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ABSTRACT: In this paper, we regard the TT/JT-deformed CFTs as perturbation theories
and calculate the first order correction of the correlation functions due to the T7/JT-
deformation. As applications, we study the Rényi entanglement entropy of excited state in
the TT /JT-deformed two-dimensional CFTs. We find, up to the first order perturbation of
the deformation, the Rényi entanglement entropy of locally excited states will acquire a non-
trivial time dependence. The excess of the Rényi entanglement entropy of locally excited
state is changed up to order O(c). Furthermore, the out of time ordered correlation function
is investigated to confirm that the 7T/ JT-deformations do not change the maximal chaotic
behavior of holographic CF'Ts up to the first order of the deformations.
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1 Introduction

Recently much attention has been paid to the irrelevant deformations of two-dimensional
quantum field theories by bilinear form of conserved currents [1]. This deformation [2, 3]
has been extensively investigated [4-26]. Although these deformations are irrelevant in the
renormalization group sense, the deformed theory appears to be more predictive than the
generic non-renormalizable QFT. Remarkably, such deformation preserves the integrability
for the integrable quantum field [1]. Even for the non-integrable theory, some properties,
e.g. for a finite size spectrum and the S-matrix, of the TT'/JT-deformed theory can be



exactly calculated based on the data of the undeformed theory [1, 3]. For Non-Lorentz
invariant cases were studied in [27-32].

TT/JT-deformed CFTs have also been applied to string theory [33-44], where the
application to AdS/CFT is especially interesting. The holographic dual of the positive sign
TT-deformed two-dimensional holographic CFT was proposed to be AdSs gravity with a
finite radius cut-off in [45]. To check this proposal, various aspects, such as the energy
spectrum and the propagation speed, must agree on both sides [45]. Some recent progress
in regard to the holographic aspect of the deformations has been reported in [46-55].

The Rényi entanglement entropy has been used as a helpful quantity to measure the
properties of the vacuum and excited states [56—67]. In the un-deformed CFTs, the nth
Rényi entanglement entropy 51(4”) has been extensively studied in the literature [59-62, 65—
75]. In rational CFTs, it has been shown that the excess of the Rényi entanglement entropy
has to be the logarithm of the quantum dimension [60] of the corresponding local operator.
The quantum entanglement of TT-deformed CFTs have been investigated in [10, 13, 54, 76—
82]. However, these works are mainly focused on the Rényi entanglement entropy of the
vacuum states in deformed CFTs. In this paper focus on the locally excited states in
deformed CFTs. To initiate the study, we have to know the correlation function of CFTs.!

Here, we study the correlation functions of primary operators in the 7T /.JT-deformed
two-dimensional CFTs without the effect of the renormalization group flow of the opera-
tor. We will focus on the 2- and 4-point functions in 77 /JT. For simplicity, we regard
the TT/JT-deformed CFTs as perturbation theories of CFTs and compute the first order
correction of the correlation function due to the TT/JT-deformation. Since T7T/JT are
conserved quantities, the Ward identities are held in the deformed theory. Once we im-
plement the Ward identity for deformed correlation functions, we have to deal with the
divergences. We apply the dimensional regularization procedure and the deformation of
correlation function up to the first order can be obtained explicitly.

As applications, we employ the formula to investigate the Rényi entanglement entropy
in two-dimensional CFTs perturbatively. We just put a local primary operator following
the procedure in [60-62, 65-67] to obtain a locally excited state. With time evolution,
the excess of Rényi entanglement entropy of deformed two-dimensional CFTs has been
calculated in this paper. We will show how the T'T'/JT-deformation changes the excess of
Rényi entanglement entropy in this local quenched system.

The TT-deformation of the integrable model is proposed to hold the integrability
structure. Alternatively, we would like to employ the out of time order correlation function
(OTOC) [84-86] to gain some insight into integrability /chaos after the deformation, since
the OTOC has been broadly regarded as one of the quantities to capture the chaotic or
integrable. We investigate the OTOC in the deformed CFTs to see whether the chaotic
property is preserved or not after the 7T /JT-deformation in a perturbative sense.

The remainder of this paper is organized as follows. In section 2, we setup the pertur-
bation of TT-deformed theories. In terms of perturbative CFT technicals, we formulate 2-

'Recently, [83] have used the local and non-local field renormalizations to study the correlation functions
which are shown to be UV finite to all orders formally.



and 4-point correlation functions of TT-deformed CFTs explicitly, where the dimensional
regularization has been implemented. In section 3, we have studied the excess of the Rényi
entanglement entropy of the locally excited states in T7T-deformed theory. In section 4,
we work out the out of time ordered correlation function of the TT-deformed theory, up
to first order perturbation. In section 5, we directly extend the investigations in sections
2, 3 and 4 to the JT-deformed theory. Finally, section 6 is devoted to conclusions and
discussions. We also mention some likely future problems. In the appendices, we would
like to list some techniques and notations relevant to our analysis.

2 TT-deformation and correlation functions

In this section, we give a lightning review of the TT-deformation and calculate the corre-
lation function in the T'T-deformed CFTs, which are useful in the later parts.
The TT-deformed action is the trajectory on the space of field theory satisfying

dfi()\)\) :/d2z\/§(TT))\, (2.1)

where ) is the coupling constant of the TT-operator. S(A = 0) is the action of the un-
deformed CFT on the flat metric ds®> = dzdZ. Since the theory is on the flat space, the TT
operator can be written as

TT - TZZng - TZgTZ;j. (22)
with T = T,, and T = T%;. In this paper, we will focus on the perturbation theory of S(\),

i.e.

S(\) =S\=0)+ )\/sz\/ﬁ(TT)A:o +0(N\), (2.3)

where (TT)y—o = TT plays the role of the perturbation operator in the CFT. Without
confusion we will denote (T71) —¢ as 7T from now on.

In this perturbation theory, the first order correction to the n-point correlation function
of primary operators (O;(z1, 21)O2(22, 22) - - - On(2n, Zn)) becomes

<(91(21,51)02(Z2,52)"'On(zn,fn)h:>\/422<TT(Z75)01(21,51)(92(22,52)"'On(znﬁn»-
(2.4)
By using the Ward identity, this correction can be written as

<01(Zlv 21)02(2% 22) e On(znv Zn)>)\

o3 () @: () @

=1
X (O1(21, 21)O02(22, 22) - - - On(2n, Zn)),

where we have used the fact that any correlation function including 7.5 vanish i.e.
(T,z---) = 0. As examples, we will study the corrections to the 2- and 4-point functions
up to the first order perturbation in A.



Let us first consider the two-point function of primary operator:

C
(O(21,21)0(2, 22)) = — o7 (2.6)
212 %12

where z;; = z; — z;, Zi; = Z — Z;. The Ward identity leads to

(T()T(2)O(21,21)O(22, %))
( hhz3,7%, B 4rhzl, 5@ (2 2)
(2=21)%(z—22)2(2—21)%(2— 22)* (2—21)(Z—21)(2— 22)?
)
_ dmhzi, 5(2)(2—,22)) (O(21)0(22)).

(z—29)(2—21)%(2— 22)

(2.7)

Note that due to the effect of 9,,, the terms such as (z — z;)~! will provide a delta function.
One can see that the final two terms will contribute to two non-dynamics terms which are
UV divergence after the space time integration. For simplicity, we drop out these terms in
later analysis. One can show that the first term in above equation is consistent with the
two-point function given by [47, 83]. Using the formula (A.9) in appendix, we obtain the
first order correction of the two-point function due to the TT-deformation

<T(Z>T(Z)O(Zl, 21)0(22, 22)))\ = )\h]_”LZ%ZE%QIQ(Zl, 22)<O(21, 21)0(22, 22)>
- 4m (4 9 - - (2.8)
= )\hhw (e + 2log(pt|z12]7) + 2logm + 2y — 5) (O(z1, 21)O(22, 22)),
where € is the dimensional regularization parameter. See (A.l) for the notation of Z.
This result reproduces the one obtained in [47, 83]. In the following, we will use the same
prescription to handle the divergent integrals.

For the single primary operator O, we have

G(n,m
(01 (21, 21)0(22, )0 (25, )02, 20)) = k) (2.9
213224713 %24

with the cross ratios o
212234 212234

y = — (2.10)
213224 213224
The first order correction for this four-point function due to TT-deformation is
(O1(21,21)O (22, 22) O (23, 23) O (24, Z0))
_ )\/sz{( h2zf3 - h2z§4 i 223214 UanG(U_» 77))
(z—21)*(z=2)* (-2 (z-2) [ (z-z) GO0
hz2, hz3, Zo3Z1a  N05G(n, 1)
x772772+,,2,,2+477G,
(Z2—21)%(2—23)° (2—2%2)%(Z— Z) [[-1(z—%) (1, 7)
_ zo3z14%Z23Z14 OyG(n,1)05G(n, 1) _ 293214%23Z14 O0p0pG(n, 1)
—mm 4 — _ —\9 +nn 4 _ _ —
I(z—2z)(z— %) G(n,n) [[;(z—z)(z—z) G0
— 72 7 72
Arhzi, 8P (z - 21) — Amhzis 6% (z —z) (2.11)

C(z—21)(z—721)(z — 3)? (z — 23)(2 — 23)(z — 21)2



B 477%234 @), B 47?%234 @),
oG- T GGG
B 512234817G(77, 77) 27162 (2 — Zl) " 271'(5(2)(2 — ZQ)
G(n,1n) (z—21)(Z—2)(z2—2z)(z2—2z1) (2 —22)(Z—21)(Z — 23)(2 — 24)
2163 (2 — 23) 2163 (2 — 24) ] }
) )(Z = 22)(Z — 23)

The delta functions presented in the 4-th and 5-th rows of the above equation will not
contribute to the dynamics of the four-point function after the proper regularization, which
is similar as the situation in two-point correlation function. We thus drop these terms.
Moreover, after the space time integration associated with the deformation, the terms with

delta function and U%G will also vanish.

Using the notations of the integrals introduced in (A.1), we express the first order
correction to four-point function as

<O(21, Zl)O(ZQ, ZQ)OT(Z:;, 53)0(24, Z4)>)\
= )\{hﬁz%35%31.2222(217 23,21, 23) + hhz2, 225 Ton0o (20, 24, 71, 23)

+ hﬁz%32§422222(217 23 227 24) + hﬁzg423412222 (227 24, 227 54) (212)
19y G(n, 1)
G(n,7)
50-G(n. 7
+ (215Ta21111 (21, 23, 21, 73, %2, Z4) + 25, Tao1111 (22, 24, B2, 24, 21, 23))h223214nGn(17(7Z‘7)77)
WW}
G(n,m)

2 Sy L 22 2 \\T
+ (213T111122(21, 22, 23, 24, 21, 23) + ZagL111122(21, 22, 23, 24, 22, Z4) ) h223214

+ 2zo3z14223 21411111111 (21, 2223, 24, 21, 23, Z2, Z4)N)1)

X <OT<21, 21)0(2’2, ig)OT(Zg, 23)0(2:4, 24)>

We then could use the formula (A.15), (A.20), (A.21) and (A.26) in appendix to express
this integral in terms of Z;, Zo and Z3. More precisely, the integral like 771 (21,21) will
also appear. The dimensional reduction parameter € in Z; and Zs is positive, while the
parameter € in Z3 is negative. The integral Z;;(z1,Zz1) contains both € and é. In our
calculation, the contribution due to integral 711 (21, z1) will only replace the € in Z3 to e. So
we can just ignore Z11(21, 21), and regard the parameter € in paired Z3 as positive.? Then
we use (A.6), (A.9) and (A.12) to obtain the dimensional regulated result. Since the final
result is quite complicated, we will not show the detail here.

3 Entanglement entropy in the TT-deformed CFTs

The quantum entanglement of deformed CFTs have been investigated in [13, 81, 82]. How-
ever, these works are mainly focused on the Rényi entanglement entropy of vacuum states

2We would like to appreciate Yuan Sun to discuss with us on this issue.



in deformed CFTs. In this section, we first review the Rényi entanglement entropy of
excited state in the un-deformed CFT and then consider their 77-deformation.

Let us consider an excited state defined by acting a primary operator O, on the vacuum
state |0) in the two-dimensional CFT. We introduce the complex coordinate (z,z) = (x +
iT,x —i7), such that = and 7 are the Euclidean space and Euclidean time respectively. We
insert the primary operator O, at * = —[ < 0 and consider the real time-evolution from
7 =0 to 7 =t with the Hamiltonian H [59, 60]. The corresponding density matrix is

p(t) = Ne Hte=<H O (—1)|0) (0] OF (=1)e<H i

— NOu (w2, m2) [0) (0] O} (w1, ). (31)

where A is the normalization factor, € is an ultraviolet regularization. Moreover, w; and
wy are defined by
wy =i(e —it) — 1, wo=—i(e+it)—1

(3.2)
w1 = —i(e —it) — I, Wy =i(e+it)—1,

where € £ it are treated as the purely real numbers [60]. In other words, we regarded ¢ as
the pure imaginary number until the end of the calculation.

We then employ the replica method in the path integral formulation to compute the
Rényi entanglement entropy. Let us choose the subsystem A to be an interval 0 < x < L
at 7 = 0. This leads to a n-sheet Riemann surface ¥,, with 2n-operators O, i.e.

n 1 7
S§) = - log Tulp}]
(3.3)

1
=1-. [bg@l(% 1) O (w2, @) - - - O (wan—1, W2—1) O (wan, Wan)) | -

)

We are interested in the difference of SXL between the excited state and the vacuum state:

n 1
AS = 5

fn |:].Og<02(w1, wl)Oa(w27 'lI)Q) e Ol(w2n—17 w2n—1)oa('w2n7 w2n)>2n

(3.4)
— nlog((’)l(wh1171)Oa(w277172)>21 :

These quantities measure the effective quantum mechanical degrees of freedom of the op-
erator [59, 60].3
Let us consider the n = 2 case. We apply the conformal transformation

2
w z
— (= 3.5
- (L) | (3.5)
such that ¥, is mapped to ;. For this case, the coordinates z; are given by
l—t—ie
a=—zm= Ly
I+ L—t—1ie (3.6)
I I —14 e
2o = —24 = .
S Y

3We call the difference of the ASXL) as the excess of the Rényi entanglement entropy.




On the Y1, the four-point function can be expressed as

(O6(21,71)Ou(22, 22) O} (23, 23) O 24, 24)) 5, = |213204] 42 Gu(m, 7), (3.7)
where
212234 _ Z12%Z34
)= o ced (3.8)
213224 Z13%24

We then apply the map (3.5) to express the four-point function on s:

(O (w1, 1) Oq (w2, W2) O (w3, W3) O (wy, W) 5,

| T (3.9)
(O (21, 21)O4 (22, 22) O} (23, 23) Ou (24, Z4) ) 5,

Here the Rényi entanglement entropy in 0 < ¢t < [ or t > L+ [ for O,|0) will be
vanishing [60]. When | < ¢ < L + [, Rényi entanglement entropy will be the logarithm of
the quantum dimension of the corresponding operator. Therefore, the excess of the Rényi
entanglement entropy of locally excited states between the early time and late time is log-
arithmic quantum dimension of the local operator. In two-dimensional rational CFTs, the
authors of [60-62, 66, 67] obtain that the excess of Rényi entanglement entropy is a loga-

rithmic quantum dimension of corresponding local operator which excites the space time.*

3.1 TT-deformation

In two-dimensional rational CFTs, we have investigated the excess of the Rényi entangle-
ment entropy of locally excited states between the early time and late time is the logarithmic
quantum dimension of the local operator, which have been proved to be universal. In this
section, we consider the Rényi entanglement entropy of excited state in the T7-deformed
CFT. Let us focus on the TT-deformation of ASf) in (3.4). The vacuum state |0) will
be deformed by the TT deformation. To take the deformation of the vacuum state, we
also expand the vacuum state in deformation theory up to the first order. For the sake of
simplicity, we start from the density matrix of the locally excited states and focus on the
first order correction of Rényi entropy in TT-deformation by using the CFT perturbation
theory. Therefore, we assume that the conformal transformation is still an approximated
symmetry and make use of replica trick to obtain the Rényi entropy. We have to insert the
TT-deformation operator in the n-sheeted manifold. Since we only focus on the first order
of the REE, combining the vacuum deformation and replica effects, it will give the 3n of

4In two-dimensional quantum gravity theory, e.g. Liouville field theory, one has to redefine the proper
reference state [65] to restore the causality structure and the excess of Rényi entanglement entropy will be
the logarithm of the ratio of the fusion matrix elements between the exciting and reference states.



the deformation on one sheet totally.
2 2
— (AST)+AasD))
= log <<(’):§(w1, ﬂ)l)oa(MQ, wg)Ol(wg, wg)oa(w4, ’LT)4)>E2 (310)
+6) / d2w(TT(w,u_J)(’):;(w1,u_Jl)(’)a(wg,wg)(’):;(wg,wg)(’)a(w4,w4)>g2>

— 610g ((Ol(wl,wl)(?a(wg,@))gl + A/d2w<TT(w,1D)Ol(w1,wl)Oa(wQ,w2)>gl>.

To evaluate the correlator on the 3o, we use the conformal map (3.5) to map w in Y9 to z
in ¥. Under the conformal map (3.5), the stress tensors transform as

dz\? c = dz \? - c
Tw)y={(—| T — Tw)=(-—) T +-—={zw A1
W= (5) TE+ Sk Tw=(5) T+ HEe), G
where {z,w} = % 32,2 is the Schwarzian derivative. The T'T-operator thus transforms as
Fw @) = &L (& - L)

Using this transformation formula and expanding around A = 0, we find

2 2
—(AsTy+AST))
log (ﬁ dw; | ~2he <O(§(ZlaZl)Oa(ZZ,ZQ)O;;(Z?”2’3)0(1(24,24)>21>
i=1 dzi (<OT(w17wl)oa(w27w2)>21)2

+GA/dQ( L2 1Y

L6’Z|2

(T(2)+5%) (T(2) + 55) Ol(21,21) Oal22,%2) Od (23, 2) Oa24, 7)) 3,
(OL(21,71) O (22, 22) Ol (23, 23) O (24, 71) ),
TT b (wy, 1) O (w5, @
_6)\/d2w< ( : )O (wlawl)o (w27w2)>21 +O()\2) (313)
(Oa(w1,w1) O (w2, W2))x,
Let us focus on the large ¢ case. The leading order is evaluated as
62 (22 _ L2)2(22 _ L2) T 00
A [ d? =6\——— [ dp(p®+4Lp " +L%p77). 14
T ALS| [0 =0 642L6/ p(p"+ALp T+ L5p70) . (3.14)
To take the regularization, we introduce the cutoff by replacing (0, c0) to (%, A):
2 214 4 8R4
c 2 ’Z —L’ cutoff A A+ L°A 4 ~
— — — | ———— +4L%logAA | . 1
61 ) Ao 5112 ( g e (3.15)

In the leading order O(c?), the Rényi entanglement entropy depends on the UV and IR
cut off introduced by regularization. By using the Ward identity and the integrals in



appendix B, the order ¢ of eq. (3.13) can be written as

66/\/d2 (22— L2)2(2 - L) ((HT(2)+ % T(2 ) Ol(21,21)Ou(22,22) Ok (23, 23) Oa (24, 24) )5,
8

A4LO|[? <Oi(z1,z1)0a(2’2,22)(9:5(23,53)Oa(24754)>21
c drchglog(Alz1|)  4mhezilog(A/|z1])  hem oN,672 |4 4
— goa{ - retBlnl)_rni e P (@~ Ll )
Amhqlog(A|z|)  4mhez2log(A/|za|)  hem _ -
- AhaloglReal) _ Arhay o8/ eaD) § MaT (3 L)Ll 2ol
) 2
223714 107G (1, 7) ((4L*log(|z2|/|21])
+2m= 76 = 2 2
4L Ga(n,1) A1 T2
2L1og(A|z1])  2LSlog(Alza|) 272L%log(A/|z1|)  222L%log(A/|2))
2 (32 _ 52\ = 32(32_ 352\ 52 _ 52 + 2 _ 32 (3.16)
z7 (27— 23) 22 (27— 23) zZi—Zz5 zi—z2

(_ L2)2 1, 4 A 4 4 (2%_L2)2 1 ) 14 .
22— 4|22| |z2| +2§‘(2%—2§) 4|z1| + 17,4

Arhgz?log(A/|z drhglog(|z1|A)  hamz? 1 _
_ 1 g(A/] 1‘)_ g(|1l )+ 1*([;2—2%)(—[/22’?’21‘ 4+‘Z1’4)

L* 22 L4 2§
Amhaz3log(A/|z])  4mhglog(|za|A)  hem 1 _
- i - 2 +71 a7 %) (L% ey
1 2
223214 19y Ga(1,7) (AL log(|z2|/|21])
208 Ga(n,7) A=
20%0g(Aa]) _ 20%%0g(Alzal) _ 217 log(A|=1]) 2173 log(A/ |22
2 (28 -23) Z%(Z%‘*Z%) A=z =2
(L2 —23) - (L? -
+ o *! o[ — L4Z o[ 47> 17 I—*L4 ™) ) -
23 (24 —23) (27 —23)

Then our task is to substitute the conformal block and evaluate the next order correc-
tion (3.16). In generic CFTs, the function G(n,7) in (3.7), can be expressed by using the
conformal blocks [87]

Ga(n,m) = Y _(Cla)* Fa(bln) Fa(bln), (3.17)
b
where b runs over all the primary operators.

When we take the early time in our setup 0 < t < [ or t > L + [, one finds the cross
ratios 1202 122
A2+ L—02 "TAUr 0+ Lo
In this limit, i.e. (n,77) — (0,0), the dominant contribution arise from the identity operator.
We thus get

n~ (3.18)

Ga(n,0) ~ In|~", (n,7) — (0,0). (3.19)

Plugging this into (3.16), we obtain the next order correction

< ThL?t2(21 + L)?
27 (1 —te)2(l+ te)2(l+ L —te)?(l + L + t.)?

+(’)(62) for 0<t.<l or t.>L-+I.
(3.20)



As we take the late time [ < ¢ < [ + L, the cross ratios behaves as [60]

L3262 B L3262
n~1-— , M . (3.21)
41— t)2(1+ L —t)? A1+ t)2(1+ L+ t)?

The conformal block at the limit (n,7) — (1,0) can be written as

Ga(n7 77) ~ FOO [a](l - 77)72ha7772ha7 (322)

where Fjy.[a] is a constant called as Fusion matrix [88, 89]. Substituting this into (3.16),
we find

66>\ 7th2tl2(2l+L)2 60)\ 7T2thl(2l+L) (l(l—i—L)—i—tlQ)

—6= —6- e

2 (l—tl)2(l+t1)2(l+L—tl)2(l+L+tl)2 4 (l—tl)2(l+tl)2(l+L—tl)2(l+L+tl)2
+0(e?), for I<t;<L. (3.23)

By using the Ward identity, at order O(c"), the correction to the Rényi entanglement
entropy of excited state can also be written in terms of integrals, which appear in a com-
plicated form. We will not consider the correction in order O(c’) in the present paper.
Together with the result at leading order (3.15), we obtain the T'T-deformed ASI(L‘Q))\ at
large ¢ limit: 7

2 A* 4+ LEA* - c ThL?t*(21+ L)?
CASP = T 2T 44 0g AR | 650
ANT PG4 L2 P 2 (1= t)2(1+4)2(1+ L—t)2(I+ L+1)?
+0(e,°,\%) for t>0. (3.24)

The first term is associated with UV and IR cutoff. The second term is related to the
nontrivial time dependence at the linear order of the central charge ¢. Comparing the
Rényi entanglement entropy of excited state at the early time and late time, we find

2 2
A8 1)~ 52,0

_ 6% ThL?t?(21+ L)* B ThL?t2(21+ L)?
20\ (I =t)2(I )2+ L—1)2(1 4+ L+1)2  (I—te)2(l+te)2(1+ L—te)2(I+ L+t.)?
+0(e, )\, ), (3.25)

where t, and t; label the early time and late time respectively. We thus find that at the
leading order of A the excess of the Rényi entanglement entropy change dramatically in the
order of O(c), which depends on the details of the CFT.

4 OTOC in TT-deformed CFTs

The out of time order correlation function (OTOC) has been identified as a diagnostic of
quantum chaos [84-86]. Remarkably, the field theory with Einstein gravity dual is proposed
to exhibit the maximal Lyapunov exponent, which measures the growth rate of the OTOC.
In this section, we investigate the OTOC between pairs of operators:

(W VW ()V)g
(W)W (t))s(VV)s

(4.1)
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in the deformed CFTs to see whether the chaotic property is preserved or not after the
TT—deformation perturbatively. Since the OTOC can be broadly regarded as one of the
quantities to capture the chaotic or integrable behavior, our study will shed light on the
integrability /chaos after the TT-deformation.

The thermal four-point correlator (O(x,t)-- - )3, x,t are the coordinates of the spatially
infinite thermal system, can be computed by the vacuum expectation values through the
conformal transformation:

(Oa1, 1) -5 = (2“1)h (Wl)h (O(1, 7)), (42)

B B

where z;, Z; are

zi(xi, t;) = e%($i+ti), Zi(xi, t;) = e%r(xiiti). (4.3)

We may deform the thermal system, i.e. two-dimensional CFT at finite temperature 1/,
by inserting the T'T operator The first order correction to the thermal correlator is

A / P (TT(w, ) O(wn, @) - - )5 (4.4)

where w = ¢ +t and w = x — t. Taking account the transformation of the stress tensor

transform under the conformal transformation, we find

(T (w, 20wy, @) ) (4.5)
() () (5 (5 (o i) sz

Under the TT-deformation, the four-point function

<W(w1, ’u_Jl)W(QUg, u_)Q)V(wg, ’LTJ3)V(’U)4, 7I14)>5

(W (we, @1)W (we, W2)) p{(V (w3, w3)V (ws,04)) 5 o
is deformed to

((W(wl, ’Ll_Jl)W(QUQ, ’lIJQ)V(lUg, @3)V(’LU4, @4»5

+ A / d2wa<TT(wa, ﬁ)a)W(wl, wl)W(wg, QDQ)V(U);}, 1[)3)V(ZU4, w4))5>
» 1 (4.7)

((W(w1, w1)W (wa, w2)) g + X [ d2wy(TT (wy, o)W (w1, w1) W (ws, w2)>ﬁ)

1

X

<<V(w3, @)V (wa, 1)) + A [ d2wo(TT (we, @)V (ws, ©3)V (wa, w4)>5) '

— 11 —



Expanding around A = 0 and performing the coordinate transformation (4.3), we obtain

<W(w1,w1)W(w2, IDQ)V(wg, zDg)V(w4, 1D4)>B
(W (w1, w1)W (w2, w2)) g(V (w3, w3)V (wa, wa)) g
(

(27 ? 2 2<(T(Zb)_24cz2)(T ib)—ﬁ)W(Zl,zl)W(22,22)>
X<1 A(ﬁ) ] #alal W (e, 2 W (22, 52))
A

2 ? 2 2<(T(zc)—24022)(T(20)—ﬁ)V(23,23)V(24,§4)>

() [l V(e 20)V (z0,20) o
2T 2 <(T(Za)— CZQ)(T(ZQ)—%)W(zl,El)W(ZQ,22)V(Zg,53)V(Z4,§4)>

+/\<5> /d22a|za|2 - <W(Z1,21)2£/(22,22)V(23,53)V(Z4,54)>

+(’)(>\2)>

The term of order O(c?) thus can be written as

2 2 2
)\;? (;) (/sza\za]_2 —/dzzb]zb]_2 —/dzzclzc|_2>

cutoff 27 A 1 27
) ( 3 > VP, 27T/}\ dp; =-A (ﬂ) 5 — 2 log(AA).

Note that this divergence only depends on the cutoff. Since no dynamics appear, this is

(4.9)

not interested for us.
We then consider the order O(c)

¢ 2 o 1 (T(2a)W (21,21) W (20,22)V (23, 23)V (24, 24))
Ao < > { /d “lz ’ (W (21,21)W (22, 22)V (23, 23)V (24, 24))
2 2 1 (T(z )W(Zl,Zl)W(Z2,Zz)V(Z3,23)V(Z4,54)>
)\/d Zalzal" 2 z; (W(Zl,Zl)W(Zz,ZQ)V(Z3,53)V(Z4,54)) (4.10)

o o2 L (T(zp)W(21,21)W (22, 22)) 20122 (T'(2
+f #alal 2 (Wie, )W (e 2)) +f el 'zb W (ot o)W (2,22))
+/d2zc|zc|2212

((T(2c))V (23, 23)V (21, 7)) /dzz P 1 (T'(z)V(23,23)V (24,54)>}
Note that the four-point function in un-deformed CFT is given by

)W (21, 21) W (22, 22))

L(
(
T

(2c
(V(23,23)V (24, 24)) z2 (V(z3,23)V (2, 24))

1 1
(W (21, 21)W (22, 22)V (23, 23)V (24, 24)) = 2hu 2k _ah, 2k, G(n,n). (4.11)

F12 734 Z12 %34

The two-point function in un-deformed CFT behaves as

1

2h =2k |
212 %12

(W (21, 21)W (22, 22)) = (4.12)

— 12 —



The two-point functions for operator V' also has the similar construction. Using the Ward
identity and the integrals in appendix C, we evaluate the next order correction (4.10) as

Ai <2;)2 (4.13)

nonG(n,m)
X —271'7214223
{ G(n,m)
1
x <leog+z3 og—alog—leog>
z12213214  |21|  z13%223234 |z3|  z1azoazsa  |za|  zi2zo3zoa |22
WﬁaﬁG(n,n) )

+2 2147293
G(n,m)

Z1 ) 23 Z4
X <___10g121| - flog\zzl +f10g\23| - ___10g|Z4’) }
212713714 2127223724 213723734 214724234

Then our task is to evaluate (4.13). In the two-dimensional CFT, G(n,7) can expand
in terms of global conformal blocks [90]:

G(n,7) =Y p(h, B)n" " F (h, h, 2h, ) F (h, . 21, 7), (4.14)
h.h

where F' is the Gauss hypergeometric function. The summation is over the global SL(2)
primary operator. The coefficient p is related to operator expansion coefficient p(h, h) =
AWWO, s AVVO,, ;-

For the two-dimensional CFT corresponding to the Einstein gravity theory, all the
desired propagation can be expressed by using the identity operator, and the conformal
block can be replaced by

G(n,m) — F(n)F (1) (4.15)

where F is the Virasoro conformal block whose dimension is zero in the intermediate
channel. Here we will use a slight different notation compared with previous section. The
function F is not known in generic cases. However, at large ¢ with small h,,/c fixed and
large h, fixed, the formula reads [92]

1— —6hy /c 2hy
F ) ~ <1 17((1 _737))112hw/c> 7 (4.16)

where the function has a branch cut at n = 1. For the contour around 7 = 1 and small 7,
one finds

1 2h,
F(n) ~ <1_24ﬂhw> . (4.17)
en

Since the path of 7 does not cross the brach cut at 77 = 1, one find F(7) = 1 at small .
To apply the TT-deformed correlation function to the OTOC, we follow the steps
in [86, 91] to evaluate the OTOC by using the analytic of the Euclideans of the four-point

,13,



function by writing

Z61 27

z1=¢€ 5 , Z1 = 6_7%1
2m
zz—eﬁm Zg=¢e B'?
T (t+iez—x) 2r (_f—jez—) (418)
zm=e % 37 Z3=¢eh 3
2m o 27 (4 ied—
Z4:€5(t+“4 z), 24265( t—ieqs—x)

as the function of the continuation parameter ¢. Substituting the coordinates (4.18)
and (4.17) to (4.13), we find

c (27 2
7 (5)

22 b (T ()W (21, 21) W (22, 22)) o2 L (T(Z)W (21, 21)W (22, 22))
{/ Tl G )W (22, 22) v Tl e )W (2 22))

(
2,1, 12 1 ((T(2c))V (23, 23)V (24, 7)) o 2 1 (T(2)V (23,23)V (24, 24))
/d zelzel 25 (V(z3,23)V (22, 22)) +/d el | 22 (V(zs,23)V (20, 1))
/d2z \z |2 (T(za) (Zlazl)W(Z%@)V(Zsa53)V(Z4,54)>
a a <

W(Zl,zl)W(ZQ, EQ)V(Zg, Zg)V(Z4, Z4)>

2 21 (T'(Za)W (21, 21)W (22, 22) V (23, Z3) V (24, 24))
_A/d Za|Za| <W(21,Z1)W(ZQ,ZQ)V(Z3,23)V(Z4,Z4)> }

a
4m(t—x+iez)
47rz e B

87° —1
- C)\h h 6 b 2nx 27 (t+iez) . 27 (t+x+iez) ? (419)
67Thw(€ B —e B )2—106 s

where we have located the operators in pairs: €2 = €1 + 3/2 and ¢4 = €3 + /2, and set
€1 = 0 without loss generality [91].

Let us now consider the order O(c") correction. By using the Ward identity, we find

27\% [ o o[ (T()T(Z)W (21,21)W (22, 72)V (23, 23)V (24, Z1))
A(5) [y W (o1 2)W (z2,22)V (21,20)V (20, 72)
(

(TTEW 20 W (2, 2) <T<z>T<z>v<z3,zg>v<Z4,z4>>}
(W(z1,21)W (22, 22)) (V(23,23)V (24, 21)
9 _ Am(t+ieg) 4m(t+iez) 87 (t+iegz) 4m(t+2x+ieg) Az
2r 5 e 7 (e F +e 7 4e 7 =25 —1)
= — 12h,hy —5= 5 - 5 -
B e 7 +1)(—ic+127h, cosh (W) —127h,,) sinh (W)
4m(t+iez) 47 (t42x+ie3) 3 47 (2t+a+2ie3) anzx
B B — B B
+12hvh121, e | +e | e +e |
A (t4a+iez) . 27 (t+a+iez) 27 27 (t+ie3)
(—1—|—e B )(zce B —67rhw(e B —e B )2)
Arw 4m(t+iez) anz
24hyhy, (—e# +e 7 )(hy—hye ?)
2 arz  2me  2m(ities) 2n(tiBoticy) (° (4.20)
6mhye P (e B —e P )Q—ice B

where ¢ is the cutoff denoted by |2|*> = 2;z; + €2. Taking together with (4.9), (4.19)
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and (4.20), we find the TT-deformed OTOC at late time behaves as

<W(w1, ?I)l)W(’UJQ, ﬂ)g)V(wg, ﬂ)g)V(w4, 71)4)>5
(W (wy, @)W (wa, w2)) p(V (w3, 03)V (wa, 04)) 5
T <W(w1,’tD1)W(w2,wg)V(QU3,’LZ)3)V(ZU4,lD4)>5
(W (wr, w1)W (wa, w2)) p(V (w3, w3)V (w4, 04)) s

(4.21)

{1 — ACq(z) + )\C'g(a:)ef%ﬂt +-- },

where C1(x) and Co(x) are the terms independent of t. Therefore, the Lyapunov exponent,
which measures the time growth rate, ig not affected. Further, the choices of the sign of A
do not affect the late time behavior e~ 7 * in the above equation.

We thus expect the T'T-deformation does not affect the maximal chaos found by OTOC
up to the perturbation first order of the deformation.” Moreover, since the bound of the
Lyapunov exponent found in OTOC is un-affect, the gravity dual of the TT-deformed
holographic CFT is expected to saturate the bound of the chaos. Here we focus on the late
time behavior of the OTOC in the T'T" deformed large central charge CFT which is expected
to have holographic dual. Although we have not investigated the integral model directly,
it is also natural to expect that the TT-deformed integrable model is still integrable up to
the perturbation first order of the deformation.

5 JT-deformation

5.1 Correlation functions in JT-deformed CFTs

It is also interesting to consider the deformation of JT', which is defined by adding an

operator constructed from a chiral U(1) current .J and stress tensor T in the action

% = /d?z(JT)A. (5.1)

In a similar way as in T'T-deformation, we regard the deformation as a perturbative theory,
in which case the action can be written as

S(A\) =S\=0)+ )\/sz\/gJT + O(\?), (5.2)
where we denoted (JT)y—o = JT'. The first order correction to the correlation function is

<01(Z1, 51) ce e On(zn, En»)\ = )\/d22’<JT(Z, 5)01 (Zl, 21) <o (’)n(zn, Zn)> (53)
By using the Ward identity, this correction becomes
<01(zla 21) e On(zmzn»)\

i=1 v

A similar result in AdSs and Schwarzian theory has been found recently in [93].
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where O; is the primary operator with dimension (h, h) and charge q. Therefore, the first
order correction of two-point correlator due to JT-deformation is

(01, 2)0! (22, 22 = )\/d2z<z E121 i z E222) (z - 21};22(% — Z9)? (Oz1, 2022, 22)
(5.5)

By using the integral (A.14), we can express this correction in terms of Z3, which is evalu-
ated by using the dimensional regularization.

It is easy to find the first order correction to the four-point function is

<OT(21,21)0(22,EQ)OT(Z3,§3)0(24,24)>)\

4 T T _ _ _

_ 2, i haZis ha73, Zoszia  M05G(n,7)
Afe (gz—z)((z—zo?(z—zs)?*(z—zz>2<z—z4>2+n§1<z—zj> Zos)
X (O1(21,21)O(22,22) O (23, 23) O (24, Z4) ). (5.6)

By using the integrals (A.1), we express this correction as

(O1(21,21)O(22, %) O' (23, 23) 024, Za) ) (5.7)
=A (Baifg (01T122(21, 21, 23) + @3 T122(23, 21, Z3) + q2Tha (22, 21, 23) + quTn2(24, 21, 23) )
+ haZ3y (1 T122(21, 22, Z1) + @2T122(22, 22, Za) + @3T122(23, Z2, 24) + quT122(24, 72, 24) )

- 105G (1,1)

+ Q‘Ilnn(z‘,zl,52,53754)> 293714 —
(; ' ' G(n,7)

<OT(2’1,zl)O(ZQ,EQ)OT(Z3,§3>O(Z4,54)>.

Using the formulas (A.13), (A.14) and (A.25), we could express this integral in terms of
3. Since the final result is quite complicated, we will not show the details here.

5.2 Entanglement entropy in JT-deformed CFTs

In this section, we consider the Rényi entanglement entropy of excited state in the J7T-
deformed CFT. In the parallel with the T7-deformation, we consider the JT-deformation
of AS? in (3.4).

—(ASE) + A8 = log (<02<w1,wl)oawz,w2>ol<w3,w3>oa<w4,w4>>22
+6)\/d2w<JT(w,w)(’)l(w1,wl)(’)a(wg,wg)(’)l(wg,wg)(’)a(w4,w4)>22) (5.8)
—610g <<Ol(w1,u_}1)0a(’w2,u_12)>zl —i—)\/d2w<JT(w,u_J)(’)2(w1,wl)(’)a(wg,u72)>21>.

To evaluate the correlator on the 3o, we use the conformal map (3.5) to map w in Y9 to z
in 3. Under the conformal map, the current and the stress tensors transform as

. 2 52\ / .
JT(w, @) = dJ(Z)W (T(z) + 822> (5.9)
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Expanding around A\ = 0, we find
2 2
— (AS) + AS)

4
= log <
=1
6 / 2, ¢ (12 =2 (J(2)Oh(21,21) Oulz2, 22) Ob (23, %3) Ou(24, ) )3,
822 2L%2 (O5(21,21) Ou(22, 22) Ok (23, 23) O (24, 7a)) 35, (5.10)
B GA/dzz(LQ — 222 (J(2)T(2)Ok(21, 1) Oul22, 22) Ok (23, 23) O 24, 2a)) 5,
212z (O5(21,21)Oul22, 22) Ol (23, 23) Ol (24, 7a) )53,
6 / 2oy T (w, ©)Ok(wy, 1) Ou(wy, w2))s,
(O (w1, w1) Oy (wa, 2)) 5,
)

We still focus on the large ¢ case, ASf4 \ can be written as

2 _ s ¢ (L*—2%)? <J(Z)(9CTL(21,51)(9(1(22,52)(92(23,53)(911(24,24))21
ASA A 6)\ d 2'72 32 T ¥
’ 8z%  2L°Z (Oa(z1,21)0q4(22, 22)Oal23, 23) Oa (24, Z4)) 3,

dwi
dZZ'

“2he (0121, 21)Oa(22, 22) Ol (23, 23) D24, 24) )5 >
(O} (w1, 1) O (w3, W9))3,

—6)\2 2, ¢ W27 g +O() (5.11)
822 213z - ’ '

z— z

where we used the Ward identity. This integrals can be evaluated in the similar way as in
section 3, and we find we find

4
2 c 27 1zt 1Lz
ASY) = 675> Qi< — = log(A/]i]) + 27r< T a2 Taamp) )t O(c).  (5.12)
i=1 v !

Plugging the coordinates (3.6) in, we obtain

Asf; 6/\cw2“ql<L< 1 N 1 )_2log<(l+L—t)(l+L+t)> -

4L I+ L+t 1+t 2 —¢2
L
+ 8log (A> > + O(, \?)

for t > 0. From the above equation, up to the X\ leading order of the JT-deformation
and the leading order of the large ¢ limit, the Rényi entanglement entropy will obtain the
corrections, where the first two terms associated with non trivial time dependence and the
other term is about the UV cutoff due to the regularization. We also find that the excess
of Rényi entanglement entropy will be dramatically changed.

5.3 OTOC in JT-deformed CFTs

We then consider the OTOC under the JT-deformation. Under the coordinate transfor-
mation, the correlation function transform as

<JT(’LU, ’LTJ)W(’LUl, wl)W(wg, ’LI)Q)V(’LU?,, 11)3)V(’LU4, @4)>5

_ llj (2;%)’1 <27;zz>h <2;Z>232<J<Z) <T(2) _ 24022) (5.14)

X W (21, 21)W (22, 22)V (23, Z3)V (24, Z4)) -
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The JT-deformation of the function

(5.15)

becomes

<<W(w1, ’lf)l)W("LU27 ’LT)Q)V(UJ:),, 1D3)V(w4, ZD4)>5

+)\/d2wa<JT(wa,wa)W(wl,wl)W(wQ,wg)V(wg,wg)V(w4,1D4)>5)
1

<<W(w17 W)W (wa, wa))p + A [ d2wy(JT (wy, we) W (w1, 1) W (wa, 1172))&)
1

<<V(w3, 11)3)V(w4, 17)4)>5 + A f d2wC<JT(wC, ﬂ)c)V(w;;, 71)3)V(U)4, ID4)>5)

X

X

_ (W (wy, w) W (wy, w2)V (w3, w3)V (wa, ¥a)) 5 (5.16)
(W (w1, w1)W (ws, w2)) p(V (w3, w3)V (ws, 04)) s
B 2., <JT(wb,’lf)b)W(wl,lle)W(wg,ﬁ)Q))ﬁ
) (1 )\/d ’ (W (w1, wr)W (ws, w2)) 5
B 20 (JT (we, we)V (w3, w3)V (w4, W4)) g
/\/d <V(w3,u_)3)V(w4,1D4)>ﬂ
fdz’wa<JT(’wa,QIJQ)W(wl,’U_)l)W(wQ,U]Q)V(Mg,’lf)g)V(U]4,lD4)>ﬂ
<W(w1,wl)W(wg,wg)V(wg,UI3)V(QU4,’LZ)4)>5

+A

+ (’)(/\2)),

where we have expanded around A = 0. Under the conformal transformation (4.3), we
obtain

<W(w1, wl)W(wg, TIJQ)V(wg, 11)3)V(U14, 1174)>f3
(W (wy, 01)W (w2, w2)) g(V (w3, ©3)V (w4, 0a)) 5

< )\027T|: /d221 <J(Z)W(Zl,Zl)W(ZQ,22)V(Zg,23)V(Z4,24)>
24 ﬁ z <W(21,21)W(22,22)V(Z3 23)‘/(24,24)

(5.17)

[ LW, 2)Wee, 22)) |y ¢ [ o 1(T(2)V(zs,28)V (24, 20))
+)\ 23 (W (21, 21)W (22, 22)) )\24/d (V(23,23)V (24, 24) D
+)\fd2 2m< (2)T ()W (21, 21)W (22, 22)V (23, 23)V (24, 21))
<W(2’1 El)W(ZQ 22 (Zg 53)V(Z4 Z4)
)T'(2) Z

J 22252 (J ()T (D)W (21, 20) W (2, n) & 22 (J(2)T(2)V (23, 23)V (24, 21))

-A (W (21, 21)W (22, 22)) (V (23, 23)V (24, 24)
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By using the Ward identity, we find

(W (wr,w1) W (wa, W)V (w3, ws)V (wa,ws)) s
(W (w1, w1)W (w2, 1D2)>5<V(w3, w3)V (wa,Ws))

4
c 2w 5 1 qi /2 qi c/ 5 1
1 =
<+)\24ﬁ[ /d Zz—zer)\ d Zz z+)\ dzz;;z 2
21z 1 qi
A 2222 !
- / : B <;Z—Zi>

=1
y <h zZ, 72, L P ﬁanG(Uaﬁ)>
Y(z-z (z2—23)%(2—2)%  [[L,(z—z) Gn,n)

2z q3 q4 5%2
1+) [ &2 P
X( + / N B {<z—z3+z—z4> (2—21)%(2— 22)?
-2
q q2 234
I
+(z—zl+z—22> (z—23)%2(2—24)?

z:l(z - zi)

This integral can be evaluated by using the similar method as in the section 3. Using the
coordinates (4.18) and conformal block (4.17), we obtain

=2 2
/ ZZ{(z—z3+z—Z4 (z—71)? (7—22)2—’_ z—zl+z—zg (2—23)%2(2—24)?

87 (t+iegz)
4‘rr:v (e B — )
/\ 9 (Q3 + Q4) 4m(ttics) A (t+2z+ics) dr (2t 2 +2ieg) dmz (5‘19)
e B +e B —e B —e B

where we have located the operators in pairs: €3 = €1 + 5/2 and €4 = €3 + /2, and set
€1 = 0 without loss generality [91]. At late time, the JT-defomed OTOC behaves as

(W(’wl,@1)W(W2,@2)V(w3,w3)‘/(w4,w4)>5
(W (wy, w1)W (w2, w2)) s(V (w3, w3)V (ws, 0a)) g

JT <W(w1, ﬂ)l)W(wg, wg)V(wg, ﬂ)g)V(w4, 11)4))5 . 6_21,5 .
T W wr, @0)W (wa, @) (V (ws, @3)V (wa, 04)) 5 <1+/\03( e Pt )’

(5.20)

where C3(x) is a coefficient independent of ¢. We thus find the JT-deformation does
not affect the maximal chaos found by OTOC up to the perturbation first order of the
deformation, which is the similar as the result found in 7T-deformation.
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6 Conclusions and discussions

In this paper, we study the 7T/ JT-deformation of two-dimensional CFTs perturbatively
in the first order of the deformation. Thanks to the energy momentum conservation and
current conservation, we employ the Ward identity to study the 2- and 4-point correlation
functions in a perturbative manner. To obtain the closed form for these correlation func-
tions, we make use of dimensional regularization to deal with the space time integral. Our
results can exactly reproduce the previous results related to 2-point correlation of deformed
CFTs in the literature [32, 47, 83]. As an application of this work, we study the Rényi en-
tanglement entropy of the locally excited state in deformed CFTs. With such deformation,
at the leading order O(c?), the Rényi entanglement entropy depends on the UV and IR cut
off introduced by the regularization. At the order O(c) the Rényi entanglement entropy
acquires a non-trival time dependence. The excess of Rényi entanglement entropy between
early and late times is significantly changed up to the order O(c), see (3.25) and (5.13).

In [1], it claimed that the integrability structure is still held in integrable models with
TT-deformation. We read out the signals of integrability by calculating the OTOC in the
TT/JT-deformed field theory. To this end, the OTOC of deformed theory has been given
explicitly and it shows that the T'T'/JT-deformation does not change the maximal chaotic
property of holographic CFTs in our calculation. Although we do not explicitly exhibit
the integrability structure of 7T/ JT-deformed integrable CFTs, up to the first order of
deformation, we expect that such deformations do not change the integrability structure
of un-deformed theory which is an interesting direction in the future work.

One can directly extend the perturbation to the higher order of these deformations to
calculate the higher-point correlation functions, which will give us some highly non-trivial
insights into the renormalization flow structure of the correlation function. One can com-
pare the correlation function in the deformed theory with the non-perturbative correlation
functions proposed by [83], and check the non-local effect in the UV limit. Further, one
can exactly check the crossing symmetry of four-point function in a perturbative sense,
as we have done in this paper, or non-perturbative sense [83] as elsewhere. To exactly
match these two methods is a very interesting direction for future research. As applica-
tions, one can apply these higher order corrected correlation functions to study the Rényi
entanglement entropy and the OTOC to see the chaotic signals of the deformed theory in
a perturbative sense.
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A Useful integrals

A.1 Notation of the integrals

It is convenient to use the notation:

Ial;" 2 ,b1 ,bn(zip T By Zjy ’Ejn)
._/ d%z (A1)
' (2 = 2iy)® - (2 = 24,,)2m (2 = 25y )00 -+ (2 = 25, )0

For examples, we write

d*z
12222(21,22,51,52)2/|z_zl|4|z_22|4
T (zzzz)—/ @ (A.2)
2222 1,%2,%3,%4) — (2_21)2(2_22)2(2_23)2(2_24)2 .
7 (zzzzzz)—/ a2
221 (21,22, 20, 2 53, 2) = | N e e T e G 5,05 — 5)(5 = 5
d*z

T (21, 22, 23, 24, 21, 22, 23, 24) :/H4
=1

=) T (- 7))

Moreover, we will also write

Ti (21, 22) = Tini1(21, 22, 21, 22)
To(z1, 22) = To222(21, 22, 21, 22) (A.3)
I3(21,22) = Ti1(#1, 22),
which is used to expressed other more complicated integrals. The formula of Zs(z1, 22)
and Z9999(21, 22, 23, 24) can be found in (A.9) and (A.15) respectively. The formula of
TIoo1111(21, 22, 21, Z2, 23, Z4) and Tyi111111(21, 22, 23, 24, 21, 22, 23, Z4) can be found in (A.20)
and (A.26) respectively.
A1l Zy(z1,22) = Z1111(21, 22, Z1, Z2)
Let us first consider the integrals
d?z

?lz — 22’

Ty (21, 22) = I (21, 22, 21, 22) = / = (A4)

which can be performed by introducing a Feynman parameter:

2 1
1(21, 22) / du/ 5 = 2Vg2- 1/ du/ dp 5
(1212 4+ u(1 = w)|212) (02 + w1 = w)|z12]?)

(A5)
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where z = Z +uzy + (1 —u)z29, Z = Z +uz; + (1 — u)Zs. To regulate the divergence, we use

the dimensional regularization by replacing two-dimensional to d-dimensiuon:

d 1
d
I( )(21,22 —QVSd 1/ du/ p 3
(o2 +u1 = w212 (A.6)
d=2+¢ 27

—>|z |2< + log|z12|*> + v + logm + O(e )>

where € > 0. We have used Vga—1 = %

ojay N

A.1.2 Iz(zl,Z2) = 12222(,21, 22, 21,52)

By using the Feynman parameter

AfA3 - T)I(

the second integrals can be written by

1
To(21, 22) = To222(21, 22, 21, Z2) = /d22 5
(]2—z1|2\z —22\2)
u(l —
_6/ du/d22 v . (A8)
]z\Q—i-u (1 —u)|z12]2 ) '
p2—1dp

= 12V521/0 duu(l — u)/o (

.
P2+ u(l = u) 212

To regulate the divergence, we use the dimensional regularization by

1 e d—ld
Iéd)(Z]_,ZQ) = 12Vga— / duu(l — u)/ r P 1
0 0 (P2 + u(l — ’LL)|ZI2‘2> (A9)
d=2+¢ 4 4 2
alf +210g]2'12\ +2logm+2y—5

A.1.3 Ig(zl,ZQ) = Ill(zla 22)

We then consider

Ty(a1,5) = Tu(er, ) = | d2eF—)EZ22) A.10
3(21,22) = T (21, 22) / S P vTp— (A.10)
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By using the Feynman parameter

1 —_— > [e—
3(21, Z2) / du d2z (2= 21)(z — 2) 5
0 u\z—zﬂQ (1—u)\z—22\2>

/
/01 du/d22 (z—(1—u)z12)(Z + uz122) A1D)
/

(1212 +u(1 = w)[212P)
1
/ du
0

We then replace two-dimension to d-dimension:

1— 2
()(21,22 ) = 2Vga- 1/ du/ dppd 1 p —u( u)|z12]
(2 + ult = W)l ) (A.12)

d2z p? — u(l — u)|z19]?

..
(02 + w1 = w)|212P)

- 2 -
= —7r<g +log |z12|* 4 log 7 —i—’y) + O(é),
where € < 0.

A.2 Useful integrals for four-point function
A.2.1  Ipa22(21, 22, 23, 24)

One may use the integrals (A.12) to compute other more complicated integrals. It is easy
to see

T122(21, 23, 24) = /dQZ(z —21)(2 — 23)%(Z — Z4)?

~on(5; [ (e e ) A
= 05,03, <1(I3(21, z3) — I3(z1, Z4))>‘

92 2
= ( = s Tule, 1) + 925(21, 2) + ——Ts(a1, 23))
2 13 Z13

1) =

= 0. From (A.13) and (A.14), we can write

where we used Zs (21, 2
d?z
7 Z3,24) =
e 20 = | ey

:8z2azl<»2112/ (2—Z3)d;(i—24)2 (2—1Z1 - 2—1Z2>> R

1
—5zz3z1< o (Zr22(21, 23, 24) — 1122(22,53,54)))

Therefore, we can express Zoo2(21, 22, 23, 24) by using Zs.
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A.2.2 TIpo1111(21, 22, 21, 22, 23, Z4)
Let us consider how to compute the integrals
d*z

z2—21)2(z2—20)2(z—21)(z—2)(z — 23)(2 — Z1)
(A.16)

As preparation, we first consider the integrals Zoo1 (21, 22, 23) and Zaa1 (21, 22, 21). By using

821822 <Z}2(Z—1Z1 - 2_122)> = m, it is easy to find

1 1 1 1
Ton (21, 22, 23) = 02,0z, (le/d2z(2— z3) (Z— a1 2-— Z2>>

1
= 0,0, (»212 (Z3(21, 23) — T3(22, Z3))>.

: 1 _ 1 1 1
Using (z=2i)(z—z;) — Zj(zfzi T oz—

d*z
Iooi(z1, 22, 21) = / (z—21)2(z — 2)%(2 — 21)

1 d?z 1 1 9
— z%z/ (z — z1) <(z — )2 + G (G-m)- 22)> (A.18)

1221111(21,22,51,52,53,24)—/(

(A.17)

Zj) repeatly, we find

1 2
= 782223(22721) - T(Ill(zlwgl) _13(22721)))
12 “12

where we used the factor that Z;31(z1,21) = 0. Since
1

(z—21)*(z = 22)*(2 — 21)(Z — 22) (2 — 23)(2 — 24)

o | (1 1)(1 1)(A'19)
Ziozza (2 — 21)2(z — 22)2\(z2—21) (z—22)/)\(2—23) (2—2z1))
We thus can express Zo21111(21, 22, 21, 22, 23, 24) a8
Too1111(21, 22, 21, 22, 23, Z4) (A.20)
1
= 3127 (12211(21722751,53) —To211(22, 21, 22, Z3) —12211(Z1,2’2,51,54)+12211(Z2,21,52,54))
1
= 1_ <_1(1221(21,732,51)—1221(21722,53)) —;(1221(22,731,52)—1221(732,21753))
212234 \ %13 223
1

_ _ 1 _ _
% (Z221(21, 22, 21) — Ta21(21, 22, 24)) + o (Z221(22, 21, 22) — Ta21 (22, 21, Z4))>

The other important formula is
Tii1122(21, 22, 23, 24, 21, 22)
- / d?z
(z—21)(z— 22)(z — 23)(2 — 24)(Z — 71)%(Z — 22)?
1 (1122(»21, 21, 22) — Tioa(z3, 21, 22)  Thoa(22, 21, 22) — Tazo(23, 21, 22) (A.21)

213 223
_ Tia(=1, 21, 22) — Taoa(2a, 21, 22) n Ti22(22, 21, Z2) — Thoa(24, 21, 52))
214 224

212234
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A.2.3 TIii111111(21, 22, 23, 24, 21, 22, 23, 24)

It is very useful to factorize the complicated integral in terms of simple ones by using

1 ! ( 1 1 > 1 1 < 1 1 >
(Z—ZZ')(Z—ZJ‘) Zij \%Z — % Z—Zzj ’ (2—51')(5—2]') Zij Z2— 2z 2—2]' '
(A.22)
For examples, Z1111(21, 22, 23, 24) and Z1111(21, 23, 21, Z2) are evaluated as

Thii11 (21,22, 23, 24) (A.23)
1

= [d?

/ Z(Z—Zl)(z—zz)(7—23

2
1
e e (= )( =)
212234 (zle (z—29) 2723 (Z—24)

1

2, - , 1
z12Z34/d <(Z—21)(Z—23) (2—22)(2—23) (z—21)(2—Z4) + (2—22)(2—24))
= 2121234 (1'3(21723)_1-3(32,23)—1.3(21724)_’_1-3(22’24))

and

i (21,23, 21, Z2) (A.24)

:/ d2z<z—z1><z—zl>1<z—zS><z—zQ>
1 1 1 1 1
_/d22z13212(<z—21>‘<z—z3>>(<z—z1>‘<z—@>>

9 1 1 - 1 - 1 1
_/d ZZ13212 <(Z—2:1)(2—21) (2—2’3>(2—21) (2—2’1)(2—22) * (Z—Z;;)(E—Zg))
1

=— (111(21,51) —T3(23,21) —I3(21,%2) +13(Z3,52)) -
213212

The other useful result is

Tii111(21, 21, 22, 23, 24) (A.25)
= /dzz !
(Z — Z1)<Z— 21)(5— 52)(2— 23)(5— 24)

22121234/d22(2—121) <(Z—121) - (Z—122)> ((2—123) - (2—124)>

1 1 1 1
=<I11(Z1,Z1) ———I3(z1,22) + ————Z3(21,23) — 111(21,24)>

2127213214 212223224 234213223 234214224

— 25 —



. 1 1 1 1
By using e = —((7 — m) repeately, we find

Zab \ (2=2a)

T (21, 22, 23, 24, 21, Z2, 23, 24) (A.26)
/dzz !

(Z — 21)(,2 — 2’2)(2’ — 2’3)(2’ — 2’4)(2 — 21)(2 — 22)(5 — 23)(2 — 54)

1

= (11(21, 29) + L1 (22, 23) +
213213224724

21, 24) + T1 (23, 24)

T (

+ Zi111(22, 23, 21, Z4) + L1111 (21, 22, 23, Z4) + L1111 (21, 24, 22, Z3) + L1111 (23, 24, 21, 22)
zy) — Ti111(21, 24, 21, Z2) — L1111 (24, 21, 24, Z3)
Zy) —

(
— T (22, 21, 22, 23) — Zini (21, 22, 21, 24
(

— T (22, 23, 22, 21) — Li111(23, 22, 23, 24) — L1111(23, 24, 23, Z2) — 11111(23724,53,51))

Therefore, by using (A.23) and (A.24), we could express the complicated integral Z11111111
in terms of Z; and Zs.

B Details of the integrals in Rényi entanglement entropy of excited state

In this appendix, let us show the details to evaluate the integral (3.16). We show the
following integral as an example:®

/d22<z2 o R
415|z|? 22 (z2— 71)%(z — z3)? B
715 27 2 210 LQ) ( 2 —2i0_L2)2 1 ( 1)
AL6 p462u9 (pe—ZG _ 21)2(/)6_7'9 _ 23)2
Integrating on 6, we find
/dQZw S22 1 R
415|2|2 22 (2 —71)%(z — z3)2
hziy [ ZLQ ) Aro2/74 4 2 4 B.2
2m
+ (3 = L) = p) (L = o) o — )|
where we used e = €™ and z3 = —z. Let us consider the progress where 6 run from
0 to 2mr. When |£| > 1, e 29 will go around Z? anti-clockwise twice, which means
log(2? — =2 p?) will contribute a factor —4mi. We thus find
. 0 Zl<1
log(z2 — e 219 p%) = . % ) (B.3)

A similar integral can also be found in [13].
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The integral thus becomes

JRCE s (R
41522 22(z2—21)%(z — z3)?
hrz2, [
L413/ dp?[L4z%p Ly 322 - 120 (B.4)
1

Note that this integral divergent. We introduce the cutoff on p as ( %, A).

hrz?
cutoff L413/1 dp 6[L422'0 4P~ L2

X

|21

(21 — pM(ZL* - p")

6 6 /5
EECTE (B.5)
_ Arhlog(Alx|) 4rhz? log(A/|21])
B z2 A
hm _ _
+ 1 4( = L)L = [ ]Y).

The other integrals in (3.16) can be evaluated in a similar way. We find the terms coupled
with T becomes

/dQ E < hzis " hz3, Z23%14 ﬁanG(ﬁ,ﬁ))
ALO)z2 22\ (2-21)2(2-2)  (2-2)2(2-21)% [[I_(z—%) Gn.1)
_47Thlog(A|21]) B drhzilog(A/|z1]) A

=2 2\/s6 12 —4 4
- - = iz G-I )
4771_110g(A|22|) 4mhz21og(A/|22)) _ _ _
— = +L4A¥ L2)(ZL%z0] ™~ |2]*) (B.6)
2
o Zo3714 197G (n,7) [ 4L log(|zal/|21])
415 G(Tlvﬁ) Z% _Z%
2L5log(A|z1])  2L%log(Alzs|)  2z3L2log(A/|21)) N 22212 log(A/|2))
z2 (zf —22) 23 (27— 23) 22— 72 z3 — 22

(23— L%) 1oy LYy (27 — L) 1y LY,y
2§(Z% z3) i e I +23‘(2§—2§) Al tpala) e

— 27 —



The terms coupled with T" are found to be

[ LR

AL5| ]2 2]

y ( hzi, N hz3, 223214 77&@(?7#7))
(z—21)2(z—23)%  (2—22)%(2—24)? H?Zl(z—zj) G(n,n)
4rhz2log(A/|z drhlog(|z1|A)  hr2? 1 B

_ i g4( /ll) gQ(\ 1] )+ AL 2 r2e

L 2] L* 23

4drhz2log(A /| 47chlog(|ze| A hr 1 _
— 2 g4( /‘ 2’)_ gg‘ 2| )+77(L2_22)( LQZ ’22| 4+‘22|4) (B7)
L 25 L% 25
22321 10, G(n,7) [ AL*1og(|z2|/|21])

2L G(n,n) 22— 22

2log(Alz1]) _ 22%Tog(Alzal) 2122 log(A/|=1]) | 20223log(A|za))

A=) A(R-#) =2 A2

A W S N R SO
2 (Sl = 5L e A TR |
+ 23(2]2_ _Zg) 4‘22| 4 22|22‘ Z%(Z% —Z%) 4’21| 4 21|21’

Note that we have introduced a cutoff A to regularize the divergence, which is different
from the dimensional regularization. Let us see the relationship with the dimensional
regularization through an example

1

7. Zo) = [ dpdf— . . B.
3(21, 22) / P (pe?? — 21)(pe—10 — z3) (B.8)
By using (B.3) and introducing the cutoff A, it is easy to evaluate Z3(z1, Z2) as

1—3(2’1,22) = QWIOgA*WIOg‘ZtuLO(l/AQ). (Bg)

Comparing with the result obtained by using dimensional regularization (A.12), we find
these two prescriptions of regularization are equivalent.

C Details of the integrals in OTOC

In this appendix, we show the details to evaluate the integral (4.13). By using the Ward
identity, the integral (4.13) is simplified as

¢ [2m\? ) o 1 (T (2a)W (21,21)W (22, 22)V (23, 23) V (24, 1))
A% <5> {_/d 2l G 2 W (2 20)V (20 20)V (0, )
—)\/dZZ |Z |2i<7 z ) (217Zl)W(Z%EQ)V(Z3723)V(Z4724)>
G2 (W (21, 21)W (22, 22)V (23, 23) V (24, 24))
2 o 1 (T(2p)W (21,20)W 22,22 9 o 1 (T (2)W (21,21)W (22,22))
+/d ozl (W(z1,21)W (22, 22)) /d ol 2 Zb (W (21,21)W (22, 22))

W Vi), (g, ] CEV Coml e
el2c]
( / }

(C.1)

23,23)V (24, 24)) z (23,23)V (24, 24))

[(z
(
:—/d22a’2a‘21< e nanG(n,ﬁ)) d2 a\Za!21< Sl naﬁG(n,ﬁ))
Il (=) GO 2\[l,(z-z) G.7)
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Let us evaluate this integral step by step. We first consider

9 z14723 M0y G(n,7)
za|za| 1
a i= 1( Zz) G(TI 77)

77(9 G 77 77 - 214723
dop® 2210 ;
e 20 T (pei? — 2;)

_ na G(n 77) P
G(n,n)

o (C.2)

z1log(z1—€e%p) | zzlog(—z3+€p)  zylog(—z4+€p)  zalog(—za+e'?p)
0o 212213214 213223234 214224234 212223%24
X / dp
0

p

0=0

cut—off 0nG ,_

21 3 1 24 22
—logr—+———log————log— — ——log — |.
z12213214  |21|  Z13%223234 |23|  z1azoazsa  |za|  zi2zo3zoa |22

The other integral is evaluated as

/d2zalza\2 : Z14%23 ﬁBﬁG(njﬁ)
21 (z—z) Gn,n)

707G (n,1) _

— Y 24 Z032 C.3

G(n,1) (G:3)
z z z Z4

{_ "L log(|z1]) — = log(|zo]) + ——>——log(|zs]) — ———— 10g(!Z4|)}-

212713714 212223224 213223734 214224234

In summary, (4.10) is evaluated as

) 51 z14703 10, G(n,1) 2 91 Z14Ze3  N0;G(n,n)
—[d Za‘2a| = 1 - [|d Za‘za| ) 1 -
“a Hi:l(Z - Zi) G(?], 77) “a Hi:l (Z - Zi) G(777 77)
n9,G(n,n)

= 27 214293 (C4)
G(n,m)
1 1 1 1
<zllog b2 g - P o — Z210g>
z12213214  |21|  z132ze3234  |23|  ziazoazsa |24l zi2zeszaa ) |22)
70yG(n,m) _ _
+ 2T —————"Z14%93
G(n,n)
Z
<___10g|zl| — 7log|22| + —————1log|z3| — 1og|24|>
212213714 212223224 213223234 214224234
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