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Abstract

In this paper, we regard the 7T /JT-deformed CFTs as perturbation theories
and compute the first order correction of the correlation functions due to the
TT/JT-deformation. As applications, we study the Rényi entanglement entropy
of excited state in the 7T /JT-deformed two-dimensional CFTs. We find, up to
the perturbation first order of the deformation, the Rényi entanglement entropy
of locally excited state will obtain a nontrivial time dependence. The excess of
the Rényi entanglement entropy of locally excited state will also be dramatically
changed up to order O(c). Furthermore, we investigate the out of time ordered
correlation function to confirm that the T'T/JT-deformations do not change the
maximal chaotic behavior of holographic CF'Ts up to the first order of the defor-
mations.
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1 Introduction

Recently many attentions have been paid to the deformations of two-dimensional quan-
tum field theory by irrelevant operators constructed from bilinears of conserved cur-
rents [I], of which the so-called T'T/JT-deformation [2,[3] has been extensively in-
vestigated [4HI6]. Although these deformations are irrelevant in the renormalization
group sense, the deformed theory appears to be more predictive than the generic non-
renormalizable QFT. Remarkably, such deformation preserves the integrability for the
integrable quantum field [I]. Even for the non-integrable theory, some properties, e.g.
finite size spectrum and the S-matrix, of the 7T /JT-deformed theory can be exactly
calculated based on the data of the undeformed theory [IL[3]. For recent studies on the
TT-deformation see [17H25]. Non-Lorentz invariant cases are studied in [26H31].

TT/JT-deformed CFTs have also been applied to string theory [32H43]. In particu-
lar, the application to AdS/CFT is especially interesting. The holographic dual of the
positive sign TT-deformed two-dimensional holographic CFT was proposed to be AdS;
gravity with a finite radius cutoff in [44]. As the check of this proposal, various aspects,
such as the energy spectrum and the propagation speed, agree on both sides [44]. Some
recent progresses about the holographic aspect of the deformations have been done
in [A5H54).

Moreover, the Rényi entanglement entropy has been used as a very helpful quantity
to measure the properties of the vacuum state and excited states [55H66]. In the un-
deformed CFTs, the nth Rényi entanglement entropy 51(4") has been extensively studied
in the literature [58H61,[64-74]. In rational CFTs, it has been shown that the excess of
the Rényi entanglement entropy has to be the logarithmic of quantum dimension [59]
of the corresponding local operator. The quantum entanglement of TT-deformed CFTs
have been investigated in [11,[53,[75H81]. However, these works are mainly focused on
the Rényi entanglement entropy of vacuum states in deformed CFTs. We would like to
focus on the locally excited states in deformed CFTs. To initiate the study, we have to
know the correlation function of CFT.

In this paper, we study the correlation functions of primary operators in the 7T/ JT-

3Recently, [82] have studied the correlation by the local and non-local field renormalizations to give
correlation functions which are UV finite to all orders formally.



deformed two-dimensional CFTs. We will focus on the 2- and 4-point functions in
TT/JT. For simplicity, we regard the 77/ JT-deformed CFTs as perturbation theories
of CFTs and compute the first order correction of the correlation function due to the
TT/JT-deformation. Since the T7T/JT are conserved quantities, the Ward identities
are held in the deformed theory. Once we implement the Ward identity for deformed
correlation functions, we have to deal with the divergences. We apply the dimensional
regularization procedure and the deformation of correlation function up to the fist order
can be obtained explicitly.

As applications, we employ the formula to investigate the Rényi entanglement en-
tropy in two-dimensional CFTs perturbatively. We just put a local primary operator
following the procedure in [59-611[64H66] to obtain a locally excited state. With time
evolution, the excess of Rényi entanglement entropy of deformed two-dimensional CFT's
has been calculated in this paper. We will show how the TT /JT-deformation changes
the excess of Renyi entanglement entropy in this local quenched system.

The T'T-deformation of the integrable model is proposed to hold the integrability
structure. However, it is still highly nontrivial to construct the infinite tower of conserve
charges to prove the deformation preserve the integrability structure. Alternatively,
we would like to employ the out of time order correlation function (OTOC) [83-85]
to get some insight of integrability after the deformation, since the OTOC has been
broadly regarded as one of quantities to capture the chaotic or integrable behavior. We
investigate the OTOC in the deformed CFTs to see whether the chaotic property is
preserved or not after the 7T/ JT-deformation in perturbative sense.

The organization of the remaining parts of this paper is as follows. In section 2,
we setup the perturbation of T7T-deformed theories. In terms of perturbative CFT
technicals, we formulate 2- and 4-point correlation functions of TT-deformed CFTs
explicitly, where the dimensional regularization has been implemented. In section 3, we
have studied the excess of the Rényi entanglement entropy of the locally excited states
in TT-deformed theory. In section 4, we work out the out of time ordered correlation
function of the TT-deformed theory, up to first order perturbation. In section 5, we
directly extend the investigations in sections 2, 3 and 4 to the JT-deformed theory.

Finally, we devote to the conclusions and discussions and also mention some likely



future problems in section 6. In appendices, we would like to list some techniques and

relevant notations which are very useful in our analysis.

2 TT-deformation and correlation functions

In this section, we give a lightning review of the TT-deformation and calculate the
correlation function in the TT-deformed CFTs, which are useful in the later parts.

The TT-deformed action is the trajectory on the space of field theory satisfying
dS (A _
B [ ygrm, 1)
d\
where ) is the coupling constant of the TT-operator, (TT), is the product of the left-
and right-moving stress tensors in deformed theory. S(A = 0) is the action of the un-
deformed CFT on the flat metric ds?> = dzdz. Since the theory is on the flat space, the

TT operator can be written as
TT - TZZTEE _— ngng. (2)

with T =T, and T = T%:. In this paper, we will focus on the perturbation theory of
S(N), ie.
SO = SO =0)+A [ @2yGIT)acg + O02), 3)

where (TT)y—o = TT plays the role of the perturbation operator in the CFT. Without
confusion we will denote (TT)x—o as T'T from now on.
In this perturbation theory, the first order correction to the n-point correlation

function of primary operators (O1(z1, z1)Os(29, Z2) « - - Opn(zn, Z,)) becomes

<01 (21, 21)02(22, 22) s On<zn7 Zn»)\ = A / d2Z<TT(Z, 2)01 (21, 21)02(22, 22) s On(Zn, Zn»
(4)
By using the Ward identity, this correction can be written as

(O1(z1, 21)O2(22, 22) * - - On(zn, Zn))a :)‘/d22<zn: ((z fzzz)2 + Za_zzzz)) (Zn: ((5 _hlzz)z -

X <01(Zl, 21)02(22, 22) s On(zn, Zn)>,



where we have used the fact that any correlation function including 7.: vanish i.e.
(T,z---) = 0. As examples, we will study the corrections to the 2- and 4-point functions
up to the first order perturbation in A.

Let us first consider the two-point function of primary operator:

(O(e1, )0 (22, 52)) = 2 (6)

%12 %12

where z;; = 2; — 2;,Z; = Z — Z;. The Ward identity leads to

(T(2)T(2)O(21,21)O (22, 22))

_ ( hﬁz%szz _ 477'}_12%2 5(2) (Z _ zl)
(z—2)2(2—2)2(Z-21)2CZ - %) (z2—2)(F—72)(Z - %)? (7)
4whz3,

_ 5 (2 — ZQ))<0(21)0(22)>.

(2 —22)(Z— 21)%(Z — Z2)

Note that due to the effect of d.,, the terms such as (z — z;)~! will provide a delta
function. One can see that the final two terms will contribute to two non-dynamics
terms which are UV divergence after the space time integration. For simplicity, we
drop out these terms in later analysis. One can show that the first term in above
equation is consistent with the two-point function given by [46,82]. Using the formula
(B7) in appendix, we obtain the first order correction of the two-point function due to
the TT-deformation

(T(2)T(2)O(21,21)O(2, Z2))x =AMz, 72, To(21, 2){O(21, 21)O(22, Z2) )

° (é + 2log|z1af? + 2log 7 + 29 = 5)(O(z1, 21) 022, 22)),

(8)

=\hh
|212]?
where € is the dimensional regularization. See (79) for the notation of Zs.

For the single primary operator O, we have

G(n,n)

P 9)
2h 2h 52h 52k’ (
213 %24 13 %24

<OT(21, 21)0(22, ZQ)OT(Zg, 23)0(24, 24» =

with the cross ratios
_ Rl12%34 _ Rl12%34
77 - 9 77 - - =
213724 213724

(10)



The first order correction for this four-point function due to TT-deformation is
(O (21, 21)O(22, 22) O (23, 23) O (24, Za)) 2

_ 2 hzis hz3, 223714 9,G(n, 1)
_)\/d z{ <(z —21)%(z — 23)? + (2 — 22)%(z — 24)? * H?Zl(z —2) : G(n,z_])n )

( hz2, N hz3, ZsZia 105G (n, 1) )

F-2)E-5)? E-2)P20E-z) [[_E-z) GO

o 723714723714 0,G(n,1)0;G(n,n) _ zszuZsiu 0,0;G(n,7)
MGGz Gmw?  "Me- G- O

B 4rhziy OV 4rhz2, Oy
(z—zl)(z—_zl)(z—23)25 (z==) (2—23)(2’—_23)(2—2'1)26 (2= =)

B 4rhz3, @y ) 4hzs, @y _
EEPSTEEENTEREA (2 =2) CETAIEEEAEENE (z=2)

 Z122340;G(n, 1) [ 216 (2 — z) N 2102 (2 — 2)

G(n, 1) (z—2)(Z-2)(Z-%)(Z-2) (-2)(F-2)EF-%)(7-2)
26 (2 — 23) 2m0 ) (2 — z4)
T ) G—2C—52) -2 -2)G— zg)} }

<OT(21, 21)0(22, ZQ)OT(Zg, 23)0(2’4, 24)>
(11)

The delta functions presented in the 4-th and 5-th rows of the above equation will not
contribute to the dynamics of the four-point function after the proper regularization,
which is similar as the situation in two-point correlation function. We thus drop these
terms. Moreover, after the space time integration associated with the deformation, the
terms with delta function and % will also vanish.

Using the notation of the integrals introduced in (79), we express the first order



correction to four-point function as
(O(21,21)0(22, ) O (23, 23) O (24, Z4)) 2
:)\{hﬁzfgifgzmm(zh 23, 21, Z3) + hh2d, Z3s o900 (29, 24, 71, 23)
+ hhzis 25, Togao (21, 23, Za, 24) + hhz3, ZayTooos (29, 24, Zay 24)
naﬁG(TL 7_7)
G(n,1)

214 ﬁaﬁG(na 77])
G(n,7)

52 s = =2 = \\7
+ (2131111122(217 2y, 23, 24, 21, Z3) + ZoyTiin122(21, 22, 23, 24, 22, 24))h223214

2 S o - 2 S - = = \\}s
+ (2131221111(217 23, 21, 23, Z2, Za) + 2y Lon11 (22, 24, 22, Za, 21, 23))h223

- _0,0;G(n, 1) }

+ 223214Z2321aTi111111 (21, 2223, 24, 21, 23, Z2, Z24)0)1) Gl
(n,7)
(OV(21,21)O(22, 22) O' (23, 23) O (24, 24)).-

(12)
We then could use the formula (©3)), ([©@8), ([@9) and (I04]) in appendix to express this
integral in terms of Z;, Z, and Z3. More precisely, the integral like Zy1(z1, z;) will also
appear. The dimensional reduction parameter ¢ in Z; and Z, is positive, while the
parameter € in Z3 is negative. The integral Z;;(z1, z;) contains both € and €. In our
calculation, the contribution due to integral Zy;(z1, z;) will only replace the € in Z3 to e.
So we can just ignore Z71(21, z1), and regard the parameter € in paired Z3 as positiveH.
Then we use ([84), (87) and ([@0) to obtain the dimensional regulated result. Since the

final result is quite complicated, we will not show the detail at here.

3 Entanglement entropy in the TT-deformed CFTs

The quantum entanglement of deformed CFTs have been investigated in [11},[80%[81].
However, these works are mainly focused on the Rényi entanglement entropy of vacuum
states in deformed CFTs. In this section, we first review the Rényi entanglement en-
tropy of excited state in the un-deformed CFT and then consider their 77-deformation.

Let us consider an excited state defined by acting a primary operator O, on the
vacuum state |0) in the two-dimensional CFT. We introduce the complex coordinate
(z,Z) = (x +it,x —i7), such that x and T are the Euclidean space and Euclidean time
respectively. We insert the primary operator O, at x = —[ < 0 and consider the real

time-evolution from 7 = 0 to 7 = ¢ with the Hamiltonian H [58,[59]. The corresponding

4We would like to appreciate Yuan Sun to discuss with us on this issue.
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density matrix is
p(t) = Ne7Hie=H O (—1) 0) (0| Of (—1)e~H i
= NO,(wy, @) |0) (0] O (wy, @1), )
where N is the normalization factor, € is an ultraviolet regularization. Moreover, w;

and wy are defined by

wy =i(e —it) — 1, wo= —i(e+it)—1
(14)

wy = —i(e —it) — 1, wy=1i(e+it)—1I,
where € & it are treated as the purely real numbers [59]. In other words, we regarded ¢
as the pure imaginary number until the end of the calculation.

We then employ the replica method in the path integral formulation to compute
the Rényi entanglement entropy. Let us choose the subsystem A to be an interval

0 <z < Lat7=0. This leads to a n-sheet Riemann surface 3, with 2n-operators

O,, ie.

S = - ! —log Tl = ﬁ [108{O} (11, 01)Ou(us, 3) -+ O (w1, 1) O w3, 30) |
(15)
We are interested in the difference of 51(4") between the excited state and the vacuum
state:
1

ASXL) =7 [108;«92(1111, w1) Oy (wo, Wa) - - 'Ol(wm—l, Wan—1) Oy (Wap, Way)) s,

—n

(16)
— nlog(Ol(wl, ’Lﬁl)oa(’LUQ, w2)>21 .

These quantities measure the effective quantum mechanical degrees of freedom of the
operator [58,59] 1 .
Let us consider the n = 2 case. We apply the conformal transformation

w z

oI (z) : (17)

such that >, is mapped to ;. For this case, the coordinates z; are given by
[ —t—1e
— =Ly —
“ =3 l+L—t—1e
[l —t+ie
= —zy=1l4/—
S Vi

5We call the difference of the ASI(L‘") as the excess of the Rényi entanglement entropy.




On the ¥4, the four-point function can be expressed as

(02(21, Z1) O, (22, 52)(92(237 Z3)Ou(z4, 24)) 5, = \213224\_4h“Ga(777 n), (19)
where
212234 _ 2127234
n= o N= (20)
213%24 213%24

We then apply the map (I7) to express the four-point function on ¥y:

((’)l(wl, w1) O (ws, U_Jz)(’)l(w?,, w3) O, (wy, wy)) s,

dwy g I i (21)
=15 7 (0k(z1, 2)Oulz2, 2) Ol 5, ) Oul4 21)) s,
i=1 §

Here the Rényi entanglement entropy in 0 < ¢t < l or t > L + [ for O,|0) will be
vanishing [59]. When | < ¢ < L+, Rényi entanglement entropy will be the logarithm of
quantum dimension of the corresponding operator. Therefore, the excess of the Rényi
entanglement entropy of locally excited states between the early time and late time
is logarithmic quantum dimension of the local operator. In two-dimeneional rational
CF'Ts, the authors of [59-HG16566] obtain that the excess of Rényi entanglement entropy
is a logarithmic quantum dimension of corresponding local operator which excites the

space time [J.

3.1 TT-deformation

In two-dimensional rational CFTs, we have investigated the excess of the Rényi en-
tanglement entropy of locally excited states between the early time and late time is
logarithmic quantum dimension of local operator, which have been proved to be uni-

versal. In this section, we consider the Rényi entanglement entropy of excited state in

In two-dimeneional quantum gravity theory, e.g. Liouville field theory, one has to redefine the
proper reference state [64] to restore the causality structure and the excess of Rényi entanglement
entropy will be a the log of the ratio of the fusion matrix elements between the exciting and reference
states.



the TT-deformed CFT. Let us focus on the TT-deformation of ASf) in (6.
(AS + ASA A)
= log (O} (ws, ©1)Oa(ws, 2) O (ws, @) Oulaws, 1)),
+)\/dzw(TT(w,w)Ol(wl,u71)(9a(UJ2,11—12)02(70371173)0[1(“147?174))22)
~ 2log ({0} 01)Oafwa, wa))s, + A [ (T (w,0)0} wn, )0, 0a)s, ).
(22)

To evaluate the correlator on the Yo, we use the conformal map ([I7) to map w in ¥

to z in X. Under the conformal map (I7), the stress tensors transform as

d _ dz
T(w) = ()T + lzw) T@) = (o)PTE) +{za),  (23)
where {z,w} = # — %Zzl,lj is the Schwarzian derivative. The TT-operator thus trans-

forms as

iy = C I E I ey e e ). @

Using this transformation formula and expanding around A = 0, we find

— (ASff’o - AS%)

. dw; _yp,, (O5(z1,71) Ol 22, 22) Ol (23, 23) O 24, Z4) ) x,
lg(H‘d%‘ (<Ol<w )O (ws, @ )> )’ )

2 (Z — L2 2 <(T )( 822)OT(Z1721)Oa(z2722>O:;(Z3723>Oa(z4724>>21
+)\/d 4L6|Z\2 ((’)l(zl,zl)(’)a(z%z2)02(23,23)(’)a(24,24))21
2 <TT(w7U_}>Ol(w17U_J1) (w27w2>>21 2
-2 f Ol ) Oulum o))z, 0

(25)

Let us focus on the large ¢ case. The leading order is evaluated as

2 (22 — [2)2(z2 —L2) 2 00 ) )

To take the regularization, we introduce the cutoff by replacing (0, c0) to (i, A):

e |2 — " cutoff, )\C_l(A4+L8A4
’ 4

4L%log AA). 27
ALS[z[6 64 L2 4L logAL) (27)

2
c
A—

64



In the leading order O(c?), the Rényi entanglement entropy depends on the UV and

IR cut off

introduced by regularization. By using the Ward identity and the integrals

in Appendix [Bl the order ¢ of eq. (25) can be written as

%A/d%

(22 —L2)2( L2) <( T( )"‘ —QT( ))O (ZlvZl)Oa('Z?v22)02(23723)(9&(24724))21

415z|2 (Ol(21,21) Ou(22, 22) Ob(23, 23) Oa24, Za) )3,

8

_E)\{ 4rh, log(A\zl\) dmhazilog(A/|2]) | he

52 2\(56 712 —4 4
— L L —
Zl L4 L42% (Zl )(Zl |Zl| |Zl| )

B Athg log(A|z)) B 4rhaz2 log(A/|2) N hom

2 A L47] (Zg - L2>(23L2‘z2‘_4 - ‘Z2‘4)

+ 27

Zy3214 105G a (1, 1) <4L4 log(|22/]21])

4L5 Ga(naﬁ) Z% - 2%
20 log(Rl=1|) _ 20%10g(Alzl) _ 22L2log(A/|=1]) | 2317 log(A/ |z
5% (2t —2)  # (5 — %) ff — % A%
(5-L°)% 1 ., L' A (s —L%)° 1 . L' 4
- B el Lae + S D aE)
% (2 — 7) . . 71 (2 — 73) B .
4rhg 23 log(AN/|z ) Amh, log(|z ) hemz? 1 _
Rl Bl | B - ALl o Y
Amhgz2log(A/|z|)  4mhglog(|ze|A)  her 1 _
S e e (P = ) Ll )
227 19, Ga(1, 1) <4L4 log(|22]/]21])
2L5 Ga(naﬁ) Z% - Z%
21 log(Rlz1) _ 208 log(Rlzl) _ 20223 log(A/|=1]) 20223 los(A/|24)
A —2) 23— 4) Zf — 2% Z% - %
(L? —23)* 1 1y —4 (L —2})° 4 —4
eV A P Ry 2 A P —L )}
St Gl - L) — Sl - gLl

(28)

Then our task is to substitute the conformal block and evaluate the next order

correction (28). In general CFT, the function G(n,7) in (I9), can be expressed by
using the conformal blocks [86]

Gal(n, 1) = Y _(Ch,)*Fa(bln) Fu(bln), (29)

b

where b runs over all the primary operators.

When we take the early time in our setup 0 < ¢ <[ or t > L+ [, one finds the cross

ratios

L2e? L2e?
-2+ L—02 "TTalr 00 Lo

(30)

11



In this limit, i.e. (n,7) — (0,0), the dominant contribution arise from the identity

operator. We thus get

Ga(n,7) ~ =", (n,7) — (0,0). (31)

Plugging this into (28]), we obtain the next order correction

N ThL?t2(21 + L)?
2 (I—t)?(l+te)?(l+ L —t)?(1+ L+ t.)?

+0(?) for 0<t, <l or t,>L+L

(32)
As we take the late time | < t < [+ L, the cross ratios behaves as [59)
L%¢? _ L?e?
410 —t)2(I+ L —1t) A0+ t)2(1+ L +1)
The conformal block at the limit (n,7) — (1,0) can be written as
Ga(n, ) ~ Foola] (1 — ) ~*"5~*", (34)

where Fp.[a] is a constant called as Fusion matrix [87,88]. Substituting this into (28),
we find
N ThL*t}(2l + L)? <, m2hLt; (20 + L) (I(1 + L) + t?)
2 (I=t)2(I+t)?(I+L—u)*(I+L+t)> 4 (—6)?(+6)2(+L—t)*(I+L+1)?

for <t <L.
(35)

By using the Ward identity, at order O(c?), the correction to the Rényi entanglement

+0(e%),

entropy of excited state can also be written in terms of integrals, which appear in a
complicated form. We will not consider the correction in order O(c°) in the present
paper.

Together with the result at leading order (27), we obtain the TT-deformed AS%Z\

at large c limit:

2 4 8A4
2 cc A +L A
A A G T

+ O(e, %, \?) for  t>0.

o ThL*2(2] + L)?

.
AL og AN = N R P ( + L= 2+ L+ 07

(36)
The first term is associated with the UV and IR cutoff. The second term is related to

the nontrivial time dependence at the linear order of the central charge c¢. Comparing

12



the Rényi entanglement entropy of excited state at early time and late time, we find

Asﬁﬁa(tl) _ ASﬁﬁ)A(te)

_ E)\< whL?t}(20 + L)? B ThL*t?(21 + L)? )
2N =21+ 620+ L—)2(1+L+t)2 (I—t)2(l+t)2(l+L—t)2(l+ L+t.,)?
+ O(e, A, ),
(37)

where t. and t; label the early time and late time respectively. We thus find that the

excess of the Rényi entanglement entropy change dramatically in the order of O(c).

4 OTOC in TT-deformed CFTs

The out of time order correlation function (OTOC) has been identified as a diagnostic
of quantum chaos [83H85]. Remarkably, the field theory with Einstein gravity dual is
proposed to exhibit the maximal Lyapunov exponent, which measures the growth rate
of the OTOC. In this section we investigate the OTOC between pairs of operators:

(WHVW V)5
(WOW@)s(VV)s

(38)

in the deformed CFTs to see whether the chaotic property is preserved or not after the
TT—deformation perturbatively. Since the OTOC can be broadly regarded as one of
quantities to capture the chaotic or integrable behavior, our study will shed light on
the integrability after the TT-deformation.

The thermal four-point correlator (O(x,t)-- )z, x,t are the coordinates of the spa-
tially infinite thermal system, can be computed by the vacuum expectation values

through the conformal transformation:

2Tz 21z _
(O, t1) -+ )5 = (—=)"(—=2)"(O(z1,21) - --), (39)
B g
where z;, z; are
zi(ziy ti) = e (=t zZi(zi, ti) = e mh), (40)

We may deform the thermal system, i.e. two-dimensional CFT at finite temperature
1/8, by inserting the 7T operator The first order correction to the thermal correlator
is

A/d2w<TT(w,1I))(’)(w1,w1) Y (41)
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where w = x +t and w = x — t. Taking account the transformation of the stress tensor

transform under the conformal transformation, we find
(TT(w, w)O(wy,@1) )5

2 2( “2)

2m2 221 5 2T 5, 2TTZ & - &
T(z) — T(z) —
Under the TT-deformation, the four-point function

<W(U)1, U_}l)W(wg, U_}Q>V(wg, 11_}3>V(w4, ’(1_14)>ﬁ
(W (wr, 01)W (wa, Wa)) (V (w3, W03) V (wa, Wa)) g

)O(z1,71) - -)

is deformed to
((W(wl,wl)W(w2,w2)V(w3,w3)V(w4, w1))a
A / dzwa(TT(wa,wa)W(wl,wl)W(wg,wg)V(wg,wg)V(w4,w4))5)

x L (44)
(<W(w1, D)W (wy, @3)) 5 + A [ d2wy(TT (wy, @)W (w1, @1)W (w3, w2)>ﬁ)
1

((V(wg, B3)V (wa, ) + N [ Pwe(TT(we, @)V (ws, @3)V (wy, @) 5) '

X

Expanding around A = 0 and performing the coordinate transformation (@0, we obtain
<W(U)1, U_}l)W(wg, U_)Q)V(wg, 11_}3>V(w4, ’(1_14)>ﬁ
(W (wy, w1)W (w2, W2)) s{V (w3, W3)V (ws, Wa)) 5
X <1 - )\(Q—W)2/dzzb|zb|2 (T(=) = 5i) (T(Zb)__ ﬁ)wi(zlv 2)W (22, 2))
5 - <W(Zl, ZI)W(’Z27 Z2)>
211 [ e T2 T )V oV 50
B o (V(z3,23)V (24, 24))

_)\(

n )\(2_71')2 / d2za|za|2 <(T(Za) — 24022) (T(Za)i_ ﬁ)VI/L(zla Zl)Mf(227 ZZ)Y(Z37 23)‘/(247 24)) + O()\2))
5 <W(Zl,Zl)W(ZQ,Zg)V(Zg,Zg)V(Z4,Z4)>
(45)
The term of order O(c?) thus can be written as
C2 2 2 2 _9 2 —92 2 —2
A= (52 ( | Bzalza = | Pl = | dPzelze|7?)
242 5 (46)
Cutoff_ 2_77'20_2 /A 1__ 2_7'('20—2 ~
— (5) 24227T ; dpp = - 5) 24227T10g(AA).

Note that this divergence only depends on the cutoff. Since no dynamics appear, this

is not interested for us.
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We then consider the order O(c)

i 3 [ e e S o
- f e e
o f g e s [l e
Ao e BN e

(47)
Note that the four-point function in un-deformed CFT is given by
_ _ _ _ 1 1 _
(W (21, 20)W (22, 22)V (23, 23)V (24, 24)) = 55— - G (0, 7). (48)
212 Z34 219 734"
The two-point function in un-deformed CFT behaves as
_ _ 1
(W21, 20)W (22, 22)) = 55— (49)
<12 %12

The two-point functions for operator V' also has the similar construction. Using the

Ward identity and the integrals in Appendix [C, we evaluate the next order correction

D) as

24" B
o0,G 1 1 1 1
_ o A% 1) (n, ) 214793 <7Z1 log — + S - log — — — log — — 2 log —)
G(Ua 77) 212713214 |Zl ‘ 2137223234 |Z3| 214724734 ‘24‘ 2127223224 |Z2|
70-G(n, z Z 2 2
+ 27Tw514523 (% log |21] — ————log |2o| + 2 log 23| — ———log ‘Z4‘> }
G(n, 77) 212713714 212223224 2132237234 214224234

(50)
Then our task is to evaluate (B0). In the two-dimensional CFT, G(n, ) can expand

in terms of global conformal blocks [89]:

Zp h, W F (h, h, 2h, ) F (h, h, 2h, 77), (51)

where F' is the Gauss hypergeometric function. The summation is over the global

SL(2) primary operator. The coefficient p is related to operator expansion coefficient

p(h,h) = AWwWo,  AVVo, ;-

15



For the two-dimensional CF'T corresponding to the Einstein gravity theory, all the
desired propagation can be expressed by using the identity operator, and the conformal

block can be replaced by
G(n, 1) = F(n)F(n) (52)

where F is the Virasoro conformal block whose dimension is zero in the intermediate
channel. Here we will use a slight different notation compared with previous section.
The function F is not known in general case. However, at large ¢ with small h,,/c fixed

and large h, fixed, the formula reads [91]

(53)

n(l—n —6huw/c 2h,
F(n) ~ ( : )1—12h c) '

1 — (1 —m)t-t2he/
where the function has a branch cut at n = 1. For the contour around n = 1 and small

7, one finds
1 e
F(n) ~ <1_2m> : (54)

en
Since the path of 7 does not cross the brach cut at 7 = 1, one find F(77) = 1 at small 7.

To apply the TT-deformed correlation function to the OTOC, we follow the steps
in [85190] to evaluate the OTOC by using the analytic of the Euclideans of the four-point

function by writing

2 _2m;
21_65261, Z=ec 3 €1

2 _2m;
22_66262’ %= ¢ 7 €2

2T (f4iez—) = 2n (_f—jez—x) (55)
z23=e?h , 3 =e€h8

27 . 27 .
2q = e 8 UTHaTD) 7 — g (TimiamT)

as the function of the continuation parameter ¢. Substituting the coordinates (55 and
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B4) to (BO), we find

c 2w,

SGaa
2, 1, 2 2 (L)W (a1, 20) Wz, 2)) 2.1, o 1 (T(2)W (21, 21)W (22, %))

[ ol e e+ [ i S
2,1, 2 1 {(T(2))V (25, %)V (2, 21)) 21, 2 L (T(Z)V (25, 2)V (2, Z))
K e v Bl K e e vy
—/d2Z |Z ‘2L<T(za) (zlvzl)W(Z%z?)V(z&Zii) (Z47'Z4>>
alma _g <_W(21,Zl) (ZQ,ZQ)V(Zg,Zg)V(Z4,Z4)>
B 2, 1, 22 (T(E) Wz, 2)W (2, 22) V(25 25)V (20, 24))

)\/d a| a| a <W(21,21)W(Zg,22)V(Zg,23)V(Z4,24)> }

dn(t—xz+ieg)
5 4z (& B8 — ]_
C)\h' h /8 o3 L€ A 27ra 27 (t+ieg) . 27 (t+a+iegz) ?
67y, (e 5 —e B )2 —ice” P

(56)
where we have located the operators in pairs: €5 = €; + /2 and €4 = €3+ [5/2, and set

€, = 0 without loss generality [90].
Let us now consider the order O(c°) correction. By using the Ward identity, we find
A(Q—W)Q/d2z|z|2{ (T(2)T (D)W (21, 20)W (22, 22)V (25, 23)V (24, Za))

5 - <W(21, Zl)W(ZQ’ 222V(Z3, Zg)V(Z;l, Z4)
(T ()T ()W (21, 21)W (22, 22)) (T(Z)T(Z)V(ZS,23)V(Z4>Z4)>}

(W (21, 21)W (22, 22)) (V (23, 23)V (24, 24)
_47r(t+i53) Am(t+iez) 87 (t+iegz) 4m(t42x+ie3) 4nx
)\271‘ {12h2 e B e B +e B +e B — 2e B —1)
) dnz 2m (t—x+ie3) . 2w (t+x+ie3)
ﬁ (e F + 1)( —tc+ 127h,, cosh <?> — 127rhw) sinh (?)
4m(t+iez) Am(t42x+ie3) 4 (2t+ax+2ie3) + Ana
9 e # e p — o€ e’
+ 12hvhw Am(t+xtieg) . 2m(ttadiey) 27z 2m (t+ieg)
(—1+e ] )(zce ] —67rhw(e/3 —e B )2)
Anx Am(t+iegy) ATz
24hyh,  (—e? +e 7 )(hy—hwe ") }
- 2 4nz , 2nz 27 (t+ie3) — 2n(t+3ztic3) [°
€ 67rhweﬂ(eﬂ —e 53)2—106 Ca
(57)

where € is the cutoff denoted by |z;|* = z;z; + €2. Taking together with (4G), (56]) and
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(57), we find the TT-deformed OTOC at late time behaves as

<W(w1, wl)W('UJQ, wg)V(’LUg, 'LZJg)V(w4, 'LZJ4)>B
(W (w1, W)W (wa, w2)) s(V (w3, W3)V (w4, 0a)) g
7, (W (wy, 1) W (we, w2)V (w3, w3)V (wy, W04)) 5
(W (wy, w1 )W (we, We)) 5(V (w3, w3) V (w4, Wa)) g

{1-2Ci(2) +ACo(w)e 0 4 |,

(58)
where C}(z) and Cy(x) are the terms independent of ¢. Therefore, the Lyapunov expo-
nent, which measures the time growth rate, is not affected. Further, the choices of the
sign of A do not affect the late time behavior ¢ 7" in above equation.

We thus expect the TT-deformation does not effect the maximal chaos found by
OTOC H Moreover, since the bound of the Lyapunov exponent found in OTOC is un-
affect, the gravity dual of the TT-deformed holographic CFT is expected to saturate
the bound of the chaos. Although we have not study the integral model directly, it is

also natural to expect that the TT-deformed integrable model is still integrable.

5 JT-deformation

5.1 Correlation functions in J7-deformed CFTs

It is also interesting to consider the deformation of JT', which is defined by adding an

operator constructed from a chiral U(1) current J and stress tensor 7' in the action

% = /dQ,z(JT)A. (59)

In a similar way as in TT-deformation, we regard the deformation as a perturbative

theory, in which case the action can be written as
S(\) = S(A=0) + A / P2 /GIT + OV, (60)

where we denoted (JT)y—o = JT. The first order correction to the correlation function

18

<(’)1(z1,21)-~-(’)n(zn,zn)>A:)\/dzz(JT(z,Z)Ol(zl,Zl)-~-On(zn,2n)>. (61)

TA similar result in AdSs and Schwarzian theory has been found recently in [92]
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By using the Ward identity, this correction becomes

(O12)  Oulans s = [ 2 1) (3 (s + 22)) (O 2) Ol )
- (62)

where O; is the primary operator with dimension (h,h) and charge q. Therefore, the

first order correction of two-point correlator due to JT-deformation is
hz2,

(2 —21)%(z — 22)?

<O(21, 21)OT(22, Zg))
(63)

By using the integral (02)), we can express this correction in terms of Z3, which is

<O(21721)OT(22,22)>>\:)\/d2z< © @ )

Z— 21 R — X2

evaluated by using the dimensional regularization.

It is easy to find the first order correction to the four-point function is

<OT(21, 21)0(22, ZQ)OT(Zg, 23)0(2’4, 24)>)\

) ) _
. B, 72 hoz2 Zo3Z 105G (n, 1)
:)\ d2 ql a~13 + a~24 _I_ 23~14 n )
/ Z(;z—zi)<(2—21)2(2—23)2 (F-2)2(2—2) [l_(z—z) G.n) )

<OT(21, 21)0(22, ZQ)OT(Zg, 23)0(2’4, 24)>

(64)

By using the integrals ((79), we express this correction as
(O1(21,21)O(22, 22) O (23, 23) O (24, Z4))x

=A (7%2%3 (1 Th22(21, 21, Z3) + qsThoa (23, 21, 23) + 2 T1oa(22, 21, 23) + @aTioa (24, 21, 23))
+ haZyy (1 T122(21, 22, 1) + @2 Ta22 (22, 22, 21) + qsTa22 (23, 22, 1) + quTi22(24, 22, 7))

_ 195G(n, 1)

214 — (21, 21)O0 (22, 22) O (23, 23) O(24, 7).
GO (O'(21,21)O(22, 22) 0" (23, 23) O (24, 1))

4

+ ( Z ¢iThii11 (i, 21, 22, 23, 54)) 293
i=1

(65)

Using the formulas ([@1]), (92) and (I03]), we could express this integral in terms of Z;.

Since the final result is quite complicated, we will not show the details at here.
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5.2 Entanglement entropy in J7T-deformed CFTs

In this section, we consider the Rényi entanglement entropy of excited state in the

JT-deformed CFT. Let us focus on the JT-deformation of ASf) in (I6).
—(AST) + ASEY) = og ((Ofwn, 1) Oa(ws, w5)O} (w5, 3) Oy (s, 04)) s,
+A / P (JT(w, ©)O} (w1, 1) (w3, 13)O} (w3, 5) O (1w, 04)) s, )

— 210g ((Of(wn, 1) Ouluwa, w5))s, + A / (I T (w, )0} (w1, 1) Oa(ws, W3))s:, )
(66)
To evaluate the correlator on the Y5, we use the conformal map (7)) to map w in ¥
to z in ¥;. Under the conformal map, the current and the stress tensors transform as
2 _ 52)4
i 2 e+ ) (67)
Expanding around A = 0, we find

— (A + ASY))

JT (w,w) =

dw; oy, (O5(21, 21)Oa(22, 22) Of (23, Z3) Ou(24, 24)) 5,
—log(H‘ ‘ <OT(w1 wl) (w2>w2)>21 )
_)\/dzzi(p— 2°)? (J(2)O} (21, 21) Oa(2, 22) Ol (23, Z3) Ou (24, Z4) ),

822  2L3z (O5(21,21)Ou(22, 7)) OL (23, Z3) Ou(24, 24) )5, (68)
_A/dzz(L2 — 22 (J(2)T(2) OL (21, 21) Oa(22, 22) O} (23, Z3) Ou(24, Za) ) 54
2137 <Ol(zl,zl)Oa(ZQ,22)02(2&23)011(2%24»21

_2)\/de<JT(U],’LU>O:;(’UJ1,’(Ul)Oa(UJQ,’U_Jg))EI.
(Ol (w1, 1) O (w3, W),

We still focus on the large ¢ case, AS,(E))\ can be written as

@ o ¢ (L2 =222 (J(2)O0l(21,71)Oul22, 22) O} (23, 23) Oa(24, 24)) 3,
ASA)\ =A[dz Q52 35 T T
’ ‘822 20 (O4(21,21)O04(29, 22)Oi( 23, 23) Oy (24, Z4) ) 5,

c (L2 — 5?2 g
=\ d2 ? 0
Z/ 822 2[3z -z +0(),

(69)
where we used the Ward identity. This integrals can be evaluated in the similar way as

in section 3, and we find we find

4

9 C 27‘(‘ ]_ |ZZ|4 1 [/ZZ2
ASEL)/\Z)\g 5 Qi(—flog(A/|Zi|)+27r(_12L322 +12|z-|4)> +0(c"). (70)
i=1 ! ‘
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Plugging the coordinates (I8) in, we obtain

4
AS&E)A NPT, (L( ! L 2log (l-Hi+L+ t))+8log(%)> +0(, \?)

8 4L l+L+t+l+t)_1 ( 22

(71)
for ¢ > 0. From the above equation, up to the )\ leading order of the JT-deformation
and the leading order of the large c¢ limit, the Rényi entanglement entropy will obtain
the corrections, where the first two terms associated with non trivial time dependence
and the other term is about the UV cutoff due to the regularization. We also find that

the excess of Rényi entanglement entropy will be dramatically changed.

5.3 OTOC in JT-deformed CFTs

We then consider the OTOC under the JT-deformation. Under the coordinate trans-

formation, the correlation function transform as

(JT(w, @)W (wy, ;)W (wa, w2)V (w3, @3)V (wy, W4)) 5

[T P IETE) - )W, 5W (e 2)V (e, 20V (1, 20)

3 37 ow 2472
(72)
The JT-deformation of the function
(W (wy, w1)W (wa, w2)V (w3, ws)V (ws, W04)) 3 (73)

(W (wy, 01)W (wa, w2)) s(V (w3, w3)V (wy, Ws)) s
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becomes
((W(wl,wl)W(w2,w2)V (ws, w3)V (wy, W4)) 5

+ )\/dzwa(JT(wa,wa)W(wl,wl)W(wz,wz)V(w3,w3)V(w4>w4)>B)
1
(<W<w1, D)W (wy, @) 5 + A [ d2wy (JT (wy, @)W (wy, @)W (ws, w2)>ﬁ)
1
(V (ws, @3)V (wa, @1))5 + A [ 2w, JT(wC,wC)V(wg,wg)V(w4,w4))5>

<W(w1,w1)W(w2,w2)V(w3,wg)V(w4,w4)>g
<W(w1,wl)W(wzﬁg))BW(wz,w3)V(w4>@4)>B .

(1 _)\/dZwaT(wb,wb)W(wl,wl)W(w2,w2)>ﬁ —)\/dzw (ST (we, W)V (w3, 03)V (wa, Wa)) g
A

X

(W (w1, w1)W (w2, 02)) 5 (V(ws, ws)V (ws, 04)) g
f d2wa<J (wa, 11_}[1>W(w1, ’U_Jl)W(UJQ, U_Jg)V(wg, ’U_Jg)V(w4, 11_}4)>ﬁ
<W(w1, ’U_Jl)W(UJQ, ’(IJQ)V(wg, ’U_Jg)V(w4, ’(1_14»5

(74)
where we have expanded around A = 0. Under the conformal transformation (0, we
obtain

<W(w1,w1)W(w2,w2)V(w3,u_Jg)V(w4,u_14)>5
(W (w1, 01)W (ws, w2)) s{V (w3, w3)V (wa, W4)) s
(1A - / 02 §<J<Z>W<ZI=21>W<Z2 )V (23, 2)V (21, 20))

24 5 <W(21,21)W<22 22) (23 23) (24 Z. )
o [ o L{JE)W (a1, 21)W (22, 22)) o 1 (J(2)V (23, 23)V (24, )
gy [ da W 20W (2. 22)) “24/d 2 (V2 %)V (20, 2) J)

fd2 ZE(J()T(Z)W (21, 21)W (22, 22)V (23, 23)V (24, Z4))
(W (21, 21)W (29, 22)V (23, 23)V (24, Z4)

fd2 FUROTEW (2, 20W (2, 22)) [ @2ZF(J()T(2)V (23, 2)V (20, 21))
(W (21, 21)W (22, 22)) (V(z3, 2)V (20, 24) |

(75)
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By using the Ward identity, we find

<W(w1, U_}l)W(wg, U_Jg)V(wg, 11_}3>V(w4, 11_}4)>ﬁ
(W (wr, 01)W (w2, Wa)) g(V (w3, W03) V (wa, Wa)) g

4

4

c 2w 1 Qi qi c 1 q;
1 A——[— P >\— 22> Ay [ & }
<+ 24 3 / zZ;z—zl—i_ Zz—z+ Zz;

z— z

i qi ) <h Z2, h 23y n ZiaZaz  N05G (1), 77))
AL z "Z-:)Az—a2)® [ (z—z) Gn.n)

<W(w1,w1)W(UJ2,’U_J2)> < (w37w3>v(w47w4)>
2z g3 g4 22 q1 qo 22
2 12 34
+/\/d - B {<z— 23 - z— z4>h (2 —21)2%(z — 22)? * (z— 2 * z— z2)h”(2—23)2(2— Zy)?

n (Z qi )H?514_523 _ ﬁaﬁG(nv,rI)}_‘_O()F)).

<& :1(2 - Zi) G(nv 77)

i=1

(76)
This integral can be evaluated by using the similar method as in the section [3 Using

the coordinates (B3] and conformal block (B4]), we obtain

=2 =2
_ qs3 q4 212 ¢ q2 <34
» | e ) ( )
/ = Z—Zg+Z—Z4 w(2_21)2(2_22)2+ Z—Zl+Z—22 v(2—23)2(2—24)2
87 (t+ieg)
47nc (6 B - 1)
>‘ 2 (Q3 + Q4) Ar(ttie3) A (t+2a+ieg) 4r (2t+w+2ieg) 4nz
e B +e B —e B —e B

(77)
where we have located the operators in pairs: €5 = €; + /2 and €4 = €3+ /2, and set
¢; = 0 without loss generality [00]. At late time, the JT-defomed OTOC behaves as

<W(’LU1, ’Lﬁl)W(wg, 'LZJQ)V(wg, 'LZJg)V(’LU4, 1D4)>5
(W (wr, w1)W (wg, we)) 5 (V (w3, w3) V (ws, Wa)) g

JT <W(w1,w1)W(w2,w2)V(w3,u_Jg)V(w4,u_14)>5
(W (wr, w1)W (wg, wa)) 5 (V (w3, w3) V (ws, Wa)) g

(78)

(1+ACsm)e 5 ),

where Cs(z) is a coefficient independent of t. We thus find the JT-deformation does
not affect the chaos found by OTOC, which is similar as the result found in 77-

deformation.
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6 Conclusions and discussions

In this paper, we study the 7T /JT-deformation of two-dimensional CFTs perturba-
tively in the first order of the deformation. Thanks to the energy momentum conserva-
tion and current conservation, we employ the Ward identity to study the 2- and 4-point
correlation functions perturbatively. To obtain the closed form for these correlation
function, we make use of dimensional regularization to deal with the space time inte-
gral. Our results can exactly reproduce the previous results about 2-point correlation of
deformed CFTs in the literature [31146l[82]. As applications, we study the Rényi entan-
glement entropy of the locally excited state in deformed CFTs. With such deformation,
at the leading order O(c?), the Rényi entanglement entropy depends on the UV and
IR cut off introduced by the regularization. At the order O(c) the Rényi entanglement
entropy obtain a nontrival time dependence. The excess of Rényi entanglement entropy
between the early time and late time is dramatically changed up to the order O(c), see
B7) and ().

The authors of [I] claimed that the integrability structure is still held in integrable
models with TT-deformation. We would like to read out the signal of integrability by
calculating the OTOC in the TT/JT-deformed field theory. To this end, the OTOC of
deformed theory has been given explicitly and it shows that the TT/JT-deformation
does not change the maximal chaotic property of holographic CFTs in our calculation.
Although we do not explicitly show the integrability structure of T /JT-deformed
integrable CFTs, up to the first order of deformation, we expect that such deformations
do not change the integrability structure of un-deformed theory which is a interesting
direction in the future work.

One can directly extend the perturbation to the higher order of these deformations
to calculate the higher-point correlation functions, which will give us some highly non-
trivial insight the renormalization flow structure of the correlation function. One can
compare the correlation function in the deformed theory with the non-perturbative
correlation functions proposed by [82]. Further, one can exactly check the crossing
symmetry of four-point function in perturbative sense, as we have done in this paper,
or non-perturbative sense [82]. To exactly match these two methods is a very interest-

ing direction. As applications, one can apply these higher order corrected correlation
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functions to study the Rényi entanglement entropy and the OTOC to see the chaotic
signals of the deformed theory perturbatively.
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A Useful integrals

A.1 Notation of the integrals

It is convenient to use the notation:

B B d*z
:Z’-lll,"',am,bl,"',bn(’zi17' C oy Ry Rj1y 7Zjn) = (Z . )al .. (Z — )am(g_ 3. )bl . (2_
71 im J1
(79)
For examples, we write
o d?z
Tooaa(21, 22, 21, Z2) = / 2 — 214z — 2]t
o d*z
Toa(1, 720 2, 20) = / (2 — 21)%(z — 22)%(2 — 23)*(2 — 24)?
T (2120202070, 70) = | -
21,29,21, 29,23, 24) =
221111\ <1y <25 <15 <25 <3, ~4 (2—21)2<Z—22)2(2_21)(2_22)<2_23)<2_24)
T 2277 = | e
11111111\ 21, 22, 23, 24, 21, 22, 23, Z4) = ] 1 — _
e Hizl(z_zi) Hj:l(z_zj)
(80)
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Moreover, we will also write

Ty (21, 22) = Tini (21, 22, 21, 22)
Ty(21, 22) = Togaa(21, 22, 21, Z2) (81)
I3(21, 22) = Tii (21, 22),
which is used to expressed other more complicated integrals. The formula of Zy(z1, z2)
and Zyooo (21, 29, 23, 24) can be found in (87) and (O3) respectively. The formula of

Toor111(21, 22, Z1, 22, 23, Z2) and Tyqninina (21, 22, 23, 24, 21, 22, 23, Z24) can be found in (O8]

and (I04]) respectively.
A1l Zy(21,2) = Tz, 22, 21, 22)

Let us first consider the integrals

d?z

?lz — zf*’

11(21722):1-1111(21,22,21,22):/‘z .
— <1

which can be performed by introducing a Feynman parameter:

|Zl \

2 1d
1(21, 22) / du/ = 2Vga- 1/ du/ P 5
z\2+u —u) p +u(l )\zuP)

(83)
where z = Z +uz; + (1 —u)zy, 2 = Z +uz + (1 — u)z. To regulate the divergence, we

use the dimensional regularization by replacing two-dimensional to d-dimensiuon:

d 1d
I (21,22 —QVSd 1/ dU/ P

p +u 1—u)|212|) (84)

d=2+¢ 4m
_—

2
(S +loglannl* + 7 +logm + O(c))
12

d
where € > 0. We have used Vga-1 = (f)
2

A.1.2 12(21,2’2) :I2222(21722721a22)

By using the Feynman parameter

LT
AA3 T(2)r() /o " (wdi+ (1 - “)A2>4,

(85)



the second integrals can be written by

1

T(z1, 22) = Looga(21, 22, 21, Z2) = /d22<

|2 = 212z = 2P?)

—6/ du/d~2 u(l —u)

1
2\2 + u(l — u)|z2|? )

0 2—1
= 12V521/ duu(1 —u)/ P~ dp I
’ O (o2l w)leP?)

To regulate the divergence, we use the dimensional regularization by

1 0o d—1
Iéd)(zl, 29) = 12V5d1/ duu(1l — u)/ P dp
0 0

d=2+¢ 8T

4
W< + 2log |z12|* + 2log 7 + 2y — 5)

A.1.3 Zi(z1,29) = Thi (21, 22)

We then consider

1-3(21,22) = 1-11(21, Zg) = /d22 (2 — 21)(2 — Z2) .

|2 — 21|22 — 292

By using the Feynman parameter

e [l fo B
u|z—z1|2 (1—u)|z—22|2>

[, B (=) 4 um)
/d /d (12 + w1 — w)zwl )2

/ dU/d2 p _u 1—1,[,)‘212‘2

p ol — u)|z)? )

We then replace two-dimension to d-dimension:

1 00 9 5
— 1_
I (21, 22) = 2V / du / gop 2= w0 = Wl
0 <p2 +u(l— U)|212\2)

—24¢ 2 .
Kasy —27T<E + log |z12)? +log7r+7> + O(é),

where € < 0.
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(72 + a1 — u)|z2ef?)

(87)
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A.2 Useful integrals for four-point function
A.2.1 Toppo(21, 22, 73, Za)
One may use the integrals (Q0) to compute other more complicated integrals. It is easy

to see

1
Tioo(21, 23, 24) = | d*z -

1 [, 1 1
= 0.5 (- /d (e o) @
— 8.,0., (}34(13(21, %) — Ty(z, 24))).

Other useful integral is

1122 217 21, 23

1 1 1
Z_Zl 3<(5—51)2 * (z2 — z3)? B (2—21)(2—23)) (92)
= _( - —111(217 Z1) + 05,23(21, 23) + izg(zl, 23)>

213 <13
where we used Zy;(z1, 21) = 0. From (01]) and (92)), we can write

Ty 7) ._/ d*z
2222\ %1, 22, 23, 24 ) = (2 — 21)2(2 — 22)2(2 — 73)%(Z — 21)?

:a@azl(i/_ _d2z_ i 11 )) (93)

212 ) (2 —23)%(Z — Z4)? (z —21 Z—2

= 0,0, ( (1122(21, Z3, Z4) — T122(22, 23, 54)))-
Z12
Therefore, we can express Zogeo(21, 22, 23, Z4) by using Zs.

A.2.2  Tooyi11(21, 29, 21, 22, 23, Za)

Let us consider how to compute the integrals

d*z

(z—21)2(z2—2)2(z—21)(Z—22)(z2 — 23)(Z — Z4)

Toor111(21, 22, 21, Z2, Z3, Z4) Z/
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As preparation, we first consider the integrals Zoo; (21, 22, Z3) and Zso1(21, 22, 21). By

using 821022< (L - )) = (2_21)21(2_22)2, it is easy to find

z12 \z2—21 z—29

1 1 1 1
Too (21, 22, Z3) = 821822<—/d2z( ( - ))

2192 Z-Zg) Z— 2 Z — 29

1
= 0,,0., <z_12 (13(217 Z3) — L3( 2, 53))) .

Using m = %(Z_lz — Z_lzj) repeatly, we find
d*z
T 7)) —
(21, 22, 2) / (2 —21)*(2 — 22)*(2 — 71)

1 d?z 1 1 2
- 2_52/ z—2) ((z R P G T 22)> (96)

1 2
= —50.,T3(22, 21) — —(T11(21, 21) — L3(22, 21)),
212 212

where we used the factor that Zy;(z1, 21) = 0. Since

1

(z—21)2(z—2)2(z2—21)(Z2 — 22)(Z2 — 23)(Z — Z4)

1 1 ( 1 1 ) ( 1 1 )
212234 (Z — 21)2(2 — 22)2 (Z — 21> (Z — Zg) (Z — 23) (Z — 24) ’
We thus can express 1-221111(21, 29, 21, 22, 23, 24) as

Toor111(21, 22, 21, Z2, Z3, Z4)

1
=22 <I2211(21, 29, 21, Z3) — Ton11(22, 21, Z2, Z3) — Loo1 (21, 22, 21, Z4) + Toon1 (22, 21, 22, 54))
12234
1 1 1
=— <_—(Iz21(217 20,71) — Doo1 (21, 22, 73) ) — — (Lo (22, 21, 22) — Tooa (22, 21, 73))
212234 \Z13 <23
1 1
- ;(1221(21, 2,21) — Iooi (21, 22, Z1) ) + 2—(1221(227 21, 22) — Dot (22, 21, 7))
14 2

(98)
The other important formula is

T2, 22, 23, 24, 21, 22)
B / d?z
) )z )z z) (2 = ) (- 21)2 (2 - 2)?
1 (1122(21, Z1, Z2) — Tio2(23, 21, Z2) B Ti92(22, %1, Z2) — Li22(23, 21, Z2) (99)
212734 <13 <23
B Ti92(21, 21, Z2) — Thg2(24, 21, Z2) n Th92(22, 21, Z2) — Th22(24, 21, Zz))
<14 224 '
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A.2.3 iz, 29, 23, 24, 21, 22, 23, 24)

It is very useful to factorize the complicated integral in terms of simple ones by using

1 1 1 1

= B ): 1 ):f(—_—._ )

(z—z)(z—2) 22—z 2—2% (Z—2z)(z—%

For examples, Z1111(21, 22, 23, Z1) and Zy111(21, 23, 21, 22) are evaluated as

Ti111(21, 22, Z3, Z4)

:/d G —2)(E—2)(— )

L (., 11 1
BTl K (e R e e ]

1 ) 1 - 1 - 1 1
- z12234/d S P Ty Sl opmn | = Sl e e R FE T, )
= 1, (13(2’1, Z3) — L3(20, Z3) — L3(21, Za) + L3( 20, 54))

and

T (=1, 23, 21, 22)
1

= / R PR, T, T,
, 1 1 1 1 1
e s - ) s )

213212 (Z — Zl> (Z — Zg)

, 1 1 1 1 1
:/d 2213212((2—21)(2—21) (Z—Zg) Z ) (z—zl)(Z—Zg) + (z—23)(z—22))

(z -
1
= —— (In(zh z1) — I3(23, 1) — L3(21, 22) + Ls(2s, 22))
213712
(102)
The other useful result is
Ti111 (%1, 21, 22, 23, Z4)
1
— /dzz — — — —
(z—21)(Z2—Z21)(Z — 22)(Z — Z3)(Z — Z4)
1 /d2 1 ( 1 1 ) ( 1 1 )
= z — —_
212234 (Z — Zl) (2 — 21) (2 — 22) (2 — 23) (2 — 24)
1 1 1 1
= (T:le(zla 21) - TI?)(ZM 52) + TI?)(ZM 23) - Tzll(zla 24))
2127213714 21272923224 234213223 234214724 (103)
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: 1 =1 (1 _ _1
By usig m T Zap ((Z_Za) (z2—2)

T (21, 22, 23, 24, 21, 22, 23, Z4)

) repeately, we find

:/d z(z —2)(z—2)(z—23)(2 — 2)(Z — 21)(2 — %) (2 — 2)(Z — Z)
:W <I1(Z1, 29) + T (22, 23) + Z1(21, 24) + Z1 (23, 24)

+ Zh111 (22, 23, Z1, Z4) + Lh111 (21, 22, Z3, Z4) + Lh111 (21, 24, 2o, Z3) + Lh111 (23, 24, 21, Z2)

— Tii11 (%2, 21, 22, Z3) — Li111 (21, 22, 21, Z24) — Thnna (21, 24, 21, 22) — Thaa1 (24, 21, 24, 23)

— Th111 (22, 23, 22, 21) — Than1 (23, 22, Z3, Z4) — Lann1 (23, 24, 23, Z2) — Th111 (23, 24, 23, 51))-
(104)
Therefore, by using (I0T]) and (I02]), we could express the complicated integral Zy1111111

in terms of Z; and Zs.

B Details of the integrals in Rényi entanglement
entropy of excited state

In this appendix, let us show the details to evaluate the integral (28). We show the

following integral as an exampl

e hz,
4L6|z\2 22 (2 —71)%(z — z3)? (105)
hzls / dp/ dep 2 226 L2)2<p26—2i9 o L2)2 1
T ALS ple2if (pe=0 — 2 )2(pe=® — z3)2’
Integrating on 6, we find
JC e A W
415|z|? 22 (2 —21)%(z — Z3)2

hz%, [ iL?

=76 dp_—{2i9p4[ff(L4 +p') = L'+ (5 = L*)(51 — p") (5 L% — p") log (%] — e

AL J 2p°
(106)
127

where we used e = ™ and z3 = —z;. Let us consider the progress where 6 run from
0 to 2m. When |£| > 1, e7*“p? will go around z} anti-clockwise twice, which means
log(2? — €72 p?) will contribute a factor —4mi. We thus find

0 Ll <1
—2i0 2 Z
log (=1 )= {—4m' 2ls1 (107)
?1

8A similar integral can also be found in [11].
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The integral thus becomes

/d2z(22 - L)1 hzis
415]z|? 22(Z2—71)%(Z — z3)?
hrz2, [ 1 o _ hrz3, [  L*(z2 —L?%)  _ _
P [Capginist s - - 0 [P e - ),

Note that this integral divergent. We introduce the cutoff on p as (%, A).
cutoff 77/772%3 7171'2%3 /A d Lz(Zf — L2)
LA LS Z8pd
Amhlog(Alz|)  4whz?log(A/|z]) hr

o~ 2\/56 172 —4 4
= = B i = D) EL )~ )

A
1 o N _ _
[ doginize - (5 — (L2 - )
1 1
A

(109)
The other integrals in (28)) can be evaluated in a similar way. We find the terms coupled

with T becomes

/d2Z‘Z2 — L2|4i< 712%3 I 712%4 293214 'f]&ﬁG(’f},’f]))
ALSJ)? 2\ (Z2-2)(Z-2)  (Z-2)P(E-24) [l ((z-7) GO0

4mhlog(A|z 4mhz2 log(A /|2 hr
—_ g( ‘ 1‘) _ 1 g( /‘ 1‘) + (Z%—L2)(Z?L2|Zl|_4—|Zl|4)

z2 L* LAz}
Anhlog(A|z|)  4whz2log(A/|z)) hr _ _
- 5% o A + L4Z§ (ZS - L2)(sz2‘Z2| ‘- |Z2|4)
Za3Z214 N05G(n, 1) [ AL log(|z2]/|21])
+ 27 — p—
418 G(n,1n) )
210 log(Alz1]) _ 20%log(Al]) _ 22207 log(A/|=1]) | 2317 log(A/|=s)
Z (7 — 7) Z (7 — 23) Z— 7 Z — 73
(-1 1 _ ., L' L, (&A#-L)? 1, L', }
2;1(2% _2%)( 4|22| + 4 |22| Z2)+ 211(2% _2%)( 4|Zl| + A |Zl| Zl) .

(110)
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The terms coupled with 7" are found to be

/dzz(z2 ~ L) - L2)2i( hzi, N hz3, Y n@nG(n,ﬁ)>
ALS 22 PAz-a)z-z)?  (-nPE-x) [[_((-z) G009
Amthz?log(A/ |z Arhlog(|z1|A)  hw2? 1 _
- reoea] S oe ) | B - ALt Ll
Anhz2log(A/|z|)  4mhlog(|z|A)  hr 1 _
B L4( e B 7= Gl e R e
223714 N9, G (1, 7)) {4L4 log(|22|/71])
2L G(n,7) A -2
2L8log(A|z ) 2L’ log(A|z)) 2072 log(A/|21]) N 21222 log(A/|2])
A (ef =) (- A 7 = 7 74— 23
(L*=2)* 1w 1oy 4 (L2=20) 1w 1,4
R e P S 5 S A e P U 3
+ ZS‘(Z% — Z%)(Zl‘zz‘ 4 22|22| ) zi‘(z% —Z%)(4|Zl| 4 Zl‘zl‘ )

(111)

C Details of the integrals in OTOC

In this appendix, we show the details to evaluate the integral (50]). By using the Ward
identity, the integral (50) is simplified as

21, 2, [, 12 1 (T (2a)W (21, 21)W (20, 22)V (23, 23) V (24, %))
)\24( 5) { /d a| a| Za < (21,21) (Zg,Zg)V(Zg,Zg)V(Z4,54)>
_ 2, (5 |2 1 (T (Za)W (21, 20)W (22, 22)V (23, 23) V (24, Z4))
A e T o 2 e 2 )
/d22b|2b|2 (T(2p)W (21, 20)W (22, 22)) /dz AP 1 (T(2)W (21, 20)W (22, %))
Zb <W(21721)W(22,52)> Zb <W(21,21)W(22722>>
2 2 1 {(T(2)) V (23, 2)V (2, Z)) 2 o 1 (T(Z)V (23, %)V (24, %))
e e ey el R P vwe e

[ (e PO [l ( S w0
“a Hizl(z_zi) G(nﬂ?) Z Hizl(z—zi) G(T],T])

' (112)
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Let us evaluate this integral step by step. We first consider

1 214% no,G(n, 7
/d2za\za\22 A an (, )

2
778 G 77 77 / dp/ d@p 2 — 21422’23
€ Hz 1( € _Zl)

21 log(z1—e%p) 23 log(—z3+€'p) oz log(—z4+€%p) oz log(—z2+¢%p) I
778 G(n 77) /OO 212213214 213223234 214224234 212223224 =0
— T 2203 dp
G(n,n) 0 P
cut—o a G 3 n 1 ]. 1 ]_
tofty o 1% (7777)214223<2710 — + Llog— — Llog— R og—)
G(U> 77) 212213214 |2’1| 213223234 |Z3| 214224234 |Z4| 2127223224 |2’2|
(113)
The other integral is evaluated as
/d22a|2a|2 214723 _ ﬁaﬁGO]_a n)
2L, (2 —z) GO0
n0;G(n, 1) _ _
— " 214 2232T
G(n,1)
21 29 23 24
{2 tog(l21]) — = log () + ——— log(|2s]) — ——— log(Ja]) }
2127213714 212223224 213223234 214224234
(114)
In summary, (A7) is evaluated as
1 0,G 1 2147 n0-G
_ /dzza|za\2—2( 4214223 N, (U»U)) _ /d2za\2a|2—2< 4214f’23 _ %, (77,77))
Z\[[_,(z—z) Gmn) 2\ (z—z) Gn)
o0,G 1 1 1 1
. 277-77777(7}777)214223<Llog— + Llog_ — L Og_ . L Og_>
G(ﬁ, 77) 212213714 |2’1| 213223234 |Z3| 214224234 |Z4| 212223724 |2’2|
n0;G(n, 21 2 zZ z
+ 271_77777(7777)21422 ( log ‘21‘ - % log |Z2| + % log ‘23| - % log ‘240-
G(Ua ) 212213214 212723224 213723734 214724234

(115)
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