
 

Multiloop soft theorem of the dilaton in the bosonic string
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We show that by fixing the multiloop Green function in the closed bosonic string to be Arakelov’s Green
function, one obtains factorization of scattering amplitudes with a softly emitted dilaton to the same level as
with a graviton to all loop order. This extends our previous analysis at one loop to all loop orders and
confirms that some high-energy quantum symmetry in the bosonic string protects the factorization of
amplitudes with softly emitted dilatons.
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I. INTRODUCTION

In [1] we showed that in the bosonic string the h-loop
amplitude of n closed tachyons, carrying momentum ki,
and one massless closed string with polarization ϵμqϵ̄νq,
carrying momentum q, is given by
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0

Z
dμðdÞh

Z
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Yn
i¼1

d2zi
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e
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Z
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d2z
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klqGhðz;zlÞIμνðzi;z;ki;qÞ; ð1Þ

where Ch and N0 are normalization factors, dμðdÞh is the
integration measure of the moduli space of dimension 1 for
h ¼ 1 and dimension 3h − 3 for h ≥ 2 including a factor
arising from compactifying 26 − d spatial dimensions.
Their explicit form, irrelevant for the current discussion,
was derived in [1] using Schottky parametrization. The
Koba-Nielsen variables zi and z are integrated over the
genus h compact Riemann surface, Σh. Gh is the two-point
Green function, considered in more detail shortly. Finally,
the integrand Iμν is given by

Iμν ¼ Iμνh þ 2πhημνKh; ð2Þ

Iμνh ¼ α0

2

Xn
i;j¼1

kμi k
ν
j∂zGhðz; ziÞ∂ z̄Ghðz; zjÞ; ð3Þ

Kh ¼
1

4πh

Xh
I;J¼1

ωIðzÞð2πImτÞ−1IJ ω̄JðzÞ; ð4Þ

where ωI and τIJ are the Abelian one-forms and the period
matrix of Σh, whose explicit expressions in terms of the
Schottky group parameters were also given in [1].
Equation (1) is also valid at genus h ¼ 0 with K0 ¼ 0

[and G0ðz; wÞ ¼ ln jz − wj2] and with the measure properly
replaced by one over the SLð2;CÞ volume form, cf. [2].
As explicitly shown in [1], Kh has the property that

Z
Σh

d2zKh ¼ 1; ð5Þ

showing that Khd2z forms a genus h unit volume form.
In fact, Kh is the metric induced from the pullback of the
Kähler form from the Jacobian variety of Σh, a Kähler flat
manifold, as recently discussed in [3,4] in relation to
modular graph functions. We will here make important
use of this fact.
In [1] we showed that when restricted to symmetric

polarizations of the massless closed string the z-integral in
(1) is by a soft expansion in q fully localized through the
order q, apart from the ημν-term at order q, by only using
generic properties of the multiloop Green function, in
particular its Laplacian

∂z∂ z̄Ghðz; wÞ ¼ πδð2Þðz − wÞ þ rhðzÞ; ð6Þ
where rhðzÞ is a genus-dependent function ensuring Gauss’
law on Σh, i.e.,

R
d2z∂z∂ z̄Ghðz; wÞ ¼ 0. More explicitly, we

were able to show that, on the support of momentum
conservation, for any h,
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¼ fμνðGhðzi; zjÞ; ki; qÞ þOðq2Þ; ð7Þ

where fμν is a universal function whose zi and genus
dependence enter only implicitly through the Green

function in its argument. This is a remarkable result
reflecting a large number of nontrivial cancellations taking
place among all terms that cannot be localized on the
δ-function by repeated use of integrations by part. These
cancellations are an imprint of some underlying symmetry
of the theory. They are, however, not totally surprising; the
soft graviton theorem generates, in fact, fμν, i.e.,
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where Lμν
i ¼ iðkμi ∂ν

ki
− kνi∂μ

ki
Þ is the (orbital) angular mo-

mentum operator, and the notation ∶∶ means that deriva-
tives are normal ordered (all act to the right). It is thus an
explicit demonstration of the recently extended soft theo-
rem of the graviton [5–8] at the multiloop level in the
bosonic string.
This result, however, goes beyond the graviton soft

theorem, since tracelessness in the polarization of the
external massless closed string state was not assumed.
This is also why normal ordering is important in the
subsubleading generator of fμν.
At genus zero, this is all there is, thus establishing a

unified soft theorem for both the graviton and dilaton at the
tree level [2,9]. But at higher genus the additional term
proportional to ημν in Iμν becomes relevant for the soft
behavior of the dilaton, and this is the term we here wish to
discuss. We will do this by first reviewing the genus one
case in a slightly different way than outlined in [1].
Subsequently, we will generalize the analysis to all-loop
order, by making use of the Arakelov construction for the
Green function [10,11].

II. SOFT FACTORIZATION AT GENUS ONE

The genus one Green function in the Schottky para-
metrization reads (see the Appendix for derivations and
expressions)

G1ðz1; z2Þ ¼ log

���� θ1ðz1=z2jκÞθ01ð0jκÞ
����
2

þ log

���� ð2πz1Þð2πz2ÞV 0
1ð0ÞV 0

2ð0Þ
����

−
1

2πτ2
log2

���� z1z2
����; ð9Þ

where θ1 is the Jacobi theta function [Eq. (A6)] and κ is the
Schottky group multiplier. The modular parameter on the
torus, τ ¼ τ1 þ iτ2, here arises as the “dimension one”
period matrix and is related to the multiplier by the identity:
κ ¼ e2πiτ. ViðzÞ are projective transformations that define
the local coordinates around each puncture zi on the
Riemann surface (here the torus) such that Við0Þ ¼ zi
and inversely V−1

i ðziÞ ¼ 0. The second term thus expresses

the “gauge freedom” due to world sheet diffeomorphism
invariance, and by inspection of (1) it is evident that the
amplitude is independent of this term on shell and on
support of momentum conservation.
There is a coordinate choice which gets rid of the second

term above altogether, reading ViðzÞ ¼ 2πzizþ zi, with its
inverse being V−1

i ¼ ðz − ziÞ=ð2πziÞ, thus satisfying the
coordinate conditions. Since then V 0

ið0Þ ¼ 2πzi, it follows
that the second term vanishes, yielding the usual bosonic
Green function on the torus, which is translationally
invariant in the variables νi, defined through zi ¼ e2πiνi , i.e.,

GBðν12jτÞ ¼ log

���� θ1ðν12jτÞθ01ð0jτÞ
����
2

−
2π

τ2
ðImðν12ÞÞ2; ð10Þ

where ν12 ¼ ν1 − ν2. There is, however, an even more
useful choice of coordinates, which reduces the Green
function to a certain lattice sum, namely by choosing Vi

such that V 0
ið0Þ ¼ zi=ð2πjηðτÞj2Þ, where ηðτÞ ¼ ½θ01ð0jτÞ=

ð2πÞ�1=3 is the Dedekind eta function, whereby the Green
function instead takes the form

GAðν12jτÞ ¼ log

���� θ1ðν12jτÞηðτÞ
����
2

−
2π

τ2
ðImðν12ÞÞ2: ð11Þ

By going to the lattice parameters, ν12 ¼ αþ τβ where
α; β ∈ R=Z, such that ν12 ≃ ν12 þ 1 and ν12 ≃ ν12 þ τ are
identified to form the ðα; βÞ-homology cycles, it can be
shown that the previous Green function is given by the
lattice sum:

GAðν12jτÞ ¼ −
τ2
π

X
ðm;nÞ≠ð0;0Þ

e2πiðmβ−nαÞ

jmþ τnj2 ; ð12Þ

which shows that this Green function is normalized
such that it vanishes upon integration over the homology
cycles, i.e.,
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Z
1

0

dα
Z

1

0

dβGAðαþ τβjτÞ ¼ 0: ð13Þ

With these explicit forms for the Green function, it now
becomes easy to calculate the ημν-terms appearing in the
soft expansion of the massless closed string. At one loop
the “Kähler form” reduces to K1 ¼ 1

8π2τ2jzj2, and the integral
to be calculated is

Z
Σ1

d2z
4πτ2jzj2

�
1þ

Xn
l¼1

α0

2
klqG1ðz; zlÞ

�
þOðq2Þ: ð14Þ

Using that d2z ¼ idz ∧ dz̄ ¼ 8π2τ2jzj2dαdβ, the first term
trivially gives 2π. This is of course a more general conse-
quence of (5), here shown explicitly. The heart of our
problem is the second term. To make use of (13) we simply
make the change of variables z ¼ e2πiðxþτyÞ and zl ¼
e2πiðxlþτylÞ, whereby the second integral above becomes

2π
X
l

α0

2
klq

Z
dx

Z
dyG1ðν; νlÞ ¼ 0: ð15Þ

The zero on the right-hand side follows immediately by
choosing G1 ¼ GA due to its translational invariance and
its norm (13). However, it should also follow from any
other choice, in particular from the choice G1 ¼ GB, which
was what we showed in [1]. But in this case it is not the
integral that vanishes: Since GB is related to GA by
GB ¼ GA − log j2πηðτÞ2j2, i.e., by a term independent of
z and zl, the integral just yields a constant in terms of zl.
Thus the full expression vanishes, not functionally, but
distributionally due to momentum conservation; i.e.,P

lklq ¼ −q2 ¼ 0. The lesson to learn is that by making
a proper choice of coordinates on the world sheet, the
vanishing of this term becomes functionally manifest, while
for other choices it is obscured due to momentum con-
servation. At higher genus this difference becomes much
more important as translational invariance of the Green
function is no longer at hand.

III. SOFT FACTORIZATION AT GENUS h ≥ 2

The higher genus generalization of (9) takes the form [1]

Ghðz1;z2Þ¼ log jEðz1;z2Þj2− log jV1
0ð0ÞV2

0ð0Þj

þRe

�Z
zi

zj

ωI

�
ð2πImτÞ−1IJ Re

�Z
zj

zi

ωJ

�
; ð16Þ

where E is the prime form, which also has an explicit
expression in terms of the Schottky group parameters
(cf. [1]). The relation to the usual higher genus bosonic

Green function is Gh ¼ GðhÞ
B − log jV 0

1ð0ÞV 0
2ð0Þj, which

satisfies (cf. [12], Sec. II G 2, where GðhÞ
B is denoted − lnF)

∂z∂ z̄G
ðhÞ
B ðz; wÞ ¼ πδð2Þðz − wÞ − 2πhKhðzÞ: ð17Þ

It was shown in [1] that one can choose coordinates Vi
around each puncture by using the flat metric induced from
the complex plane. In the conformal gauge ds2 ¼ ρdzdz̄,
the relation between Vi and ρ is given through

jV 0
ið0Þj ¼ ρðziÞ−1=2: ð18Þ

On the other hand, as explained in the Introduction, Kh is
also a flat metric on the Riemann surface, induced from its
Jacobian variety, and there is an easy way to relate it to ρ,
namely through the Gauss-Bonnet theorem:

Z
d2z

ffiffiffi
g

p
RðgÞ ¼ −2

Z
d2z∂z∂ z̄ log ρ ¼ 8πð1 − hÞ: ð19Þ

Since we are dealing with h ≥ 2, and since Kh satisfies (5),
we get the identity

∂z∂ z̄ log ρ ¼ 4πðh − 1ÞKh: ð20Þ

This fixes ρ only up to multiplication by holomorphic
functions fðzÞ and f̄ðz̄Þ and constants c. It, however,
uniquely fixes the Laplacian of Gh to be

∂z∂ z̄Ghðz; wÞ ¼ πδð2Þðz − wÞ − 2πKhðzÞ: ð21Þ

This shows that the particular choice of local coordinates
we here have made, gives rise to a so-called Arakelov-type
Green function [10,11]. The arbitrariness left in ρ, and thus
in the Green function, can be fixed by demanding a higher
genus generalization of (13): Since a general solution of
(20) takes the form ρ ¼ ρ̃e−fðzÞ−f̄ðz̄Þþc, where ρ̃ is a
particular solution, then the general Green function has
the property that
Z

d2zKhðzÞGhðz; wÞ ¼
Z

d2zKhG̃h −
Z

d2zKhγðzÞ

− γðwÞ þ c; ð22Þ

where γ ¼ ðf þ f̄Þ=2 and G̃h is the Green function
associated with ρ̃. Now, since f, f̄ and c are arbitrary,
we can fix them such that the right-hand side above
vanishes; i.e.,

γðzÞ ≔
Z

d2wKhðwÞG̃hðz; wÞ; ð23Þ

c ≔
Z

d2zKhðzÞ
Z

d2wKhðwÞG̃hðz; wÞ: ð24Þ

[γ is a harmonic function due to (21).] The Green function
Gh with the choice of coordinates (18) with ρ given by (20),
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and c and γ fixed as above, is the Arakelov Green
function. It is the natural generalization of the genus one
Green function GA given in (12). Finally, we can show that
it immediately, i.e., with no reference to momentum
conservation, computes the remaining integral at higher
genus:

Z
d2zKh

Y
l

e
α0
2
klqGhðz;zlÞ ¼ 1þOðq2Þ; ð25Þ

which follows from the general property (5) and the
special property of the Arakelov Green function just
derived:

Z
d2zKhGhðz; wÞ ¼ 0; ð26Þ

for any h ≥ 2. Thus the entire discussion made in [1] about
the dilaton soft theorem at one loop, directly goes through
to any higher loop order.

IV. CONCLUSION

We have calculated the remaining multiloop term in the
soft expansion of the string amplitude involving n closed
string tachyons and one soft dilaton in the bosonic string and
shown that it vanishes, just like at the one loop level. This is
achieved by fixing the remaining gauge freedom in (16) in
such a way that Gh becomes the Arakelov Green function as
described in Sec. III. Equation (26) importantly implies that
scattering amplitudes involving one soft dilaton with
momentum q factorizes at any loop order as follows [1]
[see [13] for a recent Oðq0Þ application in supergravity]:

Mn;ϕðki; qÞ ¼
κdffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
�
−
Xn
i¼1

m2
i

kiq
eq∂ki þ d − 2

2
gd

∂
∂gd −

ffiffiffiffi
α0

p ∂
∂ ffiffiffiffi

α0
p þ qμ

Xn
i¼1

Kμ
i

�
MnðkiÞ þOðq2Þ; ð27Þ

where Mn;ϕ and Mn are the all-loop amplitudes with and
without the soft dilaton, κd and gd are, respectively, the
d-dimensional gravitational and string coupling constants,
mi are the masses of the hard external states carrying
momentum ki, α0 is the inverse string tension, and Kμ

i is
the momentum space generator of special conformal trans-
formations, all explicitly defined in [1]. We have compac-
tified 26 − d spacetime dimensions, but the choice of
compactification geometry is irrelevant to our final result.
The role of IR divergences was discussed in [1], and shown
to be irrelevant for this factorization property of the
amplitude in d-dimensions greater than four.
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APPENDIX: FROM SCHOTTKY TO
JACOBI AT ONE LOOP

From the explicit formulas in Sec. B of [1], we readily
derive the explicit expressions for the Abelian differentials,
period “matrix,” and prime form at one loop in the Schottky
parametrization:

ωðzÞ ¼ 1

z
; ω̄ðz̄Þ ¼ 1

z̄
; ðA1Þ

2πiτ ¼ log κ; ðκ ¼ e2πiτÞ ðA2Þ

Eðz1; z2Þ ¼ eiπðν1þν2Þ2i sinðπν12Þ

×
Y∞
n¼1

ð1 − κne2πiν12Þð1 − κne−2πiν12Þ
ð1 − κnÞ2 ; ðA3Þ

where κ is the genus one Schottky group multiplier, and
νij ¼ ν1 − νj with zi ¼ e2πiνi . We note that at genus one,
the “period matrix” is just the usual modular parameter,
and the prime form has, apart from the prefactor
eiπðν1þν2Þ ¼ ffiffiffiffiffiffiffiffiffi

z1z2
p

, translational invariance in the νi
variables, i.e.,

Eðz1; z2Þ ¼ i
ffiffiffiffiffiffiffiffiffi
z1z2

p
Eðν1 − ν2jτÞ: ðA4Þ

E can be written in terms of the Jacobi theta function and
its derivative ∂νθ1ðνjτÞ ≔ θ01ðνjτÞ as follows:

EðνjτÞ ¼ 2π
θ1ðνjτÞ
θ01ð0jτÞ

; ðA5Þ

as easily seen from the product representation of θ1:

θ1ðνjτÞ ¼ 2κ1=12 sinðπνÞηðτÞ
Y∞
n¼1

ð1 − 2κn cosð2πνÞ þ κ2nÞ;

θ01ð0jτÞ ¼ 2πηðτÞ3; ðA6Þ

where we introduced the Dedekind eta function,

ηðτÞ ¼ κ1=24
Y∞
n¼1

ð1 − κnÞ: ðA7Þ

Inserting these expressions in the h-loop expression for
the Green function one readily finds Eq. (9).
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