiplicity free and does not have negative coefficients.
Then the morphism (24) is injective.

Proof. The map D* is a composition of de Rham differentials mod J~. The
idea of the proof is to use the following fact: the kernel of the de Rham
differential for graded manifolds (as for usual manifolds) restricted to func-
tions coincides with the vector space of constant functions. Then we use the
fact that the sheaf (O )s does not contain constant functions for § # 0. A
detailed proof can be found in Appendix.[]

The next proposition describes the image of D? in some particular cases.

T
Proposition 9. Let us take 6 = Y a;a;, where a; > 0, and assume that
i=1

DA(0) = 3" ajoy + 3 by is multiplicity free, does not have negative coeffi-
i=1 i

cients and that D*(§) satisfies the following property: if by, # 0, then a, # 0.

Then we have

D* ((Ox)s) = ((ODN)DA(J)> ﬁ Ker D,

k=1

and the map
DM+ (Ox)s = ((Op)pag ) () KerD,,
k=1
is an isomorphism.
Proof. The idea of the proof is to use the Poincaré Lemma for graded man-

ifolds: any closed differential form is locally exact. Details can be found in
Appendix.[]

Consider again the map DM as above. In this case DM (201) = P21 + Ps1.
We see that D*1(§) does not satisfy the property: if by # 0, then a; # 0. In

this case Proposition 9 is wrong since Im(D*!) does not contain for example
d521 (§?l> ’ d531 (f;ll) mod J~ € m%zQ Ker Dﬁm'
We will need the following corollary:
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Corollary. Let us take 6 = > a;a; + Y b3 € A’ such that a;,bj,;, # 0
i=1 7i
for some indexes ig and (joio), and

f€(Opy)s [ KerDg, .
bst £0
Then there exists I' € (O /T ™~ )s-p;:,+a; Such that
(dgj,,, mod T~ )(F) = f and (dg, modJ™)(F) =0
for any (st) # (joio) such that by # 0.0
Proof follows from the proof of Proposition 9, see Appendix.[]

Further properties of the commuting vector fields Dg,, are described in
the following proposition.

Proposition 10. Let us take 6 € A'. If Dy, (6) € A’, then
Dg,. : (Opy)s = (Opy)p,,, ) (25)
is an isomorphism of (Op,, )o-locally free sheaves. In particular, all maps
Dg,. : (Opy)a; = (Opy)s,

are isomorphisms of (Op,,)o-locally free sheaves.

Proof. Recall that Dg,, is (Op,, )o-linear by Proposition 4. Consider a chart
U on M. Clearly this chart determines a chart on Dy. We choose coor-
dinates (z,), (&) and (7;) such that z, are local coordinates of weight 0,
&, are coordinates with weights in the form o; + ..., and 7, are other local
coordinates.
Any f € (Op,)s has the following form f = Y fir&n’, where I as a
kI

multi-index and fi; are functions of weight 0. Since Dg,(d) € A’ is multi-
plicity free, we see that ¢ does not depend on ;. The map (25) in coordinates
is given by the following formula:

Dﬁji(f) = Dﬁji(z flekﬂI) = Z Jer Dﬁji (&:)771-
kI kI

We see that Dg,, (&) and 7, form a subset of independent local coordinates in

Dy, since Dg,, (&) and 7, have different weights. Note that any function in

Op,, of weight Dg,,(6) has the form Y fz; Dg,, (§:)n". Therefore, the inverse
kI

map > frr Dg,, (&)n' — 3 fer&en’ of the map (25) is well-defined.]
kI kI

The vector fields satisfying (25) we will call non-degenerate.
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6.4 Combinatorical properties of odd commuting vec-
tor fields Dy,

Some properties of odd commuting vector fields Dg,, can be described using
the combinatorics of the weight system A’. Let us take §,0" € A’ and two
vector fields Dg,; and Dg,; such that Dg, (d) = Dg,,(¢') € A’. Explicitly this
means that 6 = «; + 5+ 60 and &' = a; + 3;; + 6 for a certain weight 6. Then

D/Bji : (ODN)(; — <ODN)DBJ-¢(5) and  Dg,, (ODN>5’ - (ODN)DBJ'Z'(‘;)

are isomorphisms, see Proposition 10. Hence the following isomorphism of
sheaves is defined

D3l oDg, : (Opy)s = (Opy)s-
Explicitly on weights we have

Dgsli © Dﬁji((s) - DESIZ' © Dﬁji(ai + Bsi + 9) =o; + 5ji + 0 = (5’.

Assume that 6 = " a;a; + > 0B and &' = > alay; + D Vi Bji- For 6 € A
i=1 7i i=1 ji
we put

Sp 1= ((ODN)5 m KerDg, ) (26)

bpt#0

Similarly we define the sheaf S
We will need the following proposition.

Proposition 11. Assume that bj; = 0 and a;, by # 0 for indexes i, (ji) and
(si). Then we have

(Dgsli °Dg;:) (85) = Ssr.
Proof. 1t is enough to show only the following inclusion

<DEsli °Dg;;) (85) C Sy
Let us take f € Ss. In Corollary of Proposition 9, we have seen that since
Dg,,(f) = 0, there exists F' € (Og/J ™ )5—p,,+a, such that f = dg_,(F) mod J .
We have

(DEGIZ © Dﬁy)(f) = (D,(;i © Dﬁji O<dﬁsi mod ji))(‘F) =
— (D, ©Dg,, o(ds,; mod J7))(F) =
— (dfgﬁ mod ji)(F) € (ODN)é/ N Ker Dgﬁ .
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Further, again by Corollary of Proposition 9, we have dg,, (F') mod J~ = 0,
where b, # 0. Hence

Dg,, o(DEsli oDg,,)(f) = —Dg,, o(dg,, mod J)(F) = 0.
The proof is complete.[]
Let us take 9, 61,02 € A’ in the following form:
d=oa;+Bji+0, o =a;+ B +0, 02=a;+ B +0,

where j # j1, j # js and j; # ja. Note that since A’ is multiplicity free, 0
does not depend on «;, Bj;, B;,; and Bj,;.

Proposition 12. Let 6,01, 0o be as above. Then we have:

(ngli © Dﬁjzl')

-1
(ODN)gﬂKerDBji = _(Dﬁjli © D/ngi)o
-1
(Dﬁjz‘ © Dﬁjli>

We will call (27) the cocycle like condition or just cocycle condition
for our vector fields. This name was inspired by classical cocycle conditions.
However in our case we have an additional sign and the order of entries does
not agree with the classical case.

(27)

(ODN)(;OKGI‘ Dﬁji .

Proof. Let us take f € (Op,,)sNKerDg,. Again by Corollary of Proposition
9, we can find F’ such that f = (dg,, mod J~)(F). We have

(D3, ©Dg,,.)(ds;, mod T ™) (F) = —(dg,,, mod J~)(F).
On the other hand,
(D/gjllz © Dﬁjzi) ° (nglz © Dﬁjli)(dﬁji mod j_)(F) =
_<DE]-111- o Dﬁjgi)(dﬁjli mod J7)(F) = (dgm. mod J ) (F).
The proof is complete.[]

Remark. Let 9, 91,02 be as is Proposition 12. Let us show that (27) does
not hold for any f € (Op,)s. In other words the assumption f € (Op, )s N
Ker Dy, is essential. Let us take two variables £y, &> of weight a;. Then f =

§1-Dg,,(&2) has the weight a; + ;. Further, Dg,,(f) = Dg,,(&1) - Dg,, (§2) # 0.
Hence, f ¢ Ker Dg,,. Applying the left hand side of (27), we get:

(ngli © Dﬁjzi)(gl ) Dﬁjz‘ (&2)) = D,Ejli(DBjQi(fl) : Dﬁji (§2)) = £ Dﬁm(fl) - &o.
Further,
(D, 0 Dg,,.) © (D 0D, ) (€ - Dy (62) =
+ <D§j11i 0Dg,, . )(Dg;, . (61) - &) = £&1 - Dg,,.,(&2)-
We see that the results are different.
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7 Equivalence of categories

7.1 The category of r’-fold vector bundles with n odd
commuting non-degenerate vector fields

In this section we introduce the category A’'VBVect. This is a category of 7/~
fold vector bundles of type A’ with n odd commuting non-degenerate vector
fields. More precisely, let A’ be a weight system with the following set of
basic weights:

{Oél', Bji | = 1,...,r,j:2,...,ni},
where n;, > 2 and ¢ = 1,...,r are some non- negative integers. (See (1) for

the definition of basic weights.) We put n := Z n; —r and ' =n+r. Note

that ' is the rank of A’. Let D be an r’-fold Vector bundle of type A’ with n
odd vector fields Dg, of weights 3;; — a;. Assume that these vector fields
have the following properties:

1. The vector fields Dg,, are (Op)o-linear.
2. The vector fields Dg,, super-commute:
[Dﬂjﬂ Dﬂjlil} = 0

for all (ji) and (j''). In particular, any Dg, satisfy the condition
D3, =0.
Biji

3. The operators Dg,, are non-degenerate in the following sense. Let
us take 6 € A’. As above we put Dg,(0) := 6 + 8j; — a;. We call an
odd vector field Dg,, of weight 3;; — o; non-degenerate, if it satisfies
conditions of Proposition 10 for any 0. More precisely, if Dg,,(§) € A’
for a certain § € A’ then the following map

Dg,. - (Op)s = (Ob)ps,, (6)
is an isomorphism of sheaves of (Op)¢-modules.

4. Let us take 0 = > a;a; + > b;if;; € A'. We assume that the sheaf

(Op)s possesses the following decomposition:

(Op)s = (Op)s (] KerDs,, + €D (Op)s,(Op)s,

bst#0 01+92=08

where 01, 9y # 0.
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5. Let 0, Dg,;, Dg, , and Dg, , be as in Proposition 12. The vector fields
Dg,;, Dg,,, and Dg, , satisty the following cocycle condition:

(D/gjli o DﬁjQi)|(OD)5ﬂKengﬂ = —(nglli © DﬁjQi) © (DEJI © Dﬂjli)|(OD)sﬂKerDﬂji'

6. Let 0,0' € A, Dg,, and Dg, , be as in Proposition 11. Our vector
fields preserve the kernels in the following sense:

(D5 ©Dg,.)((Op)s () KerDg,, ) = (Op)y (1) KerDy,, .
bst7£0 b/st;ﬁo

In other words this means that the operator ngjiio oDg,, preserves the
decomposition from item 4.

The category of r’-fold vector bundles of type A’ with n odd vector fields
of weight 3;; — «; satisfying Properties 1 — 6 we denote by A’(ah._.@r)VBVect
or just by A’VBVect. A morphism in this category is a morphism in the
category of r’-fold vector bundles of type A’ that commutes with all vector
fields.

It follows from Propositions 7, 4, 5, 10, 11 and 12 that the image of the
functor F is contained in A’VBVect. In the next sections we will prove that
F defines an equivalence of categories. To do this we will use the following

definition.

Definition 7. Two categories C and C’ are called equivalent if there is a
functor F': C — C’ such that:

e [ is full and faithful, this is Home(cq, ¢o) is in bijection with
Homc/(Fcl, FCQ).

e [ is essentially surjective, this is for any a € C’ there exists b € C such
that a is isomorphic to F(b).

Example. Let us illustrate our construction of the functor F and Properties
1 — 6 on an example. Consider a Z-graded manifold M of degree 3,
that is a graded manifold of type Axg,. In this case r = 1, ny = 3 and
n = ny —r = 2. Therefore we need to take twice iterated tangent bundle
TT(M) = T[Bs1 — cau](T[fa1 — a1](M)) and to use two additional weights
Ba1 and [31. As it was noticed above our construction works for both parity
agreements: &y = 0 or @; = 1. Recall that By = a1 + 1 and By = aq + 1.
Let us explicitly describe F(M) = Dy. Consider a local chart on M
with coordinates (x,£21,£21 £391), We omit here all subscripts. As above
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a superscript indicates the weight of a coordinate. Recall that we denoted
by dg,, and dg,, the first and the second de Rham differentials in T7T'(M).
Therefore the standard local coordinates on 7T (M) have the following form

(SL’, fal ) 52041 ) 53041 ) dﬂnxa d521£a1 ) d521£2a1 ) dﬁmégal ’ d531x7 dﬁslfalv
d/331§2a1 ’ d/3315301’ dﬁsldb’mx? d/331d,321€a1’ d531d521§2a1 ’ dﬁ:ﬂdﬂm 53041)‘
The first and the second de Rham differentials dg,, and dg,, have weights

Po1 — a1 and P31 — aq, respectively. The coordinates (28) have the following
weights, respectively.

(28)

(0, a1, 200, 3, Bo1 — o, PBor, a1 + Bo1, 201 + Par, Bs1 — a1, Ba,
Bs1 + i, B31 + 201, Bar + B31 — 20, B31 — aq + Bax, (29)
Bs1 + Ba1, P31 + a1 + Pai).

According Section 5.2 to obtain D, we need to factorize the structure sheaf
Orpmy of TT(M) by the ideal J~, see Section 5.1. Recall that this ideal
is generated by all local coordinates of weights with at least one negative
coefficient. As it was noticed above the sheaf Oppn/J~ is a structure
sheaf of a graded manifold, say M’, of type

A= {0, a1, 209, 3001, Ba1, oq + PBar, 2a1 + Por, Bs1, a1 + au,
Bs1 + 201, P31 + Par, a1 + g + Por }

To obtain A we removed all weights with at least one negative coefficient in
(29). The corresponding to (28) local coordinates on M’ have the following
form

(l‘, gal ) éQal ) €3a1 ) dﬁzléala d621£2a1 ) d521£3a17 d531 5041 ) d531£2a17
3 2 3
d/331§ “, d531d,321£ a1’ d531d521§ 041).

Note that more precisely we should write z + 7, £€** + J~ and so on. We
omit J~ for notational simplicity.

Further, by definition A’ is the maximal multiplicity free subsystem in
A. Explicitly we have

A" =0, a1, Bo1, a1 + a1, Bs1, B31 + aa, Bs1 + Bor, Bs1 + cq + P}

The graded manifold D, is a graded manifold of type A’. Locally its struc-
ture sheaf Op,, is generated by the coordinates

(xv 5041’ dﬁmgala d521€2a1 ) d/331€a1 > d531€2a1’ d531d521§2a1 ) d/331d521 53041)‘
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To obtain the transition functions between two local charts we need to write
transition functions for T7'(M) and factorize by J~. This completes the
construction of D 4.

Note that D, is a graded manifold of type A’, where A’ is multiplicity
free of rank 3. Therefore D, is a 3-fold vector bundle of type A’. Moreover
we have two operators Dg,, and Dg,, on D, that by Propositions 7, 4, 5, 10,
11 and 12, satisfy Properies 1 — 6. Let us describe these operators explicitly
in our coordinates.

First of all Dg,, and Dg,, are induced by the first and by the second de
Rham differentials dg,, and dg,,, respectively. To define for example Dg,, in
our coordinates we need to apply dg,, to a coordinate and to factorize by
J~. For example we have

Dﬂm <$) - d521$ +I =7 Dﬂ?l (d521§a1> = dﬁzl dﬂ21£a1 +J =J,
Dﬁ?l (dﬁi%lg?al) = d/321 d,331£2a1 +J =- d,331 d,32152a1 +J .

We see that Dg,, is (Op,,)o-linear, since it sends functions of degree 0, for
example z, to 0. The operators Dg,, and Dg,, super-commute since dg,, and
dg,, are super-commutative. Hence we have Properties 1 and 2.

Further for example the sheaves (Op,,)a,+8: and (Op,,)gs+8,, are lo-
cally generated over (Op,,)o by the monomials {£* - dg,, €™, dg,, £**' } and
by the monomials {dg,, £ - dg,, £, dg,,dg,, E2*1 }, respectively. We have

Dg,, (€% - dp, €)= dg, € - dg,, €, Dy, (dpy, ) = dg,, dg, £

Therefore, D521 : (ODM)aﬁ-ﬁsl - (ODM)/B21+/831 is an isomorphism. This
observation leads to Property 3.

Consider again the local generators {£*-dg,, £, dg,, £} of (OD o, )y + 31 -
We see that the first monomial £ - dg, {** is decomposable, while for the
second we have dg, £*** € KerDg,,. So we get Property 4 for this sheaf.
Properties 5 and 6 are technical, we can check them directly in our coordi-
nates.

Remark. The main result of our paper is that the graded manifold D x4
contains all information about the original graded manifold M. Moreover if a
3-fold vector bundle D ¢ with operators Dg,, and Deg,,, satisfying Properties
1 — 6, is given, we can recover the graded manifold M. In this case the
operators Dg,, and Dg,, are images after a factorization of the first and the
second de Rham differentials dg,, and dg,,, respectively.
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7.2 Z-graded manifolds of degree 2 and double vector
bundles with an odd homological vector field

In this section we establish a correspondence between Z-graded manifolds of
degree 2 and double vector bundles with an odd non-degenerate homological
vector field. Recall that graded manifolds of type {0, a, 2a} are usually called
in the literature Z-graded manifolds of degree 2. Below we give two construc-
tions. First of all we assign a double vector bundle to a Z-graded manifold
of degree 2 and then we reconstruct a graded manifold corresponding to a
double vector bundle with an odd non-degenerate vector field.
Constructions 1 and 2 in what follows establish an equivalence between
the category of Z-graded manifolds of degree 2 and the category of double
vector with an odd homological vector field. Another result of this type
about the equivalence of categories of Z-graded manifolds of degree 2 and of
double vector bundles with an involution (or a metric) was obtained in [CM]

(in [JL]).

Construction 1. Consider a Z-graded manifold My of degree 2 or, in
other words, a graded manifold My of type A = {0,«,2a}. In this case
F(Ms) =: Dy, is a double vector bundle with basic weights o := «; and
B := P21. The weight system of D4, has the following form:

A'={0, a, B, a+ [}

On Dy, we have an odd linear homological vector field Dg := dgmod J~
such that Dg is non-degenerate and has weight 3 — «. In this case the
non-degeneracy of Dg means that the following map

Dﬁ : (ODMg)a — (ODMQ)ﬁ
is an isomorphism of sheaves of (Op,,, Jo-modules.

Construction 2. Let us show that any double vector bundle D or a graded
manifold of type A’ = {0, a, 8, a + f} with an odd non-degenerate linear
homological vector field D of weight 8 — « is isomorphic to a double vector
bundle in the form D, := F(My), where My is a certain graded manifold
of type A = {0, a, 2a}. We also will show that this isomorphism commutes
with operators Dg and D, which are defined on Dy, and D, respectively.

Step 1, exact sequence. Consider the subsheaf (Op)a+s in Op, where Op
is the structure sheaf of D. We have the following exact sequence of sheaves
of (Op)o-modules:

0— (Op)a(Ob)sg — (Op)ats — € — 0.
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Here £ is a certain locally free sheaf of (Op)o-modules. A standard argument
shows that the following sequence is also exact

0 — KerDN((Op)a(Op)s) — Ker DN(Op)ass —> KerD' — 0,

where

D": & = D((Op)a+s)/ D((Op)a(Op)s)

is the map induced by D. Since D is non-degenerate and D((Op)s) =
D?((Op)a) = 0, the following map

D:(Op)a(Op)s — (Op)s(On)s

is surjective. Since D has weight 5 — o and since 25 ¢ A’ we have

D ((Ob)ats) C (Op)as and  (Op)as = (Op)s(Op)s.

Hence,
D((Op)a+s) = (Op)s(Ob)s,

the map D' is trivial and Ker D’ = £. Therefore we have the following exact
sequence:

0 — KerD ﬂ((OD)a(OD>5) — KGIDH(OD)CH_B — & = 0. (30)

Step 2, construction of M. The idea is to show that the following data:
OO = (OD>O7 Oa = (OD)a7 OZa - (OD>Q+5 N KerD

defines a Z-graded manifold My of degree 2. To simplify notations we
denoted here by O the structure sheaf of M. First of all consider the
graded manifold M, of type {0, a} with the structure sheaf S, (O) and
the sheaf Oppy, /J~ with the vector field dmod J~ := dgmod J~ defined
as above, i.e induced by the de Rham differential on Oppq,. We set Op :=
(dmod J7)(0,). By Proposition 9 or by a direct computation, we have

(dmod J7)(O4 - On) = (O4 - Og) N Ker(dmod J 7). (31)
Now we can define an isomorphism of sheaves of ringed spaces
O :O0ra, /T =500 ®O0p) — S*((Op)a ® (Ob)p)
in the following way:

Olo, :==1id, ©|p, :==Do(dmodJ")~".
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Clearly, © preserves all weights and © o (dmod J~) = D o ©. Therefore,
O((O4 - Og) NKer(dmod J~)) = ((Op)a(Ob)s) NKerD. (32)
Combining (30), (31) and (32), we get the following exact sequence:
0= Of-0f = (Op)assNKerD — £ — 0. (33)
Here x = © o (dmod J ) is an injective map. Further, we put
O30 = (Op)as+s NKerD.

By Construction 2, Section 4.2, the exact sequence (33) determines a Z-
graded manifold of degree 2, which we denote by M.

Step 3, construction of an isomorphism F(M5) ~ D. To define an iso-
morphism F(Ms) ~ D we use Proposition 1. For simplicity of notations we

denote the structure sheaf of F(Ms) by O’. By definition and by properties
of the functor F we have

O, =04, Oy=0g, wip = 04 - O3+ (dmod T 7)(Oaq).

«

The last equality follows from Proposition 7. We will use this decomposition
to define an isomorphism F(My) — D.
Consider the following commutative diagram:

(d mod j_)<02a) O2a —_ (OD)oH»ﬁ N Ker D

I I I

(dmod ) (O, - 0,) &)

(dmod J )
%

L 0400 — ((Op)a(Op)s) NKerD

Note that the right square is commutative by definition. Here all horizontal
maps are isomorphisms and all vertical maps are inclusions. By Proposition
1, we need to define isomorphisms ¢;, where § € A’. We put

Palo, = Olo.,  @slo, =Olos,  Patslo,o, = vatpslo,or,
Patsl(dmod 7-)(020) = (dmod T 7).
In the last line we use the identification Oy, = (Op)a+s N KerD. Since
the diagram above is commutative, the conditions of Proposition 1 hold and
the injective map is defined. Since the sequence (30) is exact, (Op)a+g =

(Ob)a+s N KerD+(Op)a(Op)s. Hence the map ¢ defined by (¢s) is an
isomorphism. Clearly ¢ commutes with Dg = (dmod J~) and D.

Remark. We have seen that the decomposition (Op)ats = (Op)ars N
Ker D +(Op)a(Op)s follows from exactness of (30) in the case of Z-graded
manifolds of degree 2. Hence in this case it is enough to assume that the
vector field D is linear and non-degenerate. (Note that the vector field D is
homological due to the weight agreement.)
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7.3 Two additional functors

Let us fix a weight system A satisfying Definition 1 and the weight system
A" = A’(A) as in Proposition 2. Recall that we denoted by r and 7’ the
ranks of A and A’ respectively. There is a projection G : A" — A that is
defined in the following way. Let us take

= Z g, + Z /Bjs'it e A

keK (s,t)eSXT

for certain sets K, S and T'. We set

G(0) := Zaik + Z a, .

keK (s,)ESXT

In other words, we replace any 3;.;, by o,.

Proposition 13. Let us take 6 € A. We have
Gil((s) = ZS?

where Af is given by (19)
Proof follows from definitions.[]

Denote by A’ g,, and A 3,, the weight subsystems in A’ generated by the
sets

Acg, ={as, B | s=1,...,r, t<iort=iand s <j};
A_g, ={as, B |s=1,...,r, t<iort=iand s <j},

respectively. We put Ag,, 1= G(A;Bﬂ_) and A_g,, := G(A’:Bﬁ).

In Section 5.2 we constructed the functor ' from the category of graded
manifolds of type A to the category of r’-fold vector bundles of type A’. Now
we need to construct in a similar way two additional functors Fg,, and F_g .
The functor F.g,, is a functor from the category of graded manifolds of type
Ap,, to the category of ’-fold vector bundles of type A 8,0 and the functor
F_g,, is a functor from the category of graded manifolds of type A_g,, to
the category of r’-fold vector bundles of type A/:ij respectively. Note that
always we deal with r’-fold vector bundles. Recall that to construct the
functor F we used the additional formal weights (8;;), where j = 2,...,n;
and i = 4,...,7, see (11). Similarly we define the functor F.g,, using the
additional weights B € A—p,, and the functor F_g,, using the additional
weights B € A—g,,.
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More precisely, let us describe for example the functor Fg,, in more de-
tails. Weset n' := [A_g,, |, i.e. n’is the number of elements in A_z .. Further,
we take a graded manifold Nz, of type Ag.. Then we define F.g,(N_g,,)
in the following way. We take n'-iterated tangent bundle N éﬁjz‘ of /\/‘<5j1.
using sequentially additional weights from A_g.. Further, we consider the
graded manifold with the structure sheaf ONéﬂﬁ /J~. Assume that it has

type A<5ﬂ. We choose the maximal multiplicity free subset F.g,,(Acg,,) in
A</3ﬁ. and denote by Fog,,(N<s,,) the corresponding to A’ s,; graded mani-
fold. The definition of the functor F_g, is similar: we should replace the set
A<ﬁji by A=ﬁji'

Note that the constructed functors F.g,, and F_g,, are from the categories
of graded manifolds of type A_g,, and of type A_g,, to the categories of
graded manifolds of type Fg,, (A<g,,) and of type F_g, (A_g,,), respectively.
The weight system F_g, (A<g,,) is defined by formulas (18) and (19), where
Bst € Acg,. In the same way we define F_z, (A_g,,). However in fact we
have the following equalities.

Proposition 14. We have
Fepi(Acp,) = Alg, Fop (Asp,) = AL, .
Proof. Tt is enough to prove only the second statement. Let us take
0= i+ B €Fp (Ag,).
k st
Then o, , B.i, € A/:,Bji' Hence, F_3, (A_3,,) C Al:/a’ji‘ On other hand assume

that
§ = E Qg + E /Bjsit € A/: »
k st

Then § € A’G(é,). Since ¢’ depends only on By € A_p,,, we see that ¢’ €
]Fiﬁji (Aiﬁji ) 0

7.4 [ is an equivalence of categories

In the previous section we constructed a functor F from AMan to A’VBVect.
Let us prove that IF is essentially surjective. This is the most difficult part
of our paper.

Consider the set of additional weights (3;;), see (11), with the lexico-
graphical order: ;; < B; if i < i’ or i =4 and j < j'. We will prove the
essential surjectivity of F by induction on this order.
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Let D be an object in A’VBVect. Consider the weight systems A;ﬁjiv
A, = G(A’<B ), A/—B , A—p,, == G(ALg,) and the functors F g, F_g,
constructed in the previous section. Clearly ‘the weight system A’ <8, satisfies
the conditions of Lemma 1. We denote by D_g,; the graded manifold of type
A <8, C A, see Construction 1, Section 4.1. Further, assume by induction
that there exists a graded mamfold Ncg,, of type A g, such that

F<5jz‘ <N<ﬁji) = D<ﬁji )

and this isomorphism that we denote by ¢’ commutes with all vector fields
Dg,,. Now our goal is to show that there exists a graded manifold N_g,, such
that

Fiﬁji(/\/:ﬁji) = D:ij
where D_g,, is the graded manifold of type A/:ﬁji C A’, see Construction 1,
Section 4.1.

Note that any graded manifold of type Ag,, is also a graded manifold of
type A_g,,. Hence we can apply functor F_g, to ./\/'<[3ji and get the graded
manifold F_g,,(N<g;,) of type AL, . However, F_g (Ncg,,) is also a graded
manifold of type F_z,(Ag,,), where

Fzﬁji(A<5ﬁ) = A/<ﬁjz‘ U All U A/Q C A (34)
Here A and A, are subsets in A’ that are defined by the following formulas:
Ay ={Dg,,(0) | 6 € ALy, : Dy, (6) € A}

(35)
AIQ = {5 e A | Hﬁjoi < Bji : Dﬂjoi(é) c All}
Explicitly, ; € A and d5 € A), have the following form:
0 = /Bji +6; and 99 = o + 5ji + 05, (36)

where 0; are independent on ; and ;. In addition we assume that for
d there exists Bj,; < Bj; such that Dg, (6) € Aj. Again the weight sys-
tem F_g (Acp,) C A’ satisfies the conditions of Lemma 1. Denote by
Dr_, (a_y,) the graded manifold of type F_g,,(Ag,,), see Construction 1,
Section 4.1.

For simplicity of notations we denote the structure sheaves of graded
manifolds F_g ,(Ng,,) and Dr_; (a4, by O and O, respectively. We also
denote operators Dg_, in O and O’ by the same letter.

Proposition 15. Let N_g, and Dr_, (acs,)

type A.g,, and F_g, (A.g,,) as above. Then there exists an isomorphism

be the graded manifolds of

© : F:Bji<N<ﬁji) - DF=ﬁji(A<ﬁji)
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of graded manifolds of type F_g, (Ag,,).

Proof. The idea of the proof is to extend the isomorphism ¢’ using the vector
fields Dg,,. By Proposition 1 our goal is to construct compatible bundle maps
@5 for all 6 € F_g,,(A<p,,). We use the decomposition (34). By induction we
have an isomorphism ¢ : Fos (N<g,,) = D<g,,. For any 0 € A’ we put
@5 = 5. Further, let us take Dg,, (6) € A}. We put

Note that (37) is well-defined since § € AL 5 . If 6 € A we put

Ps = DEJEZ °<PDBj0i(5) © Dﬁjoﬂ (38)

where f3;,; is as in the definition of Aj. Note that ¢p, (5 is defined by (37),
J0?
since Dg, ;(6) € A}. Combining (37) and (38), we get

N | -1
Vs = Dﬁjoi oDg,, oy 0 Dﬁji oDg, ;.

Explicitly, if 6 = a; + 5;; + 02 € Al see (36), then A = a; + 3, + 62 € A’<5ji.
The formula (37) is well-defined, while (38) dependents on the choice of
Bjoi- Let us show that in fact this is not the case. Assume that

—1 —1 —1 -1
05 = Dﬂjoi oDg,, opy 0 Dﬁji oDg, s w5 = Dﬂjli oDg,, 0oy 0Dy 0Dg, ;.

ju
We need to show that

—1 —1 -1 —1
90)\ = Dﬁjz © Dﬁ]oz © Dﬁjlz © DB]’L O(p)\/ o D,B_] o Dﬂjl © Dﬁjoz © DB_]Z’ (39)

i 7

where )\ = Q4 —+ Bjoi =+ 92 and )\/ = Oy + Bju‘ —+ 02 SllCh that /\, /\/ - A/</Bﬂ FiI‘St

of all consider gpA\KerDﬁj . Then we can apply the cocycle condition for our
01

vector fields:

—1 -1 — -1
(Dﬁji © Dﬁjli © Dﬁjoi © Dﬁji) Ker Df’joi - - Dﬂjoi © Dﬁjli KerDﬁjOi-
Further, we use the relation:
-1
(Dﬁjm oDg, ,)(KerDg, ;) = KerDg, ;.
Therefore we can apply the cocycle condition again
~1 ~1 _ ~1
(Dﬁji o Dﬁjoi o Dﬁjli ° Dﬁji) Ker Dﬁjli = - Dﬁjli © Dﬁjoi KerDﬁjli-
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Now we can rewrite (39) in the following form

_ —1 -1
(;0)\|KerDBjOi = <D/8j1i [¢) Dﬁjoi oYy O Dﬁjoi o D/lei) KerDBjOi

or

(DE]](-]I o Dﬁjli 090)\>|Kengj0i = (()0)\, o D/Ejtl © Dﬁjli) Ker Dﬁjoi .

This equation holds because ¢y and @) commute with vector fields Dg, ; and
Dg, ; by induction.
To show (39) our next step is to use the decomposition

Ox=OxNKerDy  + P 0,04,
Al +Aa=A

where \; # 0. (Note that the existence of such kind of decompositions follows
from the definition of the category A’VBVect.) Consider the following two
cases:

1. Assume that A\ = oy + v and Ay = B, + 72 such that A\ + Xy = A, and
fi is a function of weight \;, © = 1,2. We have

(nglz © Dﬁjli © D,g]il © Dﬁji)(flfQ) = (nglz © Dﬂjli © ngtl)(Dﬁ]z(fl) ’ f2> =
(_1)(f1+1) D/gjll © Dﬁjli(Dﬁji(fl) : D,Ejtl(fﬁ) =
DEJIZ (Dﬁji(fl) ’ Dﬂjli © D,Ejloz<f2)) = (fl ) Dﬁjli © D,L_%]tz(fZ))
Further, since ¢y = ¢/, we have
ex(fi-Dg,,, ODEjti(ﬁ)) = ox (f1) oy (Dg; ;0 D@L(ﬁ)),
where | = A\ = a; + 7 and A} = §},; + 2. Similarly we get
(nglz © Dﬁjoi © nglll © Dﬁji)((pk’l (fl) A (D,lei © ngtl(fé))) =

@M(fl) : (D,lei ODE]-:LZ-) O ©x, (D,lei ODE]-ti<f2)> =
ox (f1) - ox,(f2) = ealf1 - fo).

2. Assume that \; = a; + Bj,; +71 and Ay = 7,2, where 7; are not depending
on «; and f;,;. Consider the restriction of (39) on Oy, - O,,, We get

-1 -1 -1 -1
Dﬁji © Dﬁjoi © Dﬁjlz‘ © Dﬁji PN o DBji © Dﬁhi © Dﬁjoi © Dﬁji |O>\1'O/\2 -

-1 -1 -1 -1
(Dﬁjz o Dﬁjol ° Dﬁjll © Dﬁjl OSDAII © Dﬂ © Dﬁjlz © DBJ()Z © Dﬁ]z)|(f)/\1 ) gp)\él@)@)

Ji
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where | = o; + 8;,; +71 and Ay = Ao. Hence to prove (39) we need to prove

—1 -1 -1 -1
O, ‘Oh — (Dﬁji o Dﬁjoi o Dﬁjli oDg, 0, © D,Bji o D5j1i o Dﬁjoi o ngi) Ox,

Since Ay # 0, the last equality follows by induction on length of 7y, where
the length of ~; is equal to the number of summands in ;. Note that in
case A\ = «a; + (3, (in other words the length of 73 = 0, the basis of our
induction) the result follows from the decomposition

Oaz’-l-ﬂjoi = (Oai+ﬂj0i) N Ker D/J’joi +Oai Oﬁjoi

and the case 1. Hence we proved that s is well-defined.
It remains to prove the compatibility condition of Proposition 1

©slos,-05, = (@51 ©8:)|0;,-0s,

for 0 = ;1 + d2, where §; # 0. Consider first the case 6 € A]. Without loss
of generality we may assume that 6, depends on 3j;. For f; of weight ¢;, we
have

os5(f1- f2) = (Dg,, 090;3—1( 5 © D,Ejli)(fl - f2) = (Dg, 080;371(5 )(DEjli(fl) f2) =
DBJZ(SOD 5o (D 5 (1)) - #5,(f2)) = (Dg,, 0y 5L oD )(f1) - w5, (fa) =
ws, (1) = 05, ([f2)-

We used here the fact that ¢’ is an isomorphism by induction.
Further, assume that 6 = d; + d, € Al,. Again without loss of generality
we may assume that 6; depends on «;. Similarly we have for f; of weight d;

ps(fi f2) =D, o¢p, () © D, )(f1 - f2) =
(D3, 205, 1) © D) (1) - 06 (f2) = 05, (1) - @6 (f2).

By Proposition 1, an isomorphism ¢ is defined by the collection (p5), where
6 € F_g,,(Ap,,). The proof is complete.(]
Note that in the proof of Proposition 15 we used the folowing decompo-
sition
Os = Os ﬂ Ker Dgst -+ @ 051052,
bst#0 81462=5

where §; # 0. The idea was the following. First we show a certain equal-

ity on kernels Os [ KerDg,, and then using induction on @ Os, Os,.
bst#0 01+02=09
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Further we will use this idea several time. We will call this argument the
decomposition and induction argument.

Our goal now is to prove that the constructed isomorphism ¢ is a mor-
phism in the category A’VBVect.

Proposition 16. The isomorphism ¢ from Proposition 15 commutes with
operators Dg_, .

Proof. We need to show that

Dg,, ops = ¢p,_,5) © Dg., (40)

for any operator Dg,, and for any 0 from our weight lattice. Since Dg,, is
a vector field, it is enough to show (40) for 0 € F_g,,(A.p,,). We use the
decomposition (34). Consider the following cases.

1. Case d € AL, and (st) # (ji). In this case (40) holds by the assumption
that ¢’ commutes with all operators.

2. Case § € ALy and (st) = (ji). If § is independent on a;, the equality
(40) holds trivially. If § = «; + 6, where 6 is independent on [;;, then
Dg,,(6) € A} and (40) holds by definition of ¢p 5,1(6)°

3. Case 6 € A and (st) # (ji). If t = i, the equality (40) holds trivially,
since § does not depend on «;. Assume that ¢ # i. Consider the decom-
position of the weight Dgs,,(6) = 71 + 72, where v; = 5;; + --- € A} and
v2 = Dg,, (0) — 71. Note that 7, is independent on ;. Then the following
bundle isomorphism is defined

—1 . -1 N |
Dt Oy = OD[;]_li('yl)—',-'yQ? D, (fi- f2) =Dy, (f1) - f2,
where f; € O,,. Therefore, we have
Dﬂst o ngll ’(95 = nglz © Dﬁst |(’)5‘
Further,
¥Dg,, (5) © DBst - (90’71 ) 90’72) © Dﬁst = ((Dﬁji OQOD/;jli(yl) °© D,Ejll) ’ 90’72> o D,Bst :
On the other hand we have
Dg,, o5 = Dg,, o(Dg;, O‘PD[;jli ) ° Dﬁjl) = (Dg,, P (Dg,, oD )(9) © DE;) o Dg,, =
-1

((Dﬁjl osngjll(’}q) © Dﬁjl) ' 9072) © Dﬁst °

Hence, (40) is proven for this case.
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4. Case 0 € A}, and (st) # (ji). Assume that ¢t =i and Dg_,(9) is a weight.
In this case Dg,,(0) € A]. We have

Dg,, ops = Dg,, oD} opp, (50 Dgs,.) = ¢, (5 °Dg,, -

Hence, (40) holds.

Assume that ¢ = i and Dg_,(d) is not a weight. Then since Dg_,(d) ¢
F_g,(Acg,,), it follows that 0 = S + ..., i.e. § depends on SB; non-trivially.
Hence, Dg_,(0) = v + 72, where 71 € A}, In this case (40) is equivalent to
the following equality:

-1 -1
DBsi O<DB]~01- © D,Bji O<pDEj1i oD Q) °© DB]-Z- ° Dﬁjoi) =

Bjoi

1 (41)
((Dﬁji OQODE;Z, (m1) © DB]-,L-) © 9072) o Dg,,,

where jo # s, j. Now we use the decomposition and induction argument. By
Proposition 7, we have the following decomposition:

Os = O ﬂ Ker Dg, , + @ 05,05,

bjsis (8)7#0 d1+02=0

where 0; # 0 and b;,;,(0) € C is the multiplicity of 3;,;, in 6. Since § depends
on [ non-trivially and since the maps ngli oDg, , and ngloi oDg,, preserve
this decomposition, (41) follows from the previous cases and by induction.

Consider now the case § € A} and t # i. If 6 does not depends on ay,
then (40) holds trivially. Assume that 0 = a; + --- and § does not depend
on Bg. Then Dg,,(0) is a weight. In this case we have:

—1 —1
Dg,, O(Dﬁjoi ongﬁjm((s) © Dﬁjoi) - Dﬁjoi ° D, O@Dﬁjoi((;) ° Dﬁjoi -
—1
(Dﬁjm‘ O(PDBSt ODﬁjoi(a) © Dﬁjoi) © DBst :

Hence (40) holds. Further, assume that 6 = a; + B¢ + - - -. In this case (40)
is equivalent to the following equality:

1 —1
D/Bst O(Dﬁjoi © Dﬁjz OSDDE;@ OngOi(ls) © Dﬁjz © Dﬁjoi) =
—1 -1
((Dﬁjoi © DB]% O(IDDEjli ODBjOi ODBSt (5)0 DBJ, © Dﬁ]ol)) ° DBSt’

where jo # 7. This holds by the decomposition and induction argument.

5. Case § € AJUA, and (st) = (yi). If § € A, then (40) holds triv-
ially. Further, assume that 6 € Aj. In this case the result follows from the
decomposition and induction argument. The proof is complete. [
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Recall that we denoted by D_g,, the graded manifold of type AL 8, C A,
see Construction 1, Section 4.1. Now we have the following situation. By
induction we assumed that there exists an isomorphism ¢’ : Fog (Nog,,) —
D_g,, of graded manifolds of type A 8,0 that commutes with all operators.
By Propositions 15 and 16 there exists an isomorphism ¢ : F_z (Ncg,,) —
Dr_, (ag,) of graded manifolds of type F_g,,(Acp,,) compatible with ¢’
that also commutes with all operators. Our goal now is to prove the following
proposition.

Proposition 17. There exists a graded manifold N_g,, of type A_g,, such
that
]F=/J)ji (N=ﬁji) = D=ﬁji

and this isomorphism say 1) commutes with all operators.

Proof. First of all note that by Proposition 14, v is an isomorphism of graded
manifolds of type AL By Further, clearly we have

,:gji = FZBji(A<Bji) U.s,

where S is the subset in A’ that contains all weights in the form a;+ z]: Bgit+-
q=2

We prove this proposition by induction on the length of 7. (Recall that the
length |6| of a multiplicity free weight 6 is the number of summands in 6.)

If the set S is empty by Propositions 15 and 16 we are done. Assume
that S # (. Denote by S, the subset in S such that |y| = p. So we have
S = Up>05,. Let us take ¢ € S, where p > 0, satisfying the following
property: if ¢ depends on Sy, then 0’ depends also on «y. (Note that by
definition of A’ we always can find such ¢’.) In other words, if we put
6" =Y aio + Y b, Bpg, then from b, = 1 it follows that a; = 1.

E P4

Step 1, construction of graded manifold. Consider the following exact
sequence

0= P (Op)s(Op)s, — (Op)y — Ev — 0,
81 +05=0"

where 6] # 0, i = 1,2, and &y is a certain locally free sheaf. As in (26), for
any 0’ € A’, we put
85/ = (OD)y ﬂ Ker Dgst.
b, 40
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By definition of the category A’VBVect, see Section 7.1, we have the following
decomposition

(Op)s = S5 + EB (Ob)s (Ob)sy,

8 +8,=5'

where 0; # 0. Hence the following sequence is also exact

0— @ OD 5/ OD ﬂKerD[gt—>S(;/—>85/—>0
81 +65=6" bsﬁéo

By induction we assume that there is a graded manifold M of type Ay =
G(A'\,), where
A//\/l = ]F:/Bji(A<5ji) U U Sq7
a<p
and an isomorphism ¢ : F—g,, (M) — Da,  that is compatible with ¢ and
commutes with all operators. Here Dn/  is again defined by Construction 1,
Section 4.1.
We put § := G(¢’). By Proposition 9, there is an isomorphism

pr oD (Opm)s — B (0p)s(Op)s, (] KerDg,, .

6/+5/ =4 J}#O

Here we assume that D*(§) = ¢ and that A has lexicographical order.

Note that (Om)s = @B (Om)s, (Opm)s,, where §; # 0, since 6 ¢ Apg.
61+02=0
Hence the following sequence is exact

L0 oDA
0— @ (OM)61 (OM)52 90&) 85/ — 55/ — 0.
61+02=0

Now we use Construction 2, Section 4.2 to build a graded manifold M of
type Ay U G(S,). In more details, we put

(O/’VT)(; = 85/.

If there is X' € S,, where A\ # ¢, satisfying the following property: if A
depends on f, then ¢’ depends also on a4, then we repeat this construction
and define (O ), where A = G(X'). So we defined a graded manifold M of
type A U G(S,).

Step 2, construction of an isomorphism. Our goal now is to construct
an 1son10rph1srn U :F_ 8, (./\/l) — D, where D is a graded manifold of type

A’y U S, that is defined by Construction 1, Section 4.1. We put @Zg = (pm)o
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for any 6 € A'y,. To define 1;51, where ¢' € S, satisfy the following property:
if 0’ depends on S, then &' depends also on «a;, we use the decomposition:

(Omzﬁﬁ(ﬂ))a/ =D" ((O5)s) + D (Omzﬁji(ﬂ))gi ' (Omzﬁﬁ(ﬂ))ay
5, +8, =0

where 0] # 0. Note that 225/ is already defined on the second summand.
Further we put

U5l (©z0s) D ((Os)s) — . (42)
J‘S/’D]‘ (((’)/\7)5) = (DA)—l,

Let us show that 1;5/ is well-defined. Assume that

feD ((Ox)s) N @ (OF:Bji(ﬂ))ag ' (OF:BJ.Z,(JW))(S&'

8 48, =5

Then we have

G (f) = (DN7H(f) = Lo pa o DM((DM)7H(S)) = 1o ol f).

Now our goal is to define 1y for other 6 € Sp. Let us take any ' € S,,.
Then there exists operators D,,,...,D,, and a weight ¢’ as above such that
¢ =D, 0---0D,,(¢). In this case we put

1;0’ i=(Dy,0---0Dy,)0 7:55’ o(Dy0---0D,,) 7"

Note that the composition D,, o--- o D,, is unique up to sign. Hence 1;9/

is well-defined. It can be easily shown that (1) satisfies the conditions
of Proposition 1. Therefore the following morphism of graded manifolds
Y = (¢gr), where 8" € A\ U S, is defined.

Step 3, isomorphism commutes with the operators. It remains to
show that

DIBSt OQLJQ, = W(/Z}/D,Bst (9/) © Dﬁst (43)

for (s,t) < (4,7). If 0 € A\, then (43) holds by induction. Assume that
¢’ € S, and consider the following cases.

1. Assume that Dg,, (¢") € A’. Then (43) follows by definition.

2. Assume that Dg,(0') ¢ A’. We also may assume that ¢’ depends on
oy, since otherwise (43) holds trivially. In this case #’ depends on [ since
otherwise Dg,, (§') € A'.
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2.1. Assume that 6" satisfy the following property: if 6 depends on
Bst, then 6" depends also on ;. By (42), the equality (43) holds by the
decomposition and induction argument.

2.2. Assume that ¢’ = (D, 0--- 0D, )(¢]), where ¢/ is from (2.1). Then
we have

Dg,, O@ZG’ = Dg,, 0(Dy,0---0D, )0 @Zé’ o(Dy o0 Dvp)_l =
(Dy,0---0 D,,)o @/}Dﬁst(é/) o (D, 0---0 DW))_1 oDg, = @/}Dﬁstw/) oDg,, .
The proof is complete.l]

Proposition 18. Let D be an r’'-fold vector bundle of type A" with a family
of (r' —r) odd commuting non-degenerate operators Dg,; of weights 3j; — c,
where ¢ = 1,...,r and j = 1..., n;, satisfying properties 1 — 6, Section
7.1. Then there exists a graded manifold N of type A = G(A’) such that
F(N) ~D.

Proof. The proof follows by induction from Propositions 15, 16 and 17.0]
It is remaining to show that I is full and faithful, see Definition 7.
Proposition 19. The functor F is full and faithful.

Proof. Let us take two objects in the category A’'VBVect, i.e. two r'-fold
vector bundles D; and Dy of type A’ and a morphism ¥ : D; — Dy that
commutes with all vector fields Dg,,. We have seen in Proposition 18 that
there exist graded manifolds N; of type A such that D; ~ F(N;), where
i=1,2.

Further, let us take two chats U; and Uy on D; and Dy, respectively,
such that we can consider the restriction ¥ : Uy — Us. Denote by V; the
corresponding to U; chart on N;. Let us take § and ¢’ are as in Proposition
9. By Proposition 6, we can chose coordinates ¢% and &° in Uy and Vs,
respectively, and there exists unique up to even permutation the operator
D" such that D*(¢%) = ¢%. Consider f = U*(¢*). By Proposition 9 there
exists unique function F' € Oy, such that D*(F) = f. Now we can define
the morphism ®|y, : V; — V, by ®(£°) := F. (Note that for any § € A
there exists ¢’ € A’ as in Proposition 9.) Since function F' if unique, the
morphisms @[y, coincide in all intersections V; NV, and defone the global
morphism ®. Clearly, F(®) = ¥. The proof is complete.[]

Now we can formulate our main result.

Theorem 2. The categories AMan and A’ VBVect are equivalent.
Proof. The proof follows from Propositions 18 and 19.[]
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8 Appendix

In this section we will prove Propositions 8 and 9.

Proof of Proposition 8. Let us fix an operator d,,, where p € {1,...,s},
from Sequence (23). Clearly, we can rewrite D* in the following form

D]\:(d71 mod J~)o---o(d,, mod J )o---0o(dy, mod J).

We put )
D* = D, o(d,, mod J~) o Dy,

where the notations D; and Dy have obvious meaning. Assume that Do(f) #
0in Og/J~, where f € (Oy)s. Our goal is to show that

(d,, mod T )(Da(f)) #0.

Assume that v, = ;. We work locally in a chart ¢/ on the non-negatively
graded manifold M := (N, O /J~). Note that we can divide all local
homogeneous coordinates in ¢/ into three groups: coordinates with weight 0;
coordinates with weights of the form ca; + ---, where ¢ > 0; and all other
coordinates. Hence we can write Dy(f) in the following form:

Do(f) = Z fr&h’.

1J

Here I and J are multi-indexes, fr; € (Ox)o, &' are monomials in local
homogeneous coordinates from the second group, and n’ are monomials in
local homogeneous coordinates from the third group. Since D*(§) does not
have negative coefficients, we observe that the weight (d,, 0 D3)(0) also does
not have negative coefficients. Hence the weight D4 (9) is a weight of the form
ca + - -+, where ¢ > 0. It follows that Dy(f) depends on coordinates from
the second group non-trivially. Let us apply (dg; mod J~) to the function
Dy(f). Since dg,,(f1s) € J~ and dg,,(n”) € T, we get

(s, mod 7 ) (- frs€'n”) = fry o, (€ mod T~
1J 1J

Assume that
5™ o Aoy € mod 7 =0 "
1J

Since D™(8) is multiplicity free and the weight of dg,, (€) contains the sum-
mand S3;;, we see that in the expression for weights of 7 we do not have the
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summand f;;. Therefore, the equation (44) is equivalent to the vanishing of
all coefficients before n’:

Z f[J dﬁﬂ (£I> =0 for any J.
I

Note that here we do not need to assume that the equality holds mod J .

Further, f;; is a function of weight 0. In other words it is a usual smooth
(or holomorphic) function that is defined in U,. Let us take a point x € U
and evaluate the function fr; at x. We get

qu x)dg,, (€) = dg,, qu =0 for any x and J.

Since dg,, is the de Rham differential and we can consider f;;(z)¢" as an
exterior form of degree 0 (or just a function) for this operator, we conclude
from this equation that fr;(x)&! is a constant function. Therefore fr;¢! does
not depend on ¢! for any z. This contradicts to the fact that the weight of
Dy(f) depends on a; non-trivially and (d,, mod J~)(Dz(f)) # 0 is proven.
Since this holds for any p, the result follows.[]

Proof of Proposition 9. Since dg,odg, = 0, see (16), and therefore
dg;, odg,, mod J~ = 0, we have

A ((Op)s) © ((ODN Dig ) ﬂ KerD., . (45)

k=1

Our goal is to prove that the inclusion (45) is in fact the equality. As in the
proof of Proposition 8, let us write the sequence (23) in the following form:

D; o(d,, mod J7) oDy,
where d,, = dg,;, and let us take any

e ((ODN DA (s ) ﬂ KerD,, .

k=1

Assume by induction that we found an element

f€(O0x/T ), ops)6)

such that Di(f) = f" and (d,, mod J~)(f) =0 for ¢ =p,p+1,...,5. We
have to show that there exists I’ € (Og/J ™ )p,(s) such that

(dg, mod J~)(F)=f and (d,,modJ )(F)=0
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forany g=p+1,p+2,---,s

Consider a chart U on M as in the proof of Proposition 8 with coordinates
(x:), (&) and (n;) from the groups 1, 2 and 3, respectively. We can write f
locally in the following form:

F=Y fru€ dg, (&’

I,Ju

Here I and J are multi-indexes, f;;, are functions of weight 0; ¢! and n”’
are monomials in local homogeneous coordinates from the second and third
groups, respectively; and dg,,(£,) are local coordinates from the third group
which weights contain 3;;. By our assumption, we have

(dg,, mod T7)(f) = > frsudp,(¢")dg, (&)’ =0 mod J~. (46)
I,Ju

Note that to obtain the first equality in (46), we use the following facts
dﬁji(fIJu) cJ, dﬁﬁ(n‘]) €J~ and dﬁji Odﬁjz’ = 0.

Since weights of monomials ’ do not contain §;;, the equality (46) is equiv-
alent to

dg,, (Z frru(z0)€! dg,, (§u)) =0 for any J and any xy € Up.

Tu
We see that Y fryu(z0)¢’ dg,, (&) is a closed 1-form in the superdomain
Iu

with coordinates ({;), with respect to the de Rham differential dg,. By
the Poincaré Lemma for graded manifolds, for any zy and J there exists

.Z‘O) = ZFKJ<«T0)£K such that dﬁ (FJ ZL’O Z f[Ju i f dﬁﬂ(éu)
K
Here K is a multi-index. In particular we have

aiu FJ ZL’O Z f[Ju [L’O . (47)

Note that Fj(z) is defined up to a constant. However, if we assume that

weight(F;(wo)) = weight( ) frsu(wo)€’) — (B — ),

then Fj(zo) is unique.
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Now we need to show that F};(z) is a smooth (or holomorphic) function
in xy. Consider the following equality

0

Fier = gere

FJ)J
where agiK is the corresponding to ¢¥ differential operator. Using (47), we

see that the function F; is a certain iterated derivative of > f; o€t and
T

hence it is smooth (or holomorphic).

Summing up, we constructed the functions F; = > F ;6K such that
K

d/Bji(FJ) = Z fIJqu dﬂ;z(ﬁﬂ) mod J .
Iu

We put
F .= ZFKJSK/’T]
KJ

Clearly the weight of F'is Dy(0) and we have dg,,(F) mod J~ = f.
It is remaining to show that d, (F)) = 0 mod J~ for ¢ = p+1,...,s.
Consider the function H := (d,, mod J~)(F), where ¢ =p+1,...,s. The

weight of H does not contain 3;; since D[‘(5) is multiplicity free, and it
has the form ca; + ..., where ¢ > 0, since our assumption that the weight
D*(8) depends on a; non-trivially for any i = 1,...,r. Therefore, H is a
non-constant function for the de Rham differential dg,,. Further,
(dg,, mod J~)(H) = (dg,, mod J ) o (d,, mod J~)(F) =
—(d,, mod J) o (dg;, mod J~)(F) = —(d,, mod J~)(f) = 0.

Hence H = 0.
If we iterate our construction, we get a function

F' e (Og/T )5 = (On)s

such that D]\(F') = f’. The proof is complete.[]
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