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Abstract
The overall subject of this thesis is the massive parallel application of the extreme value
analysis (EVA) on climatological time series. But unfortunately this won’t be possible on
such a scale with any available software package since they are all affected by conceptional
problems in the fit of the generalized extreme value (GEV) or generalized Pareto (GP)
distribution using the maximum likelihood method. These issues will be resolved by
applying constrained optimization and the improved algorithm is provided as a part of a
newly written software package called climex. Using this implementation, as well as the
model class of the vector generalized linear models (VGLM), the changes in the extreme
events of temperature and precipitation series throughout Germany will be analyzed.
To embed the findings of this rather comprehensive study into a global context, a less
complete treatment of the temperature series from the ERA-Interim reanalysis data set
will be included as well.



Summary
The overall subject of this thesis is the massive parallel application of the extreme value
analysis (EVA) on climatological time series. In this branch of statistics one strives to
learn about the tails of a distribution and its upper quantiles, like the so-called 50 year
return level, an event realized on average only once during its return period of 50 years.
Since most studies just focus on average statistics and it’s the extreme events that have
the biggest impact on our life, such an analysis is key for a proper understanding of the
climate change. In there a time series gets separated into blocks, whose maxima can be
described using the generalized extreme value (GEV) distribution for sufficiently large
block sizes.
But, unfortunately, the estimation of its parameters won’t be possible on a massive

parallel scale with any available software package since they are all affected by conceptional
problems in the maximum likelihood fit. Both the logarithms in the negative log-likelihood
of the GEV distribution and the theoretical limitations on one of its parameters give rise
to regions in the parameter space inaccessible to the optimization routines, causing them
to produce numerical artifacts. I resolved this issue by incorporating all constraints into
the optimization using the augmented Lagrangian method. With my implementation in
the open source package climex it is now possible to analyze large climatological data
sets. In this thesis I used temperature and precipitation data from measurement stations
provided by the German weather service (DWD) and the ERA-Interim reanalysis data
set and analyzed them using both a qualitative method based on time windows and a
more quantitative one relying on the class of vector generalized linear models (VGLM).
Due to the climate change a general shift of the temperature towards higher values

and thus more hot and less cold extremes would be expect. Indeed, I could find the
location parameters of the GEV distributions, which can be thought of as the mean
event size at a return period of approximately the block size of one year, to increase
for both the daily maximum and minimum temperatures. But the overall changes are
far more complex and dependent on the geographical location as well as the considered
return period, which is quite unexpected. E.g. for the 100 year return levels of the daily
maximum temperatures a decrease was found in the east and the center of Germany for
both the raw series and their anomalies, as well as a quite strong reduction for the raw
series in the very south of Germany.
The VGLM-based non-stationary EVA resulted in significant trends in the GEV

parameters for the daily maximum temperatures of almost all stations and for about half
of them in case of the daily minima. So, there is statistically sound evidence for a change
in the extreme temperatures and, surprisingly, it is not exclusively towards higher values.
The analysis yielded several significant trends featuring a negative slope in the 10 year
return levels.
The analysis of the temperature data of the ERA-Interim reanalysis data set yielded

quite surprising results too. While in some parts of the globe, especially on land, the
10 year return levels were found to increase, they do in general decrease in most parts
of the earth and almost entirely over the sea. But since we found a huge discrepancy
between the results of the analysis using the station data within Germany and the results
obtained for the corresponding grid points of the reanalysis data set, we can not be sure
whether the patterns in the return levels of the ERA-Interim data are trustworthy.



Zusammenfassung

Das Ziel dieser Arbeit ist die massiv parallele Anwendung der Extremwertanalyse (EVA)
auf klimatologischen Zeitreihen. Dieser Bereich der Statistik beschäftigt sich mit den
Schwänzen von Wahrscheinlichkeitsverteilungen und deren großen Quantilen, wie z.B. dem
sogenannten 50-jährigen Return Level. Dies ist ein Ereignis, welches im Mittel nur einmal
innerhalb seiner Return Periode von 50 Jahren realisiert wird. Da sich aber die Mehrheit
der wissenschaftlichen Studien auf die Analyse gemittelter statistischer Größen stützen,
aber es gerade die extremen Ereignisse sind, welche unser Leben maßgeblich beeinflussen,
ist eine solche EVA entscheidend für ein umfassendes Verständnis des Klimawandels.
In der Extremwertanalyse wird eine Zeitreihe in einzelne Blöcke geteilt, deren Maxima
sich bei hinreichend großer Blocklänge mittels der generalisierten Extremwertverteilung
(GEV) beschreiben lassen.

Die Schätzung ihrer Parameter ist auf solch massiv parallelen Skalen jedoch mit
keinem der verfügbaren Softwarepakete möglich, da sie alle vom selben konzeptionellen
Problem der Maximum Likelihood Methode betroffen sind. Sowohl die Logarithmen in der
negativen log-Likelihood der GEV Verteilung, als auch die theoretischen Beschränkungen
im Wertebereich eines ihrer Parameter machen Teile des Parameterraumes für den
Optimierungsalgorithmus unzugänglich und führen zur Erzeugung numerischer Artefakte
durch die Routine. Dieses Problem konnte ich lösen, indem ich die Beschränkungen
mittels der augmented Lagrangian Methode in die Optimierung integrierte. Mittels
dem verbesserten Fit, den ich in dem Open Source Paket climex zur Verfügung stellte,
ist es nun möglich beliebig viele Zeitreihen in einer parallelen Analyse zu behandeln.
In dieser Arbeit verwende ich Temperatur- und Niederschlagszeitreihen des deutschen
Wetterdienstes (DWD) und den ERA-Interim Reanalyse Datensatz in Kombination mit
sowohl einer qualitativen Analyse basierend auf Zeitfenstern, als auch einer quantitativen,
welche auf der Modellklasse der Vektor-generalisierten linearen Modellen (VGLM) beruht.

Aufgrund des Klimawandels ist intuitiv eine Verschiebung der Temperaturverteilung
zu höheren Werten und damit mehr heiße und weniger kalte Temperaturextreme zu
erwarten. Tatsächlich konnte ich für die täglichen Maximal- und Minimaltemperaturen
einen Anstieg des Location Parameters finden, dem man sich als mittlere Ereignisgröße für
eine Return Periode gleich der verwendeten Blocklänge von einem Jahr versinnbildlichen
kann. Im Großen und Ganzen sind die Änderungen jedoch deutlich komplexer und
hängen sowohl vom Ort, als auch von der Return Periode ab. Z.B. verringern sich die 100
jährigen Return Level der täglichen Maximaltemperaturen im Osten und im Zentrum
Deutschlands für sowohl die unprozessierten Zeitreihen, als auch für deren Anomalien,
und weisen eine besonders starke Reduktion im Süden des Landes für die unprozessierten
auf.
Durch die VGLM-basierte, nicht-stationäre EVA konnte ich zeigen, dass nahezu alle

Stationen für die täglichen Maximaltemperaturen, sowie rund die Hälfte aller Stationen
für die täglichen Minimaltemperaturen, signifikante Trends in den Parameters der GEV
Verteilung aufweisen. Somit war es mir möglich statistisch fundierte Beweise für Verän-
derungen in den extremen Temperaturen finden, die jedoch nicht ausschließlich in einer
Verschiebung zu höheren Werten bestanden. Einige Stationen wiesen eine negativen
Trend in ihren 10 jährigen Return Leveln auf.

Die Analyse der Temperaturzeitreihen des ERA-Interim Reanalyse Datensatzes ergab



ebenfalls überraschende Resultate. Während in einigen Teilen der Welt, hauptsächlich an
Land, die 10 jährigen Return Level steigen, sinkt ihr Wert für den Großteil der Zeitreihen
und fast über den gesamten Ozeanen. Da jedoch eine große Diskrepanz zwischen den
Ergebnissen der Stationsdaten des DWD und den dazugehörigen Rasterpunkten im
ERA-Interim Datensatz besteht, konnte nicht abschließend geklärt werden in wieweit die
Resultate der Rasteranalyse der Natur entsprechen.
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1. Introduction

Our world is constantly changing. Whether we look at climate, economy, or society itself
everything is in motion and altering on various time scales. To thoroughly understand
those systems and to be prepared for possible declines or catastrophes, one has to
apprehend their changes to the largest extend possible. It is therefore not sufficient to
restrict our view to bulk properties of distributions, e.g. a shift in the mean temperature,
but instead it is very important to access their tails and larger quantiles. Making reliable
estimates of such quantiles is thus a task a lot of disciplines, like hydrology, meteorology,
or risk assessment for insurance companies, heavily rely on. After all, it is the extreme
events causing the greatest harm to society as well as considerable financial losses. But
before planing possible prevention measures, one first has to calculate the magnitudes of
these extreme events in a robust way.
The main subject of this thesis is to investigate if and how extreme temperature

and precipitation events do change throughout Germany. There are several ways to
characterize the tails of a distribution and to infer its changes. The most straight forward
way is to assume a specific form of the distribution, e.g. Gaussian, and to directly fit
it using observed data. This approach has the advantage of being quite robust against
outliers due to the sheer abundance of data points available for fitting. But if the true
distribution deviates from our assumption, this advantage will turn against us. Since
fitting procedures like maximum likelihood (ML), importance sampling, or the method of
moments use equal weights for all data points, it is the bulk of the data, which is fitted
best. The very tails of the distribution, on the other hand, won’t be represented very
well.

A second approach is to construct a model representing the physics of the underlying
process and to recreate the distribution by running it in large ensembles. But unless one
uses a model, which is explicitly tailored to properly describe the tails, its parameters are,
again, chosen to fit the bulk of the data rather than its extreme events. For example the
state of the art climate models are considered to perform poorly in representing the tails
as pointed out by Franzke et al. (2015). Stochastic climate models, which were introduced
by Hasselmann (1976), do yield better representations (Sura 2011,@Franzke2015) but
lack the profound physical basis making the climate models so appealing in the first
place. Therefore, we loose the big advantage of a model-based approach in comparison to
the first one, which is the conclusions about the underlying physics of the process drawn
from the parameters.

The extreme value theory is the third route to the properties of the tails. It is a purely
statistical approach requiring the time series to contain neither long-range correlations nor
non-stationarities and will be used throughout this thesis. If the time series is segmented
into blocks of equal length, the asymptotic cumulative distribution of the maximal
values extracted from the individual blocks can be approximated by the generalized
extreme value (GEV) distribution. Using the estimated parameters, one can calculate
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the return levels, or larger quantiles, of the time series. Another way to obtain them is
to consider only those events of the original series exceeding a sufficiently high threshold
as extreme. In this scenario the extracted events are fitted using the Generalized Pareto
(GP) distribution. Both extreme value distributions are two sides of the same coin and
can be transformed into each other. A detailed introduction into the basic theory and
parameter estimation is given in chapter 2.

Since we want to perform a thorough analysis of the extreme temperature and precipi-
tation data throughout Germany, a sole case study of a single station won’t satisfy our
requirements. Instead, we will take a larger number of stations and apply the analysis
on a massive parallel scale. But when doing so one quickly realizes that none of the
available software packages is capable of accomplishing this task. They all will throw
errors for some but not necessary the same stations. The reason is a previously unknown
conceptional problem of the maximum likelihood fit for the GEV and GP distribution.
Chapter 3 will, firstly, give an introduction into the basic optimization algorithms used in
the available packages. Afterwards, the source of the error is illustrated by a numerical
simulation and, finally, a possible solution using the constrained optimization of the
augmented Lagrangian method will be provided. This improved algorithm, as well as
general tweaks in the estimation of the initial parameters and fitting errors presented in
chapter 2, are implemented in my software packages climex. It is written in the statistical
programming language R and licensed under GPL-3 allowing the reader (and everybody
else) to use, modify, and redistribute it free of charge1.
The background of the actual analysis, which we will perform on climatological time

series in the last part of the thesis, will be explained in the following two chapters. Chapter
4 covers the basic stationary analysis in its different flavors including the necessary steps
of preprocessing. Chapter 5 explains the non-stationary (time dependent) analysis. It
introduces the model class of the vector generalized linear models (VGLM) and their
application to the GEV or GP distribution. Before jumping into the extreme value
analysis (EVA), a note of caution is sounded in chapter 6. The EVA is a very nice and
powerful tool. But it can yield some quite misleading results when applied inappropriately.
One of such examples will be illustrated using a case study of the gauge data of the river
Elbe in Dresden.
Finally, we will perform the analysis of the temperature and precipitation data in

chapter 7. Firstly, we will introduce the station data provided by the German weather
service (DWD) and their preprocessing. Afterwards, the overall structure of the analysis
will be explained and some selected results will be presented. Since the number of
inspected quantities and produced figures is far too large, only a case study of the
Potsdam stations and the changes in the 10 and 100 year return levels will be shown. All
other findings, like the temporal evolution of the first four moments and GEV parameters,
can be found in the appendix A. To embed those regional results into a global context,
chapter 8 first introduces the ERA-Interim reanalysis data set and then applies the
non-stationary EVA on it. Lastly, the thesis will be concluded with a summary in chapter
9.

1The source code can be found in https://gitlab.com/theGreatWhiteShark/climex and a live example
of an included web application can be accessed via climex.pks.mpg.de
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2. Extreme value analysis
Most branches in statistics concentrate on the head of probability distribution functions,
which is the part of the distribution holding most of its mass. While those methods
do certainly well in common tasks like determining the most probable event and its
uncertainty, they become increasingly less accurate when dealing with more and more
rare events.

To obtain statistically sound insights into the larger quantiles of a distribution and thus
into its most rare events, one can use the so called extreme value analysis (EVA),
which explicitly focuses on the tails. This quite young branch of statistics was founded by
the pioneering papers of Frechét (1927) and Fisher and Tippett (1928). The 1958 book
Statistics of Extremes by Gumbel (1958) brought the topic to a much broader attention
and it quickly developed into a major field with its own journals and conferences.
The big success is especially due to its wide range of applications reaching from the

analysis of weather extremes in climate science and earthquakes in geology to the risk
assessment in finance and insurance industry. One of its most classical examples comes
from hydrology. Imagine you were given the task of building a dyke, which is able to
withstand a flood that occurs so seldom that it’s realized (on average) only once every
300 years. But there is only as much as 80 years of daily river heights to perform your
analysis on. So how can one get insights into the tails of the distribution of the river
data and approximate the so called 300 year return level?
The EVA is the most promising approach to access the properties of the tails and it

comes in two different flavors. In the first one the time series is segmented into blocks of
equal size, from which only their maximal values will be extracted. The bigger the size
of the blocks gets, the better the distribution of the maxima can be described by the
generalized extreme value (GEV) distribution. Alternatively, a threshold is applied
and all data below it will be discarded. The higher its values, the more appropriate
the distribution of the exceedances can be described by the generalized Pareto (GP)
distribution. After fitting one of these distributions one can use its parameters to obtain
an estimate for arbitrary large quantiles of the distribution function of the original data
including an approximation of the estimation errors.
The following sections are mostly based on the nomenclature and inspired by the

structure of the book An Introduction to Statistical Modeling of Extreme Events by Coles
(2004). For a more mathematical and rigorous treatment see e.g. Extreme Value Theory
- An introduction by Haan and Ferreira (2006).

2.1. Theoretic foundations
We start by assuming our data to be a sequence of an independent and identically
distributed (iid) random process X with the probability distribution function F (z) =
Pr {X ≤ z} . This series gets split into consecutive blocks of size N and only their

5



2.1. Theoretic foundations

maximal values will be extracted.

MN = max {X1, . . . , XN} (2.1)
Due to the iid property of the underlying series the maxima M are independently

distributed as well and their probability distribution can be calculated directly using F

Pr {MN ≤ z} =Pr {X1 ≤ z, . . . ,XN ≤ z}
=Pr {X1 ≤ z} × · · · × Pr {XN ≤ z}
= {F (z)}N . (2.2)

In other words, if the distribution function of the process X is known, the one for the
maxima M can be calculated as well. But in practice it is not possible to write down
an explicit equation of F for most systems. So the distribution has to be estimated. As
mentioned in the introduction, this will lead to an explosion of the fitting errors in the
tails of the distribution since these deviations too are raised to the power of N .

In extreme value analysis a different route for determining the distribution of the M is
used. For asymptotic block lengths (N →∞), a renormalization of the maxima M to

M*
N = MN − bN

aN
, (2.3)

and sequences of appropriate normalization constants {aN > 0} and {bN} the distri-
bution FN (z) can be described by a family of non-degenerated limit distributions, the so
called extreme value distributions. The renormalization in equation (2.3) is indeed
necessary since otherwise the resulting probability distribution function would be a point
mass at its upper end point.

Theorem 2.1
Let MN = max {X1, . . . , XN} be a sequence of block maxima of length n taken from an
independent and identically distributed series X.

If sequences of constants {aN > 0} and {bN} exists so that

Pr
{
MN − bN

aN
≤ z

}
→ G(z) as N →∞,

with G being a non-degenerate cummulative distribution function, then G is a member
of one of the following families:

I : G(z) = exp
{
− exp

[
−
(
z − b
a

)]}
, −∞ < z <∞

II : G(z) =


0, z ≤ b

exp
{
−
(
z−b
a

)−α}
, z > b

III : G(z) =

exp
{
−
[
−
(
z−b
a

)α]}
, z < b

1, z ≥ b,

with α > 0.
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2.1. Theoretic foundations

In a way theorem 2.1 can be thought of as an analogue to the central limit theorem.
In the latter one adds independent and identically distributed (iid) random variables of
finite variance. The more do take part in the summation process, the better the sum
is distributed according to the Gaussian distribution. In the extreme value analysis
the summing is replaced by blocking and the extraction of the maximal values. But
the procedure is the same: The bigger the block lengths, the better the result can be
described by its asymptotics, the family of extreme value distributions.

The independence from the probability distribution function F of the underlying series
is the big advantage of this method. Given a sufficiently large block length, the tail of
the distribution of the data can be approximated using the families of extreme value
distribution in theorem 2.1 or their generalization, the generalized extreme value
(GEV) distribution.

2.1.1. The generalized extreme value (GEV) distribution

The generalized extreme value distribution unifies the extreme value analysis. Prior to its
usage it was common practice to either choose one out of three families of extreme value
distributions, the Weibull, Gumbel, or Frechét distribution, or to use hypothesis testing
to determine the one providing the best fit. Now, the GEV distribution combines all
three of them and which one to pick is controlled by an additional parameter, the shape
parameter ξ. For values other than zero the cumulative distribution function (CDF) of
the GEV distribution looks as follows:

G(z) = exp
{
−
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

}
, ξ 6= 0. (2.4)

It is fully described by the location µ, scale σ, and shape ξ parameter. For ξ > 0 equation
(2.4) follows the Frechét distribution and for ξ < 0 the Weibull one. If the shape
parameter becomes zero ξ = 0, the CDF reduces to the so called Gumbel distribution

G(z) = exp
{
− exp

{
−
(
z − µ
σ

)}}
. (2.5)

While all three families are heavy-tailed, they have a quite different support (see figure
2.1.1; note that the probability distribution function (PDF) is displayed and not the
CDF). The Gumbel distribution is the only member with an unlimited support. But
unlike other distributions, like e.g. the Gaussian one, it is not symmetric and features a
positive skewness of roughly 1.14 and a heavy tail only towards positive z values.
The Frechét and Weibull distribution, on the other hand, are only defined over a

limited range of z since the term
[
1 + ξ

(
z−µ
σ

)]
in equation (2.4) has to remain positive.

This results in the end point

zend = µ− σ

ξ
. (2.6)

For the Weibull distribution in figure 2.1.1 with (µ = 0, σ = 1, ξ = −0.5) the upper
end point resides at 2 and the distribution is heavy-tailed towards negative z values. The
Frechét distribution, featuring the parameters (µ = 0, σ = 1, ξ = 0.5), has a heavy tail
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2.1. Theoretic foundations

towards positive z values and a lower end point at -2, which, in contrast to the Weibull
one, is only barely visible.

![Assuming sufficient large block lengths, the distribution of the individual block maxima
can be approximated using the generalized extreme value (GEV) distribution. It
incorporates three different families of extreme value distributions, which are chosen
depending on the shape parameter ξ. For ξ = 0 the GEV distribution simplifies into
the Gumbel distribution, for ξ > 0 into the Frechét distribution, and for ξ < 0 into the
Weibull distribution. To visualize the relations between the distributions, as well as their
upper or lower end points, three PDFs are plotted with location µ = 0, scale σ = 1, and
shape ξ = {−0.5, 0, 0.5}](_main_files/figure-latex/density-gev-1.png)
After obtaining the parameters of the GEV distribution using one of the methods

described in Section 2.2 the high quantiles of the distribution of the underlying series
can be calculated explicitly using

zp =

µ−
σ
ξ

[
1− {− log(1− p)}−ξ

]
, for ξ 6= 0

µ− σ log {− log(1− p)} , for ξ = 0.

The quantile zp is dubbed return level in the context of EVA and represents the
magnitude of the event, which is realized on average only once per return period 1/p.
Using the block length and the quantization of the underlying series X, the return period
can be assigned an unit. If e.g. our X would consist of a daily temperature time series
and we would like to extract the annual maxima M , the return period is given in 1/p
years.

2.1.2. The generalized Pareto (GP) distribution

A different route to obtain estimates for the high quantiles of a series in the context of
extreme value analysis is to use the so called peak over threshold or just threshold
approach. In there, every event is considered an extreme event if it exceeds a sufficiently
high threshold u. The probability for such an extreme event can thus be calculated in
the following way

Pr{X > u+ y|X > u} = 1− F (u+ y)
1− F (u) , y > 0, (2.7)

with the same series X we considered in the beginning of the chapter. Equation (2.7)
is expressed in terms of a conditional probability in order to normalize the resulting
probability.

Now, if the distribution of the maxima M of the underlying series can be approximated
by the GEV distribution for sufficiently large block lengths and the events actually
exceed the threshold X > u, the distribution of the threshold exceedances X − u can
be approximated by the generalized Pareto (GP) distribution. Its parameters are
directly related to the ones of the GEV distribution. The shape parameter of both
distributions is asymptotically identical and independent of the actual block size or
threshold height. The scale parameter of the GP distribution, on the other hand, is a
rescaled version of its counterpart in the GEV distribution.
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2.1. Theoretic foundations

Theorem 2.2
Let MN = max {X1, . . . , XN} be a sequence of block maxima taken from an independent
and identically distributed series X.

If theorem 2.1 is fulfilled and N is large

Pr{MN ≤ z} ≈ exp
{
−
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

}
,

for σ > 0, then the distribution corresponding to equation (2.7) can be approximated,
for sufficiently high thresholds u, by

H(y) = 1−
(

1 + ξ · y
σ̃

)− 1
ξ

, (2.8)

with y = X − u > 0, (1 + (ξy)/σ̃) > 0, and

σ̃ = σ + ξ(u− µ). (2.9)

As for the GEV distribution, the shape parameter plays an important role in deter-
mining the overall characteristics of the GP distribution (see figure 2.1 where, again, the
PDF and not the CDF of the distributions is displayed). While for positive values the
distribution is of the classical Pareto-type and has no upper limit, for ξ < 0 it’s of the
Beta-type and the upper end point of the GP distribution is

yend = u− σ̃

ξ
. (2.10)

For ξ = 0 the distribution has an unlimited support and simplifies to the exponential
distribution

H(y) = 1− exp
(
− y
σ̃

)
, y > 0. (2.11)

The return levels of the GP distribution are calculated via

ym =

u+ σ̃
ξ

[
(mζu)ξ − 1

]
, for ξ 6= 0

u+ σ̃ log(mζu) , for ξ = 0,

with ζu = Pr{X > u} being the probability of an event to exceed the threshold u.
The return level ym can thus be interpreted as the average value exceeded once every
m occurrences of a threshold exceedance. Since this is usually not a helpful unit for
interpreting the results of the EVA, m often is rewritten to represent a temporal unit.
To e.g. obtain the Nret-th year return level using the GP distribution, we would express
m in terms of m = Nretny, with ny being the average number of exceedances per year.
For the sake of a more concise notation the rescaled scale parameter of the GP

distribution σ̃ in equation (2.9) will be expressed as σ in the remainder of this thesis.
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2.2. Parameter estimation

Figure 2.1.: Assuming sufficiently high thresholds, the distribution of exceedances can
be approximated using the generalized Pareto (GP) distribution. To highlight par-
ticularities of this distribution, three different versions with scale σ̃ = 1 and shape
ξ = {−0.8, 0, 1.8} are displayed.

2.2. Parameter estimation

The fitting of the parameters of the GEV and GP distribution can be done in a variety
of ways, but the most prominent one is the maximum likelihood (ML) approach.
The major benefits of this well established statistical procedure are its comparably
good performance (Hosking, Wallis, and Wood 1985), its asymptotic properties (Smith
1985), and the possibility to incorporate functional dependencies (e.g. trends) into the
parameters (Gilleland, Ribatet, and Stephenson 2013). Other approaches, like the method
of moments, probability weighted moments (PWM) (Hosking, Wallis, and Wood 1985),
L-moments (Hosking 1990), generalized probability weighted moments (Diebolt et al.
2008), or order statistics (Castillo and Hadi 1994), lack at least one of these properties.

There are also frameworks generalizing the usage of the ML approach in the context
of EVA, like the method of generalized ML (Martins and Stedinger 2000), penalized ML
(Coles and Dixon 1999), and Bayesian approaches (Coles and Tawn 1996). But they
require priors or penalty functions assuming the user to have application specific a priori
knowledge and thus restricting the use of the algorithms to domain experts only. In
addition, Bayesian approaches are quite time consuming since they are relying on Monte
Carlo Markov Chain integration (Coles and Tawn 1996).

2.2.1. Maximum likelihood-based estimation

The overall goal of the ML approach is to fit a model, which is most likely to represent
the probability density function of the underlying data. The likelihood, or whether or not
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2.2. Parameter estimation

a model is “likely” to fit the data, is thus determined by the joint probability density to
observe the data given the parameters. This probability factorizes since the ML approach
requires the underlying data to be a series of independent and identically distributed
events x of length n.

L(θ) = f(x1, x2, . . . , xn|θ) =
n∏
i=1

fi(xi|θ) (2.12)

Since from a computer science point of few it is usually more convenient to deal with
summations instead of multiplications and to perform a minimization instead of an
maximization, the estimation is done by minimizing the negative log-likelihood l

l(θ) = − logL(θ) = −
n∑
i=1

log fi(xi|θ). (2.13)

The ML approach itself builds on top of an asymptotic limit law. Only for an infinite
length n of our series x the fitted ML estimators θ̂0 will coincide with the parameters
of the true distribution θ0. But for larger and larger n, given that the series fulfills a
number of regularity conditions, the approximation becomes better and the distance
between θ̂0 and θ0 negligible.
The trade-off between making the block length or threshold height as big as possible

in order for the extracted extreme events to be properly described by an extreme limit
distribution and, on the other hand, to get as many extreme events for the fitting
procedure as possible, is one of the central problems in EVA. A common way to handle
this task is to gradually increase the block length or threshold height, calculate the
corresponding shape parameter, and plot the two against each other. As soon as the
distribution of the extreme events can be sufficiently described by either the GEV or GP
the graph will reach a plateau. Now, the higher we set the threshold or the bigger we
set the block size, the lesser is the amount of extreme events we can extract. Thus, the
fitting error becomes more and more dominant and the constant behaviour is washed out.
Therefore, it’s a good rule of thumb to pick a value from the first half of the plateau.
But all these advises only hold in the absence of correlations and non-stationarities in
the data. If you e.g. deal with temperature data featuring an annual cycle, make sure
you use the methods described in chapter 4 to get rid of the short-range correlations.

The error estimates for the parameters θ̂ can be obtained as follows

Theorem 2.3
For x = x1, . . . xn being a series of independent events drawn from a common parametric
family of distributions F and θ̂0 being the corresponding d-dimensional maximum likelihood
estimator of the model parameters, under suitable regularity conditions θ̂0 is approximately
distributed acording to a d-dimensional multivariate normal distribution

θ̂0 ∼̇MVNd
(
θ0, IE(θ0)−1

)
, (2.14)

where
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2.2. Parameter estimation

IE(x) =


e1,1(θ) . . . . . . e1,d(θ)

... . . . ei,j(θ)
...

... ej,i(θ)
. . . ...

ed,1(θ) . . . . . . ed,d(θ)


is the expected information matrix with

ei,j(θ) = E

{
− ∂2

∂θi∂θj
l(θ)

}
. (2.15)

The expected information matrix describes the curvature of the log-likelihood surface
and relies on the true values θ0, which are of course unknown. Instead, one can replace
them with their maximum likelihood estimates (MLE) θ̂0 to obtain the observed
information matrix IO, also called the Hessian.

Using theorem 2.3 the standard errors of the MLE can be approximated by the square
roots of the diagonal elements ψi,i of the inverse observed information matrix I−1

O

std(θ̂i) =
√
ψi,i. (2.16)

The approximate confidence intervals of θ̂0, on the other hand, would be

θ̂i ± zα2
√
ψi,i, (2.17)

with zα
2
being the (1− α/2) quantile of the standard normal distribution.

In order to obtain the error estimate for the return levels, we need an additional
ingredient.

Theorem 2.4
If a scalar function φ = g(θ) is applied on the MLE θ̂0 of θ, then φ̂0 = g(θ̂0) is the MLE
of φ (see Coles (2004) for this and all other theorems contained in this chapter).

By combining theorem 2.3 and 2.4, we can derive the so called delta method to
estimate the error of φ̂0.

Theorem 2.5
If φ = g(θ) is a scalar function and θ̂0 the MLE of θ with an approximated covariance
matrix Vθ, then the MLE φ̂0 satisfies

φ̂0 ∼̇N(φ0, Vφ),
where

Vφ = ∇φTVθ∇φ,

with

∇φ =
[
∂φ

∂θ1
, . . . ,

∂φ

∂θd

]T

evaluated at θ̂0.
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Since both equation (2.1.1) and (2.1.2) are scalar functions of the estimated parameters,
we can use theorem 2.5 to obtain an approximation of the fitting error of the return level.

2.2.2. Maximum likelihood-based estimation in the EVA
The negative log-likelihood (NLLH) (2.13) of the GEV distribution can be expressed as

l(z;µ, σ, ξ) = n · log σ+
n∑
i=1

[
1 + ξ

(
zi − µ
σ

)]− 1
ξ

+
(

1 + 1
ξ

) n∑
i=1

log
[
1 + ξ

(
zi − µ
σ

)]
, (2.18)

for ξ 6= 0 and with σ > 0, and as

l(z;µ, σ) = n · log σ +
n∑
i=1

(
zi − µ
σ

)
+

n∑
i=1

exp
{
−
(
zi − µ
σ

)}
(2.19)

for ξ = 0 and, again, with σ > 0. Note that (2.18) is only defined for z values with
1 + ξ

(
z−µ
σ

)
> 0.

To obtain an estimate of the parameters of the GEV distribution, we will minimize
equation (2.18) or (2.19) using a numerical optimization scheme. This consists of two
main parts covered in later sections of the thesis. Firstly, all numerical optimizations have
to be initialized with a parameter combination (µinit, σinit, ξinit). While the previously
unknown impact of the choice of the initial parameter combinations on the estimation
result is discussed in section 3.3, the different heuristics to obtain them are reviewed in
section 2.2.4.1. Secondly, an optimization algorithm will gradually improve the initial
parameters. An overview of different methods used in EVA, their influence on the
optimization result, and why it is strongly advised to use the augmented Lagrangian
method is described in chapter 3.
An important note to make in the context of the maximum likelihood estimation of

the GEV distribution is when to use which of the two equations (2.18) and (2.19). While
most books in the field of EVA do not cover this topic, Stuart Coles suggests in his book
Coles (2004) to use the Gumbel likelihood (2.19) whenever the shape parameter gets less
than a predefined value. But I found this behaviour to produce quite large numerical
artifacts. Since the choice of the initial parameter combination is based on a heuristic,
its always possible to initialize the shape parameter with the wrong sign. During the
optimization the value of ξ gets gradually improved and thus changes sign at some point.
Just by bad luck its absolute value can be less than the predefined threshold and the
NLLH change from the GEV to Gumbel one. But when it does, there is no way for
the algorithm to change back to the GEV one and the shape parameter is permanently
trapped at zero. To avoid this behaviour the switch between (2.18) and (2.19) should
only occur if the shape parameter is perfectly zero.

The errors of the MLE of the GEV parameters can be obtained using equation (2.16)
by inverting the Hessian evaluated at the optimization results and extracting the square
roots of its diagonal elements. The error of the return levels, on the other hand, can be
calculated via the delta method in theorem 2.5 using
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std(zp) ≈
√
∇zT

p V∇zp,

with V being the inverted Hessian ( an estimate of the covariance matrix) and

∇zT
p =

[
∂zp
∂µ

,
∂zp
∂σ

,
∂zp
∂ξ

]
=
[
1,−ξ−1(1− x−ξp ), σξ−2(1− x−ξp )− σξ−1x−ξp log xp

]
, (2.20)

for ξ 6= 0 and with xp = − log(1− p), as well as,

∇zT
p =

[
∂zp
∂µ

,
∂zp
∂σ

]
= [1,− log xp]

for ξ = 0.
In case of the GP distribution the corresponding negative log-likelihood is

l(y; σ̃, ξ) = k · log σ̃ +
(

1 + 1
ξ

k∑
i=1

log
(

1 + ξ · yi
σ̃

))
, (2.21)

for ξ 6= 0 and with σ̃ > 0, and

l(y; σ̃) = k log σ̃ + 1
σ̃

k∑
i=1

yi, (2.22)

for ξ = 0 and with σ̃ > 0. Similar as above the NLLH of the GP distribution features
an additional constraint with 1 + ξyi/σ̃ > 0.
All the following discussions about the initialization and optimization of the ML

equations will apply for both the GEV and the GP distribution. The same holds for the
advises given above. When combining the equations (2.21) and (2.22), the second one
should only be used if the shape parameter is perfectly equal to zero. Else, numerical
artifacts will be generated.
The errors for the GP distribution can be calculated using the inverted Hessian and

the delta method too:

std(ym) ≈
√
∇yT

mV∇ym,
with

V =

 ζu(1− ζu)/n 0 0
0 v1,1 v1,2
0 v2,1 v2,2

 ,
and

∇yT
m =

[
∂ym
∂ζu

,
∂ym
∂σ̃

,
∂ym
∂ξ

]
=
[
σ̃mξζξ−1

u , ξ−1
{

(mζu)ξ − 1
}
,−σ̃ξ−2

{
(mζu)ξ − 1

}
+ σ̃ξ−1(mζu)ξ log(mζu)

]
(2.23)
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for ξ 6= 0, as well as,

V =
[
ζu(1− ζu)/n 0

0 v1,1

]
,

and

∇yT
m =

[
∂ym
∂ζu

,
∂ym
∂σ̃

]
=
[
σ̃

ζu
, log(mζu)

]
for ξ = 0.
Despite of the overall good performance and the widespread use of the ML approach,

it has some drawbacks. The most restricting one is certainly the limited range of shape
parameters the ML approach is applicable to. Its estimates only exist for shapes bigger
than -1 and only for values bigger than -0.5 its regularity conditions are fulfilled (Smith
1985). On the other hand, for shape parameters bigger than 1 the first and for values
bigger than 0.5 the second moment of the GEV and GP distribution, which are used
to determine the initial parameters for the optimization routine, do not exist anymore
(Hosking, Wallis, and Wood 1985).

2.2.3. Error estimation revisited

2.2.3.1. Motivation

When inspecting the features and the implementations of available software packages
specialized in EVA, one finds that all of them provide the estimates of the fitting errors
for both the GEV and GP parameters. But not a single one features the standard error
of the calculated return levels using the delta method described in the previous section.
To understand this discrepancy, we will perform a short numerical experiment. Let

us consider a fixed scale parameter σ = 1, a location parameter µ = 0 for the GEV
distribution, and a variety of different shape parameters ξ. For each parameter com-
bination we draw 10 series consisting of 100 data points from the corresponding GEV
or GP distribution. A length of 100 points serves as a realistic representation of the
climatologicalseries of annual maxima covered in chapter 7. In most applications of EVA
one has to deal with even less data. The parameters of all those series are estimated using
the ML approach and the return levels, as well as their error estimates, are calculated
using the functions introduced in the last section. When viewing the results in figure
2.2, the reason for the missing implementation becomes obvious. For shape parameters
bigger than 0.3 the fitting errors of the return levels (green) are massively overestimated.
According to the delta method a GEV-distributed series consisting of e.g. 100 points

with the estimated parameters of (µ̃ = −0.03, σ̃ = 0.964, ξ̃ = 1.05) has a 100 year return
level of 121 with a fitting error of 5879. For a GP-distributed series of the same length
and with (σ̃ = 0.964, ξ̃ = 1.05) the 100 year return level is 80.6 with a fitting error of
3654. So, why does the delta method fails to yield useful error estimates at larger shape
parameters? My guess is that this is due to one of its underlying requirements. To apply
the method the log-likelihood has to be symmetric with respect to the resulting MLE.
Now, the larger the shape parameters get, the heavier the tails of the distribution will
be, and the more asymmetric log-likelihood is becoming.
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Figure 2.2.: Numerical experiment showing the impact of the shape parameter on the
estimated fitting errors of the 100 year return level. For various shape parameters, a
scale = 1, and a location = 0 (GEV only) ten time series per parameter combination
of the length of 100 points were drawn from either a GEV or GP distribution. Each of
them was fitted individually and the resulting estimates of the return levels and their
errors were averaged. The black line represents the true return level, which are calculated
using the parameter combination used to draw the underlying data. The yellow dots
and line are the averaged, estimated return levels. For a shape parameter equal to 1 the
standard error of the 100 year return level obtained by the ML method is 5879 for the
GEV distribution and 3654 for the GP one.
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2.2.3.2. Alternative approaches

To still access the errors of the return levels, I introduced two common statistical
approaches to the field of EVA: bootstrapping and a Monte Carlo-based approach.
For bootstrapping the series of extreme events, either block maxima or threshold

exceedances, is repetitively sampled with replacement. Afterwards, all the different
realizations are fitted using the classical ML-based GEV or GP approach and the fitting
errors are obtained by calculating the standard deviations of all the individual GEV or
GP parameters or return levels.

In the Monte Carlo-based approach the plain original series is fitted using ML. Then
one takes the fitted parameters and samples a bunch of GEV- or GP-distributed series
with the same length as the original one. All those series are fitted using ML and the
overall standard errors are obtained by averaging over the individual parameters and
return levels of the sampled series.

But before we discuss the differences between both approaches, we will have a look at
their performance compared to the delta method in figure 2.3 and 2.4 while applying the
same analysis as for 2.2.

For the three GEV and two GP parameters the errors look pretty similar for all three
estimation methods. While following the estimates of the delta method almost exactly
for shape parameters bigger than -0.5 both the bootstrap and the Monte Carlo approach
yield a bigger (GEV) or smaller (GP) error for lower shape values. But since the MLE
only fulfill the regularity conditions for ξ > −0.5 and the error bars of the delta method
for the scale parameters do not enclose the true value for very small shapes, the estimates
of both the bootstrap and the Monte Carlo method can be considered more trustworthy.
Another fact figure 2.3 is illustrating quite nicely is the shape-dependent bias of the

MLEs of the GEV/GP parameters. The sample mean of the parameter estimates are
plotted in yellow while the “true” parameters, which were used for the distribution the ten
series per parameter combination were drawn from, are pictured as black lines. Of course,
the maximum likelihood estimators of the GEV/GP parameters are consistent. But only
in the asymptotic limit of infinitely long series. Due to finite size effect each of those
ten realizations has their own distinct global minimum and “true” parameters. What is
depicted in figure 2.3 is only the average bias of both the MLEs and the corresponding
error estimates.
When closely inspecting the fitted shape parameters and their standard errors near

ξ = −1, one can see a systematic overestimation. This is an artifact introduced by the
more stable augmented Lagrangian optimization procedure, which will be covered in
section 3.2.1. But for natural data the shape parameter is in most cases in the range of
−0.5 < ξ < 0.5 (Hosking, Wallis, and Wood 1985) and the minor deviation at very low
shape parameters is a small price to pay. After all the maximum likelihood estimates
themselves are just defined up to ξ = −1.

Figure 2.4 shows that both the Monte Carlo-based and the bootstrap approach produce
much more reasonable error estimates than the delta method. In addition, the errors of
the Monte Carlo method are slightly more tight for the GP distribution. So, which one
of these two newly introduced methods should be used?
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Figure 2.3.: For the same numerical experiment as in figure 2.2 an estimation of the
fitting error for the estimated GEV and GP parameters (yellow) are obtained using three
different methods: (MLE) This approach uses the square roots of the diagonal elements
of the estimated Hessian matrix evaluated at the maximum likelihood estimates of the
parameters. This is the standard method already shipped with various EVA packages.
(MC) The new Monte Carlo-based samples 100 series of the same length as the original
one and distributed according to the obtained MLE of the GEV/GP parameters. All of
those series are fitted and the standard errors of the resulting parameters are reported.
(bootstrap) The new bootstrap approach samples the original series with replacement
100 times, fits the individual series, and, again, reports the standard errors of the results.
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Figure 2.4.: Based on the same numerical experiment as depicted in figure 2.2 the mean
estimates of the 100 year return levels (yellow) and the corresponding error bars (mean
± standard error) are presented. In the (MLE) case the errors are obtained by using
the delta method using equations (2.20) and (2.23) in combination with the maximum
likelihood estimates of the GEV/GP parameters. For the (MC) and (bootstrap) method
the estimates are the standard error of the 100 year return levels calculated for all the
100 times 10 individual series for each parameter combination.

Figure 2.5.: A zoomed version of figure 2.4 for shape parameters up to 0.3 on a logarith-
mical scale.
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2.2.3.3. Justification

When the Monte Carlo-based approach is used, the obtained error estimates are not
the actual fitting errors. Instead, they are the average fitting errors of an uncorrelated
and stationary series distributed according to the fitted GEV or GP parameters and with
the same length as the original series. The uncertainty of the fitting of the GEV/GP
parameters and the corresponding return levels is not directly represented using this
quantity. But in our opinion this approach still has some advantages over bootstrapping,
since the underlying series is a sample of a heavy tailed distribution and thus small
deviations in the parameters can result in a large change in statistics of a drawn series.
In the bootstrapping procedure (Hastie, Tibshirani, and Friedman 2009) the fitted

series is randomly sampled with replacement and fitted various times. The standard
deviations of the obtained parameters and return levels are then assumed to approximate
the fitting errors of the full series, as described beforehand. What yields reasonably good
estimates for cases involving short tailed distributions, like the Gaussian one, might lead
to bad representations for the GEV or GP distribution.

A naive assumption would be: the bootstrap approach yields a good approximation of
the statistical properties of the bulk of the data, whereas the Monte Carlo-based approach
is more likely to represent the tails of the distribution. Let’s test this assumption with a
small numerical experiment.
We will perform a GP analysis on the of daily gauge values of the river Elbe in the

city of Dresden1 in figure 2.6. The threshold for this series will be set to 420 cm, which
results in a total number of threshold exceedances of 73 after declustering. Fitted to a
GP distribution we obtain a scale of σ = 126.9 and a shape of ξ = −0.129.
The bulk of the data is residing at relatively low values in the range between 0 and

250 cm. From roughly 250cm and 500cm, on the other hand, we only have about four
to five events, with (a) and (b) as the biggest ones, constituting the tail of the GP
distribution, which is about to get fitted to the data. But since the shape parameter,
and thus also the corresponding return level, is strongly depending on the particularities
of the tail, omitting one of these events or sampling them multiple times will result in
quite large fluctuations of the return levels.
Figure 2.7 shows the impact of the largest events in the estimated 100 year return

level. For the original series (upper figure) return level is 890.2 cm. If, instead, the largest
event is removed from the series, the value reduces to 823.8 cm and if, on the other hand,
the second largest event is occurring two times the 100 year return level is 920.5 cm. Just
by the presence of these two values the large quantiles can be altered significantly.

To test whether the bootstrap or the Monte Carlo-based method produces more accurate
results, we now will sample the exceedances in figure 2.6 100 times with replacement
(bootstrap) and also generate 100 series with the same length constituted by the GP
parameters estimated for the gauge series (Monte Carlo). When calculating the mean
value of all average gauges of the sampled series and the Monte Carlo samples, we obtain
a value of 110.39 cm and 112.1 cm, which is quite close to the average gauge of the original
series of 112.56 cm. If we, instead, calculate the mean 100 year return levels of all the
sampled series we obtain 854.73 cm for the bootstrap and 844.3 cm for the Monte Carlo
method . This, however, is an underestimation of the return level of the original series,

1This data was obtained from the Wasserstraßen- und Schifffahrtsverwaltung_des Bundes (WSV)
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Figure 2.6.: Daily series of the gauge of the river Elbe in the city of Dresden. The lower
figure shows only those events remaining after declustering the exceedances over the
green threshold in the upper figure.
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Figure 2.7.: This figure depicts the histogram (blue) of the threshold exceedances shown
in figure 2.6 for the full series (upper figure), after the removal of the biggest gauge value
(middle), and for the full series with the second largest event appearing two times (bottom).
For all three series the GP parameters were estimated and the corresponding probability
density plotted in orange. In addition the 100 year return levels were calculated and
marked with a black, vertical line and the corrsponding value.
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Table 2.1.: Maximum likehood and error estimates of the GP parameters and 100 year
return level for the threshold exceedances of the full gauge series. All parameters, except
of the dimensionless shape, are given in cm.

scale shape 100 year return level
maximum likelihood estimates (MLE) 126.86 -0.13 890.23
delta method error estimate 18.93 0.09 4719.16
Monte Carlo error estimate 26.49 0.14 64.31
bootstrap error estimate 19.61 0.17 83.66

which is 890.2 cm. Keeping the results of this short analysis in mind, let’s have a look at
the error estimates for the GP parameters and the 100 year return level obtained using
the three different methods of error estimation described in the previous sections.
The error estimates for the shape and scale parameters are roughly the same for all

three approaches, with a tendency for the bootstrap and Monte Carlo-based method to
be more pessimistic in terms of the error of the shape parameter. Since the underlying
data is not generated but measured, there is no way of determining which of those values
is the correct one. But in the end they all seem plausible. For the error of the 100 year
return level things are different. The estimate provided by the delta method clearly
exaggerates the true value. The Monte Carlo and bootstrap approach, on the other hand,
yield quite plausible results.

But which one to trust? Even when taking a closer look at their differences for
shape parameters smaller than 0.3 (see figure 2.5) the answer to this question is hard to
determine.
In principle I recommend to use of the Monte Carlo-based approach over bootstrap,

since its less time consuming and provides tighter error bars for bigger shape parameters.
But since those usually do not occur in measured data, the answer is a matter of taste.

2.2.4. Initialization of the parameter optimization

When optimizing a function, like the ML estimators of the GEV and GP parameters in
section 2.2.2, both the optimization algorithm (see chapter 3) and the initial values of
the parameters are of utmost importance. Most optimization routines are structured in
the following way. At first, the algorithm takes big steps in the direction of decreasing
values of the function (I will only consider minimization search routines in here). After a
couple of steps the algorithm gradually decreases the step size until it finally converges to
a value close to a local or global minimum or until a preset number of maximal iteration
steps was taken.

But what exactly is considered big or small? In gradient-based methods this is usually
determined using the gradient of the function at the evaluation point. Now, imagine we
have to optimize not a quadratic function, but a fairly complex one, with large plateaus
of an almost negligible slope and a steep valley containing the global minimum. Even if
this function has no local minima, an optimization routine is not guaranteed to end up
in the global one. Starting somewhere in the valley, it will of course do. But when the
optimization routine will be started far, far away somewhere at the plateau, it is very
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likely to not reach the minimum. The likelihood functions for both the GEV and GP
unfortunately are rather complex ones featuring a similar topology, which might cause
the optimization routine to fail (see chapter 3 for a thorough discussion). Therefore, it is
important to pick a parameter combination as close as possible to the global minimum
to start the algorithm.

The most simple and widespread heuristic for the initialization of both the GEV and
GP parameters is the so called method of moments. There, the series x is assumed to
be distributed according to the Gumbel or exponential distribution (both have a shape
parameter ξ = 0) since their first two moments can be used to determine the location
and the scale parameter.

σinit =
√

6 var(x)
π

µinit = mean(x)− 0.57722σinit,

for the GEV distribution and

σinit =
√
var(x),

for the GP one. The shape parameter is set to a constant value independent of x. For
most available fitting packages in the context of EVA ξ is set to values between 10−8

and 0.1.
Some notable exceptions in the initialization in the context of EVA is the Mathworks

Statistics and Machine Learning Toolbox R2016b in Matlab, relying on a variant of the
q-q plot, and the extRemes by Gilleland and Katz (2016) and climex package, written by
myself Müller and Kantz (2018), in R, which use the method of L-moments (Hosking
1990). The usual procedure is to estimate the initial parameters with both the method
of moments and the more sophisticated approach and to pick the parameter combination
yielding the smallest possible negative log-likelihood.

These combined approaches are not just yielding parameter combinations more closer
to the global minimum, but also result in a more robust fitting routine. Due to logarithms
in equation (2.18) and (2.21) the NLLH is not defined throughout the entire parameter
plane. It is possible to choose initial parameters in such a way the likelihood is not well
defined and thus causing the optimization routine to fail. Although it does not happen
very frequently in measured data, such bad initializations do take place while performing
parameter scalings or numerical experiments. In case neither the method of moments
nor the more sophisticated L-moment one is returning a valid parameter combination,
climex package performs a seeded Markov walk on the combination estimated by the
L-moments algorithm to nevertheless find an acceptable starting point.

2.2.4.1. Estimating the shape parameter using the skewness

In addition I found another, previously unknown, way to improve the method of moments
in order to determine a more appropriate initial parameter combination. In this scheme
the sign and the magnitude of the shape parameter is assigned according to the skewness
of the series of extreme events x.
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Figure 2.8.: This figure depicts how the skewness of a series of extreme events can be
used to estimate its corresponding shape parameter. For eight different scale (GP) or
location and scale (GEV) parameter combinations series, consisting of 60 points, were
drawn for various shape parameters. For each of those the skewness was estimated. As
can be seen in the figure, the skewness can be used to estimate the sign and the overall
magnitude of the shape parameter of the corresponding series. There was no smoothing
applied to the resulting skewness values on purpose. In practice only a single value is
available for choosing the shape parameter.

To verify this statement, let’s take 8 different combinations of location and scale (GEV)
or scale (GP) parameters, draw 60 points from the corresponding distribution for a range
of shape parameters, and calculate the skewness of all the resulting series (see figure 2.8).
I found the magnitude and the sign of the skewness to correlate with the shape

parameter. Since the variance of the skewness is quite high for shorter series, it wouldn’t
be wise to implement a functional dependence to determine the shape parameter based
on the estimated skewness. I would suggest to use multiple switch/case statements to
assign shape parameters depending on the interval of the skewness estimator, instead of
a default value for all series (see tables 2.2 and 2.3).

2.2.5. Gumbel vs. GEV hypothesis
There are many difficulties one has to face when fitting extreme value distributions, like
the trade-off between the block length/threshold height and the amount of available
points or possible correlations and non-stationarities in the time series. But at the core
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Table 2.2.: Heuristic to estimate the initial value of the shape parameter of the GEV
distribution according to the skewness

skewness shape
> 4 0.7500
> 2.5 0.6000
> 1.6 0.3500
> 0.7 0.0010
> 0.1 -0.1000
> -0.2 -0.2775
> -1 -0.4000
≤ -1 -0.7500

Table 2.3.: Heuristic to estimate the initial value of the shape parameter of the GP
distribution according to the skewness

skewness shape
> 4.5 0.75
> 2.5 0.50
> 1.8 0.25
> 1.5 0.05
> 1.2 -0.05
> 0.8 -0.25
> 0.2 -0.50
≤ 0.2 -0.75
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Table 2.4.: Rejected hypotheses at the significance level of 0.05%

rainfall temperature
102/470 289/470

of each fit there is always a hypothesis determining the distribution to fit to the data. If
one chooses the wrong one, the results will deviate from the true values and will be at
least misleading.

Regardless of the availability of a large number of software packages in various computer
languages providing an implementation of both the fitting of the GEV and GP distribution
using ML, there are still quite a number of people relying on their special cases (the
Gumbel or exponential hypothesis) when performing extreme value analysis (Hirabayashi
et al. 2013; Sarkar, Singh, and Mitra 2011; Steenbergen, Koster, and Geurts 2012; Valor
et al. 2010). Although one looses generality when applying those specialized versions,
there are some arguments, which at first sight would favor their usage. On the one hand,
it is sometimes claimed (at least in oral communications) that the shape parameter in
climatologicaltime series is approximately zero. On the other hand, a fit of two instead
of three parameters is more robust in a statistical sense when dealing with very small
data sets (Hirabayashi et al. 2013; Abu-Mostafa, Magdon-Ismail, and Lin 2012). While
the latter argument is certainly true, the first one can be proven wrong by testing the
hypothesis of using the Gumbel distribution instead of the GEV one to describe the data
(see figure 2.9 (a)).

As an example the publicly available daily maximum temperature and precipitation
time series provided by the German weather service (DWD) (Deutscher Wetterdienst
2018) were chosen. To restrict the size of the upcoming analysis, I choose to only show
the test of the usage of the Gumbel distribution against the more general GEV one. The
analyses for the exponential distribution compared to the GP one yields similar results.
Firstly, the anomalies of the temperature series (see section 4.3.1) are calculated and

all incomplete years are removed. In order to perform a sound numerical estimation of
the GEV and GP parameters, all stations with less than 30 years of data are discarded.
I choose a minimum length of 30 years since it is the default period considered by
most studies in the context of climate analysis (Hansen, Sato, and Ruedy 2012) and
it is common practice to have a data set of at least ten times the number of fitting
parameters to avoid overfitting (Abu-Mostafa, Magdon-Ismail, and Lin 2012). For each
of the remaining 470 time series the annual maxima are extracted and the corresponding
GEV and Gumbel parameters are fitted using the climex package in the statistical
programming language R. To see, whether the usage of the Gumbel hypothesis instead of
the GEV one would have an impact on the results, the 100 year return level of each time
series is calculated using the parameters fitted by both approaches. The corresponding
fitting errors are calculated using the Monte Carlo-based approach, introduced in section
2.2.3.2. The results are shown in figure 2.9 with the estimated shape parameters in (a)
and the estimated 100 year return levels in (b).
In order to determine whether the different series are best described by either the

Gumbel or the GEV distribution, I will adopt the usage of the Gumbel distribution
to describe the data as the null hypothesis. In the analysis I will then fit both the
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Figure 2.9.: Estimates of the shape parameters and 100 year return levels using either
the GEV (blue) or Gumbel (orange) hypothesis for 470 weather stations provided by the
German weather service DWD (Deutscher Wetterdienst 2018). Each time series consists
of at least 30 complete years of temperature anomalies [◦C] or rainfall data [mm]. All
incomplete years have been removed beforehand. (a) Despite of connecting the resulting
shape parameters of the individual stations by a line, their ordering is just alphabetic
and there are no distinct connection between neighboring stations in the graphs. The
standard errors were calculated using the Monte Carlo-based (MC) approach, which
was discussed in section 2.2.3.2. For many stations the null hypothesis of having a
shape parameter equal to zero can be rejected for both their temperature and rainfall
data. Figure (b) provides the 100 year return levels estimated with both the GEV and
the Gumbel distribution. (c) In addition, the usage of the Gumbel hypothesis for the
temperature series generally overestimates the return level, while (d) it underestimates
the values for the rainfall ones.
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Gumbel distribution and the GEV distribution to the data using maximum likelihood
and construct a hypothesis test from the fitted values using the likelihood ratio test.
Via this approach we can test whether we reject the hypothesis of using the Gumbel
distribution to describe the data in favor of using the more complex model of the GEV
distribution.

In many of the examined time series, 289 of 470 in case of the temperature anomalies
and 102 of 470 for the rainfall data, the hypothesis of using the Gumbel distribution over
the GEV one has to be rejected. Since the number of points entering the fits are quite
limited for most of the stations and the hypothesis test is a rather conservative approach,
the number of rejections are quite large and point towards the general usage of the GEV
distribution over the Gumbel one. In addition, it is claimed by several groups that it is
very difficult to verify ξ ≈ 0 due to an insufficient amount of data (Yee 2015).

When looking at the estimates of the return levels in figure 2.9 one can find a quite
large systematic difference between the results obtained by the GEV and the Gumbel
fit. The GEV estimates are bigger than the Gumbel ones for positive shape parameters
(obtained by the GEV distribution) and smaller for negative ones.

The impact of the choice of the hypothesis can be best expressed by the mean difference
between the 100 year return levels obtained using the GEV and Gumbel distribution.
While the mean temperature anomaly, exceeded on average only once every 100 years,
is 15.2 ◦C using the GEV hypothesis, it is 17,3 ◦C using the Gumbel one. For the
precipitation data with 89.8mm (GEV) and 77.5mm (Gumbel) the difference is of the
same order of around 13 percent.

In summary, for most of the considered stations using the Gumbel hypothesis to access
their return levels would yield wrong results and has therefore to be to avoided.
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Since the onset of the digital age optimization routines became a more and more important
part of our world. Nowadays, their application is not restricted to various fields of research
anymore, but performed countless times a day by our computers, smart phones, smart
watches, and even some of our refrigerators.

In the field of the extreme value analysis (EVA) optimization routines were applied
since the earliest days to obtain the parameters of the generalized extreme value (GEV) or
generalized Pareto (GP) distribution describing the data best. With several generations
of software packages specifically designed for EVA at hand, one would expect the fitting
routines to be well matured and sound and to yield the best possible results. Surprisingly
I found this is not the case.

In this chapter I will first provide a short introduction into the basics of optimization
and a thorough explanation of the algorithms commonly used with EVA in section
3.1. Afterwards, I will highlight their drawbacks and describe the numerical artifacts
one encounters when using those methods (3.1.3). Fortunately all these errors can be
avoided by using a constrained non-linear optimization routine. After an introduction
to the basic of constrained optimization in section 3.2 a description of the method of
augmented Lagrangian multipliers will be given in 3.2.1. This method will be the one
used throughout the entire analysis part of this thesis. In the end, the results obtained
by non-linear constraint optimization will be compared to the ones of the previously used
algorithms in 3.3.2.

3.1. Unconstrained optimization
The overall goal of optimization is to find the global minimum of an objective function
f(x) in the most efficient and precise way.
But this task is usually very hard to accomplish. Not that f(x) is just a general and

usually quite complicated function, we also only have local information available. This
means we initialize the algorithm at a given point x0 and have to guess using the available
information in which direction the minimum might be located. Since the algorithm has a
very limited knowledge about the function and the optimization should be done as fast
as possible, most routines are only able to detect a local minimum.

Definition 3.1
If there is a neighborhood N of x̂ with f(x̂) ≤ f(x) for all x ∈ N , then the point x̂ is a
local minimum of the function f(x).

There are two general types of optimization algorithms: those based on line search
and those based on trust regions (Nocedal and Wright 2012, 19). In a line search-based
routine the algorithm chooses a direction in the parameter space based on the local

30



3.1. Unconstrained optimization

information and searches along this direction for a point yielding a lesser function value
than the current position. In an optimization based on the trust region method the
objective function is approximated by a model function (usually a quadratic one). If this
function yields a good approximation, it is expanded. If not, it is contracted. In the
end the user obtains a region reasonably described by a know function, the minimum of
whose can be calculated analytically and is thus reached within one step. Out of those
two iterative concepts the line search is the one most commonly used.
In the context of EVA most packages do rely on the Nelder-Mead algorithm intro-

duced by Nelder and Mead (1965). Only the more sophisticated extRemes package by
Gilleland and Katz (2016) in R is using the BFGS (Press et al. 2007) algorithm instead.
Those two will be introduced in the following sections. For a thorough treatment of the
initialization process of the optimization of GEV or GP distributions please see section
2.2.4.

3.1.1. Nelder-Mead

The Nelder-Mead algorithm is the default one used by countless fitting packages in many
different programming languages. This is mainly due to two of its properties:

1. It doesn’t require derivatives but only function evaluations.
2. It is quite robust algorithm.
The algorithm can be classified as a so called simplex method. It generates a convex

hull of {x1, x2, . . . , xn+1} points in a Rn parameter space. In every iteration step the point
xi, which is holding the worst function value, is discarded and replaced with one yielding
a better (lower) value. This replacement is either obtained by reflection, expansion,
or contraction of the simplex with respect to xi. In order to perform these tasks, the
algorithm uses function evaluations a lot and should only be applied to problems requiring
a small amount of computational resources (both in CPU time and memory).
In general the performance of the Nelder-Mead routine is reasonable, but stagnation

at non-optimal points can occur (Nocedal and Wright 2012). At times, restarting the
optimization can be used to escape the stagnation (Kelley 1999). Another approach that
can be used in such cases is the so-called half-stepping (Yee and Stephenson 2007, 15).
There the algorithm is only allowed to take very small steps at the beginning of the
fitting procedure. This way the algorithm is less likely to take large steps in a direction
of the parameter space, in which the likelihood function is not well conditioned anymore.

To provide a more applied picture of the Nelder-Mead routine, I will present a version
implemented in the dfoptim package1 of the statistical language R applied to the GEV
distribution. Different implementations probably feature different parameter values, but
the overall concept remains the same. The individual points in the three dimensional
parameter space are linked to the GEV parameters in the following way: xi = (µ, σ, ξ).

3.1.1.1. Initialization

Firstly, the simplex gets initialized by calculating n+ 1 vertices using the supplied initial
parameter combination θ0 = (µ0, σ0, ξ0).
The first vertex is simply set equal to the θ0

1The dfoptim package can be found at cran.r-project.org/package=dfoptim
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xn+1 = θ0.

The other n initial vertices of the simplex are created by shifting the initial parameters
by a constant value α2 followed by an displacement towards all the individual directions
of the parameter space by a constant distance of α1.

xi = θ0 +~1α2 + eiα1 (3.1)

with i = 1, . . . , n, ei being unit vector along the i-th direction of the parameter space,
~1 being a vector of all ones, and

α1 =
max

(
1,
√∑

θ2
0

)
n
√

2

(√
n+ 1 + n− 1

)
(3.2)

α2 =
max

(
1,
√∑

θ2
0

)
n
√

2

(√
n+ 1− 1

)
, (3.3)

with n being the dimension of the parameter space and θ0 being the initial parameter
vector.

3.1.1.2. Iterative updates

To relate the index of the individual vertices with their corresponding function values,
we will order the n+ 1 vertices in every iteration step in such a way that

f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1)

.
The update is now performed in four different steps:
1. Reflection: For the sake of illustration, we assume our simplex to be located in

a smooth part of the parameter space containing hills and bumps and the worst
point xn+1 being the most uphill one. Since all the other points are located more
downhill, the most straight forward way of optimization is to calculate the centroid
of the remaining vertices x̄ and to reflect xn+1 on it.

xr = (1 + ρ)x̄− ρxn+1,

with x̄ = 1
n

∑n
i=1 xi and the weight of the reflection step ρ = 1.

If the resulting value f(xr) is less than the worst value f(xn+1) but bigger than the
best one f(x1), the new point xr will be used as the new vertex and the iteration
loop continues.

2. Expansion: If, on the other hand, f(xr) returns the lowest value of the function
yet f(xr) < f(x1), all points might be located at an extended linear hyperplane.
Since we have not reached a saddle point of such a plane yet, we might obtain
an even better update xe by expanding the reflection further down the current
direction of line search.
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xe = (1 + ρχ)x̄− ρχxn+1,

with χ = 2. In case f(xe) > f(xr), xr is used for the update instead and the
iteration loop continues.

3. Outer contraction: Sometimes the n points yielding the smallest function values
might be already located in a bottom valley or near a saddle point. Then the
reflection step would overshoot the minimum and result in value smaller than the
original one, but larger than all the others f(xn) < f(xr) < f(xn+1). To circumvent
this problem, we reflect the point xn+1 not using its distance to the centroid x̄, but
with a smaller value.

xco = (1 + ργ)x̄− ργxn+1,

with γ = 0.5.
4. Inner contraction: If, instead, the function value at the reflected position xr is

even bigger than the original one f(xr) > f(xn+1), the worst point will be moved
towards the centroid x̄ without any reflection at all.

xci = (1− γ)x̄+ γxn+1

3.1.2. BFGS
The BFGS algorithm (after its creators Broyden, Fletcher, Goldfarb, and Shanno) is
the most popular (Nocedal and Wright 2012) variant of the quasi-Newton algorithm
discovered by Davidon (1991) in the mid 1950s. Unlike the original quasi-Newton method,
it only requires the calculation of the first but not of the second order derivatives of the
objective function f .

But let’s start by reviewing the classical Newton algorithm. There, we approximate
the objective function by a quadratic model mi at the current parameter combination xi.

mi(p) = fxi +∇fTxip+ 1
2p

TBxip, (3.4)

with Bxi being the symmetric and positive definite Hessian of f at xi and i being an
integer number keeping track of the iteration step. This convex, quadratic optimization
problem can be solved explicitly by

pi = −B−1
xi ∇fxi . (3.5)

Using the minimizer pi, the parameter combination xi can be updated by

xi+1 = xi + αipi, (3.6)

with a step length αi obtained using an one-dimensional line search algorithm along
the direction pi.

The difference between the quasi-Newton algorithm and the original one is that the
calculation of the Hessian at each iteration step is not required anymore. Instead, the
matrix Bxi is updated using the values and the gradient of the objective function at
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Figure 3.1.: A schematic illustration of the Nelder-Mead optimization algorithm in two
dimensions. The background color corresponds to the value of the object function (red
reads as high function values and green as low) for the particular parameter combination
(vertex of the simplex) and the displayed patterns fit the different scenarios covered
by the algorithm. It is performed in the following way. The points x1, x2, and x3 are
the input vertices with f(x1) < f(x2) < f(x3). The vertex x3, which holds the worst
value, is first reflected at the centroid x̄ of x1 and x2. Depending on the value of the
reflected vertex xr the expansion, outer or inner contraction subroutine is invoked, or x3
is updated right away.
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the current and previous position and thus using information about the curvature. It is
this updating procedure that separates the BFGS algorithm from other quasi-Newton
routines. But more on this later.

While the classical method converges more rapidly, quasi-Newton algorithms typically
are still faster, because they avoid the calculation of the second derivatives and the
solution of a linear system (Nocedal and Wright 2012).
For a more thorough treatment of both the theory and the implementation details

please see Nocedal and Wright (2012, chap. 6).

3.1.2.1. Initialization

With the initial parameter combination x0 = θ supplied, the only thing missing is an
approximation of the initial Hessian Bx0 .
There are several ways to handle this. One could either calculate it using equations

provided by the user or finite differences, or just start with a multiple of the identity
matrix, where the factors are chosen to handle the different scaling of the parameters
(Nocedal and Wright 2012). In the optim function in R this task is solved by setting Bx0

equal to the identity matrix.

3.1.2.2. Iterative updates

Once started, the algorithm continues optimizing the parameter combination xi until the
norm of the gradient of the objective function becomes less than a predefined value (e.g.
10−6).

In each iteration
1. a new search direction

pi = −Hxi∇fxi (3.7)
is calculated using the inverse of the approximated Hessian Hxi = B−1

xi .
2. Afterwards, the parameter combination xi is updated using

xi+1 = xi + αipi, (3.8)
with the best step length αi along the direction pi obtained by an one-dimensional
line search algorithm.

3. Finally, the inverse Hessian Hxi is updated by minimizing the distance (a weighted
Frobenius norm) between the update and Hxi , while assuring the update is sym-
metric and positive definite, and fulfills the secant equation (3.11).

min
H
‖H −Hxi‖ (3.9)

subject to

H = HT (3.10)
and

Hyi = si, (3.11)
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with yi = ∇fxi+1 −∇fxi and si = xi+1 − xi = αipi.

3.1.3. Problems in fitting GEV and GP distributions

When I started my PhD I wanted to apply the EVA in a massive parallel way by
e.g. calculating the 100 year return levels of all stations within Germany. But when
performing the analysis on the many hundreds of series a small number of the fits always
failed. At first I blamed the extRemes package by Gilleland and Katz (2016) I used and
switched to the ismev2 instead. Using this package, the previously failing fits could be
obtained. But now some other series could not be fitted anymore and caused the ismev
package to throw an error. After some trail and error I decided to delve into the fitting
routines and to search for the root of the problem.
The problem of the failing fits in the ismev package, which uses the Nelder-Mead

algorithm 3.1.1, was due to a poor error handling within the package. After each fit it
tried to estimate the errors of the GEV or GP parameters using the maximum likelihood
method in section 2.2.2. It obtains the Hessian at the maximum likelihood estimate
(MLE) of the parameters, inverts it, and calculates the square roots of the diagonal entries.
But sometimes the Hessian returned by the fitting routine was badly conditioned and
could not be inverted. Instead of implementing a fallback to a numerical approximation
of the Hessian at the MLE, the package just throws an error, which can be fixed quite
easily.

The nature of the error experienced with the extRemes package, which uses the BFGS
routine 3.1.2, is way more fundamental and has implications in all kinds of unconstrained
optimizations in the EVA. Due to the logarithms in negative log-likelihood functions of
the GEV (2.18) and GP distribution (2.21), some parts of the parameter space, e.g. those
corresponding to σ < 0, can not be accessed. Depending on how far away from the global
optimum the optimization is initialized, the algorithm can get stuck at the boundary
between the allowed and forbidden part of the parameter space, causing the fitting to
fail or to return a wrong estimate.
In addition the MLE of the GEV and GP parameters are only defined for shape

parameters bigger than -1 (see section 2.2.2). But in the beginning of the optimization
procedure the algorithm sometimes takes a big step and moves to lower shape values.
There the forbidden regions are way more vast than the ones in figure 3.2 and the route
the algorithm takes is quite likely to end up at a boundary.

To illustrate the effect of the boundary, we will perform a short numerical experiment.
In figure 3.2 I sampled a series of 30 points distributed according to a GEV or GP
distribution with µ = 11.727 (GEV only), σ = 1.429, and ξ = −0.261. This one single
series will now be fitted over and over again with a variety of different initial parameter
combinations. Each pixel in figure 3.2 represents the parameter combination used for
initialization and its color indicates the resulting negative log-likelihood. Since the goal
is to minimize the latter one, only those parameter combinations corresponding to the
darkest blue can be considered are working starting points in order to reach the global
minimum (marked with a yellow cross). The white areas are the forbidden parts of the
parameter space. In addition, initial parameter combinations causing the optimization

2ismev version 1.41 https://cran.r-project.org/web/packages/ismev/index.html
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3.1. Unconstrained optimization

routine to fail are marked red.
I choose a length of 30 points, because it represents the number of annual maxima

in the default period considered by most studies in the field of climate science (Hansen,
Sato, and Ruedy 2012). It is also a rule of thumb to have a set of at least ten times the
number of fitting parameters to avoid overfitting (Abu-Mostafa, Magdon-Ismail, and Lin
2012). Since the EVA is quite data-consuming and most station data only feature several
dozens of years, a larger number of points in the analysis might not represent the general
use case well.

The pictures obtained for the Nelder-Mead and the BFGS algorithm are quite different.
While the BFGS routine only rarely returns a non-optimal parameter combination but
throws an error for more than half of the initial parameter combinations, the optimization
never aborts using Nelder-Mead but a lot of the resulting parameters are non-optimal.
But both outcomes are highly undesirable and happen, at least in the slice of the shape-
location and scale-location plane of the GEV distribution, for similar initial parameter
combination. What is causing these optimizations to fails?

Figure 3.3 shows the negative log-likelihood of a failed optimization using the Nelder-
Mead algorithm including the returned MLE (black cross) and the components of gradient
evaluated at the MLE (black arrows). In the slice of the shape-scale plane (middle)
one can clearly see that the fitting routine was not able to return the global optimum.
Instead, it got stuck on the boundary to the forbidden region of the parameter space
(white). Along this boundary the negative log-likelihood is the smallest with a steep
increase in orthogonal direction and only a very small decrease parallel to the boundary
pointing towards the optimal value.

Gradient-based methods will try to improve the parameter combination by performing
a step along the gradient. But regardless of which step size they choose, the step will
always lead into a region where the negative log-likelihood is not defined since we are
already very close to the boundary. Therefore, the BFGS methods will throw an error
instead of returning a wrong estimate. This behavior is not specific to quasi-Newton
routines but also holds for conjugated gradient algorithms (Press et al. 2007) (possibly
with a more robust error handling).

The options of the Nelder-Mead algorithm to update the point marked with a black
cross in figure 3.3 are shown in figure 3.4.

The direction in the parameter space connecting the worst vortex x4 and the centroid
of the remaining vertices x̂ passes the boundary in an almost orthogonal way and x4 is
already so close to the forbidden region only the inner contraction xci would yield a valid
update. But since the simplex is shrinking more and more along the displayed direction,
the optimization routine will return the value of the best vertex x1 at some point while
still being trapped at the boundary.

Since the update of the BFGS algorithm is always performed according to the gradient,
restarting the routine (see section 3.1.2.1) would not yield any improvement, in contrast
to the Nelder-Mead algorithm. There, the initial simplex is created only at points
the negative log-likelihood can be evaluated and the size of the simplex corresponds
to the values of the initial parameter combination (see section 3.1.1.1). Restarting a
Nelder-Mead-based fit of the GEV or GP distribution can thus be used to escape the
boundary. The fresh representation of the simplex is way larger than the previous one
and likely to reach parts of the parameter space yielding even better results than initial
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3.1. Unconstrained optimization

Figure 3.2.: Impact of the initial parameter combinations on the fitting of the GEV
(upper six figures) and the GP (lower figures) distribution. A series of 30 points was
drawn at random from both a GEV and GP distribution and the minimization of the
corresponding negative log-likelihood was initialized at a range of different parameter
combinations. The position of each pixel corresponds to the parameter combination used
to initialize the optimization and its color indicates the negative log-likelihood obtained
in the end of the optimization. In an ideal setting the optimization would be independent
of the starting point and all of the explored parameter space would be colored uniformly.
But due to the forbidden regions in the parameter space (white area) and existence for
the MLE for shape parameters bigger than -1 only, some initial parameter combinations
do not reach the global optimum (indicated by a yellow cross) and result in a bigger
value (light blue). In case of the BFGS routine (right column), the algorithm is not
robust against the choice of the starting points and the red pixels indicate parameter
combinations resulting in an error and an abortion of the optimization routine.
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3.1. Unconstrained optimization

Figure 3.3.: An example of a failing optimization performed using the Nelder-Mead
algorithm implemented in the R package dfoptim. The displayed negative log-likelihood
of the GEV distribution was obtained using equation (2.18) on the annual maxima of
the daily temperature anomalies of the Potsdam station. The optimization was started
at {µ0 = 0.1, σ0 = 1.429, ξ0 = −0.01} and did terminate at the parameter combination
indicated by the black cross, which is also the intersection of the displayed slices through
the three-dimensional parameter space. The global minimum of the negative log-likelihood
function, obtained using a different set of initial parameters or a more robust optimization
routine, is located at {µ̂ = 11.727, σ̂ = 1.429, ξ̂ = −0.261} (not shown in this figure). For
each slice the projected component of the gradient at the optimization result normalized
to unit length is drawn as an arrow. Note that since the dominant component points into
the direction of the shape parameter, the lenght of its projection onto the scale-location
plane is negligible. 39
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Figure 3.4.: The negative log-likelihood of the objective function along the line crossing
both the worst vertex x4 and the centroid of the remaining points x̄ of the final simplex
of the Nelder-Mead optimizaiton in figure 3.3. Since the likelihood function of the
GEV distribution has three dimensions, a convenient visualization of the resulting
four-dimensional simplex is not possible. Instead, the negative log-likelihood along the
direction in which the worst point of the simplex would be updated (x̄+ α(x4 − x̄)) is
displayed. Due to the logarithms in the equation of the likelihood (2.18), its values are
just defined for α bigger than approximately -0.4. Therefore, only the inner contraction
would be possible. But the change in negative log-likelihood is too small to permit further
iterations.

parameter combination near the boundary.
A proper and previously neither implemented nor used way of fitting parameters in

the EVA would be to use the Nelder-Mead algorithm and restart it until the there is no
significant change in the resulting parameter combination anymore.
But this procedure, as well as the method of half-stepping, is not guarantied to find

the global minimum. A much better way would be to use a constrained optimization
algorithm instead, which hasn’t been used previously in EVA either.

3.2. Concepts of constrained optimization

Some optimization problems can not be solved by the straight forward procedures
introduced in section 3.1 since there are additional constrains, which have to be fulfilled
by the solution. Such problems are encountered quite frequently in real-world applications.
E.g., in many physical calculations the mass or energy is assumed to remain constant
(equality constraints E) or certain quantities, like rainfall or the population, can not
be negative (inequality constraints I).

min
x∈Rn

f(x) subject to
{
ck(x) = 0, k ∈ E
ck(x) ≥ 0, k ∈ I

The inequality constraints ck, with k ∈ I, are in general harder to deal with. Therefore,
they are often converted into equality constraints instead, such as c−,k = min(ck, 0) = 0
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3.2. Concepts of constrained optimization

(Lange 2013).
The overall goal of the constrained optimization is to find the minimum of the objective

function in the so called feasible region, where all constraints imposed on the functions
are fulfilled. Since our task will be to prevent the logarithms in the negative log-likelihood
function of the GEV and GP distribution, which include a non-linear statement, from
becoming negative, ordinary box constraints, allowing for an upper and lower bound of
certain parameters, are not sufficient. Instead, we need a framework, which allows for
integrating non-linear constraints into the optimization procedure. This can be achieved
by joining the objective function and the constraints into a single formula, which then
can be minimized using the algorithms we discussed in section 3.1. The most prominent
methods implementing this procedure are penalty methods and barrier methods.

In the penalty method a non-negative penalty p(x) is added to the objective function
outside of the feasible region f(x) + λpp(x). An outer loop chooses the penalty constant
λp and an inner one performs an unconstrained optimization of the sum of the objective
function and the penalty terms. Whenever the optimization result of the inner loop does
not fulfill the convergence criteria of the fit, λp is increased in the outer loop and the
inner one is rerun. The barrier method, on the other hand, does change the perceived
function values inside of the feasible region f(x) + λbb(x). Here, a barrier function b(x)
is finite at the inside of the feasible region and infinite on its boundary and the weighting
constant λb is decreased during the optimization. For a thorough introduction to these
methods see Lange (2013, chap. 13).

3.2.1. Augmented Lagrangian methods

A widely used and numerically stable penalty method is the so-called augmented
Lagrangian method.

LA(x;λ, ν) = f(x)−
∑
k∈E

λkck(x) + ν

2
∑
k∈E

c2
k(x), (3.12)

with ν being the penalty parameter and λk being estimates of the Lagrangian multipli-
ers.

But in order to gain a better understanding of the different terms involved in equation
(3.12), let’s review its predecessor, the quadratic penalty method, first.

Q(x; ν) = f(x) + ν

2
∑
k∈E

c2
k(x), (3.13)

In this algorithm all violations of the constraints ck are squared and added to the
objective function f(x), which has to be minimized. Thus only those constraints, which
are violated, contribute to the sum in equation (3.13). In the parlance of optimization
community they are called active. Using this trick we do not have to distinguish between
equality and inequality constraints anymore.

The problem with the quadratic penalty method is that the minimization of Q becomes
more and more difficult the larger the penalty parameter ν gets. This is especially true
for quasi-Newton and conjugated gradient methods, since the Hessian of Q becomes
ill-conditioned near the minimum (Nocedal and Wright 2012).
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The ill-conditioning can be reduced by adding the second term in equation (3.12)
featuring estimates of the Lagrange multipliers λk. This extension of the quadratic
penalty method does make the augmented Lagrangian method far more stable and
even faster in terms of convergence. See Nocedal and Wright (2012, chap. 17) for a
detailed description including proofs of the properties of the method.

3.3. Constrained optimization in the EVA

As discussed in section 3.1.3 both the boundary to the forbidden regions, introduced by
the logarithms in (2.18) and (2.21), and the existence of the MLE of the GEV and GP
parameters for shapes bigger than -1 only can result in numerical artifacts. Depending
on the initial parameter combination, the optimization algorithm can get stuck at the
boundary to the forbidden region. A rule of thumb to circumvent this issue is to choose a
starting point as close as possible to the unknown global optimum using various heuristics
(see section 2.2.4), to use the Nelder-Mead algorithm, and to restart the optimization until
the change in the resulting MLE of the GEV or GP parameters is less than a predefined
precision constant. But the restarting of the optimization is neither guaranteed to reach
the global minimum nor does it feel like a proper solution of the problem. Luckily, one
can do better by using a constrained optimization instead.

3.3.1. Application of the augmented Lagrangian method to the GEV and
GP distribution

To avoid those problems, one has to introduce both the boundary to the forbidden regions
and the lower bound of the shape parameters as constraints. The arguments of the
logarithms in the negative log-likelihood of the GEV (2.18) and GP distribution (2.21)
have to be strictly positive and the shape parameter must not take values equal to or
lower than -1. Since the second logarithm in equation (2.18) holds a non-linear expression,
methods only working on linear constraints, like e.g. box constraints, are not sufficient.
Instead, we will use the augmented Lagrangian method introduced in section 3.2.1. It
seems tempting to just omit the one non-linear constraint and to apply box constraints.
But I performed the analysis in figure 3.6 with both all the constraints mentioned above
and just the linear ones. The results obtained when omitting the non-linear constraint in
equation (2.18) were much more poor. So this simplification should not be used in the
EVA.
As discussed in section 3.2.1, in the augmented Lagrangian method we will add the

constraints to the objective function in order to transform the constrained optimization
into an unconstrained one. Since the concept is a quite general one, I will formulate the
resulting optimization problem for the GEV distribution only and omit the GP one as
well as their special cases for ξ = 0.
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3.3. Constrained optimization in the EVA

l(z;µ, σ, ξ) = n · log σ+
n∑
i=1

[
1 + ξ

(
zi − µ
σ

)]− 1
ξ

+
(

1 + 1
ξ

) n∑
i=1

log
[
1 + ξ

(
zi − µ
σ

)]
+
∑
k∈E

λkck(z;µ, σ, ξ) + ν

2
∑
k∈E

c2
k(z;µ, σ, ξ), (3.14)

where λk are the Lagrangian multipliers, ν is the penalty parameter, ck are the
violations of the constraints, and E is the set of all active constraints. The n + 2
constraints are triggered as follows

ci : ξ(zi − µ
σ

) > −1 + ε1 (3.15)

cn+1 : σ > ε2 (3.16)
cn+2 : ξ > −1 + ε3, (3.17)

with where i ∈ {1, . . . , n}, ε1 = ε3 = 0.05, ε2 = 0.03, and n is the number of data
points in the series of maxima z. By checking whether or not the constraint is violated
and permitting only two different kinds of outputs, either zero or the violation of the
constraint, the inequality constraints of the GEV distributions are transformed into
equality ones.

A constraint only contributes to (3.14) if it is violated/active. Thus, it is not sufficient
to restrict the scale parameters to value bigger than zero, the shape parameter to values
bigger than -1, and so forth. We have to slightly adjust the thresholds of constraint
violation by introducing the constants ε > 0 in order to prevent the algorithm from
entering the forbidden regions or the part of the parameter space, where the ML estimator
is not defined anymore. Formally, the ε could be of any small values but the ones used
above showed to be the most appropriate ones throughout the analysis of ours.
As a drawback this further decreases the addressable parameter range of the ML

optimization. But since we are now able to find the global minimum of the negative log-
likelihood for almost all initial parameter combinations, this is a price we are glad to pay.
In addition, the shape parameter is assumed to fall in the range between −0.5 < ξ < 0.5
for natural data (Hosking, Wallis, and Wood 1985) and thus the further restrictions
should not affect any actual analysis. Within the feasible region of the constrained
optimization the original likelihood of the GEV or GP distribution is not altered and
thus the obtained results will match the unconstrained ones, which do not get trapped at
the boundary of the forbidden region.
In the context of EVA the penalty parameter ν gets updated four to five times while

no update of the Lagrangian multipliers takes place. This causes the overall non-linear
constrained optimization to last only twice as long as the classic unconstrained one3.

3this benchmark was performed using the optim function of the stats package in R (R Core Team 2017)
version 3.4.0 for the baseline Nelder-Mead optimization and the alabama package version 2015.3-1
for the optimization using the augmented Lagrangian method
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Due to the possibility of ill-conditioned Hessians, as well as to the overall robustness
regarding the forbidden regions, we strongly encourage to perform the inner routine of the
augmented Lagrangian method using the Nelder-Mead instead of the BFGS algorithm.

3.3.2. Numerical comparison of the optimization results

Let’s recall our motivation. The overall goal of the non-linear constrained optimization
procedure was to make the results independent of the initial parameter combinations
and to avoid the artifacts shown in figure 3.2. By introducing constraints via equation
(3.14) we prohibit the optimization algorithm from entering the part of the parameter
space the log-likelihood of the GEV and GP distribution is not defined in anymore and
keep the shape parameter bigger than -1 at all points. Now, the algorithm should find
the global minimum more easily.

The impact of the constraints is displayed in figure 3.5. In the upper half of the picture
you can see the original negative log-likelihood of the GEV distribution of equation
(2.18) including some potential lines. The result of the unconstrained optimization is
marked with a black cross. Judging from the potential lines it is obvious, especially in
the scale-shape plane, that the optimization result does not correspond to the global
optimum. Instead, the routine got stuck at the boundary to the forbidden region like in
figure 3.3. Since the parameter space of the GEV distribution is three-dimensional, only
three orthogonal slices intersecting at the global optimum are plotted.

To avoid these numerical artifacts, the penalized likelihood corresponding to equation
(3.14), shown in the lower part of the figure, can be used. It was calculated for the very
same underlying series and with all Lagrange multipliers λk set to zero and the penalty
parameter ν set to 1000. These are values typically encountered during the last outer
iteration of the augmented Lagrangian method in the EVA. While the penalty introduced
close to the boundary to the forbidden region is not visible, the one for shape parameters
smaller than -1 is. It is the latter one ensuring that the optimization routine does not
step into a badly conditioned part of the parameter space right in the beginning of the
optimization. But the constraints close to the boundary are nevertheless quite important.
Without them the algorithm would still get trapped at the boundary in some runs.

On the other hand, figure 3.5 also very nicely illustrates how little the negative log-
likelihood is changed. Apart from the discussed regions of shape parameters below -1 and
close to the boundary it is not changed at all and the optimization using the augmented
Lagrangian method does yield the same results as the unconstrained one started at
working initial parameter combination.

In order to compare the performance of the augmented Lagrangian method with the
classical, unconstrained routines in the context of the EVA, I repeated the numerical
experiment of section 3.1.3 and figure 3.2. In detail, I used the augmented Lagrangian
method implemented in the alabama package4.

As shown in figure 3.6, the optimization routine is now able to reach the global optimum,
marked by a yellow cross, for almost all initial parameter combinations. Therefore, we got
almost entirely rid of the numerical artifacts introduced by the unconstrained routines
and it is thus the method of choice when fitting the GEV or GP distributions.

4alabama version 2015.3-1 in R 3.4.0. was used in all calculations
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Figure 3.5.: The negative log-likelihood of the GEV distribution obtained using both the
raw equation (2.18) (upper half) and the constrained one in (3.14) using the augmented
Lagrangian method (lower half). The result of the failing unconstrained optmization is
marked with a black cross and can obviously be avoided by applying the constraints.
Apart from the regions of the parameter space in which the constrains are active (close
to the boundary to the forbidden region and for shape parameters lesser than -1), the
likelihood and the contour lines stay the same. Thus, the augmented Lagrangian method
only avoids numerical artifacts but does not alter the results of the classical likelihood
approach.
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Figure 3.6.: The same analysis as in figure 3.2, but also performed with the augmented
Lagrangian method (left-most column), which is presented in section 3.2.1. Using this
algorithm, the global minimum of the parameter space could be retrieved from almost
all initial parameter combinations.

46



3.3. Constrained optimization in the EVA

In terms of performance the augmented Lagrangian method does approximately take
twice as long as the constrained optimization and needs around 30 milliseconds to run
on a single CPU.
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4. Short-range correlations in the EVA

All the derivations and algorithms introduced in chapter 2 required the underlying data
to be independent and identically distributed. While these conditions might be met
by some artificial series in thought experiments or proofs of concepts, they are almost
certainly not fulfilled by real data. In this chapter I will this issue by extending the
theory of the EVA in such a way it also copes with measured data of complex systems.

We will soften the requirements by asking the series to be only identically distributed.
Two events, XN and XN+∆N , will have a conditional probability Pr{XN+∆N |XN}
solely depending on the time difference ∆N but not on the time point N itself. This
statistical property is also called stationarity. Further, we require those dependencies
to decay reasonably fast in time, e.g. exponentially, so more distant events can be
considered independent. We thus assume our time series X to only contain short-range
correlations. If, on the other hand, the dependencies decay polynomially in time or
even slower, there are long-range correlations present in the data.
In the extreme value analysis short-range correlations can be handled rather easily

since we are handling the maximum values of non-overlapping blocks. Given that the
correlation length is much smaller than the size of the blocks, the maxima can be still
considered both independent and identically distributed. If there, however, are long-range
correlations present in the data, the maxima are not independent anymore. Thus, the
likelihood, which is the joint probability of all observed events conditioned on a particular
parameter combination (see equation (2.12)), is not factorizable and we can not use
equation (2.18) to estimate the parameters of the GEV distribution anymore, as we will
see in section 4.1. Dealing with short-range correlations when fitting the GP distribution
is more subtle and will be treated in section 4.2.
Are these new assumptions reasonable when describing the climate system? From

climate modelling and the daily endeavors of many companies, which try to foretell both
temperature and rainfall for the near future, we know that the horizon of predictability
for atmospheric temperatures is around one to two weeks. For precipitation it is even less.
Both time spans are very small compared to the usual block size of one year. Therefore,
assuming the data to contain only short- but no long-range correlations is reasonable.
Please note that there are studies indicating the presence long-range correlations in
temperature data by e.g. Massah and Kantz (2016). But since the methods yielding
those findings are still debatable and under active development and due to the lack of
alternatives, we have to neglect the possibility of their presence and treat our results
with care.

A horizon of predictability of several weeks in the atmospheric temperature data is
not entirely true. In the northern hemisphere a very high temperature (occurring most
probably during summer) will not only indicate that weather will most likely be hot
during the next week as well but also that it will be again quite warm one year into the
future and quite cold in six months. This is due to the annual cycle of the sun, the most
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4.1. Block maxima in stationary series with short-range correlations

strongest and dominant of all climatological periodicities. For a proper handling within
the EVA we have to remove it from our data. Several techniques to accomplish this task
are presented in section 4.3.

Apart from the short-range and maybe long-range correlations there is a very prominent
non-stationarity in the data called the climate change. Both the natural variability of
the climate and the human-made contributions will cause our data to be not identically
distributed anymore. For this chapter we will neglect its presence, as usually done by
the extreme value community, and return to its treatment in chapter 5 when discussing
the model class of the VGLM.

4.1. Block maxima in stationary series with short-range
correlations

Firstly, we focus on how to extend the GEV approach to cope with stationary time series.
To quantify the degree of correlation within a series, we introduced the so-called D(uN )
condition. It ensures that exceedances over a sequence of thresholds uN are almost
independent and that their correlation decays sufficiently fast as the block length N is
going towards infinity.

Definition 4.1
A stationary series X = X1, X2, . . . satisfies the D(uN ) condition if, for all i1 < . . . <
ip < j1 < . . . < jp with j1 − ip > l,

|Pr
{
Xi1 ≤ uN , . . . , Xip ≤ uN , Xj1 ≤ uN , . . . , Xjp ≤ uN

}
−

Pr
{
Xi1 ≤ uN , . . . , Xip ≤ uN ,

}
Pr
{
Xj1 ≤ uN , . . . , Xjp ≤ uN

}
| ≤ α(N, l),

where α(N, lN )→ 0 for some sequences lN such that lN/N → 0 as N →∞.
(see Coles (2004) Definition 5.1)

This corresponds to the requirement that our series X only contains short- but no
long-range correlations.
Next, we have to incorporate this condition into the extreme value limit theorem we

already established in 2.1.

Theorem 4.1
Let X = X1, X2, . . . be a stationary process and MN = max {X1, . . . , XN} the corre-
sponding series of block maxima with a block length N .

If {aN > 0} and {bN} are sequences of constants such that

Pr
{
MN − bN

aN
≤ z

}
→ G(z),

with G(z) being a non-degenerated distribution function, and if the D(uN ) condition
with uN = aNz+bN is satisfied for all real z, then G is a member of the family of extreme
value distributions.

(see Coles (2004) Theorem 5.1)
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The GEV distribution G(z) in theorem 4.1 is closely related to the limiting distribution
of the independent version X* of the series X. To illustrate the effect of the short-range
dependencies on the estimated GEV parameters, we will have a look at an example taken
from book Introduction to Statistical Modeling of Extreme Events written by Coles (2004,
94–95). Here, we will sample two series, an independent and a correlated one, featuring
the same marginal distributions.

Example 4.1
We start by defining an independent sequence of random variables Y0, Y1, . . . with the
common distribution function

FY (y) = exp
{
− 1

(a+ 1)y

}
,

with y > 0 and 0 ≤ a ≤ 1, and a process Xi as

X0 = Y0,
Xi = max {aYi−1, Yi} , for i = 1, . . . , n,

with

Pr {Xi ≤ x} = Pr {aYi−1 ≤ x, Yi ≤ x} = exp
(
−1
x

)
,

for x > 0. Therefore, Xi is a stationary series with a marginal distribution of standard
Fréchet.

Next, we will define an independent series X*
1 , X

*
2 , . . . having a standard Fréchet

marginal distribution as well. The corresponding block maxima M*
N = max

{
X*

1 , . . . , X
*
N

}
are distributed as

Pr
{
M*
N ≤ Nz

}
=
[
exp

(
− 1
Nz

)]N
= exp

(
−1
z

)
.

The block maxima of the stationary series MN = max {X1, . . . , XN}, on the other
hand, are distributed as

Pr {MN ≤ Nz} = Pr {X1 ≤ Nz, . . . ,XN ≤ Nz}
= Pr {Y1 ≤ Nz, aY1 ≤ Nz, . . . , aYN−1 ≤ Nz, YN ≤ Nz}
= Pr {Y1 ≤ Nz, . . . , YN ≤ Nz}

=
[
exp

(
− 1

(a+ 1)Nz

)]N
=
[
exp

(
−1
z

)] 1
a+1

.

Therefore, the distributions of the block maxima of both the independent and stationary
series can be related via

Pr
{
M*
N ≤ Nz

}
= (Pr {MN ≤ Nz})

1
a+1 .
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A more general statement about the impact of short-range correlations on the fitted
GEV distribution can be phrased as follows.

Theorem 4.2
Let X*

1 , X
*
2 , . . . be an independent, X1, X2, . . . a stationary series, and M*

N =
max

{
X*

1 , . . . , X
*
N

}
and MN = max {X1, . . . , XN} the corresponding block maxima for a

block length of N . Under suitable regularity conditions

Pr
{
M*
N − bN
aN

≤ z
}
→ G1(z),

as n → ∞ for arbitraty normalization sequences {aN > 0} and {bN} and a non-
degenerated distribution function G1, if and only if

Pr
{
MN − bN

aN
≤ z

}
→ G2(z),

with

G2(z) = Gθ1(z) = exp
{
−
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

}θ

= exp
{
−θ
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

}

= exp

−
[
1 + ξ

(
z − µ*
σ*

)]− 1
ξ

 ,

µ* =

µ−
σ
ξ

(
1− θ−ξ

)
, for ξ 6= 0

µ+ σ log θ , for ξ = 0,
(4.1)

and

σ* =
{
σθξ , for ξ 6= 0
σ , for ξ = 0.

(4.2)

and a constant θ defined as 0 < θ ≤ 1.

θ is the so-called extremal index and can be thought of as the inverse of the mean
cluster size (the number of successive highly correlated events). For values of θ = 1 the
mean cluster size of 1 indicates that every single event can be treated separately. Thus,
the data itself is independent.
Although extended to cope with short-range correlations in stationary time series as

well, theorem 4.2 looks remarkably similar to theorem 2.1 we stated for independent
series earlier on. The fitting procedure, as well as the required likelihood function to fit
the GEV coefficients, will thus be the same. The actual values will be affected by the
degree of correlation in the data. While the shape parameter ξ will be the same, the
location µ and scale σ parameter get rescaled due to the dependencies.
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Figure 4.1.: Artificial series showing the impact of the a parameter in example 4.1. For
all plots the same seed was used in the sampling of the underlying series y. As the value
of the parameter a increases, the correlation between neighbouring points increases as
well.

But since we have to estimate them anyhow, we do not have to mind the difference
between the independent and the stationary series in the analysis.

As another illustrative example we consider the stationary sequence X of example 4.1.
For a = 1 the extremal index becomes θ = 0.5. The resulting mean cluster size of 2 can
be seen in the bottom right part of figure 4.1, where higher values tend to appear in
pairs.

4.2. Threshold exceedances in stationary series

The main idea of how to cope with short-range correlations in block maxima, as discussed
in the previous section, can be rephrased as follows: We assume the correlation lengths
to be much smaller than the size of the blocks so as a result the extracted maxima are
independent. Unfortunately for threshold exceedances in the GP approach things are
not that simple.
The most prominent way of dealing with short-range correlations in this context is

declustering (Reiss and Thomas 2007). There are also attempts to refute the removal
of dependencies in the threshold exceedances, e.g. by Fawcett and Walshaw (2007), but
these ideas are very uncommon. In the declustering we group exceedances, extract only
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Figure 4.2.: Daily precipitation data of the Potsdam station. The green line indicates
the threshold over which all data are considered to be extreme events. The data was
provided by the German weather service (DWD)(Deutscher Wetterdienst 2018).

the maximal value of the group, and discard all others. The intricate part of this approach
is how to define a group. But before diving into the theory, let’s start with an example
first.

Imagine we want to apply the EVA using the GP distribution to the daily precipitation
records of the Potsdam station1 in Germany in figure 4.2.

Next, we apply a threshold and consider only those days to be extreme, on which more
than 27mm of rain occurred in figure 4.3.

We see multiple events, which are potential candidates for the declustering since they
appear rather close to each other. But instead of discarding most of them, what would be
a wasteful procedure, we have to think about a reasonable way of defining the groups of
dependency. For instance, several consecutive days of heavy rain can certainly be grouped
together and reduced to a single event. But if, on the other hand, heavy precipitation
takes place at the end of one low-pressure system and at the beginning of the next one
as well, we want those two events to be recognized as independent and thus as part of
different groups.
In the EVA literature there are two main approaches for applying the declustering:

the block (Falk, Hüsler, and Reiss 2011) and runs (Leadbetter and Nandagopalan 1987)
method. In the block method the time series is split in blocks of equal length and all

1The data is provided by the German weather service (DWD) (Deutscher Wetterdienst 2018) free of
charge at ftp://ftp-cdc.dwd.de/pub/CDC/
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4.2. Threshold exceedances in stationary series

Figure 4.3.: Threshold exceedances of the daily precipitation data of the Potsdam station
displayed in figure 4.2. Only those events are shown, which are bigger than 27mm.

threshold exceedances within a block are assumed to belong to the same cluster. The
runs method is more dynamic. Here all exceedances are grouped to a cluster unless a
predefined number of consecutive events occur below the threshold. In general, the choice
of just one block length is too rigid to be used with measured data and is therefore only
used within theoretical derivations. In contrast, the number of events below the threshold
to separate individual clusters, the so-called run length, can be tuned to correspond to
the intrinsic dynamics of the system (e.g. the mean duration of a heat wave or the mean
time a pressure system needs to pass through a region).

To illustrate the performance of both methods and the impact of their free parameters,
the block length and the run length, we will apply them on the first year of daily maximum
temperature of the Potsdam station also provided by the German weather service (DWD)
(Deutscher Wetterdienst 2018). To remove the annual cycle, the anomalies of the time
series were calculated (see section 4.3). In addition, we will set the threshold to 5 ◦C.
The value itself is too low to be used on the full series in EVA, but since we just want to
get accustomed to the different declustering algorithms, it will serve the purpose (see
figure 4.4).

Next, we perform the declustering of the threshold exceedances with block lengths of
15 and 30, as well as run lengths of 3 and 10.

While the results for the block method in figure 4.5 are of poor quality (24 clusters for
a block length of 15 events and 12 for a block length of 30), the runs method yields more
appropriate clusters (26 for a run length of 3 and 12 for a run length of 10).
But what is the most reasonable value of the run length? Should all the exceedances

in January 1983 be grouped into one cluster, as in the case of a run length of 10, or is
the data described more appropriately using additional clusters during this period? The
answer to this question can be given by inspecting the dynamics of the system itself. But
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4.2. Threshold exceedances in stationary series

Figure 4.4.: First year of the daily maximum temperature anomalies of the Potsdam station
in Germany provided by the German weather service (DWD) (Deutscher Wetterdienst
2018). The green line indicates the threshold above which all data points are considered
extreme events.

this is a very tedious thing to do for a high dimensional and complex system, like the
climate or the economic market. Fortunately, there is a non-parametric approach based
on the runs method by Ferro and Segers (2003), which yields quite reasonable results as
can be seen in the last row of figure 4.5.
Their approach is based on describing the exceedance times, the point in time the

threshold exceedances did happen, by a point process. The asymptotic distribution (for
time series lengths n → ∞) of the interexceedance times Ti, the temporal distance
between consecutive threshold exceedances, is a member of an one-dimensional family of
distributions with the extremal index as their parameter. Its first moment is E(Ti) = 1
and its second is E(T 2

i ) = 2/θ (see Ferro and Segers (2003)). By equating these theoretical
moments of the limiting distribution and approximating them using the empirical ones,
the extremal index can be estimated without any previous knowledge of cluster numbers
or sizes using

θ̃n(u) =

min
{

1, θ̂n(u)
}
, if max {Ti : 1 ≤ i ≤ N − 1} ≤ 2,

min
{

1, θ̂*
n(u)

}
, if max {Ti : 1 ≤ i ≤ N − 1} > 2,

(4.3)

with u being the applied threshold, n the length of the series, and N the number of
observed threshold exceedances. In general, we will use
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Figure 4.5.: A comparison of different declustering methods performed on the threshold
exceedances of the daily maximum temperature anomalies at the Potsdam station of
figure 4.4. In the upper two subfigures the block method and in the three lower ones
the runs method was used. The colors represent the cluster individual events are
belonging too. From all points within one cluster only the largest one is kept and all
others discarded in order to remove short-range correlations from the data. Note that
these colors are not unique, but only eight different ones are reused in a constant order.
Since the information is not contained in the actual number of the individiual cluster but
in the fact if an event belongs to the same cluster as the previous or next one, a small
number of colors with a high contrast had been chosen.
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θ̂*
n(u) =

2
{
N−1∑
i=1

(Ti − 1)
}2

(N − 1)
N−1∑
i=1

(Ti − 1)(Ti − 2)
(4.4)

to estimate the extremal index. Note that this estimator can be larger than one,
in which case an extremal index of one will be returned. If, however, the maximal
interexceedance time is less than 3, equation (4.4) is undefined and we have to use the
less optimal estimator

θ̂n(u) =
2
{
N−1∑
i=1

Ti

}2

(N − 1)
N−1∑
i=1

T 2
i

(4.5)

instead. The benefit of equation (4.4) is that its first-order bias is zero. For a more
thorough theoretical treatment of the derivation of the estimators including proofs please
see Ferro and Segers (2003).
In this setting, the estimated extremal index can also be thought of as the ratio

of interexceedance times occurring between clusters, the so-called intercluster times,
and the total amount of interexceedance times. Therefore, the C − 1 = bθNc largest
interexceedance times are independent intercluster times. If there is a tie and multiple
Ti do share the C − 1 largest value, the C is decreased until the corresponding value is
unique. This results in a total number of C clusters in the series and in the C-th largest
T to be equal to the run length we need for declustering.

Since this approach doesn’t contain any free parameters and its results are quite robust,
it quickly became the default algorithm for declustering in EVA. It also will be used
throughout this thesis.

Now, we return to our example of the daily precipitation data at the Potsdam station
in figure 4.2 to visualize the effect of the declustering method by Ferro and Segers (2003)
on the threshold exceedances.
After calculating the run length (5) using the estimate of the extremal index (0.95)

and grouping all threshold exceedances in clusters (132), only the biggest events of each
cluster are kept to ensure the independence of the exceedances. Using this procedure
only eight events have been dropped in the bottom panel of figure 4.6 compared to the
top one, decreasing the number of total threshold exceedances from 140 to 132.

4.3. Deseasonalization techniques
Imagine we want to determine the 100 year return level in a daily temperature series, or
to phrase it more stirring, we want to calculate the temperature, which is so high it only
occurs once every 100 years on average. Since we will use the annual maxima, it seems
we would have N × 365.25 data points to perform the EVA on, with N being the total
number of years in our series. But unfortunately this is not the case (at least not for
stations in Germany).
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Figure 4.6.: Threshold exceedances of the daily precipitation data of the Potsdam station
displayed in figure 4.2. Only those events are shown, which are bigger than 27mm. While
the upper figure displays the raw threshold exceedances, in the lower one the declustering
algorithm by Ferro and Segers (2003) was applied to remove the short-range correlations
in the data.
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4.3. Deseasonalization techniques

Figure 4.7.: Daily temperature maxima of the Potsdam station from 01.01.1893 till the
31.12.1911. Both the block maxima and the threshold exceedances (including declustering)
are marked orange to emphasize the influence of the seasonal cycle on the analysis. The
data was provided by the German weather service (DWD) (Deutscher Wetterdienst
2018).

The annual cycle superimposes quite a large modulation on the temperatures, causing
both the block and threshold method to only sample data points throughout the summer
(see figure 4.7). Therefore, the effective length of the series is much shorter (Massah and
Kantz 2016).
Since the main goal of this thesis is to draw conclusions about the extreme events

in the overall climate, the analysis will be more robust when applied to data with the
seasonal cycle already removed. To illustrate this idea in figure 4.8 the time series excerpt
of figure 4.7 was deseasonalized using the STL algorithm (see section 4.3.3) and the
extreme events were extracted in the same way as beforehand. Now, the extremes of the
time series can occur throughout the whole time series, not only summer, and the total
number of data points is truly N × 365.25.
In the remainder of this chapter I will provide an overview of the most prominent

methods of deseasonalization.

4.3.1. Decomposition

The main goal of most deseasonalization software is to decompose a time series into three
(additive and/or multiplicative) components: a trend, a seasonal part, and a random
part.

One of the simplest ways to accomplish this decomposition is to use a moving average
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Figure 4.8.: This figure displayes the same data as figure 4.7, but with the seasonal cycle
removed using the STL algorithm prior to the detection of the extreme events.

to remove the trend and to calculate the anomalies of the remaining series. This approach
is implemented in the decompose function in R (R Core Team 2017).

Firstly, one has to specify the size of one season in lags. A lag is the basic time unit of
a series. An annual reoccurring season would have a size of 365.25 lags for daily data
and a size of 12 for monthly ones. A moving average with a filter width of the size of the
season is performed on the time series and the result gets subtracted from the original
one.
Afterwards the anomalies will be calculated from this detrended time series by

subtracting the seasonal cycle. The latter is approximated by the mean values of the
individual dates throughout all seasons. E.g. to obtain the anomaly at the 1st of January
of a particular year, one has to calculate the mean value of all the 1st of Januaries and
subtract it from the original one.
A very popular generalization of the decomposition scheme described above is the

Seasonal-Trend Decomposition procedure based on Loess (STL) (Cleveland et al. 1990).
It is implemented in the stl function in R and based on the Fortran code of Cleveland et
al. But before explaining the algorithm let me give you a summary of the Loess (Local
regression) routine.

4.3.2. Loess

Suppose we observed an independent series xi and a dependent series yi of length n
related via an unknown function y = g(x). The loess regression provides a way to obtain
an estimate ĝ(x) for all x. Therefore, the evaluation is not bound to the exact locations
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4.3. Deseasonalization techniques

of the xi and the observations are allowed to contain missing values too.
The basic idea of the local regression is, the closer neighbouring points are, the more

similar is their functional behaviour. So instead of modelling a very complex unknown
function with a sophisticated hypothesis and dozens of free parameters, we will perform
local, piecewise regressions. The first free parameter in the loess regression is the
number of points q we consider to be local neighbours. Using them we can construct a
neighbouring weight

vi(x) = W

(
|xi − x|
λq(x)

)
, (4.6)

with the tricube weight function

W (u) =
{

(1− u3)3 for 0 ≤ u < 1
0 for u ≥ 1,

(4.7)

which is classically used by the community, and the euclidean distance λq = ‖xi − x‖
from the evaluation point x to the q-th farthest xi. In case q > n the distance is

λq(x) = λn(x) q
n
,

with λn being the distance to the farthest point in xi.
Afterwards a polynomial of degree d, the second free parameter, is fitted to the data

using the weights vi at (xi, yi). The value obtained by evaluating the polynomial at x
is the result of the regression routine. So, for tasks like deseasonalizing time series the
routine has to be run n times at all the observation sites xi.
The degree of the regression polynomial d is usually set to 1. Only for very complex

and irregular functions a quadratic regression polynomial is used (Cleveland et al. 1990).
For d = 0, on the other hand, the method reduces to a weighted moving average.

4.3.3. STL
The actual STL routine consists of an inner and an outer loop. In the inner one the
series is first getting detrended, then all years will be smoothed using loess regression
separately, and afters all smoothed years are concatenated and a low-pass filtering is
applied to prevent a power buildup in the seasonal component.

Since the linear or quadratic regression employed by the inner loop is quite sensitive to
outliers or erroneous data points, the outer loop computes robustness weights ρv to
reduce the influence of such points. Firstly, the residuals rv are calculated by subtracting
the trend tv and seasonal component sv from the dependent variable yv

rv = yv − tv − sv.

Then, the robustness weights are obtained by

ρv = B

( |rv|
h

)
, (4.8)

with h = 6×median(|rv|) and the bisquare weight function
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B(u) =
{

(1− u2)2 for 0 ≤ u < 1
0 for u ≥ 1.

(4.9)

The calculated ρv will be multiplied with the corresponding neighbouring weights vi
during the next evaluation of the inner loop. The whole algorithm usually only needs
about two to three evaluations of the inner loop in total.

4.3.4. Fourier-based methods

Since the annual cycle seems to be represented by a sinusoidal function quite reasonably,
one might consider to perform a Fourier decomposition of the detrended data and use the
leading frequency terms to remove the seasonality. But unfortunately a fixed wavelength
for the sinusoidals is a rather bad assumption. While the approximation of the summer
and winter months is quite good, this method tends to produce rather large artifacts in
spring and autumn.
The reason for this problem is the onset of the transition between winter and spring

or summer and autumn. Especially in the latitudes of Germany and northern Europe,
where the Ferrel cell and the Polar cell of the atmosphere are switching places during
summer and winter (Wallace and Hobbs 2006) this process is of rather high variance. If
e.g. the onset of spring occurs more early within a year and the summer lasts especially
long, Fourier-based methods tend to produce a number of artifacts in both spring and
autumn, while smoothing-based methods, as mentioned above, will produce more robust
results.

Also when modelling events like the sales of Christmas trees or snowfall, Fourier-based
methods would need quite a number of terms to reasonably approximate the seasonal
component of the time series. Therefore, most publications applying analysis to real
world data prefer methods like anomalies or STL. But for the sake of completeness two
of the most popular Fourier-based methods will be covered in the following subsections.

4.3.4.1. Harmonic regression

In the field of time series analysis, especially with autoregressive moving average (ARMA)
processes (Box, Jenkins, and Reinsel 2008), the detrending and removal of the seasonal
component are rather side-effects than actual goals of the analysis. Instead, the users
intend to generate a parsimonious model of the series in order to make proper forecasts
by taking the correlations within the data into account. A popular implementation can
be found in the ds function of the deseasonalize package by McLeod and Gweon (2013)
in R.

The basic procedure for fitting ARMA with seasonal dependence (Hipel and McLeod
1994, chap. 13) can be summarized as follows. Firstly, the data is detrended (e.g. using a
moving average). Secondly, the detrended series zr,m, including r = 1, 2, . . . , n years and
m = 1, 2, . . . , s seasons, is deseasonalized. This is done by subtracting the mean value µ̃
and dividing by the standard deviation σ̃ of each individual season

wr,m = zr,m − µ̃m
σ̃m

. (4.10)
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The corresponding values can be obtained by their maximum likelihood estimators

µ̂m = 1
n

n∑
r=1

zr,m, m = 1, 2, . . . , s, (4.11)

and

σ̂m =

√√√√ 1
n

n∑
r=1

(zr,m − µ̂m)2, m = 1, 2, . . . , s. (4.12)

Note that the term season is, again, used more generally. For an annual cycle and
daily data we would have s = 365.25 and for a quarterannual cycle and monthly data
s = 3. For monthly data and an annual cycle this approach thus already requires 24
parameters in order to perform the deseasonalization. For weekly or daily data it soon
becomes intractable. Instead, one usually uses a Fourier series to get more parsimonious
estimates for the seasonal mean and standard deviation.

The Fourier coefficients of the seasonal cycle can be determined using the estimates of
eq. (4.11) and (4.12)

Ak = 2
s

s∑
m=1

µ̂m cos 2πkm
s

Bk = 2
s

s∑
m=1

µ̂m sin 2πkm
s

Ch = 2
s

s∑
m=1

σ̂m cos 2πhm
s

Dh = 2
s

s∑
m=1

σ̂m sin 2πhm
s

,

with k = 1, . . . , Fµ, h = 1, . . . , Fσ, and the number of corresponding Fourier components
Fµ ≥ 1 and Fσ ≤ s/2. Now, the new estimates of the mean and the standard error can
be obtained by

µ̃m = A0 +
Fµ∑
k=1

(
Ak cos 2πkm

s
+Bk sin 2πkm

s

)
, m = 1, 2, . . . , s

σ̃m = C0 +
Fσ∑
h=1

(
Ch cos 2πhm

s
+Dh sin 2πhm

s

)
, m = 1, 2, . . . , s,

where A0 and C0 are the average values of the seasonal means and standard deviations.
To get the best trade-off between the number of parameters and the performance

of the approximation, an ARMA model is fitted to the remainder wr,m for all possible
combinations of Fµ and Fσ. An integrated component should be avoided in the presence of
seasonality. In the next step, for each of the results an information criterion (McLeod and
Gweon 2013), like AIC or BIC (see 5.4.1), is calculated. Finally, the model featuring the
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lowest information criterion and uncorrelated, normally distributed, and homoscedastic
residuals is selected. To ensure the latter point, the Box-Cox transformation can be
applied on the data.

Another way of handling seasonality within the ARMA framework is to use so-called
seasonal ARMA (SARMA) model (Hipel and McLeod 1994, chap. 12). But this
approach incorporates the seasonal component in the model itself and is therefore not
applicable for deseasonalization or decomposition schemes.

4.3.4.2. Band spectrum regression

A different way to exploit the pronounced frequencies of the seasonal component is to
use band spectrum regression (Harvey 1978). The basic idea behind this approach
is to transfer both the independent variable xi and the dependent one yi into Fourier
space and omit all terms corresponding to the frequencies of the seasonal component and
its higher harmonics.

An implementation of this procedure can be found in the descomponer package for R.
But since the approach is very computationally demanding for longer time series, it is
not applicable for the long time series handled in the context of EVA.

4.3.5. Further notes
If an even more complex algorithm is sought for, one can use X-13ARIMA-SEATS
provided by the U.S. Census Bureau. It’s an up-to-date seasonal adjustment software
used by many officials and govermental agencies. But its mere complexity goes beyond
the scope of this overview chapter.

A remaining question is how to specify the season or its length. For the climatological
data at hand the obvious answer is to consider a year due to the annual cycle. But for
other time series, e.g. economic ones, things might not be that obvious. In such cases, a
careful study of the eigenvalues and frequency responses, which is described by Cleveland
et al. (1990), might provide critical hints.
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5. Non-stationary analysis in the EVA
An essential requirement, which had to be fulfilled by the data and had been introduced in
the previous chapter, is its stationarity and the presence of only short-range correlations.
There, we assumed the average statistical properties to remain constant over time. But
is this assumption reasonable? Or do we introduce a large error by forcing a stationary
model on a clearly non-stationary time series?
After all, the overall climate is changing and the presence of the climate change is

undeniably real (see IPCC 2014). Using climate models, in which the human-made
contribution to the greenhouse gas concentration in the atmosphere can be turned on
and off, one can show that the increase of the mean heat content of the ocean and the
mean global temperature can indeed be attributed to mankind’s actions.
Another question is how these changes influence the local climate and weather of

certain regions of the earth. For temperature series an almost linear trend throughout
the last 30 to 40 years is quite apparent (see e.g. figure 7.1). But for precipitation data
the picture is less obvious. It can be summarized as follows. The increase of the surface
temperature of the ocean causes more evaporation and the amount of moisture, which can
be stored in the air, increases with temperature on an approximately exponential scale
(Wallace and Hobbs 2006). Therefore the overall amount of moisture in the atmosphere
is rising (Trenberth, Fasulo, and Smith 2005; Trenberth 2011). But the consequences
are not as simple as an increase of precipitation around the globe in an uniform way.
Instead, the higher moisture levels are causing both more extreme precipitations and
droughts. Which of those scenarios, if any, might apply to a specific location can only be
accessed by performing a thorough analysis of local measurements and/or by inspecting
the results of a regional model of the system (e.g. a regional climate model to describe
weather phenomena or a hydrological model to describe the gauge and volume flow of a
river). For quantities, which are not the primary variables of the climate system, like the
height of a river, the wind speed at the bottom of a valley, or the temperature of a lake,
reliable statements about the temporal dependence of their statistical properties is even
harder to obtain (Storch and Zwiers 1999, 63–68). In chapter 6 I will demonstrate such
an analysis as well as the errors one might encounter using the example of the gauge and
volume flow of the river Elbe in the city of Dresden.

5.1. Non-stationarity vs. long-range correlation
While it is moderately simple to attribute the share of us humans to the climate change
when comparing the results of climate models to observations, it is very difficult to pin it
down when solely relying on measured time series. This is mainly due to the massive
capabilities of the ocean to store heat and due to the natural variability of the climate
system. Apart from the annual cycle and short-range correlations discussed in chapter
4, our climate contains a large amount of oscillation patterns, which are both longer
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in time and much more variable in terms of the frequency of their occurrence. Those
cycles are e.g. the El Niño and La Niña southern oscillations occurring at a time scale
of several years (Wallace and Hobbs 2006), Dansgaard-Oeschger events, found in ice
core data by Dansgaard et al. (1993), on a scale of 250000 years, different astronomical
cycles on scales of >26000 years (Edwards 2011) and many others (Esper, Cook, and
Schweingruber 2002; Jones et al. 1998; Ashkenazy et al. 2013; Budyko 1969; Benzi et al.
1982). Due to the sparsity and uncertainty of measurements reaching back more than
150 years, there might be hundreds of additional cycles we aren’t aware of. But since we
lack both the data to determine them and the knowledge of the intimate physical and
chemical couplings in the climate system to appropriately model them, we have no way
to determine them.

To ease the analysis of the climate systems facing the lack of information about many
of its internal dynamics, those influences can be termed the long-range correlations
(LRC) within the climate system or the measurement data. Approaches like the
detrended fluctuation analysis (DFA) had been used to prove the presence of such
dependencies in e.g. temperature series (see Massah and Kantz 2016). By combining
all these individual effects in just one long-range correlated error one could in theory
distinguish between the human-made trend and the natural variability in the data. But
unfortunately a very large amount of data at a lot of different measurement sites is
necessary to distinguish between those two effects (Yu et al. 2018). For single time
series, like in the analysis of the river Elbe in chapter 6 one thus can only access the
non-stationarities in a combined version of both the LRC and the trend introduced by
the climate change.

5.2. Non-stationary modelling in the EVA

Due to the tremendous implications of the climate change and the very nature of the
climate itself, the non-stationary modelling of extreme value distribution has been a
central endeavour of the extreme value community since many years.

The first attempts to introduce time as a covariate of the GEV parameters were done
by Smith (1986) based on the work of Weissman (1978). The modelling of the parameters
of the GP distribution was covered shortly afterwards by Davison and Smith (1990).
From there on the framework of incorporating covariates has gradually been improved to
a point it extended the classical generalized linear model (GLM) approach (Coles 2004).
With the works of Pauli and Coles (2001) and Chavez-Demoulin and Davison (2005)
a smooth dependence of the GEV and GP parameters on covariates were added using
spline smoothers. But apart from all these successes a general framework incorporating
all these different models was still missing.
Such an unifying model class was introduced by Yee and Hastie (2003) with the

vector generalized linear models (VGLM) for linear dependencies and by Yee and
Wild (1996) with the vector generalized additive models (VGAM) for smooth
dependencies. Once this framework was applied to the extreme value distributions
(Yee and Stephenson 2007), its rigorous mathematical properties and fine-tuned fitting
algorithms could be used to model all sorts of dependencies on covariates in the data.
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5.2.1. VGLM

The overall goal of this section, as already mentioned, is to extend the extreme value
analysis to also cope with non-stationary time series. We will do so by incorporating the
explanatory variable time x as covariates into the modelling of the measured data, which
we will call our response y in this section. This way, we will obtain a time-dependent
description of the GEV and GP parameters.

Using the framework of the vector generalized linear models (VGLM) the conditional
distribution of a q-dimensional response y conditioned on a p-dimensional explanatory
variable x can phrased as

f(y|x; B) = h(y, η1, . . . , ηM ). (5.1)

B = (β1β2 · · ·βM ) is a p×M matrix containing the unknown regression parameters
entering the VGLM, h is a known link function, and ηj are the linear predictors

ηj = ηj(x) = βTj x =
p∑

k=1
β(j)kxk, j = 1, . . . ,M. (5.2)

In contrast to the older class of the generalized linear models (GLM), introduced by
Nelder and Wedderburn (1972), the linear predictors can be used to directly model the
individual parameters of the distribution function f , which is not restricted to be part of
the exponential family of distributions anymore.

The parameters of the VGLM are fitted using the their log-likelihood

l =
n∑
i=1

wili, (5.3)

where wi are known weights and n is the number of available measurements, in
combination with an algorithm called iteratively reweighted least squares (IRLS).
As explained in Yee and Stephenson (2007), or in more detail in Yee (2015, 92–96),
the fitting is done by constructing a dependent vector zj = ηj + W−1

j dj , where dj =
wj∂lj/∂ηj , and regressing it over the working weight matrix Wj . The latter is defined
as either

Wj = −wj
∂2lj

∂ηj∂ηTj
(5.4)

or

Wj = −wjE
[

∂2lj
∂ηj∂ηTj

]
, (5.5)

where E[· · · ] indicates the expectation value. Equation (5.4) results in the Newton-
Raphson and equation (5.5) in the Fisher scoring algorithm, which are two classical
routines to solve the Newton algorithm using maximum likelihood (see Jennrich and
Sampson 1976).
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5.2.2. VGAM

In the framework of the vector generalized additive models (VGAM) the requirements
introduced in the VGLMs are relaxed even more. Now, the dependencies on the covariates
are not restricted to purely linear but to additive ones instead and the model class is thus
an extension of the class of generalized additive models (GAM) introduced by Hastie and
Tibshirani (1986). The linear predictors can be modelled as a sum of a smooth functions
applied to the covariates

ηj = ηj(x) = β(j)1 +
p∑

k=2
f(j)k(xk), j = 1, . . . ,M. (5.6)

The estimation is performed using vector smoothers.
For a thorough introduction into the model class of either the VGLM or the VGAM

please see Yee (2015, chap. 3 or chap. 4) respectively.

5.3. Application to EVA

The application of the framework of both the VGLM and VGAM to model the GEV
and GP distribution is straight forward (see Yee and Stephenson 2007). Using the linear
predictors in either equation (5.2) or (5.6) the values of the GEV or GP parameters at
all time steps i can be calculated via their dependencies on covariates in the explanatory
variable x. This way we obtain a series of n location, scale, and shape parameters corre-
sponding to the individual pair of observed variables (y,x), which represent measurement
and time. From these values we can construct the log-likelihood of our model using
equation (5.3), which will be fitted with the methods discussed in the previous section.
But which of those model classes should be used to describe the data?
Both the model framework of the VGLM and the VGAM do have their merits and

shortcomings. The VGAM is primarily used for visual inspection and exploratory data
analysis. Its ability to fit the dependencies on covariates using arbitrary smooth functions
makes it easy to pin down the actual type of dependency and to decide on a model for
the fitting procedure using e.g. VGLM. On the other hand, the VGAM are not a good
tool to do predictions on the parameters of the GEV or GP distribution into the future.

That’s why, for a thorough analysis, especially when featuring extrapolation, VGLMs
are used instead. They do not just allow to fit an arbitrary amount of possible models to
describe the dependencies on covariates. They also offer a convenient way to perform
statistical hypothesis tests to determine which of the fitted models is the most appropriate
one to describe the data. These aspects are essential when performing an automated
fitting procedure as in chapter 7. In addition, the link function h in equation (5.1) can
be used to incorporate all linear constraints we reviewed in section 3.3 and is supposed
to make the log-likelihood function more realistic and thus the quadratic approximation
better as well as the estimated error using the delta-method more reasonable (see Yee
and Stephenson 2007, 16).
When modelling the parameters of the GEV or GP distribution by their dependence

on covariates one has to treat the shape parameter with extra care. It is considered to
be quite difficult to estimate it from data (Yee and Stephenson 2007). That’s why, it
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is should almost always be modelled as a constant value with no dependence on any
covariate.

5.4. Model selection
A conceptional problem one has to cope with when using the VGLM framework is how
to handle the large pool of models fitted to the data. Which one of these is describing
the data best? Is this model also the most plausible one? To answer those questions I
will use two different approaches of model selection in this thesis.

But before we delve into the details of model selection, there is an important note to
be added. The methods described in the remainder of this chapter only work on models
yielding a shape parameter bigger than -0.5. Just for those the asymptotic properties of
the maximum likelihood estimators are fulfilled, which are necessary conditions for the
following approaches.

5.4.1. Information criteria
The first one are the so called information criteria. The general idea of this approach
is that fitting the same data with a model of more and more degrees of freedom will
in general improve the resulting maximum likelihood but not necessarily improve “the
goodness” of the fit.

Imagine a noisy signal consisting of 20 points sampled along a line. While the fit of an
linear model would already yield a plausible result, we can reduce the final negative log-
likelihood even further by introducing higher orders polynomials, and hence parameters,
in our model. As soon as we will fit a polynomial with a degree of 19 it will perfectly
describe the data. But it would be way to wiggly and complex. If we would introduce new
measurements, the model would most probably not be able to describe those data well
due to the divergence outside of the original range of the time interval. In other words:
it would fail to generalize. Such a behavior is introduced when choosing an overly
complex and sophisticated model to describe a small number of data points. At a certain
number of degrees of freedom the model would rather fit the noise than the functional
dependence hidden in the data. This phenomenon is widely known as overfitting. For
linear models one can give a rule of thumb that one needs at least 10 times the amount
of data points as the number of parameters of the model to fit them (see Abu-Mostafa,
Magdon-Ismail, and Lin 2012).
In order to still fit a large amount of models into the data one can use a so-called

regularization term. These are positive and additive terms introduced into the negative
log-likelihood. The more complex the model becomes, the bigger they get.
The idea of an information criterion is to add regularization terms to the negative

log-likelihood of the fitted model and to use the result to judge the quality of the fit in
comparison to other models. In our example of the straight line above we would therefore
calculate the information criterion for all models we fitted to the data and choose the one
yielding the lowest value. An important assumption for the comparison of the different
models is that they all were fitted to exactly the same data.

The most popular criteria are the Akaike information criterion (AIC) introduced
by Akaike (1973)
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AIC = 2k − 2 ln(L), (5.7)

with L being the maximum likelihood and k being the total number of model parameters,
and the Bayesian information criterion (BIC) introduced by Schwarz (1978)

BIC = ln(n)2k − 2 ln(L), (5.8)

where n is the number of points in the data set. While both criteria perform quite
well on actual data, the BIC yields more conservative results than the AIC by preferring
models with lesser degrees of freedom. This is due to the additional factor ln(n), which
can be thought of as a normalization of the penalty introduced by the number of model
parameters on the likelihood. In order to get some intuition, we will draw a series of
10000 points from a GEV distribution with µ = 0, σ = 1, and ξ = 0.1. The negative
log-likelihood − ln(L) is 16.4 for the first ten points, 157.2 for the first 100, and 1624.7
and 16402.5 for the first 1000 and 10000 points respectively. The penalty term in the
AIC, however, will be the same for all subsets. It is of course plausible to describe larger
sets of data with more complex models. But to have three parameters yielding the same
ratio of penalty for 10 points as 3000 parameters for 10000 points seems not right. That’s
why a scaling of the contribution of k, which is smaller than the one of the likelihood
itself, is included. Apart from these, there are dozens, if not hundreds, of additional
criteria published.

5.4.2. Likelihood ratio test

The second approach is to construct a hypothesis test, the so-called likelihood ratio
test, out of the negative log-likelihood values obtained for different nested models. Nested
means that the parameter set θ0 of the more simple model is actually a subset of the
parameters of the more complex one θ1.
We calculate the deviance statistic by

D(θ1) = 2 (l(θ0)− l(θ1)) , (5.9)

where l are the negative log-likelihood values obtained by fitting an arbitrary model to
the data. For large n and under suitable regularity conditions, only for shape parameters
ξ > −0.5, the deviance D(θ1)∼̇χ2

d is distributed according to a χ2 distribution with a
degree of freedom equal to the difference in number of parameters of model 1 and model
0.

Using this fact we can construct the confidence intervals for a specific confidence level
α. As soon as the calculated deviance in equation (5.9) is outside of these confidence
intervals we have to reject the hypothesis of using the more parsimonious model, described
by θ0, in favor of the more complex one, described by θ1. This way, we can test all models
fitted to our data against the most simple one. If there is at least one model, for which
the hypothesis mentioned above has to be rejected, it will get adopted as our new null
hypothesis and we perform the likelihood ratio test again with all other models, for the
which the parameters of the new base model are a subset of their own parameters. This
procedure is repeated until none of the constructed hypotheses can be rejected anymore.
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In my opinion the approach of the likelihood ratio test is better suitable to perform
the model selection in the context of the EVA since it is quite easy to construct nested
models. In addition, the hypothesis tests yield a much more solid statistical foundation
than the regularization terms of the information criteria do.
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6. Pitfalls of the EVA
Every method has its benefits and its shortcomings. This is also true for the methods
based on extreme value theory. The benefit is of course that we are able to inspect the
very tails of the distribution of a measured process. We can make estimates of the highest
quantiles and their fitting errors. But when applying a rather sophisticated analysis
method to measured data there is unfortunately no free lunch.

This also holds true for the analysis with the GEV and GP distribution and the price
we pay is the reliability of our results. Even when avoiding numerical artifacts with the
improved fitting routines introduced in section 3.3 there are a lot of additional sources of
errors that can spoil our results. Therefore they always have to be treated with care.

Such additional sources are possible non-stationarities and/or correlations in the data,
errors introduced by the measurement device, an unsufficient length of the time series
(the aymptotic regime of the GEV or GP distribution has not been reached yet), and a
measurement period, which is not sufficiently long to properly capture the dynamics of
the underlying system. The effect of the last source of uncertainty is the most subtle one.
Therefore the remainder of this chapter will be used to illustrate its influence using a case
study on the gauge data of the river Elbe in Dresden we already know from figure 2.6.

6.1. Inspection of the gauge data of the river Elbe
Since we are not dealing with simulated data but with a real-world example, it is
important to have a look at the data set first.

The series in figure 6.1 exhibits a small seasonal component in the beginning of spring.
This is due to the melting of snow in the mountains providing intake to the river. But
the contribution of this component is rather small so I decided to analyze the raw series
instead.
It was measured at the so-called Augustus bridge in the city of Dresden in Germany

(see figure 6.2). The measurement station introduces a constant offset. At a gauge of 1m
the true depth of the river is 2.2m and the station itself is located at 102.68m above
sea-level.
The assumptions needed in order to apply the EVA require the series to be both

uncorrelated and stationary. Since we are only using the annual maximal values, the
resulting series can be considered uncorrelated. To decide whether the series can be
assumed to be stationary or not is more complicated. While the bulk of the data seems
to remain more or less in the same range of values, four out of the five of the largest
events occurred during the last 18 years.

To decide about the temporal dependence in the data I performed the non-stationary
EVA using the class of vector generalized linear models (VGLM) (see chapter 5), con-
structed various models to describe the extreme events in the time series, and choose the
most plausible model using both the Akaike information criterion (AIC) and the likeli-
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6.1. Inspection of the gauge data of the river Elbe

Figure 6.1.: The full series of the gauge measurement of the river Elbe in the city of
Dresden is shown as a blue line. The annual maxima are marked using orange dots.

Figure 6.2.: View of the Augustus bridge in Dresden. The measurement station of the
gauge series discussed in this chapter is located at the pillar in the center of the river.
Photo by Dr. Brend Gross [CC-BY](https://creativecommons.org/licenses/by/2.0/)
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hood ratio test (see section 5.4). For both measures the model containing no temporal
dependence turned out to be the most plausible one leading to the decision to consider
the series of the gauge as stationary. But note that what the likelihood ratio test did is
not rejecting the hypothesis of the underlying data to be distributed according to e.g. a
model with a linear dependence in time instead of a stationary one at a five percent
confidence level. This does not necessary mean the series is truly stationary. There
maybe be just too few data to proof the statistical significance of a trend in the series.
Is it plausible to consider the series of the river as stationary from a climatological

point of view? Due to the climate change the mean temperature of the ocean and the
air is increasing. Since the amount of moisture that can be stored by an air parcel is
increasing with temperature, the amount of water in the atmosphere and thus also the
total amount of precipitation is increasing. This leads, in general, to an increase of both
the frequency and the magnitude of floods. But what climate analysis and simulations
showed to be true for most parts of the globe does not apply to Europe (Trenberth 2011).
There the total amount of precipitation for individual regions seems to remain constant.
At the same time the studies show the extreme precipitations to become more extreme
while the mean amount of rainfall is declining (Trenberth, Fasulo, and Smith 2005). This
could serve as an explanation why four out of the five largest events occurred during the
last 18 years. Nevertheless, we will describe the series as stationary according to the
findings of the VGLM analysis.

6.2. Exploration of system dynamics

The tricky thing about river data is that the height of the river does not necessarily scale
linear with its volume. For small gauges the river basin often can be approximated by
e.g. a parabolic shape. But as soon as the height of the river overpasses the boundaries
of the river basin and floods the neighbouring regions, the scaling becomes much more
complicated. A tiny increase in the gauge can correspond to a tremendous increase of
the overall volume of the river.
Apart from the height of the river its flow velocity is usually measured as well. But

this quantity may yield an even worse proxy of total volume with respect to flooding
events. Imagine the river carries so much water it floods the neighbouring fields. While
the flow velocity is still as high as if the basin would be completely filled and no flooding
occurred, the water on the fields is barely moving. The water masses in both the basin
and the fields could be approximated as separate entities with a small coupling. But
since we only measure the flow velocity at a single point in the original river basin, we
would introduce a large systematic error every time a flooding event occurs. Instead, we
will use the gauge. It yields a far more stronger coupling of the water masses.

The dependence of the total volume of the river on its gauge itself does not cause any
trouble as soon as the basin of the river and the neighbouring regions were not altered
and can be considered stationary. The gauge represents still a stationary stochastic
process and can be described by the extreme value theory. It is the extrapolation of the
return levels to values not or barely seen in the data that becomes very complicated.
Let’s do a second thought experiment. Imagine we are facing 40 years of data of a river,
which floods its vicinity on average once every 50 years. In the data we were provided
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Figure 6.3.: EVA applied to the full series of the gauge of the river Elbe. Using the maxi-
mum likelihood estimates (MLE) of the parameters of the stationary GEV distribution
both the 100 year return level and the upper limit of the Weibull-type distribution were
calculated and marked.

with none of such a flooding events is present and we have the task to estimate the
height of a flood occurring on average once every 300 years. Since our approach is data
driven, the distribution we fitted did only see events within the approximately parabolic
basin. When extrapolating to unseen values by calculating the return levels we will now
most probably miss the gauge by a margin since the fitted model has no idea about the
upper end of the basin and the change in scaling behavior. The only way to properly
capture this scaling is to incorporate flood events into the fitted data. Therefore, the
time series containing only 40 years had not explored the dynamics of the underlying
system sufficiently in order to enable us to perform predictions using the EVA.
Let’s verify these remarks using the gauge series of the river. Firstly, we will analyze

the whole series and calculate both the 100 year return level and the upper end of the
GEV distribution (since it will be of Weibull-type). The results in figure 6.3 look plausible.
The 100 year return level is exceeded twice in this time series containing 65 years of
data but the flood in 2002 was the largest one in the history of Dresden and since the
return levels are average statistical quantities there is no problem in having a couple of
such events even one after another. Reviewing the estimates for the fitting error of both
quantities in table 6.1, which were obtained using the Monte Carlo method introduced in
section 2.2.3.2, one can clearly rule out any proper usage of the upper limit. Since its
error is even larger than its actual value, there are no conclusions to be drawn from it.
Now, let’s pretend it is the year 2001 and we have to perform the same analysis in

order to estimate the return level, which may be used to construct a dyke, and the
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Figure 6.4.: Similar analysis as in figure 6.3. But in here only the data before 2002 was
used. All data plotted in grey was excluded from the fitting of the GEV distribution.
This results in major differences between the obtained 100 year return level and upper
end point of the Weibull-type distribution.

upper limit. As we can see in figure 6.4 both the return level and upper limit again look
plausible facing only the data prior to 2002 but totally fail to describe the distribution of
the data in the upcoming years. Especially the exceedances of the upper limit, even after
considering its fitting error, at three points in time are quite bothering.
Why do the results differ so much? In table 6.1 you can find the GEV parameters,

return levels, and upper limits estimated for both the full series and the series before
2002. Including the last 18 years did only have a small effect on both the location and
scale parameter. But the shape parameter did change quite drastically. This is due to
its sensitivity to events in the tail of the distribution of the annual maximum values.
Including or excluding the largest or both the largest and second largest event results in
a large difference of the values of the shape parameter and thus also alters the return
level and upper limit as well as their error estimates by a margin (see section 3.3).

Another question, which immediately comes to mind, is whether the results of the full
series can be trusted. Maybe an even larger event will occur during the next years and
our analysis will again be spoiled. I do not think this will be the case. At several locations
in Dresden and Saxony in general one can find marks of the peak flood levels of events
throughout the last couple of centuries. Although these values might are inaccurate and
not suited for incorporation into the analysis itself, they quite nicely show the estimated
100 year return level to be of a plausible value. The actual magnitude will very likely
change when incorporating more events sampling the tail of the annual maximum values
but the change in GEV parameters will be small compared to the one between the full
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Table 6.1.: The MLE of the GEV parameters were fitted to either the full gauge series or
only to the data before 2002. In addition, the 100 year return levels and the upper end
points of the Weibull-type distribution have been calculated from those parameters and
the fitting errors of all quantities have been estimated using the Monte Carlo method.
All values, except of the dimensionless shape parameter, are given in cm.

full series series till 2002
location 449.99 ± 17.4 460.96 ± 19.15
scale 121.53 ± 12.1 119.40 ± 11.81
shape -0.14 ± 0.1 -0.54 ± 0.09
100 year return level 864.65 ± 61.4 663.00 ± 11.45
upper limit 1336.56 ± 1896.7 681.19 ± 15.48

series and the series before 2002.

6.3. Summary of the pitfalls in the EVA
By naively applying the EVA to a time series one might obtain results that are totally
wrong. Even if the series itself is both uncorrelated and stationary and the size of the
blocks is large enough to sufficiently approximate the asymptotic limit of the extreme
value theorem. Therefore one has to use all sorts of additional information, like sparse
observation data from earlier time, simulation data, and/or physical insights into the
system the analysis is applied to. If it shows dynamics on time scales larger than the
length of the time series itself, the block maxima might not sufficiently sample the tails
of the PDF and thus will lead to erroneous descriptions of the higher quantiles by the
EVA.
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7. Analysis of the temperature and rainfall
data provided by the DWD

The main objective of this thesis is to study the change of extreme weather events in
time. The question I want to answer is not why there are changes in the climate but
rather if and how it does change. To give statistically sound answers, one needs a lot of
data determining the state of the climate at both present and past times. On top of that,
the extreme value analysis with its peak over threshold and block maxima method is
especially data consuming. That’s why we need our time series to be as long as possible.
This requirement restrains us from using satellite data, which only became available in
reasonable quality after the launch of the TIROS-N satellite in 1978 (Dee et al. 2011).

The data source used within this chapter is the vast archive of measurement stations
provided by the German weather service (DWD) (Deutscher Wetterdienst 2018). This
comprehensive collection features 1082 different stations, each containing recordings of
various climatological quantities, and does approximately cover the area of Germany
uniformly. Our analysis will therefore be restricted to observations within Germany and
our conclusion may not hold for other countries within Europe, let alone the world.

To nevertheless embed our local findings into the global climate system, chapter 8 will
contain an analysis similar to the one in this chapter performed on the ERA-Interim
reanalysis data set.

Of all climatological quantities measured at the different observation stations three dis-
tinct ones will be analysed and discussed: the daily maximum and minimum temperature
and the daily total precipitation. The daily maximum and minimum temperature yield
the range of the values realized throughout a single day. It does not have a sufficient
temporal resolution to gain insights into the particular dynamics and fluctuations of the
temperature in the atmosphere. But it is perfectly suited to draw conclusions about
the tails and quantiles of the temperature distributions. The daily total precipitation
is the height of rainfall accumulated over a time period of one day. The distribution
of this quantity differs a lot from the one of the temperature. While daily, monthly,
hourly, or minute-wise temperature measurements are all sampled from one (possibly
non-stationary) climatological distribution, precipitation data of different time scales can
not be described by a single function. The shape and type of the distribution is depending
on the time the rainfall gets accumulated in and is not invariant under transformation of
scales. All the conclusions we draw for the right tail of the daily total rainfall will thus
only hold for an accumulation window of approximately one day. The hourly or weekly
total precipitation might show a completely different behavior.
The comparison of the observation data to the global ones in chapter 8 will only

be done for the temperature data. While these are obtained using direct observations
entering both the atmospheric model and the adjustment of the forecast step (see section
8.1), rainfall is only a derived quantity. This means that the measurements of the daily
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total precipitation do not enter neither the forecast nor the adjustment step. Instead,
the atmosphere is getting initialized using, among others, temperature and air pressure
measurements and the model simulates its dynamics for over a day. If some clouds
did form and the right conditions were met, the forecast step will return a quantity
representing the daily accumulated rainfall. But the description of especially cloud
formation and dynamics is still an ongoing and very difficult area of research (since it
happens on regional scales similar to the resolution limits). The errors of the simulated
precipitation are therefore far to large to allow an integration into our analysis.

To obtain insights into the temporal evolution of extreme weather events in the climate
change we will perform two different analysis. In the first one, which we will call the time
window method, the annual maxima of the temperature or precipitation data (or annual
minima for the daily minimum temperatures) get extracted and split into time windows
of equal size. Within those windows a stationary EVA discussed in chapter 4 is applied
and the results of different windows are compared afterwards. The second method is
based on the vector generalized linear models introduced in chapter 5 and will be thus
called the VGLM method. It uses the block maxima/minima of the whole series and
performs a non-stationary EVA by fitting a GEV distribution with a linear trend in time
to both the location and scale parameter. Using a model with no temporal dependence at
all as a baseline the presence of trends in the extreme events of the data can be checked
by a hypothesis test called the likelihood ratio test (see section 5.4.2). The benefit of the
VGLM approach is that we can make quantitative and statistically sound statements
about the existence of possible non-stationarities in the data. But at the same time
its first order linear models are only a crude approximation of the true changes of the
tails over the last 60 years. In terms of interpretability and explanatory power the more
qualitative approach of the time window method is better suited to make statements
about the particular nature of the changes in the underlying climatological system. In
addition to the EVA the change of the overall distribution of the observed quantity is
analyzed using the time window method as well. This will be done to get some general
insights into the temporal changes of the climate system as a whole in order both to find
reasons for the changes in the extremes and to perform a comparison between the two.

7.1. Preprocessing of the DWD data

The length of the time series used within this analysis, as already has been hinted, is set
to 60 years. This seems to be the ideal number as we trade the maximum possible time
series length off against the maximum number of involved stations. Only 199 stations out
of the 1082 in the data base of the DWD do have a length of at least 60 years. A number
that decreases rapidly the more years we require. Considering the length of an individual
series 60 years is already sufficiently large. It spans two distinct periods of 30 years,
which is the default time period to define climate in atmospheric sciences. An even more
important reason to use at least 30 years of data within one time window stems from the
maximum likelihood fit of the GEV distribution. In the stationary EVA, applied within
the individual time windows, a three parameter GEV distribution is fitted to the data.
As a rule of thumb (Abu-Mostafa, Magdon-Ismail, and Lin 2012) at least ten times more
data than the number of parameters should be used for the fitting procedure. Bigger
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time windows would improve the estimation from a numerical point of view but will be
more likely to violate the assumption of stationarity within the window and drastically
decrease the number of involved measurement stations.
We already established that the description of the temporal evolution of the GEV

parameters by a first order linear model is a rather crude assumption. But an analysis
featuring only two time windows wouldn’t be any better. Instead, we introduce a third
time window having an overlap of 15 years with the other two non-overlapping windows
as well. This will be done to both perform analysis of the temporal evolution in more
detail and to verify the underlying assumptions of the VGLM approach. If the changes
in the parameters do not occur in a consistent way, their descriptions with first order
linear models can not be justified. On the other hand, we could also use more complex
models, like linear models of second or third order. But the first order approach with a
linear trend in time for both the location and scale parameter, while keeping the shape
parameter constant, does already contain five different coefficients to be fitted to the data.
With only 60 data points at hand we are already on the brink to the realm of overfitting.
And indeed, comparing the fit results with more complex models via information criteria
(see section 5.4.1) and the likelihood ratio test (see section 5.4.2) yielded no significance
to use them over the first order ones.
In order to compare the results of the different stations, an additional constraint has

to be introduced: all series have to be complete and cover the same years from 1957 till
2016. The station data of the DWD is considered to be of high quality and extensive
temporal coverage. Nevertheless, some of the series contain missing values ranging from
single days to a couple of years. This can introduce two different types of errors. Firstly,
if only a subset of data is available within a year, the extraction of the minimum or
maximum value in the GEV analysis will introduce artifacts and possibly spoil the
analysis. Imagine only the first two months of a temperature series being present for
a particular year. The maximum value extracted from those winter months will be by
no means an approximation of the true annual maximum (at least not at the latitudes
of Germany). Thus, including this artifact in the analysis will most likely distort the
estimation of the GEV parameters, especially of the shape parameter, which is very
sensitive towards outliers. Secondly, if a couple of years are missing in one of the data
sets, the obtained results of the analysis will loose their comparability with other stations
to some extend. By requiring all series to have exactly the same length and allowing
them to cover different years, some might include or miss a year with especially extreme
weather events. This point, taken from the very tail of the distribution, will largely affect
the value of the shape parameter, which has been shown in chapter 6. But since not
all series do share the event, this mismatch in the temporal alignment introduces an
additional source of error to the analysis, which can be circumvented at the expense of
a smaller number of stations at hand. In the resulting set of complete and temporally
aligned stations spanning the years between 1957 and 2016 there are 74 series for the
maximum daily temperature, 75 for the minimum daily temperature, and 57 for the daily
total precipitation.

In addition to the raw maximum and minimum temperature series the seasonal cycle
will be removed by calculating their anomalies (see section 4.3.1). This will always be
performed on the whole time series and thus prior to the separation into the distinct
time windows. Both quantities, the raw temperature series and the anomalies, provide
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two different views on the temperature distribution. The extreme events in the raw
series correspond to exceptionally hot days in summer or cold days in winter. While just
a minor detail considering the overall climate, those extreme temperatures do have a
significant impact on the human life, economy, and health. A large body of literature is
devoted to the investigation of their causes and implications (Christidis, Jones, and Stott
2014, @Kamae2014, @Unkasevic2005, @Schar2004, @Schar2004a). The extremes in the
temperature anomalies, on the other hand, are not of big concern to the society itself.
A day in January being 15 degrees warmer than usual might be welcomed the freezing
people or an exceptionally cold day in July might be considered refreshing. But since the
anomalies represent the deviations from the mean climatology their extreme events do
tell us a lot about the variation of the climate system itself. Especially since they are
sampled throughout the whole year and not just in the warmest or coldest months as for
the raw data. The precipitation series do have a seasonal cycle as well. But it is way less
pronounced and thus not treated separately.

When analyzing the data of the many different stations and e.g. plotting all their mean
values into a single distribution we have to ask ourselves about the correlations between
series. Since we assume them to be spatially pointwise measurements of a shared overall
climate within Germany, it is save to assume that they are correlated. Then again, they
show distinct and sometimes even opposite behaviors. In an ongoing project with some
colleges we found the series of the daily maximum temperature anomalies of the DWD
to be best modelled with a shared trend, a shared long-range correlated noise, and an
individual Gaussian white noise with parameters specific to each station (Yu et al. 2018).
These correlations prevent us from discussing the changes of the nationwide temperature
distribution by lumping together all the different measurements and estimating a single
PDF for each climatological quantity. Instead, the first four moments of each individual
series will be calculated within the different time windows and the temporal evolution of
the distributions of those moments will be used to draw conclusions about the changes
in the climate within Germany.
Apart from the preprocessing applied to the data itself, a critical part of the EVA

is to decide whether to use the GEV distribution and the block maxima approach or
the GP distribution and the threshold exceedances. For our analysis I chose the GEV
distribution because both the extraction of the annual maximal/minimal values and the
fitting itself can be easily automated. The extraction of the threshold exceedances, on the
other hand, requires a manual setting of the threshold height. Both the normalization
of the data and the usage of a high quantile (e.g. 0.975) as default values have proven
insufficient in previous analysis.

7.2. Structure of the analysis

The first part of the analysis is covering the daily minimum and maximum temperature
series using both the anomalies and the raw series. The second, much smaller, one will
discuss the annual maxima of the daily total precipitation.

The analysis of all the measurement stations at once is a great opportunity to gather
insight into the changes of the overall climate within Germany. But we are also bound
to loose some detailed information about the individual stations in the process of spatial
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coarse-graining. The analysis of the individual parts, first the temperature anomalies,
then the raw temperature series, and finally the precipitation data, will therefore start
with a case study. I chose the Potsdam measurement station since its old measurement
equipment is still available and thus its calibration is well-checked and considered to be
of especially high quality. Since it is located outside of the city of Potsdam it is not
affected by the heat island effect.

Afterwards, the whole ensemble of series will be analyzed and compared to the results
obtained for the Potsdam station. Although this is a central part of this thesis, the
investigated quantities (first four moments and the three GEV parameters plus two
return levels for the daily maximum/minimum raw temperatures/anomalies or rainfall)
are just too many to present them in this chapter. The proper analysis of the DWD
series was therefore moved to the appendix A and only some highlights and important
results are mentioned in here. Since, as discussed above, the overall distribution of the
climatological quantities can not be accessed by estimating the PDF of all observed data
at once due to the spatial correlations between the individual stations, the temporal
evolution of the first four moments are analyzed instead. These will serve as proxies
for the overall shape and behavior of the climate in Germany and can be interpreted as
follows. An increase in just the mean corresponds to a shift of the distribution towards
higher values while its shape remains unchanged. A larger variance reflects a broader
distribution while both its symmetry and the ratio of mass between its bulk and tails
stays the same. The skewness is a measure of symmetry of a distribution and positive
values indicated that the right tail is fatter than the left and vice versa for negative values.
Thus, an increase in skewness indicates an increase in mass of the right tail with respect
to the left. Since only the right tail of the GEV distribution fitted to the daily maximum
temperatures and daily total precipitations and only the left tail for the daily minimum
temperature are of interest in the EVA, one has to be careful with the interpretation.
Larger values of the skewness for the daily minimum temperatures lead to a lighter left
tail of the overall distribution. The right tail of the daily minimum temperatures is of no
interest in neither the analysis of the extreme events nor the description of the climate
itself. The kurtosis comes in different flavors. In this analysis Pearson’s measure of the
kurtosis will be used, which is the fourth moment of the distribution divided by the
fourth power of the standard deviation. It can be understood as a comparison between
the probability mass of the tails and the bulk of the PDF. For a Gaussian distribution
it would have a value equal three. The higher the kurtosis, the sharper the peak of the
distribution, the fatter its tails, and thus the slower their decay towards infinity gets. For
smaller and smaller values of the kurtosis the distribution does approach the uniform
distribution. An increase in kurtosis will therefore correspond to an increase in mass
in the tails of the distribution and to larger extreme events at a given return period.
While these interpretations are well suited for the analysis of the temperature anomalies
and precipitation data they might have less meaning for the raw temperature series,
which feature a bimodal distribution. But since the analysis of the overall distribution is
mainly serving as an appetizer and source of interpretation for the results of the EVA, no
additional measures will be introduced in order to analyze the raw temperature series.
The distributions of the first four moments, colored according to their time window,

will be presented in a single figure. To ease the comparison of the Potsdam station
with the overall statistics of the German climate, the results of the Potsdam series are
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marked with vertical lines. Since the changes in the climate will most probably not occur
uniformly in space, both the values of the last time window and the difference between
the third and first time window will be plotted on a map. This way possible patterns
could be found, which would else remain hidden in the distribution of the moments.

After the analysis of the overall distributions the EVA is performed using the time win-
dow approach. Firstly, the temporal evolution of the fitted GEV distribution (Potsdam)
or the distributions of the fitted GEV parameters (Germany) are discussed. Afterwards,
again, the values of the third time window and the changes will be plotted on a map.
Last but not least, the significance of the trend in the extreme events is checked using
the VGLM approach and the results are displayed using a map too.

When interpreting the colors of the maps please keep the following in mind. In order to
be as consistent as possible but at the same time to allow the colors to be as meaningful
as possible, I kept them fixed to a certain degree. The value of the third time window
will always be displayed as the inner color of the circle. If it is spanning both negative
and positive values, yellow will be the lowest, red the highest one, and orange will
correspond to zero. For only negative values yellow will, again, be the lowest one and
orange corresponds not to zero but to the largest value present in the data. For only
positive values red is the largest and orange the lowest value but not necessary zero. In
addition, in some maps, spanning both negative and positive values, bright yellow or
deep red might be absent. This is because the color scales between yellow and orange
or red and orange are always symmetric. Thus, if the biggest absolute value is 0.7 and
corresponds to an observed -0.7 colored in bright yellow, the value corresponding to dark
red will also be set to 0.7. Now, if the largest observed positive value is no larger than
0.2, the color range will be already exhausted at a reddish orange. But now the reader
can easily look at different pictures without getting fouled by the color scales. The same
holds for the difference between the third and first time window, which will be always
plotted as the outer color of the circle. But in contrast to the inner one the highest value
in here will always correspond to a dark green, the lowest to a dark red, and zero change
will always correspond to white.

In addition to multiple colors there will also be two subplots in each figures of the
temperature analysis. They will correspond to the analysis of the daily maximum and
minimum temperatures. For plots containing time series the daily maxima are always
plotted above the minima and for distributions and densities the minima are always left
of the maxima. In order to avoid any confusion orange strips were added to all plots
labeling what is depicted there.

7.3. Temperature anomalies of the Potsdam station anomalies
As outlined in section 7.2 we will start the analysis of the DWD temperature series with
the case study of the Potsdam station.

7.3.1. Time series and overall distribution
We begin with an inspection of the daily temperature anomaly series in figure 7.1. The
range of temperature values densely filled by the daily maximum anomalies (upper plot)
is wider than the one of the minima. This indicates a larger variance of the daily maxima.
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Figure 7.1.: Plot of the daily maximum and minimum temperature anomalies of the
Potsdam station in Germany. Displayed are 60 years of data, from 1957 till 2016, which
are required to be present in all time series analyzed within this chapter. In addition,
the three time windows of the corresponding analysis are depicted using colored bars in
the bottom of the figure. The first window (red) reaches from 1957 till 1986, the second
one (green) from 1972 till 2001, and the third one (blue) from 1987 till 2016.
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Figure 7.2.: Probability density functions (PDF) of the Potsdam temperature anomalies
obtained using kernel density estimators. For the individual densities only measurements
within the corresponding time windows of figure 7.1 have been used.

On the other hand, the daily minima do have a larger overall range of observable values
and a pronounced asymmetry of the tails. The spikes towards negative temperatures
are more than double the size of the ones towards positive temperatures. Upon closer
inspection those large spikes towards negative temperatures all occur in winter months
with three exceptions, one in mid November and two in the end of March. This is due to
the heteroscedasticity of the temperature in the latitudes of Germany, where the variance
in winter is larger than in summer.

In both the minima and maxima a small positive trend can be found. In addition to a
mere shift of the time series the daily minima seem to have less spikes in negative and
more in positive direction in the third time window (blue) compared to the first one
(red).

To further investigate the temporal evolution of the series’ behavior, its PDF and its
first four moments are estimated within the three time windows represented by colored
bar at the bottom of figure 7.1. Figure 7.2 shows the PDFs obtained using a kernel
density estimator plotted on top of each other, with their colors corresponding to the
ones of the particular time window, in figure 7.1. The numerical estimates of the first
four moments can be found in table 7.1.

They revealed a consistent shift of the PDF towards higher temperatures. In total, the
daily minimum temperature anomalies increased by 0.82 ◦C and the maxima did show
an even stronger increase by 0.88 ◦C. A note of caution when interpreting these and the
following numbers. They refer to e.g. changes in the mean temperatures of the first 30
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Table 7.1.: Numerical estimation of the first four moments of the Potsdam temperature
anomalies in the different time windows. The windows correspond to the colored bars at
the bottom of figure 7.1.

window mean variance skewness kurtosis type
1957 till 1986 -0.41 13.76 -0.51 4.14 daily minimum
1972 till 2001 -0.04 13.31 -0.34 3.88 daily minimum
1987 till 2016 0.41 13.11 -0.37 3.97 daily minimum
1957 till 1986 -0.44 19.15 0.10 2.81 daily maximum
1972 till 2001 -0.13 19.54 0.12 2.79 daily maximum
1987 till 2016 0.44 20.18 0.09 2.79 daily maximum

years compared to the ones of the last 30 years and thus underestimate the absolute
increase between the first and last year of the series. An equal mean with opposite signs
in the first and third time window (as in table 7.1) is a feature by construction when
using anomalies.
In the variances of the densities a large asymmetry can be found. The variance of

the maxima is almost twice the one of the minima. In addition, they do show opposite
trends. While the variance of the minima is getting smaller, the one of the maxima is
getting bigger. The daily minima can be used as proxies for temperatures at nighttime
and the daily maxima for temperatures at daytime. This matches the perceived feeling
that the variability of the climate does increase in time.

Apart from the variance the densities do also differ in their overall shape. The maxima
do have a positive skewness and thus a slightly heavier tail towards higher temperatures.
The minima, on the other hand, do have a negative and a much more pronounced
skewness as well as a larger kurtosis. This results in a far stronger asymmetry and much
heavier tails towards of the density towards lower temperatures. The latter corresponds
to the major spikes towards very low temperatures occurring in winter. All these findings
also indicate that the overall temperature PDF does have heavy tail towards both high
and low values, with the one to the left being slightly heavier than the one to the right.
Considering the temporal evolution of the shape of the distributions, the density of

the minima becomes much more sharp and focused. At the same time, the pronounced
peak of the maxima obtains a bimodal structure. Then again, the skewness and kurtosis
of both quantities do remain approximately constant, aside from a lower skewness in the
first time window of the minima. In addition, the changes in the third and fourth moment
do not appear to be consistent between the different time windows and might just be
due to statistical uncertainties. The climate change thus seems to be most pronounced
in the mean and variance of the temperature anomalies.

7.3.2. Non-stationary EVA and significance

After a discussion of the general changes in the daily Potsdam series we will now perform
both the qualitative time window as well as the quantitative VGLM analysis. Using
the obtained results we will identify if and how the extreme temperature anomalies did
change over the past 60 years.
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Figure 7.3.: GEV densities constituted by the parameters fitted within the different
time windows. To generate this figures, firstly, the annual maxima/minima of the daily
maximum/minimum temperature anomalies (see figure 7.1) were extracted. Afterwards,
the series were split into three time windows and a stationary GEV distribution was
fitted using all block maxima/minima within the individual windows.
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Table 7.2.: GEV parameters and some return levels for the Potsdam temperature anomalies
within the three time windows. All quantities except of the shape parameter are given in
degree Celsius and all error estimates are calculated using the Monte Carlo method.

window location scale shape 10 year ret 100 year ret type
1957-1986 -12.28±0.59 3.19±0.48 -0.17±0.15 -18.26±1.07 -22.53±2.70 min
1972-2001 -10.95±0.62 2.77±0.41 -0.19±0.16 -16.04±0.96 -19.48±2.27 min
1987-2016 -10.51±0.68 2.89±0.41 -0.23±0.16 -15.58±1.28 -18.68±2.44 min
1957-1986 11.04±0.32 1.36±0.22 -0.21±0.15 13.48±0.42 15.04±0.82 max
1972-2001 11.41±0.27 1.25±0.17 -0.36±0.15 13.34±0.27 14.23±0.40 max
1987-2016 12.20±0.25 1.15±0.16 -0.43±0.15 13.87±0.22 14.52±0.28 max

We start with the time window approach and fit the stationary GEV distribution
to the annual maxima of the daily maximum temperature anomalies or to the annual
minima of the minima within the three time windows. The resulting distributions are
displayed in figure 7.3 and the corresponding GEV parameters can be found in table
7.2. Note that we will fit GEV parameters to the block maxima/minima using the
maximum likelihood method discussed in section 3.3. The distributions in figure 7.3 are
not estimated from the histograms of the block maxima/minima but are the true GEV
distributions corresponding to the estimated parameters, which are given in table 7.2.

Similar to the mean values of the overall PDFs, the location parameters do consistently
shift towards higher temperatures too. For the block maxima of the daily maximum
temperature anomalies, which will be abbreviated to daily maxima in the remainder of
the EVA analysis, a shift of 0.76 ◦C was found. This is comparable to the 0.88 ◦C found
for the mean value. The increase in location of the daily minima of about 1.77 ◦C is
more than double the increase of the corresponding mean value. This already hints that
the changes in the tails of the overall temperature distribution won’t be summarized by
mere shift towards higher values but instead a fairly complex and asymmetric one.
The scale parameters are getting smaller. For the daily minima a minor increase

between the second and third time window can be found but taking the first time window
into account there is still a general downward trend. This is in contrast to the findings
for the overall variances of the anomaly series, which decreased for the daily minima
but increased for the maxima. Therefore, the general variability of the daily maximum
temperature anomalies is increasing while the variations in the large deviations from
the mean climatology are getting smaller. These findings match the decrease in kurtosis
found for the daily maxima. In addition to the temporal evolution also the relative size of
the variability of the daily maxima compared to the minima differs between the extreme
events and the bulk of the data. For daily minimum temperature anomalies the scale
parameter is double the size of the maxima’s one. For the variance of the overall densities
the opposite behavior was found.
Both the daily minima and maxima are of Weibull type and their shape parameters

are getting even more negative. This corresponds to a lightening of the tails. In addition,
both of them are bounded and the biggest/lowest possible value is coming closer the
lower the shape parameter gets (for a shape of zero the bound is moving towards infinity
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and the distribution gets of Gumbel-type). But due to the findings in chapter 6, we
should not trust the implications of this upper/lower bound, especially not when it is
obtained from as few as 30 data points. That’s why they won’t be reported or discussed
in the remained of the analysis anymore.
While the GEV parameters are fitted to the block maxima/minima it is the return

levels we are most interested in the EVA. They represent the very large quantiles of the
original distribution and provide insight into possible changes in the extreme weather
events. For the daily minima a pronounced increase in return level at both the 10 and 100
year return period could be found. Thus, there will be less extreme deviations towards
cold temperatures. The maxima show a slight increase in 10 year return level and first a
decrease but afterwards a slight increase in 100 year return level. This rather complex
behavior is most probably caused by several ingredients. The increase in location of both
the daily maxima and minima results in a general gain in return levels. The decrease
in scale, on the other hand, yields smaller return levels, and, finally, the more negative
shape parameters cause the return levels to shrink in size as well. The difference in shape
of the daily maxima between the first and second time window is larger than between the
second and last window and the location parameter exhibits the opposite behavior. We
can thus see a decrease in return levels at first and an increase thereafter. This behavior
is more pronounced in the 100 than in the 10 year return level since the increase in
location contributes a constant shift to the return level but the influence of the shape
parameter increases as the return period becomes larger and larger (see equation (2.1.1)).
In the 10 year return level it still manifests with first a small and then a larger increase
in return levels. For the minima the picture is more simple since the increase in location
and the decrease in scale and shape cause all return levels to decrease as well.
Following the qualitative time window analysis we perform the more quantitative

VGLM approach. Here, we fit all of the block maxima/minima using a stationary GEV
distribution and one with a linear trend in both the location and the scale parameter.
Afterwards, we will use the so-called likelihood ratio test to check which model, the
stationary or non-stationary, is more likely to describe the observed data. Our null
hypothesis will be the one of the stationary model and we use a 5% significance level to
test whether this hypothesis can be rejected in favor of the more complex non-stationary
model. For a detailed description of the non-stationary analysis include the class of vector
generalized linear models (VGLM) and the likelihood ratio test please see chapter 5. The
return levels and the result of the hypothesis test are shown in figure 7.4. It resembles the
findings of both the 10 and 100 year return levels obtained in the time window approach
and proves the trends in the parameters to yield a significantly better description of the
underlying data. This analysis therefore shows statistically sound evidence for a change
in the extremely high and extremely low temperature anomalies. While for the former
there is a slight increase in the moderate extreme events and a slight decrease in the
largest events, the extreme deviations towards lower temperatures do all decrease at an
even higher rate.
An underlying assumption for the VGLM approach to yield a good description of

the block maxima/minima is that the changes occurring in the GEV parameters can
be approximated by a first order linear model. If not, we would underfit the complex
dynamics of the system and would strip the results of the VGLM approach off any
meaning. As can be seen in table 7.2 all changes of the GEV parameters except for the
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Figure 7.4.: This figure shows the results of the VGLM analysis of the Potsdam tem-
perature anomalies (see figure 7.1). Firstly, the annual maxima of the daily maximum
temperature anomalies (top) and the annual minima of the daily minima (bottom) were
extracted. They are plotted using orange dots and connected by blue lines. In these
block maxima/minima a non-stationary GEV distribution with a linear trend in time in
both the location and scale parameter was fitted using the framework of the VGLM (see
section 5.2.1). The 10 year (soft color) and the 100 year (dark color) return levels were
extracted and added to the series. Finally, the fit of the non-stationary GEV distribution
was compared to a stationary one using a likelihood ratio test (see section 5.4.2). If the
null hypothesis of describing the block maxima/minima using the stationary model was
rejected at a 5% significance level in favor of the non-stationary one, the return levels
were plotted in green. If, on the other hand, the null hypothesis could not be rejected at
this significance level, it was plotted in red. In this plot, however, the non-stationary
model of both the block maxima and minima is significant and thus only green colored
return levels are present. Note that while the trend in the location and scale parameter
is indeed a linear one, the resulting return levels do not have to be a straight line (see
equation (2.1.1)).
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scale of the daily minima could be indeed described by a first order linear model. As a
result I tried to use a more complex model featuring a first order linear model for the
location parameter, a second order linear model for the scale parameter, and a constant
shape parameter for the daily minima. But both the likelihood ratio test and various
information criteria did not suggest this model to yield a significantly better description
than the first order linear one. On the other hand, even the model featuring a linear
trend in both the location and scale parameter might be already fairly complex and
the description would be more appropriate with one containing a linear trend in only
one of the parameters while keeping the other two constant. Such models showed to be
on average worse performing than the one with two linear trends and a constant shape
parameter.

7.4. Raw temperature series of the Potsdam station

Next, the raw temperature series of the Potsdam station will be analyzed. In contrast to
the anomalies their changes do reflect the impact of the climate change on the society
more directly. But since most of the results will be quite similar to the ones obtained for
the Potsdam temperature anomalies in the previous section, only differing results will be
reported. Note that the block maxima of the raw temperatures are distinctly different
events than those of the anomalies and not just scaled versions. For one, all extremely
high raw temperatures are located in summer while those of the anomalies can be found
in any season throughout the year.

7.4.1. Time series and overall distribution

We, again, start with the plot of the time series in figure 7.5. Despite of the pronounced
annual cycle we still find the variability of the daily maximum temperatures to be larger
than the one of the minima.

The main difference between the estimated densities of the anomalies in figure 7.2 and
of the raw series in figure 7.6 is the bimodal structure introduced by the annual cycle.
The corresponding numerical estimates of the first four moments can be found in table
7.3. In general the bimodal structure remains constant in time. For the daily minimum
temperature the left peak, which corresponds to the average temperature during winter,
is nevertheless getting smeared out in the last time window. This indicates more mild
winter months but also, on average, colder springs and autumns during nighttime since
we are dealing with the daily minimum temperatures. The magnitude of the change in
mean is the same as for the anomalies, the skewness and kurtosis remain, again, more or
less constant, and the variance is approximately decreasing too. Upon closer inspection,
the variance is getting smaller in the second time window for both the daily maximum
and minimum temperatures but increases again in the third one. This might cause
problems since we are fitting a linear model to the scale dependence. But as for the
temperature anomalies, fitting a second order linear model resulted in overfitting and
was not favored by neither the likelihood ratio test nor the information criteria.
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Figure 7.5.: Plot of the daily maximum and minimum temperature series of the Potsdam
station. Compared to figure 7.1 the series display a pronounced annual cycle.

Table 7.3.: Moments of the raw Potsdam temperature series in the different time windows.

window mean variance skewness kurtosis type
1957 till 1986 4.85 49.35 -0.39 2.81 daily minimum
1972 till 2001 5.22 46.50 -0.31 2.72 daily minimum
1987 till 2016 5.68 47.13 -0.30 2.67 daily minimum
1957 till 1986 13.19 84.67 -0.04 2.19 daily maximum
1972 till 2001 13.50 81.89 0.00 2.24 daily maximum
1987 till 2016 14.07 83.99 -0.03 2.23 daily maximum
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Figure 7.6.: This figure shows the PDFs of the raw temperature series of the Potsdam
station in figures 7.5 similar to the one of the anomalies in figure 7.2.

Figure 7.7.: GEV distributions constituted by the GEV parameters fitted to the block
maxima/minima of the raw temperature series in figure 7.5.
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Table 7.4.: GEV parameters and some return levels for the raw temperature series of
the Potsdam stations in the three time windows. All quantities except of the shape
parameter are given in degree Celsius and all error estimates are calculated using the
Monte Carlo method.

window location scale shape 10 year ret 100 year ret type
1957-1986 -14.39±0.85 3.92±0.54 -0.31±0.15 -20.76±1.36 -24.06±2.38 min
1972-2001 -12.46±0.67 3.55±0.57 -0.23±0.13 -18.69±1.06 -22.54±2.09 min
1987-2016 -12.17±0.62 3.36±0.48 -0.23±0.16 -18.07±1.12 -21.70±2.36 min
1957-1986 32.99±0.40 1.78±0.28 -0.20±0.15 36.21±0.52 38.31±1.07 max
1972-2001 33.49±0.37 1.85±0.31 -0.23±0.17 36.74±0.52 38.73±1.13 max
1987-2016 34.20±0.45 2.07±0.31 -0.38±0.16 37.34±0.42 38.72±0.77 max

7.4.2. Non-stationary EVA and significance

The GEV distributions fitted into the raw daily temperature series can be found in figure
7.7 and the corresponding parameters including their fitting errors in table 7.4. One finds
almost all fitting errors to be larger than the ones obtained for the temperature anomalies
in the last section. While previously the changes were still bigger than the errors this
relationship is now the opposite and it is indeed questionable what to learn from the
results of the raw temperature series. But the time window approach is a more qualitative
method, which enables us to access the overall change of the extreme events. To draw
statistically sound conclusions, we will rely on the VGLM approach in combination with
the likelihood ratio test. If there are indeed significant changes in the data, the hypothesis
of a better description using a stationary model over a non-stationary one can be rejected.
Whether or not the fitting errors in the 30 year windows are larger than the changes does
not enter in this maximum likelihood-based approach.
The distributions in figure 7.7 show a decrease in scale for the daily minima but an

increase for the maxima. This is in contrast to the findings of the anomalies, which
showed a decrease for both types. The scale parameter undergoes a more consistent
change than the variances of the overall daily series. The shape parameter, on the other
hand, is shifting to smaller negative values for the minima and to higher negative values
for the maxima. The increase of the shape parameters for the daily minima, which can
not be found in the series of the anomalies, thus indicates that the tails of the overall
temperature distribution are getting more fat towards low temperature and less fat
towards high temperatures.
There is an overall increase in all return levels. The decrease in scale for the minima

is compensated by the less negative value of the corresponding shape parameter. For
the maxima the increase in the location and scale parameter causes the return levels to
rise. At the same time influence of the more negative shape parameters results in smaller
and smaller return levels for higher return periods. The extremely cold days in winter
therefore become warmer, the moderate extreme hot days become more frequent, and
the extremely hot days stays more or less the same. Albeit the slope of the return levels
found in the VGLM analysis is almost the same compared to the anomalies, the trend in
the extreme events of the daily minimum temperature is not significant. This is due to
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Figure 7.8.: The figure shows, similar to figure 7.4, the results of the VGLM analysis for
the black maxima/minima of the daily maximum/minimum temperature series of figures
7.5. As indicated by the colors of the return levels (lighter color corresponds to the 10
year return level and darker color to the 100 year return level) the model describing the
daily minimum temperatures is not significant. In constrast to the extreme events of the
daily maximum temperature it is thus best described by a stationary model.
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the larger variance in the block minima, which can be seen in figure 7.8, and is consistent
with the larger error estimates obtained in the time window approach.

7.5. Analysis of the temperature series within Germany
The case study of the Potsdam temperature anomalies in section 7.3 provided us with
some insights into possible temporal changes of the overall temperature distribution. But
whether the obtained results for the local weather at Potsdam are reasonable proxies for
the general climate within Germany is hard to tell without performing a similar analysis
on large amount of stations within Germany. Since each GEV-fit is based on only 30
values, there are considerable statistical uncertainties, even when ignoring the possibility
of local effects. Thus, we will analyze all series provided by the DWD, which meet our
criteria in length and quality (see section 7.1), and compare the results with the ones of
the Potsdam station.

Although the changes of the first four moments in time throughout Germany are quite
interesting, the whole analysis will not be covered in this chapter. The figures and their
interpretations are just too many and thus they are moved to the appendix (see A).
Instead, only the results for the 10 and 100 year return levels will be reported in here.
To fully conceive their temporal evolution on the basis of the changes of the individual
parameters, studying the appendix is strongly recommended.

7.5.1. Temperature anomalies
One of the most important findings of the analysis is that the algorithm based on
the augmented Lagrangian method (see section 3.2.1) is indeed working for all stations
without any need of manual interactions in the time window approach. All other packages
in R performing the stationary EVA do, at least at the point this document was written,
throw errors for at least one of the stations.
Figures 7.9 and 7.10 show the distributions of the 10 and 100 year return levels

calculated for all temperature anomalies. As before, the extracted block maxima/minima
were split into three overlapping time windows, the stationary EVA was performed, and
the resulting 10 and 100 year return levels were extracted from all of them. In order
to better compare the distributions with the results of the Potsdam case study, the
corresponding return levels are highlighted using vertical lines.

To be perfectly precise, not all of the 74 (daily maxima) or 75 (daily minima) stations
have been used to create these distributions. The measurement station located at the
mountain called Brocken in the very center of Germany has been removed to improve
the visibility of the remaining results. As discussed in appendix A.1, we consider the
parameters obtained for this series as artifacts. But wasn’t just claimed the most
important finding of this analysis is that there are no artifacts? Well, both is true
since we unfortunately overloaded the term “artifacts”. By introducing the constrained
optimization based on the method of augmented Lagrangian multipliers we could indeed
get rid of all numerical artifacts. In other words, the maximum likelihood fitting procedure
did work for all stations, was always properly initialized, and found the global minimum
of the negative log-likelihood function. But while this largely improves the extreme value
analysis using the GEV or GP distribution, it is not a cure for all its weaknesses, just
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Figure 7.9.: Distribution of all 10 year return levels of the daily temperature anomalies
series provided by the German weather service DWD. A detailed description of the
preprocessing applied to the 73 (daily maxima) or 74 (daily minima) stations series can
be found in section 7.1 and 7.2. This is one series less than the total amount contained
in the data set. The missing one is the Brocken station, which was considered an artifact
with respect to the issue described in chapter 6 and thus omitted in this analysis. A
version of the analysis including this very station can be found in the appendix A.1 and
in the corresponding figure A.13. To increase the comparability with the Potsdam case
study the corresponding results are highlighted with a vertical line.
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Figure 7.10.: Distribution of all 100 year return levels of the daily temperature anomalies
throughout Germany. For details see figure 7.9 and section 7.1 and 7.2.

for the numerical ones. The problem encountered when fitting the Brocken series was
the same as the one discussed in chapter 6. A very large event occurred within the first
time window dominating its statistics and causing the fit to be of a Fréchet type with a
very large shape parameter. In all other windows the series results in similar parameters
as the remaining ones (see the appendix, where the results of the Brocken station were
included in the figures). The time windows were therefore too short to fully sample the
dynamics of the system. But shouldn’t this be true for all stations and thus renders this
whole analysis useless? I don’t think so. As a fact, the Brocken station was the only one
experiencing very big jumps in parameters and the only temperature series yielding such
a large shape parameter (0.69 in the first window). In addition, the analysis of the whole
ensemble provided by the DWD yielded another interesting result apart from the GEV
parameter, which might give an explanation of the extraordinary behavior of the Brocken
series. It turns out the kurtosis of the daily temperature anomalies is correlated with the
altitude of the measurement station. The higher the elevation, the bigger the kurtosis,
and thus the fatter the tails of its PDF. Since the elevation of the Brocken station is one
of the largest among all considered time series, it might be constituted by a distribution
with a fatter tail from the start and is therefore more prone to be dominated by a single
very large event. We can easily check this hypothesis by reviewing the results of the series
corresponding to the largest elevated measurement site, the mountain Zugspitze. As
can be seen in the very south of Germany in figure 7.15 the highest station does indeed
dominate the changes in the 100 year return levels. This does, of course, not prove the
classification of the Brocken station as an artifact but given the limited amount of data
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it should serve the purpose. Also it illustrates the intriguing details involved in handling
observational data and the limitation of the full automation of the EVA.
Back to the actual figures. While the magnitude is differing between the individual

time windows of the daily maximum and minimum temperature anomalies in 7.9 we can
nevertheless see a consistent shift of the distributions towards higher values (temperatures).
For the daily minima there is also a reduction of the overall width of the distributions
causing an even larger increase in the 10 year return level. But in case of the 100 year
return levels in figure 7.10 no such shift or consistent change in the distribution seems to
be present, apart from the shift towards higher values in the last time window for the
daily maxima. This means that the medium extreme events, those occurring on average
every e.g. 10 years, of the daily minimum temperature anomalies decrease in time by a
margin (roughly four degrees) while the corresponding large extremes, at a return period
of 100 years, stay approximately the same. For the daily maxima both return levels do
increase by approximately one degree. The overall change of the temperature anomaly
distribution throughout Germany thus seems to be a fairly complex one.
Up to now, we just took the results and lumped them all together. By doing so we

learned about the temporal changes of distributions constituted by all the individual
return levels throughout Germany. But as we have already seen with the Brocken
station, the series are not perfectly identical and their behavior might depend on both
their geographic location and local elevation profile. To not miss such possible spatial
information, the 10 and 100 year return levels are displayed on maps in figures 7.11 and
7.12.

When projecting the content of the distributions onto maps we have to further condense
the information. Three different maps corresponding to the results obtained in the three
time windows for each climatological quantity would be just confusing at best. Instead,
only the numerical value of the return levels found in the last time window will be encoded
in the color of each circle on the map. Their center correspond to the geographic location
of the measurement station and their enveloping color to the difference between the value
in the third and the one in the first time window. Thus, the inner color indicates the
latest realization of the return level and the outer one its change in time. For a detailed
explanation of the color scale please see section 7.2.
In those maps one can see that both the values and the temporal changes in the 10

and 100 year return levels do not occur uniformly throughout Germany. Stations located
at coast turn out to be among the most mildest ones for both the daily minimum and
maximum temperature anomalies. Also there is a tendency for more western stations
(lesser longitude on the x-axis) to have less extreme deviations from the climatology
towards low temperatures. Facing the temporal changes in the return levels the asymmetry
in the very high quantiles of the overall distribution is quite pronounced again. In case
of the daily minima a general increase in values and thus a decrease in magnitude of the
10 year return level can be found. The largest changes do occur in the south of Germany.
The same is true for the daily maxima while they also feature an asymmetry between the
stations in the east and the ones in west of Germany. Series corresponding to a larger
longitude do have a tendency to experience a slower increase in the 10 year return level.
Also note that the daily minima feature a wider range for the values and about two times
the range for the differences compared to the daily maxima. For the 100 year return level
of the maxima the patterns are a little bit more smudged. The increase does not occur
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Figure 7.11.: 10 year return levels of the daily temperature anomalies throughout Germany.
This map illustrates the spatial information missing in the distributions of the 10 year
return levels in figure 7.9. The colors within the circles, ranging from yellow to red,
display the value in the third and last time window at the measurement sites. The colors
of their outer surrounding, on the other hand, show the magnitude of the temporal
evolution calculated from the values of the third window minus the ones of the first.
Note, to better compare the different maps of this analysis the color ranges were fixed as
described in section 7.2.
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Figure 7.12.: 100 year return levels of the daily temperature anomalies throughout
Germany. For a detailed description of the figure and colors please see figure 7.11 or
section 7.1 and 7.2.
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in all of Germany anymore but most prominently in the south, middle, and in coastal
regions. Also now the decreases are bigger in number and showing a slight tendency
to occur in the east. The changes in pattern are even larger for the daily minima. In
contrast to the 10 year return levels the 100 year ones do show predominantly decrease.
The largest ones do occur in the north and the south still mostly features increases.
But since we are talking about the daily minimum temperature anomalies the extreme
deviations from the mean climatology become less in the south and way larger in the
middle and north of Germany.
Next, the results of the VGLM analysis are presented in figure 7.13. As a short

reminder, in there we take the whole series, perform a non-stationary EVA by fitting
a GEV distribution with a linear trend in both the location and scale parameter, and
compare the result with a stationary model using the likelihood ratio test. This test
checks whether we can reject the null hypothesis of describing the underlying data with
a stationary model in favor for a non-stationary one at a 5% significance level.
The maps show two kinds information. The inner color corresponds to the slope

of a straight line fitted into the curve of the 10 year return level. This fit is only an
approximation of the non-linear dependence of the return levels on time but we will
use it to determine the sign of the trends we will find to be significant. Note that
label “significant trend” corresponds to the first order linear model used in the location
and scale parameters. The return levels are just non-linear combinations of the GEV
parameters and could very well be approximately constant while a trend is actually
present. Also the slope will be only estimated for the 10 year return level since the
non-linear curvature is even more pronounced for larger return periods and the resulting
slope less reliable. The outer one represents the results of the hypothesis test. If it was
rejected, it is colored in red. If not, a brown color will be used. For more details please
see section 5.4.2. One can see in figure 7.13 that for the daily maxima indeed almost
all stations show a significant trend while for the daily minima only for approximately
half of the stations the hypothesis test could be rejected. Surprisingly, not all of them
are heading towards higher values. Eight stations feature a significant trend in the GEV
parameters and at the same time an overall increase in the 10 year return level for the
daily maximum temperature anomalies. A more thorough discussion of the changes in
the return levels, GEV parameters, and first moments of the underlying distribution as
well as possible causes is given in the appendix A.1.

We could therefore show in a statistically sound way that the climate change is not
just causing an overall shift in the temperature anomalies towards higher values but is
also affecting the extreme events and thus the very tails of the temperature distribution.
But the nature of those changes is far more complicated than a mere linear increase in
value. Instead, we face both significant increases and decreases depending on the return
period as well as the geographic location of the corresponding measurement station.

7.5.2. Raw temperature series

After discussing the changes in the distribution of the temperature anomalies throughout
Germany we will have a look at the extreme events of the raw series. It is almost certain
for the annual maxima to occur in summer and for the annual minima to occur in winter.
We therefore only sample a series of a reduced effective length and loose some explanatory
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Figure 7.13.: Results of the likelihood ratio test whether to use a stationary model over a
first order linear one. All stations, for which the null hypothesis of a better description
with a stationary model was rejected, are enclosed by a green color. The cirlces are filled
with the slope of the 10 year return levels fitted using the VGLM. Since it has a non-linear
dependence in time the slope was estimated by fitting a straight line in its curve. This
value might therefore not yield a perfect approximation of the actual temporal evolution
but it is sufficient to determine its overall tendency. Note, the Brocken station, although
still considered an artifact, is included in the figure again since it is not spoiling the color
scales of this plot.
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Figure 7.14.: 10 year return levels of the daily raw maximum temperature series throughout
Germany. For a detailed description see figure 7.11 and section 7.1 and 7.2.
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Figure 7.15.: 100 year return levels of the daily raw maximum temperature series through-
out Germany. For a detailed description see figure 7.11 and section 7.1 and 7.2.

power when interpreting the results as the changes of the overall climate system. On
the other hand, extreme events of the raw temperature series, like extremely hot days
in summer or extremely cold days in winter, correspond to the ones having the most
direct impact onto the everyday life of us humans. The results in this part of the analysis
are thus not of primary interest for the investigation of the climate system but for the
assessment of the consequences of its changes on society.

The temporal changes in the overall distributions of the return levels are very similar
to the ones of the anomalies in figures 7.9 and 7.10. So, they were skipped to keep this
chapter rather concise but the interested reader is encouraged to have a look at the whole
analysis in A.2.
The spatial patterns of the changes are shown in figures 7.14 and 7.15. For the daily

minima both the 10 and 100 year return levels look almost the same compared to the
ones of the temperature anomalies, apart from the overall larger increase in case of
the 100 year ones. The daily maxima, on the other hand, do show completely different
patterns. While it was the south of Germany, which featured the strongest increase in
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Figure 7.16.: Results of the likelihood ratio test whether to use a stationary model over
a linear one for the daily raw temperature series. This plot is the couterpart of figure
7.13, which shows the results for the daily temperature anomalies and provides a more
detailed description.

the extreme temperature anomalies, it’s the north and west displaying the strongest
increases in the raw temperature extremes. The changes in the east and south are only
minor for the 10 year return levels and almost negligible or even negative for the 100 year
return levels. This means, while the fluctuations in the temperature do increase for the
south of Germany they do so during autumn, winter, or spring. Thus, these increasing
fluctuations do not contribute the large deviations in summer sampled in the analysis of
the raw temperature series. The actual changes of the overall temperature distribution
does therefore not only seem to be highly non-linear and dependent on the particular
spatial location, but also dependent on particular times within the year, like seasons or
even more fine-grained temporal periods. This, unfortunately, renders our attempt to
properly describe the changes using a non-stationary model almost impossible. But still
we can check if there are at least changes present, which can be described by a first order
linear model in the location and scale parameter of the GEV distribution.
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The results can be seen in figure 7.16. Compared to the corresponding ones for the
temperature anomalies in figure 7.13 a few less hypotheses could be rejected. Only 61
trends for the daily maximum temperatures (anomalies: 68) and 27 for the daily minima
(anomalies: 41) out of the 74 individual series were found to be significant. But the
general picture remains the same. What does it mean that for one series we have a
significant trend in the temperature anomalies but none in the raw data including the
annual cycle? The cause of this discrepancy can be found by looking at the ranges of
values in the previous maps. The difference between the parameters in the first and last
time window, and thus the slope of the linear trend, is approximately the same for the
anomalies and raw series. At the same time the range in values is larger in case of the
raw series, especially for the daily maxima. Since an increase in variance will worsen the
fitting results in terms of the global minimum of the negative log-likelihood, the deviance
statistic will decrease. This increase in variance can thus already push the statistic below
the threshold set by the Chi-squared distribution and prevent the hypothesis from being
reject. But this does not mean there are no trends anymore in the raw temperatures. We
just would need more data to make statistically sound statements about its existence,
which is covered by the annual cycle.

7.6. Analysis of the Potsdam precipitation data
After analyzing the daily temperature in the previous section, we will now turn to the
daily accumulated precipitation. Since there is just one value measured per day, the
integrated amount of rainfall during one day, no separation as for the temperatures in
daily maxima and minima will be done. Also the annual cycle in the precipitation data
is far less pronounced and almost absent. That’s why we will drop the calculation of the
anomalies and just handle the raw data itself. So, it will be way less figures than in the
previous section.
The baseline for the results we are expecting is the analysis in (Trenberth, Fasulo,

and Smith 2005; Trenberth 2011). They found the overall amount of moisture to rise in
the atmosphere around the globe. This leads to an increase of the precipitation in most
regions worldwide. But especially in Europe no trend could be found in the nodes of
the grid data and only the average over all rainfall in Europe revealed a positive trend.
Let’s check this result by analyzing all stations provided by the DWD, which meet the
requirements discussed in section 7.1. Since these measurements yield more direct and
pure observations of the rainfall data projected onto a rather coarse grid, the analysis
might reveal some insights not found in the grid data yet.
Again, we will start our analysis with the case study of the rainfall at the Potsdam

station.

7.6.1. Time series and distribution
The time series of the daily accumulated precipitation in figure 7.17 has some major
differences compared to the daily temperature series. First of all, there are only positive
values and zeros corresponding to the total amount of rainfall occurring during one day
given in millimeters. It is not at all visible in the plot but more than half of the entries
are actually zero for the Potsdam station (11540 days out of 21915). In other words,
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Figure 7.17.: Plot of the daily accumulated precipitation of the Potsdam station in
Germany. Displayed are the 60 years of data, starting in 1957 and ending in 2016,
required to be present in all time series analyzed within this chapter. In addition to
the rainfall series, the time periods spanned by the three different time windows in the
corresponding approach are highlighted. The first window (red) reaches from 1957 till
1986, the second one (green) from 1972 till 2001, and the third one (blue) from 1987 till
2016.
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Figure 7.18.: Mean climatology of the daily accumulated precipitation of the Potsdam
station in figure 7.17. The mean climatology is obtained as an intermediate step when
calculating the anomalies of a time series (see section 4.3.1). There the mean values of
all individual days of the year are calculated using only those particular days throughout
the years. E.g. all February 2nd of a time series are averaged. The mean climatology
thus looks exactly the same for all years in the time series and is only plotted for one
specific year.

there are more days in Potsdam without any precipitation at all than days featuring
rainfall. Compared to the temperature series the precipitation shows no pronounced
annual cycle. Also the direct inspection of the mean climatology, the average of the
individual days throughout all the years in the series, in figure 7.18 does not require us
to investigate the anomalies of the rainfall (raw series minus climatology) as well. An
annual cycle is indeed present but it is very noisy and small compared to the original
data and its extreme events. Furthermore, no obvious trend can be seen in precipitation
data in figure 7.17.
The estimated PDF of the rainfall data within Potsdam can be found in figure 7.19.

Due to the logarithmic transformation of the x-axis, a constant offset of 0.1mm was
added to the whole series to move the peak at zero slightly to higher values. When
reviewing the distributions of the daily accumulated precipitation within the different
time windows no relevant changes at all can be found. The same is true for the estimated
first four moments in table 7.5. Apart from a decrease in skewness and kurtosis in the
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Figure 7.19.: Probability density function (PDF) of the daily accumulated precipitation
at the Potsdam station obtained using a kernel density estimator. For the three densities
only measurements within the corresponding time windows, highlighted in figure 7.17,
have been used. In order to improve the visibility of this heavy-tailed curve, both the
x- and y-axis have been transformed to logarithmic scale. Since the transformation
of the x-axis would have removed the peak of the distribution, which resides at zero
rainfall, a constant offset of 0.1mm has been added to the whole series. This way,
the peak is retained but shifted towards higher values. Please note that the flickering
of the PDF at very high values is an artifact of the kernel density estimation. Since
Gaussian distributions of fixed bandwidth are positioned at all observed precipitation,
they only add up to a smooth curve at lower precipitation values. For very higher ones
the bandwidth is too small and the probablility to reside in two neighbouring Gaussians
gets marginal. Since the tails of those solitary Gaussians would easily dominate the
y-axis on a logarithmic scale, it was truncated at a density of 2× 10−6. Larger values of
the bandwidth, on the other hand, would yield a smooth curve for the whole range of
precipitation but distort the result at lower values.

110



7.6. Analysis of the Potsdam precipitation data

Table 7.5.: Numerical estimation of the first four moments of the Potsdam daily accumu-
lated precipitation series within the different time windows. The windows correspond to
the colored bars at the bottom of figure 7.48.

window mean variance skewness kurtosis type
1957 till 1986 1.61 14.82 6.51 92.58 daily accumulation
1972 till 2001 1.56 13.75 6.67 98.48 daily accumulation
1987 till 2016 1.60 14.56 5.71 62.18 daily accumulation

Table 7.6.: GEV parameters and some return levels for the Potsdam daily accumulated
rainfall within three time windows. All quantities except of the shape parameter are
given in mm and all error estimates are calculated using the Monte Carlo method.

window location scale shape 10 year ret 100 year ret
1957 till 1986 27.0±1.7 9.4±1.4 0.29±0.21 57.0± 8.6 119± 65
1972 till 2001 26.2±1.8 9.2±1.6 0.31±0.19 56.3±11.3 121±162
1987 till 2016 28.3±2.1 9.6±1.8 0.23±0.20 56.4± 8.0 106± 46

third time window, everything seems to remain stationary. But the decrease is just
occurring in one time window preceded by a slight increase in both the skewness and
kurtosis. Therefore, no conclusion can be drawn for the temporal evolution of those
parameters without analyzing the whole set of precipitation series throughout Germany.

7.6.2. Non-stationary EVA and significance

Figure 7.20 and table 7.6 show the results of the time window analysis for the daily
accumulated precipitation data. Similar to the first four moments, the resulting GEV
parameters and the derived return levels remain more or less constant. Only in the shape
parameter in the third time window a major decrease does occurs, which is probably due
to the corresponding decrease of both the skewness and kurtosis of the underlying series.
As a result the 100 year return levels drop by more than 10%. But for both quantities
the error estimates are larger than the actual changes. Therefore, no conclusion can be
drawn despite of that more data would be required to analyze the extreme events of the
daily accumulated rainfall.
Figure 7.21 shows the resulting 10 (bright red) and 100 year return levels (dark red)

obtained in the VGLM analysis. Surprisingly, both of them feature a slope, which is
opposite compared to the one of the time window approach. While for the VGLM
approach we find a general increase in the return levels, being even more pronounced
the larger the return period, the corresponding results in the time window approach do
decrease on a similar rate. How is this possible? The extreme value analysis, especially the
estimation of the shape parameter, is very sensitive to the largest block maxima/minima.
The lesser data is provided to the fitting procedure, the more difficult it is to trust the
results of the analysis. With only 30 points at hand the stationary EVA performed
in the individual time windows does see a stationary time series and is dominated by
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Figure 7.20.: GEV distributions constituted by the parameters fitted within the different
time windows. To generate this figures, firstly, the annual maxima of the daily accu-
mulated precipitation (see figure 7.17) were extracted. Afterwards, the series were split
into three time windows and to all block maxima within one window a stationary GEV
distribution was fitted.
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Figure 7.21.: This figure show the results of the VGLM analysis for the Potsdam daily
accumulated precipitation. At first, the annual maxima of the raw rainfall series (see
figure 7.17) were extracted. They are plotted as orange dots and connected by blue lines.
Into these block maxima a non-stationary GEV distribution with a first order linear
trend in time in both the location and scale parameter was fitted using the framework
of the VGLM (see section 5.2.1). The 10 (soft color) and 100 year (dark color) return
levels were extracted and added to the series. Finally, the fit of the non-stationary GEV
distribution was compared to a stationary one using the likelihood ratio test (see section
5.4.2). If the null hypothesis of describing the block maxima using the stationary model
was rejected at a 5% significance level in favor of the non-stationary one, the lines of the
return levels were plotted in green. If, on the other hand, the null hypothesis could not
be rejected at this significance level, they were plotted in red. Note that while the trend
in both the location and scale parameter is indeed a linear one, the resulting return levels
do not have to be a straight line (see equation (2.1.1)).
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the largest value in the data set. Since the largest one is occurring in 1978 and thus is
present in both the first and the second time window, their results are almost identical.
The reduction of the shape only occurs due to the absence of the 1978 event and the
parameter is now dominated by the second largest one. This highlights the shortcomings
of the time window approach since in a stationary picture both the largest and second
largest event should be able to occur in almost all possible combinations without affecting
the results of the analysis. The VGLM approach, on the other hand, is more robust
since it incorporates all 60 annual block maxima of the time series. Therefore, it is able
fit the overall trend (the mean value of the block maxima between 1957 and 1986 is
35.96mm and increases to 36.15mm between 1987 and 2016) without being affected too
much by the largest events in the series. Note that we are still using a first order linear
model in both the location and scale and no trend in the shape parameter. But this
linear model, responsible for the trend in the return levels in figure 7.21, does not proof
to yield a more appropriate model of the block maxima than the stationary one. The
null hypothesis could not be rejected and the likelihood ratio test was not passed. Or in
short, the VGLM analysis finds the time series to be stationary, which is consistent with
the large fitting errors found in the time window approach.

7.7. Temporal evolution of the precipitation throughout
Germany

When investigating the precipitation series of the Potsdam station we couldn’t draw any
conclusions about their temporal evolution except that we do not have enough data to
draw statistically sound conclusions. What does change when we incorporate all other
stations and plot the resulting return levels altogether? Please note that in contrast
to the distributions of the temperatures shown earlier in this chapter the ones of the
precipitation data in figure 7.23 do not feature different climatological quantities. We
do not distinguish between the maximum and minimum daily values or apply different
preprocessing. Instead, only the results for the accumulated daily precipitation are shown;
the 10 year return levels to the left and the 100 year ones to the right.

Compared to the findings for the Potsdam series (marked using vertical lines) one does
indeed see some overall changes. There is a general tendencies at both return periods
for the distributions to acquire more mass at lesser value and in return to obtain lighter
tails. Also the spread of the distributions is decreasing, especially for the 10 year return
levels. Thus, the extreme precipitation events are getting smaller in magnitude due to
the climate change. This reflects the findings in the time window analysis of the Potsdam
series but is in contrast to the results of the corresponding VGLM analysis. The plot of
the actual changes of the individual series throughout Germany will shed some light into
this matter.
Figure 7.23 shows the spatial distribution of both the return levels in the last time

window and the differences between the third and first time window. On average the
decreases in the return levels are more prominent then the increases. But while there is
a tendency for the increases to occur in the middle and north of Germany these patterns
are quite noisy and probably due to more complex dependencies, like the local elevation
profile. The whole analysis can be found in A.3. Worth mentioning is the finding that the
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Figure 7.22.: Distribution of all 10 year return levels for the daily accumulated precipita-
tion throughout Germany. For details of the preprocessing applied to the 57 different
contributing series please see section 7.1 and 7.2.
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Figure 7.23.: Map of all the individual 10 year return levels of the daily accumulated
precipitation contributing to figure 7.22. For a detailed description of the figure and
colors please see section 7.1 and 7.2.
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first and second, as well as the third and fourth moments of the individual precipitation
series are highly correlated. A fact, which might be especially interesting for people
modelling the distribution of rainfall in order to feed simulations.
In contrast to the findings of the temperatures only four series fail the likelihood

ratio test in the VGLM analysis displayed in figure 7.24, one showing an increase in the
extremes and three showing a decrease. But here it is not at all obvious that we should
expect trends in the precipitation. After all, the rainfall over Europe is supposed to
remain constant. So, why should the corresponding extreme events do? Well, for one we
have to reject the hypothesis tests of four different stations and there is an even bigger
number of stations with a deviance statistic quite close to the threshold corresponding to
the 5% significance level. In addition, the variance of the precipitation data is larger
than the one of the temperatures and we would thus need longer time series to detect
a trend of the same magnitude. But in the end we have no way to tell whether this is
the case or if the precipitation series are indeed stationary. To conclude, we do find four
stations featuring a statistically sound trend in their extreme values and need more data
to verify the presence or absence of temporal changes in the remaining series.
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Figure 7.24.: Results of the likelihood ratio test whether to use a stationary model over
a first order linear one for the daily accumulated precipitation. All stations, for which
the null hypothesis of a better description with a stationary model was rejected, are
enclosed by a green color. The cirlces are filled with the slope of the 10 year return
levels fitted using the VGLM. Since it has a non-linear dependence in time the slope was
estimated by fitting a straight line in its curve. This value might therefore not yield a
perfect approximation of the actual temporal evolution but it is sufficient to determine
its overall tendency.
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8. Application of the non-stationary EVA to
the ERA-Interim data set

In the previous chapter we analyzed the station data provided by the German weather
service (DWD) in order to draw conclusions about the temporal evolution of the extreme
events in the daily temperature and precipitation and to check the performance of our
modifies algorithm on a large data set. But both aspects we didn’t covered exhaustively
yet. The climate system spans the whole globe and picking a detail as small as Germany
might yield misleading results. Our world is connected not only climatologically but
also on an environmental, social, economic, and political basis. To properly access the
changes on regional scales, we have to embed them into the global one. Moreover, the
well-oiled analysis of the up to 74 stations provided by the DWD was a nice result and
isn’t matched by any package providing the error-prone default optimization. But the
number of involved stations is far too small to accurately show the robustness of our
improved software numerically. Both problems do have the same solution: the analysis
of the ERA-Interim reanalysis data set.
In this chapter I will first introduce the overall concept of a reanalysis data set and

the peculiarities of ERA-Interim one. Afterwards, we compare the findings of the
DWD analysis with the ones of the ERA-Interim data set and highlight advantages and
shortcomings of both methods. Finally, we will have a look at some selected results of
the time window and VGLM analysis of the global data set. For a thorough treatment of
the preprocessing and steps of the analysis please see section 7.1 and 7.2.

8.1. The concept of reanalysis
The overall idea of the reanalysis is to use all sorts of measurements throughout the
world, project them onto a global grid, and interpolate between the measurement steps
using a state-of-the-art weather model. It forces the simulated weather to obey the laws
of physic and at the same time to match the observational data as close as possible.
This enables the user to not just work with the atmospheric variables incorporated as
measurements but also to access additional information about the state of the atmosphere.
If e.g. only sea-surface temperature and pressure measurements are present and used to
feed the weather model, the resulting reanalysis data set will feature temperatures and
pressure values at a large number of different heights and at places not covered by the
measurement itself. Also additional so-called derived quantities, like the cloud coverage
or the daily accumulated precipitation, can be accessed.

But the reanalysis data is of course no free lunch. The dynamics of the weather model
are intrinsically chaotic. Even when forced to match the global observations one day and
the next it is free to do in the 24 hours in between whatever obeys the laws of physics. In
addition, the description of the climate system, although improving in time, are far from
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8.2. The ERA-Interim data set

perfect. The dynamics of the atmosphere do cover a very large set of different spatial
scales and a lot of them are smaller than the resolution of the underlying grid. The
probably most prominent example is the formation of clouds. Some quantities, like the
daily accumulated rainfall, do therefore only present very vague approximation of the
true state of the climate system and are not meant for direct statistical analysis. Others,
like the two metre temperature used in the remaining part of the chapter, do yield a very
plausible approximation since they were part of the measurement too.
To be able to perform the extreme value analysis (EVA) or other statistical methods

on the global data, we need the series at the individual grid points to be as long as
possible. But since the state-of-the-art weather models are constantly under development
inconsistencies would arise from the change in model. In order to meet both requirements
and provide long series of best possible quality, big climate centers do use all their
historical data in the reanalysis run of a new version of their weather model. In time,
they will produce a large set of consistent and comprehensive data sets of the past
atmospheric state referenced to a specific version of a weather model. One of such centers
is the European Centre for Medium-Range Weather Forecast (ECMWF), which provides,
among others, the ERA-Interim reanalysis data set (see Berrisford et al. (2011) for
information about the data retrieval).

8.2. The ERA-Interim data set

The two most important ingredients for producing the ERA-Interim data set is the data
assimilation scheme, which is used to project all the different sources of measurements
onto a global grid, and the atmospheric weather model. Both components are highly
complex and their thorough treatment would go beyond the scope of this chapter. Instead,
only an appetizer will be served. The assimilation scheme uses, among other, clear-sky
radiance measurements of different satellites and surface pressure measurements obtained
in direction observations. It is called 4D-Var since it is not only able to assimilate all
these different sources onto a global grid but also to adjust the correction biases in an
completely automated scheme. The correction biases are required to make the different
measurements as consistent as possible. The atmospheric model is of version Cy31r2
and incorporates e.g. surface drag, ocean waves, the geometry of land surface, and cloud
convection. For more details on both components please see Dee et al. (2011).

The data set starts in 1979, when the global observing system TIROS-N was launched,
and is constantly updated to also cover recent times. Since we are only interested in
complete years of data, the resulting series will have a length of 39 years in total. They
will be split in two overlapping time windows of a length of 25 years. As already discussed
in the previous chapter 25 data points, representing the annual maxima or minima, are
not that much when fitting a distribution constituted by three parameters. But, on the
other hand, windows of 30 years would result in a way too large overlap cancelling most
of the changes within the system. Having at least 25 points and a modest overlap seems
to be an appropriate trade-off. Unfortunately, the time windows do not coincide with
the ones used in the DWD analysis. But the second one of the DWD from 1972 till 2001
and the first one of the ERA-Interim analysis from 1979 till 2003 as well as the last ones
from 1987 till 2016 (DWD) and 1993 till 2017 (ERA-Interim) match reasonably well.
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8.3. Comparability between the DWD and ERA-Interim data sets

The spatial resolution of the underlying grid is approximately 80 km and composed of
115680 grid points on 480 different longitudes and 241 different latitudes.

We will use the temperature of the air at two meters above the surface of land or
water. It is provided for four time points during the day, midnight, 6am, noon, and
6pm. From those four different values the daily maximum and minimum temperature
will be approximated by selected the highest respectively the lowest value. This is of
course only a crude approximation of the true daily temperature maximum and minima
measured at the stations of the DWD but it will serve the purpose. For both daily series
the temperature anomalies will be calculated (see section 4.3.1) and, finally, the block
maxima of the daily maximum temperature and temperature anomalies and the block
minima for both quantities were extracted. For all four series per grid point the time
window and VGLM analysis discussed in chapter 7 will be performed and some selected
results will be reported.

One open question still remains. Why did we choose the ERA-Interim data set above
all other products provided by the ECWMF? To not digress too much from the main
subject of this chapter, I will just answer the question with respect to two data sets,
which sound even more promising for the application of the EVA: the ERA-20C and
the CERA-20C data sets. The model driving the latter one does not only describe the
dynamics of the atmosphere but also those of the ocean and couples both systems (see
Laloyaux et al. (2016)). This results in a more complete approximate of the overall
climate system and more realistic reanalysis data. In addition, both the ERA-20C and
CERA-20C do span the whole 20th century and thus provide a lot of data we could
use in our non-stationary EVA. But this vast amount of data is not of the same quality
for all points in time. It features an assimilation scheme (Poli et al. 2015), which is
able to smoothly incorporate observational data covering only a limited subset of the
overall length of the data set. For the first years of data thus only intake ship and buoy
measurements are used to feed the model. With no observations within Germany used at
all the data will of course feature an error in the resulting temperature series rendering
our analysis useless. Therefore, we will use the shorter but more accurate ERA-Interim
data set over the longer ones. In principle the usage of CERA-20C data set restricted
to the years 1979 till 2017 should yield the most appropriate data set. But this would
result in a lot of confusion for people being triggered by the CERA-20C buzzword. So,
again, we will use the ERA-Interim reanalysis data.

8.3. Comparability between the DWD and ERA-Interim data
sets

In terms of accuracy and quality the time series provided by the DWD are second to
none and the ideal starting point to gain insights into the distribution of the climate
in Germany. Then again, the weather in Germany is only a small part of the global
climate system. It is therefore important to get a general idea about the changes in
the temperature distribution throughout the world, which will be done using the ERA-
Interim reanalysis data set. But beforehand we have to check the quality of its results by
comparing them to the ones of the DWD series. After all, the underlying grid is quite
coarse-grained and the atmospheric model might spoil the statistics of the temperature
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8.3. Comparability between the DWD and ERA-Interim data sets

series.
Figure 8.1 shows the results of the time window analysis of the both ERA-Interim

(background) and the DWD (circles) series, which share the same color scale. For the
DWD data the values of the shape parameter correspond to the last time window from
1987 till 2017 and for the ERA-Interim data set the last window spanning from 1993 till
2017 was used as well. Both plots show the results for the daily maximum temperatures
with the ones for the raw series on the left and the ones for the temperature anomalies
on the right. After starring at the results for the raw series for quite a while ones starts
to see some agreements. For both data sets the highest values can be found in the south
of Germany and the values in the north and in a small spot at the very south tend to
be lesser than the average. Apart from these tendencies the results of the ERA-Interim
analysis can not properly reproduce the ones of the DWD and there is quite some noise
in the patterns. But not as much as for the daily maximum temperature anomalies. In
there one has to believe in patterns in the first place to actually find them in the figure.

The results of the shape parameters are not the end of the story yet. From experience,
which I obtained in implementing the Monte Carlo error estimates presented in section
2.2.3.2, the GEV parameters of similar time series are able to compensate each other to
still yield almost the same return levels for medium size return periods, like 10 years. So
let’s compare the 10 year return levels for the daily maximum temperatures in the last
time window presented in figure 8.2. While the results obtained for the ERA-Interim
data set do not match the ones of the DWD perfectly, the overall character is preserved
and the fluctuations are smaller than the ones for the shape parameters. The station
located in the German Ocean in the north west does feature very small values for both
data sets. But the remaining stations at the coast are less affected by the water than
the corresponding regions in the ERA-Interim data set. Other general patterns are not
matched by the reanalysis data. Apart from the overall correspondence of the results for
the raw series, there are six stations in the middle and south of Germany, which differ
from the ERA-Interim results by a margin. All of them are located at higher altitudes
and thus their smaller return levels are due to the local geographic peculiarities of the
station. Since the reanalysis data set is based on a grid of approximately 80 km, the local
elevation profile is smoothed out and measurements obtained at the top of the highest
mountain within the corresponding region are bound to yield different results. As a
conclusion, the findings of the time window analysis obtained for the ERA-Interim data
set do match the ones of the DWD data reasonably well when restricting the discussion
on moderate return levels. What about the VGLM analysis?
Figure 8.3 shows the results of the VGLM analysis. The color scale represents the

deviance statistic, a measure for the appropriateness of the linear model with respect
to the stationary one. It is arranged in such a way that blue and green correspond to
values where the null hypothesis of using a stationary model instead of one with a first
order linear model in both the location and scale parameter could not be rejected. The
colors yellow, orange, and red indicate a rejection and thus showing the existence of a
trend. The circles, representing the results for the DWD stations, do have an outer color
of red if the test could be rejected and a blue one if this was not the case. See section
5.4.2 for a more detailed description of the so-called likelihood ratio test.
Before we start interpreting the figure an important difference between the two data

sets has to be highlighted. The VGLM analysis uses the full length of the series, which
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8.3. Comparability between the DWD and ERA-Interim data sets

Figure 8.1.: A comparison between the shape parameters obtained in the analysis of the
DWD and ERA-Interim data set. For both the raw series (left) and anomalies (right) of
the daily maximum temperature were used. Plotted are the shape parameters of the last
time window. This spans from 1993 till 2017 for the ERA-Interim set and from 1987 till
2016 for the DWD series. The results of the reanalysis data set is displayed using colored
tiles and constitutes the background of the image with the borders of Germany and its
neighbours plotted on top. The shape parameters for the stations provided by the DWD
are plotted in circles located at its geographic position. The same color scale was used
for the results of both data sets. For details about the preprocessing of the DWD data
see section 7.1 or section 8.2 for the ERA-Interim data set.
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8.3. Comparability between the DWD and ERA-Interim data sets

Figure 8.2.: Comparison between the 10 year return levels obtained for the the daily
maximum temperatures of the DWD station series and the ERA-Interim reanalysis data
set. For details about the structure of the figure please see figure 8.1 and for more
information on the precprocessing section 7.1 (DWD) or 8.2 (ERA-Interim).
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8.3. Comparability between the DWD and ERA-Interim data sets

Figure 8.3.: Comparison of the results obtained in the VGLM analysis of the daily
maximum temperatures DWD station series and the ERA-Interim reanalysis data set.
The structure is quite similar compared to figure 8.1. But here the color scale is not
equivalently spaced but stretched in such a way color blue and green correspond to a
deviance statistic the likelihood ratio test could not be rejected with. For the colors
yellow, orange, and red a significant trend in the extreme temperatures could be found.
To ease the distinction between both groups in case of the DWD station series, the
corresponding circles do feature a specific outer color. If blue, the hypothesis could not
be rejected. If red, it could. For more information on the precprocessing please see
section 7.1 (DWD) or 8.2 (ERA-Interim)
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8.3. Comparability between the DWD and ERA-Interim data sets

Figure 8.4.: Comparison of the results obtained in the VGLM analysis of the daily
minimum temperatures DWD station series and the ERA-Interim reanalysis data set.
For more information please see figure 8.3 or sections 7.1 (DWD) or 8.2 (ERA-Interim).

spans 60 years in the DWD data set but only 39 in the ERA-Interim one. Even if both
sets would feature the same trends in the extreme temperatures and the same level of
fluctuations, the results might still differ since the reanalysis series are too short. The
longer a time series, the easier it is to find trends in the presence of noise. The results
for the raw series are in almost perfect agreement. For both data sets the majority
of the hypothesis tests could be rejected and only in the east, the very north, and
the outmost south west corner of Germany no significant trend could be found in the
extreme temperatures. In addition, a number of stations, especially in the east, do feature
significant trends but the corresponding region in the ERA-Interim data set does not.
This is probably due to the shorter length of the reanalysis data set as already discussed.
For the daily maximum temperature anomalies the consistency is not that evident. Five
out of the six stations, for which the hypothesis could not be rejected, are located in a
region the results of the ERA-Interim analysis do show a significant trend in. On the
other hand, for almost all stations a significant trend could be found and this overall
feature was very nicely reproduced.
The reader might wonder why all the figures above exclusively cover the results for
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8.4. Time window analysis of the ERA-Interim data set

the daily maximum and not for the daily minimum temperature series. For one, this
is to make the chapter more concise. A thorough analysis of climate data is presented
in appendix A and the purpose of this chapter is solely to embed the findings of the
DWD analysis in a global scale. But in addition the results for the daily minima are
much more noisy as can be seen in figure 8.4. Most significant stations are located in
regions of brighter color but the hypotheses of stationarity of the ERA-interim series
could barely be rejected. Therefore, only the results of the daily maximum temperatures
will be discussed in the remainder of this chapter.

8.4. Time window analysis of the ERA-Interim data set

In figure 8.5 we can see the 10 year return levels of the daily maximum temperature
anomalies obtained in the time window spanning the years between 1993 and 2017. It is
composed 115680 results obtained for the individual series in the ERA-Interim reanalysis
data set. The stationary fit of the GEV distribution in the time window approach could
be performed for all stations without a single error thrown by the improved algorithm.
The same holds true for the VGLM analysis in the next section. But since the latter
relies on a different algorithm one might wonder if the constrained optimization was
actually necessary. First of all, the fit of the VGLM model itself already features the
linear constraints described in section 3.3. Without them a lot of fits would have failed.
But even in their presence the routine only works for the full series as used in the VGLM
analysis. When applying the VGLM fit on the individual time windows some will throw
an error. This can only be prevented by the adding the non-linear constraint.
The actual patterns generated by the 10 year return levels do look quite smooth and

very plausible. In most parts of the sea the extreme fluctuations from the climatology
are comparably small. This is very reasonable since the oceans are supposed to act as a
heat reservoir and temperature series of the sea do show a smaller variance than on land.
The second lowest return levels can be found on land within the torrid zone, between
23.4° south and 23.4° north. The largest values do occur in the north frigid (66.5° till 90°
north) and in the south frigid (66.5° till 90° south). Since the variability of the climate
varies significantly between those zones, these findings do make a lot of sense.

The differences of the 10 year return levels for the temperature anomalies between the
first and second time window can be found in figure 8.6. The largest positive one can
be found in Siberia and the largest negative one in Antarctica. But apart from this no
clear dependence on the latitude can be found, at least not symmetric with respect to
the equator. The extreme deviations from the temperature climatology do decrease over
most parts of the sea. On land one can see a general increase except in Canada, Russia
and most parts of Africa.
In figure 8.7 the 10 year return levels for the raw series in the ERA-Interim data set

can be found. The most extreme and hottest temperatures are found in the north of
Africa and in Australia. Also one can find a gradual decrease of the return levels at
larger latitudes. The lowest values are located in Antarctica and they are incredibly low.
Remember that these values of less than -20 °C correspond to the hottest temperature,
which occurs on average only once every 10 years! In addition, both the Andes and Tibet
are quite pronounced since they still feature a high elevation profile when over a grid
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8.4. Time window analysis of the ERA-Interim data set

Figure 8.5.: 10 year return levels of the daily maximum temperature anomalies obtained
for the ERA-Interim data set. The plotted values correspond to the ones found in the last
time window spanning the years from 1993 till 2017. The individual pixels correspond to
the results of the 115680 different grid points in the data set. To better grasp the spatial
information, although the coastal lines are already quite prominent, the borders of all
countries were added on top. For more information about the preprocessing please see
section 8.2.
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8.4. Time window analysis of the ERA-Interim data set

Figure 8.6.: Differences in the 10 year return levels of the daily maximum temperature
anomalies obtained for the ERA-Interim data set. The plotted values correspond to the
ones found in the last time window spanning the years from 1993 till 2017 minus the
ones of the first window ranging from 1979 till 2003. For more information about the
preprocessing please see section 8.2.
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8.4. Time window analysis of the ERA-Interim data set

Figure 8.7.: 10 year return levels of the raw daily maximum temperature series obtained
for the ERA-Interim data set. For more information about the preprocessing please see
section 8.2.
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8.4. Time window analysis of the ERA-Interim data set

Figure 8.8.: Differences in the 10 year return levels of the raw daily maximum temperature
series obtained for the ERA-Interim data set. The plotted values correspond to the
ones found in the last time window spanning the years from 1993 till 2017 minus the
ones of the first window ranging from 1979 till 2003. For more information about the
preprocessing please see section 8.2.

length of approximately 80 km.
The changes in the return levels are shown in figure 8.8 and are almost identically

compared to the ones of the temperature anomalies. Only now the region of Turkmenistan,
Kazakhstan, and Afghanistan does feature a decrease instead of a large increase. In
addition, the Mediterranean region and the east of Europe show an even more pronounced
increase in the return level. It is, however, remarkable that on a large fraction of the
earth’s surface the return levels are decreasing.

8.4.1. VGLM analysis of the ERA-Interim data set

Surprisingly, the results of the VGLM analysis of the daily maximum temperature
anomalies in figure 8.9 show a lot of structure. The color represent the deviance statistic
and its scale is the same as in figure 8.3, which contains the results of the DWD analysis
as well. The larger the value, the better the series can be described using a first order
linear model compared to a stationary one. For a certain range of values, indicated by the
colors blue and green, the likelihood ratio test of describing the data more appropriately
using a stationary instead of a linear model can not be rejected. For higher values,
plotted using the colors yellow, orange, and red, the hypotheses can be rejected and a
statistically sound trend in the extreme temperature (anomalies) could be found. Most of
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8.4. Time window analysis of the ERA-Interim data set

Figure 8.9.: Results of the VGLM analysis performed on the daily maximum temperature
anomalies of the ERA-Interim reanalysis data set. As in the previous figures the obtained
values are depicted in colored tiles with the borders of the countries plotted on top of
them. Similar to figure 8.3 the color scale is stretched in such a way color yellow, orange,
and red correspond to a rejection of the likelihood ratio test. For the color blue and
green, on the other hand, no statistically sound trend could be found in the series. Apart
from this binary interpretation of the results there is also a continuous one, the higher
the deviance statistics the better the data is described with a first order linear model
instead of the stationary one. For more information about the precprossing see section
8.2 and for details bout the likelihood ratio test see section 5.4.2.
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8.4. Time window analysis of the ERA-Interim data set

Figure 8.10.: Results of the VGLM analysis performed on the raw daily maximum
temperature series of the ERA-Interim reanalysis data set. For more information about
the precprossing see section 8.2 or figure 8.9 and for details bout the likelihood ratio test
see section 5.4.2.

the globe does not exhibit such significant trends. But the majority of the found ones are
located in the Pacific sea near Mexico or Peru and Chile or in most parts of the Atlantic
sea. Also on land in the Mediterranean region, the middle east, and Brazil significant
trends could be found.
The results of the VGLM analysis of the raw temperature series are, again, quite

similar to the ones of the anomalies. They can be found in figure 8.10. The patterns of
significant trends over the ocean are less pronounced while the ones on land appear more
clearly.
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9. Summary

Throughout this thesis I first understood and solved the problems of the available extreme
values analysis (EVA) software packages, implemented a fixed version of the stationary
fit for the generalized extreme value (GEV) and generalized Pareto (GP) distribution,
and, finally, performed a large scale analysis on extreme temperatures and precipitation
time series.

But let’s start at the beginning. The main subject of investigation in this thesis is the
temporal evolution of the extreme events in temperature and precipitation over Germany.
It is well established that there is a climate change and earth is getting warmer. But
apart from difficulties in pinpointing a single mean value to represent the state of the
global climate system and in handling different local characteristics, most treatments
of the climate change focus on average statistics. It is of course important to access
the change in the first moments of e.g. the temperature distribution. But then again, it
would be more than careless to not investigate the evolution of its tails. After all, it is the
extreme events, like massive rainfall, extremely hot summers, or incredibly cold winters,
causing the most harm to society. I therefore strove to perform a non-stationary EVA on
a larger collection of station data provided by the German weather service (DWD).

It didn’t matter which software package I was using to do analysis. For at least one of
the stations the fit was failing and, as a result, rendering a massive parallel application
impossible. After digging through a lot of source code I realized the problem was a
conceptional one. The negative log-likelihoods of the GEV and GP distribution, which are
used by the maximum likelihood (ML) fit in the EVA, contain several logarithms and thus
give rise to a region in parameter space inaccessible to the algorithm. This itself wouldn’t
spoil the optimization yet, but, unfortunately, the boundary to this forbidden region
features a steep slope towards smaller values before hitting the undefined domain. This
causes the algorithm to occasionally get trapped and to not reach the global minimum of
the negative log-likelihood. Either this boundary effect or the initialization of a parameter
combination inside the forbidden region, apart from unrelated bugs, causes the software
packages to sometimes throw an error and to abort the optimization.
To solve the numerical issues of the EVA, I introduced the constrained optimization

using the augmented Lagrangian method. In order to allow other researchers to benefit
from the findings in this thesis as much as possible, I provided an implementation of
the fixed optimization routines via my software package climex1, which is written in
the statistical programming language R and published under GPL-3 license. Its well-set
default arguments and collection of auxiliary functions will ease the heavy scripting duties
associated with massive parallel analyses, like those covered in this thesis. In addition, I
also introduced estimates for the fitting errors of the calculated parameters and return
levels. They come in three different flavors: the well-known estimate based on the delta

1The source code can be found in https://gitlab.com/theGreatWhiteShark/climex and a live example
of the included web application can be accessed via climex.pks.mpg.de
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method, which is used by almost all other packages to access the errors of the GEV/GP
parameters and performs very poorly, and two new ones based on either the Monte Carlo
method or bootstrap.
Only after fixing the numerical issues of the maximum likelihood optimization the

analysis of the two climatological data sets, the aforementioned station data of the DWD
and the ERA-Interim reanalysis data set embedding the findings of the first part of the
analysis in a global context, could be performed. While for the former one it would be
still feasible to adjust the initial parameter combinations of the failing fits by hand, the
analysis of the latter would not be possible without the introduction of the constrained
optimization. The analysis itself was done in two different ways. Firstly, in the so-called
time window approach, I separated the individual series into several overlapping time
windows and performed a stationary EVA in each of them. This means, I segmented the
series within the time windows into annual blocks, extracted their maximal or minimal
values, and fitted the GEV distribution to the resulting events. Next, the GEV parameters
and the corresponding return levels were collected from the different time windows and
compared in order to find possible patterns of changes in space and time. This more
qualitative method was completed with the more quantitative VGLM analysis. In there,
the whole time series was used and a non-stationary GEV distribution containing a
first order linear trend in both the location and scale parameter was fitted. The result
was compared to a baseline stationary model and a hypothesis test was performed to
determine whether to discard the stationary model and to use the non-stationary one to
describe the data instead. A linear change in the GEV parameters is of course just a
crude approximation but this approach allowed us to search for trends in the temperature
and precipitation extremes in a statistically sound way.

Due to the climate change a general shift of the temperature towards higher values and
thus more hot and less cold extremes would be expect. Indeed, we could find the location
parameters of the GEV distributions, which can be thought of as the mean event size at
a return period (or quantile) of approximately the block size of one year, fitted to both
the daily maximum and minimum temperatures to increase. But the overall changes are
far more complex and dependent on the geographical location as well as the considered
return period, which is quite unexpected. For the 100 year return levels of the daily
maximum temperatures a decrease was found in the east and the center of Germany for
both the raw series and the anomalies, as well as a quite strong reduction for the raw
series in the very south of Germany. For the daily minima about half the stations did
show an increase in the 100 year return levels in the north of Germany for the anomalies
and uniformly distributed one throughout all of Germany for the raw series.
This behavior is due to the non-linear dependence of the return levels on the fitted

GEV parameters. But since their estimates are not free of errors, we can not extrapolate
to arbitrarily high return levels. To access whether the obtained return levels are still
meaningful, we have to calculate their fitting errors. This task, which can not be handled
with any other software package, was done using the Monte Carlo-based approach I
develop in this thesis. In case of the 100 year return levels of the raw temperatures the
changes are of the same order as the fitting errors and therefore the observed behavior
might be arbitrary and simply due to fluctuations. For the temperature anomalies,
on the other hand, the changes exceeded the errors and can thus be interpreted as
manifestations of the dynamics of the underlying climate systems. Since many of the
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results are quite similar to the ones obtained using the raw series, both might represent
the actual changes of the system. But, again, this qualitative time window approach was
done to provide the reader with some detailed insights into the temporal evolution of the
climate system. Statistically sound tests for the presence of trends in the extreme events
of the temperature and precipitation will be done using the quantitative VGLM analysis.

This non-stationary EVA resulted in significant trends in the GEV parameters for the
daily maximum temperatures of almost all stations and for about half the stations in
case of the daily minima. So, there is statistically sound evidence for a change in the
extreme temperatures and, surprisingly, it is not exclusively towards higher values. The
VGLM analysis yielded several rejected hypotheses featuring a negative trend in the 10
year return levels. One for the raw daily maximum temperatures, eight for the daily
maximum temperature anomalies, but none for the daily minima. Note that the time
window and the VGLM analysis did not always yield the same slopes in the return levels
for all stations. With only 60 data events at hand, representing the annual maxima or
minima, both methods are driven with a number of points, which can be considered the
absolute minimum. Thus, the results might show some degree of overfitting but this,
unfortunately, is a general problem of the EVA. In case of the precipitation data the
situation is even more grave since only four hypothesis tests could be rejected. One of
these stations showed an increase in the extreme precipitation, the other three a decrease.
The remaining 53 stations featured both increases and decreases on equal terms spread
throughout Germany without any clear patterns. Apart from these four stations, the
analysis of the precipitation data thus showed neither any evidence for a change in the
extreme events nor any clear tendencies. If there is indeed a temporal evolution going on
in the tails of the daily accumulated rainfall, more data is required to find it. For the
length at hand the EVA does not seem to be an appropriate tool of investigation.
The analysis of the temperature data of the ERA-Interim reanalysis data set yielded

quite surprising results too. While in some parts of the globe, especially on land, the
10 year return levels were found to increase, they do in general decrease in most parts
of the earth and almost entirely over the sea. But since we found a huge discrepancy
between the results of the analysis using the station data within Germany and the results
obtained for the corresponding grid points of the reanalysis data set, we can not be sure
whether the patterns in the return levels of the ERA-Interim data are trustworthy. It
is likely that the statistics of the reanalysis data does not properly resembles nature at
larger quantiles in which case the results obtained using the EVA have no meaning.

The change of the climate system is far from a simple shift towards higher temperature
or precipitation values. The evolution of the extreme precipitation is very hard to access
and the changes in the tails of the asymmetric temperature distribution are fairly complex.
To nevertheless make reliable statements about the climate change, long measurements
of high quality, a sound theoretical foundation, and well-oiled numerical routines are key.
With my contribution to the latter requirement I hope I could advance climatological
studies and contribute to a more solid numerical basis future researchers can rely on.

136



A. Analysis of the temperature and
precipitation series provided by the
DWD

In here the full analysis of the temperature and precipitation series provided by the
German weather service (DWD) will be presented. A thorough treatment of the prepro-
cessing and structure of the analysis including an explanation of the figures and colors
can be found in sections 7.1 and 7.2.

A.1. Temperature anomalies within Germany
The baseline of this analysis will be the case study of the Potsdam temperature anomalies
in section 7.3. But as already mentioned in the description of the structure of the analysis
in section 7.2, we can neither compare the estimated PDFs of all stations nor estimate a
PDF composed of all their data. Instead, the first four moments of every station will
be calculated and the resulting distributions of the moments, including a highlight of
the result obtained for the Potsdam station, are displayed for the three different time
windows.

The resulting distributions of the mean values and variances can be found in figure
A.1 and A.2. As for the Potsdam station we can see a consistent shift in the mean values
of all examined stations. Also the variances of all daily maximum temperature anomalies
are getting bigger and the ones of the minima do decrease, while the values of the latter
are on average smaller than for the maxima. These findings are in perfect agreement
with the results of the Potsdam station. It indicates the same changes for the anomalies
within Germany: a general shift of the distribution function of the temperature anomalies
towards higher temperatures, a decrease in variability of the temperatures at nighttime,
and an increase in variability of the daily maximum temperatures.
Apart from the findings of the case study, we can extract a lot more information

about the temporal change in skewness and kurtosis of the temperature anomalies from
figure A.3 and A.4. While for the Potsdam station these changes were too small to be
distinguishable from noise introduced by numerical artifacts, the skewness and kurtosis
for all stations in Germany do yield a consistent and interesting picture. The daily
maxima do have on average a positive skewness while the minima do have a negative one,
which is about as twice as big. The skewness of the daily maxima is furthermore slightly
increasing and thus shows the opposite behavior of the Potsdam station. At the same
time the skewness of the minima is decreasing by almost 50%. This picture matches the
one we obtained in the GEV analysis of the Potsdam station. The extreme events of the
minima do change a lot faster than the ones of the maxima and the kurtosis is, again,
larger for the minima. This matches the findings from the Potsdam series, which showed
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A.1. Temperature anomalies within Germany

Figure A.1.: Distributions of all mean values calculated from the daily temperature
anomaly series provided by the German weather service. A detailed description of the
preprocessing applied to the 74 (daily maxima) or 75 (daily minima) stations series can
be found in section 7.1. To increase the comparability with the Potsdam case study the
corresponding results are highlighted with a vertical line.
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A.1. Temperature anomalies within Germany

Figure A.2.: Distribution of all variances of the daily temperature anomalies within
Germany. For a more detailed description see figure A.1 and section 7.1.

Figure A.3.: Distribution of all skewness values of the daily temperature anomalies within
Germany. For a more detailed description see figure A.1 and section 7.1.
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A.1. Temperature anomalies within Germany

Figure A.4.: Distribution of all kurtosis values of the daily temperature anomalies within
Germany. For a more detailed description see figure A.1 and section 7.1.

larger variability and a higher number of spikes towards low temperatures. The temporal
change in fourth moment does yield a uniform picture. One can find a general decrease
suggesting less heavy tails at both ends of the overall temperature distribution and thus
a general decrease in extreme events (apart from the shift towards higher temperatures).
To search the temporal evolution of the first four moments of the daily temperature

anomalies for spatial patterns, the values obtained in the last time window as well as the
difference between the first and third window are shown in the following figures.
When searching for spatial patterns in the mean values of the daily temperature

anomalies in figure A.5 one can find nothing but slightly larger changes for the maxima
compared to the minima. It’s counter-intuitive but with its chilly and rainy summers and
its vicinity to the ocean the mean temperature in the southern UK is actually higher than
in the center of Germany. Although another project involving a principal component
analysis of reanalysis data over Germany indicated the presence of such an effect as well,
a higher mean in the vicinity of the sea, no such pattern can be found in the figure.
This could be due to the selection of the stations involved into the analysis. Since we
are concerned with the change of the climate, we do not care that much about different
offsets in the series. Stations were therefore not picked to show a similar degree of the
so-called heat island effect, where measurement stations located in cities do have higher
values on average due to traffic, heat emission generators and electronic devices etc. Or
it maybe is just not a dominant pattern and barely visible in figure A.5.
The variance in figure A.6 is smallest at the measurement stations near the coast or

on islands and is getting larger the further the measurement station is located away from
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A.1. Temperature anomalies within Germany

Figure A.5.: Mean values of the daily temperature anomalies throughout Germany. This
map illustrates the spatial information missing in figure A.1. The colors within the circles,
ranging from yellow to red, display the value of the mean in the third and last time
window at the measurement site. The colors of their outer surrounding, on the other
hand, show the magnitude of the temporal evolution calculated from the values of the
third window minus the ones of the first. Note, to better compare the different maps of
this analysis the color ranges were fixed as described in section 7.2
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A.1. Temperature anomalies within Germany

Figure A.6.: Variances of the temperature anomalies throughout Germany. See figure
A.5 and section 7.2 for a detailed description.
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A.1. Temperature anomalies within Germany

Figure A.7.: Skewness values of the temperature anomalies throughout Germany. See
figure A.5 and section 7.2 for a detailed description.

the sea. This was expected since water has a large heat capacity and oceans are assumed
to act as the main heat reservoir for our climate system (Randall et al. 2007). While no
clear patterns for the changes in variance can be found for the maximum temperatures,
the largest ones for the minima do occur in the south of Germany. Since these changes are
rather strong reductions in the temperature variability and there is an addition increase
in mean values of the minima towards, the temperatures during nighttime have become
a lot more mild especially in Southern Germany.

The skewness of the maxima is largest in the coastal areas and exhibits a slight decrease
towards the south. For the minima, however, no such pattern could be found. Small
changes in the skewness towards higher values can are present in the region of Bavaria for
the maxima and most stations in the minima. In addition, there an interesting pattern
can be found. Stations more eastwards than a longitude of 10 degree exhibit a larger
change in skewness than the western ones. This might indicate a change in frequency
or path of Großwetterlagen but further research is required to check this hypothesis. A
notable exception for the minima is a city called Oberstdorf located in the very south of
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A.1. Temperature anomalies within Germany

Figure A.8.: Kurtosis values of the temperature anomalies throughout Germany. See
figure A.5 and section 7.2 for a detailed description.
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A.1. Temperature anomalies within Germany

Figure A.9.: A plot of the skewness and kurtosis values of the daily temperature anomalies
series against the altitude of the corresponding measurement station. The figures on the
left correspond to the kurtosis of the daily maxima (top) and minima (bottom) and the
ones on the right to the skewness, as indicated by the orange annotation boxes. Only for
the kurtosis of the daily minima a pronounced dependence on the altitude can be found.

Germany and elevated 806 meters above zero. While in almost all stations the skewness
of the minima does increase for Oberstdorf it is actually decreasing. That’s why it yields
the lowest value in all of Germany. In the corresponding time series the number spikes
towards low temperatures is highest in the third time window and one may see something
like an overall downwards trend in the daily minimum temperature. This shows quite
nicely that climate is an average quantity and its local manifestations can differ quite a
lot.

The changes in the kurtosis of the minima in figure A.8 seem to be strongly coupled to
the ones of the skewness since both exhibit almost identical patterns. For the maxima the
kurtosis is largest in the coastal region but no obvious tendency for a gradient towards
the south can be seen. In addition, an interesting pattern in the kurtosis of the minima
can be found. Especially stations, which seem to be located at mountainsides, exhibit a
smaller value. A plot of the kurtosis against the altitude in figure A.9 revealed that there
truly is such a correlation. For the maxima such a pattern could still be present with a
much larger background noise if the skewness of the mountain Zugspitze, which is located
at the largest altitude of 2964m, would be considered an outlier. For the skewness, on
the other hand, no such correlation is obvious, except that higher elevated stations do
show a smaller negative skewness in their minima than lower ones. This leads to the
hypothesis that higher elevated stations might have less extreme deviations of the mean
climatology towards low temperatures than lower ones.
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A.1. Temperature anomalies within Germany

Figure A.10.: Distribution of all location parameters calculated for the different stations
provided by the DWD. For a distribution of a specific color only the annual block maxima,
for the daily maximum temperature anomalies, or block minima, for the daily minimum
temperature anomalies, of the corresponding time window were used. In order compare
the results with the case study of the Potsdam station, its results are marked with vertical
lines. For detailed description see section 7.1 and 7.2.

A.1.1. Non-stationary EVA and significance
Now, let’s come to one of the main problems of this analysis, the question of “how do
extreme weather events change in time within Germany?”.
For the location parameters in figure A.10 we can find the same behavior as for the

mean values of the DWD series. Although there is a general trend towards warmer
temperatures, the rate of change is not the same for the minima and maxima. While the
former exhibit a large change between the first and second time window, the maxima
show a larger step between the second and third window. The outlier of the maxima at
very low temperatures in the location parameters is a measurement station on top of a
mountain called Zugspitze in the very south of Germany. In the location parameter we
can also see a tendency of the distribution to become more narrow starting in the second
time window, while the spread of the daily minima is approximately double the size the
value of the maxima. This means the picture of the extreme weather within Germany is
getting more uniform.
The change in scale for the maxima is far less pronounced than expected from the

analysis of the Potsdam station. Between the first and second time window in figure A.11
there is both a reduction in the overall scale value and the skewness of its distribution.
Between the second and third window the average scale increases a tiny bit and gets
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A.1. Temperature anomalies within Germany

Figure A.11.: Distribution of all scale parameters of the daily temperature anomalies
throughout Germany. For details see figure A.10 and section 7.1 and 7.2.

more narrow. For the minima the scale decreases throughout all three windows with the
difference of the first and second window being the largest one. In addition, the spread
of the distributions decreases in time as well. Interestingly a pronounced bi-modular
structure emerges in the third window. Therefore, the variability with respect to the
very large deviations from the climatology decreases throughout Germany.

The results of the shape parameter in figure A.12 are the most interesting ones. The
distribution for the maxima spreads in the second time window and becomes narrow
again in the third one featuring a shift to more negative values. This will cause both
a reduction of the magnitude of the extreme events as well as a more uniform picture
of the GEV distributions. While there was still a small fraction of maxima exhibiting
positive shape parameters in the first and second window, there is almost none in the
third. The general tendency of these findings do match the results of the Potsdam station
but they are far less pronounced. In case of the minima the distribution of the shape
within the first time window has almost its entire weight at negative shape values. But
for the second window it shifts towards higher values by a margin and obtains a positive
skewness. In the third window the position of the distribution is roughly the same with
now a negative skewness and a lesser spread. This causes the ratio of negative to positive
shape parameters to increase to approximately 2 : 1. As a result the return levels of the
minima should increase and thus show the opposite behavior compared to the Potsdam
station and might lead to an overall increase in extreme daily minimum temperatures in
some parts of Germany.

Facing the rather large changes in the shape parameter of the block maxima obtained
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A.1. Temperature anomalies within Germany

Figure A.12.: Distribution of all shape parameters of the daily temperature anomalies
throughout Germany. For details see figure A.10 and section 7.1 and 7.2.

for the daily minimum temperature anomalies one might ask again, do we really have a
proper description of the data when using a first order linear model with a constant shape?
Both merely all suggestions in the literature (e.g. Gilleland and Katz 2014, @Yee2007,
@ColesBook) and personal experience advise against the usage of a temporal dependency
in the shape parameter. It needs a lot of data to be approximated appropriately since it
is very sensitive to outliers and the most extreme block maxima/minima (see chapter
6). In addition, the 60 years of data are just not enough to trust a six parameter fit
including a linear trend in the shape and since we seek to automate the fitting routine in
order to apply it on all stations within Germany (and all nodes of a reanalysis data set
in chapter 8), trust is what we need. A manual inspection of the fitting results of each
station would not be feasible. We therefore keep the assumption of a constant shape
parameter in the following application of the VGLM analysis.
In the 10 year return levels in figure A.13 we can see the behavior we expected from

investigating the GEV parameters. For the maxima the decrease in scale and shape
compensates the slight increase in the location parameters. This results in a distribution
of the return levels with a tiny shift to the right, a wider spread in the second time
window, and a more pronounced shift in the third one. The increase in spread is likely
to be introduced by the broadening of the distribution of the shape parameters. For the
100 year return levels in figure A.14 the decrease in shape and scale becomes dominant
and causes the distribution of the second window to shift to lower temperatures and
to increase in spread. For the third window the larger shift of the location parameters,
again, pushes the distribution to higher temperatures and thus yields larger return levels
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A.1. Temperature anomalies within Germany

Figure A.13.: Distribution of all 10 year return levels of the daily temperature anomalies
throughout Germany. For details see figure A.10 and section 7.1 and 7.2.

Figure A.14.: Distribution of all 100 year return levels of the daily temperature anomalies
throughout Germany. For details see figure A.10 and section 7.1 and 7.2.

149



A.1. Temperature anomalies within Germany

than in the first or second window.
In the 10 year return levels of the minima one can see first a large then a smaller

shift towards higher temperatures and an overall narrowing of the distribution. Both
is probably caused by the temporal evolution of the location parameters. For the 100
year return levels the distribution remains more or less constant with an increase in
spread in the second window, which will decrease again in the third. This behavior is
totally different compared to the results of the Potsdam station and the ones for the 10
year return levels. It is most likely caused by the strong increase in shape cancelling
the contributions of both the decrease in scale as well as the increase in location. The
outlier at a very large daily maximum temperature in the first time window of the 100
year return levels corresponds to the Brocken station, which is a mountain in the center
of Germany. In the first time window the fit results in a location parameter of 11.21, a
scale of 0.74, and a shape of 0.69. It is thus responsible for the largest 100 year return
level, the largest shape, and the smallest scale parameter for all maxima. But what looks
like an artifact of the analysis corresponds to a valid fit. The problem encounter here is
similar to the one discussed in the chapter 6. The series contains very large events in its
first years and thus the shape parameter gets overestimated when restricting our view
only on the first time window. But still, it is an artifact and won’t serve as a proof for
the massive decrease of the extreme events.
The spatial distribution of the location parameters and their changes in figures A.15

are almost identical to the ones found for the mean values of the series. The patterns
of the scale parameters in figure A.16, on the other hand, do not match the ones of the
variances in figure A.6. For the maxima there is a small tendency for larger decreases
to happen in the north and middle of Germany and for increases to occur in the south.
For the minima no patterns can be found. At first sight, one might expect a similar
dependence on the amplitude for the positive changes in the scale like the one found for
the kurtosis. But upon closer inspection no such dependence could be found.
The shape parameters of the daily maxima in figure A.17 are, on average, shifting

towards lower values. But for coastal stations an increase can be found instead. In
addition, there is a larger increase near the ocean for the maxima too. Considering only
the contribution of the shape parameters to extreme weather events this indicates that
stations near the sea will suffer more extreme temperature anomalies during both day and
nighttime. For stations further away from the coast only the extreme fluctuations around
the climatology during nighttime are getting stronger. The outlier of the maxima with
the massive difference in shape and 100 year return level in the very center of Germany
is the Brocken station we already declared an artifact in the previous part.

The biggest increase towards higher temperatures in both the 10 year return levels in
figure A.18 and the 100 year return levels in figure A.19 for the maxima and minima
occurs in the south of Germany. For the maxima this is caused by a slight increase in
scale in the south of Germany and its decrease in the center and north. For the minima
the location and scale parameters would promote a more uniform picture of the changes
in return levels. But since the shape parameters becomes larger in both the center and
north of Germany, the shift of the 10 year return levels towards higher temperatures is
compensated to some extends. For the 100 year return levels, on the other hand, the
change in shape becomes the dominant driver and thus causes a shift towards lower
temperatures in the center and north. A small shift towards higher temperatures in
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A.1. Temperature anomalies within Germany

Figure A.15.: Location parameters of the daily temperature anomalies throughout Ger-
many. In contrast to figure A.5 the results of the time window analysis of both the daily
minimum and maximum temperature anomalies are colored in two separate scales. Else,
the intricate details of the figure would be barely visible. This also means that color
orange is overloaded and corresponds to a value of approximately -5 ◦C in the left figure
and 6 ◦C in the right figure. For a detailed description please see section 7.1 and 7.2.
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A.1. Temperature anomalies within Germany

Figure A.16.: Scale parameters of the daily temperature anomalies throughout Germany.
For a detailed description of the figure and colors please see section 7.1 and 7.2.
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A.1. Temperature anomalies within Germany

Figure A.17.: Shape parameters of the daily temperature anomalies throughout Germany.
For a detailed description of the figure and colors please see section 7.1 and 7.2.
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A.1. Temperature anomalies within Germany

Figure A.18.: 10 year return levels of the daily temperature anomalies throughout
Germany. For a detailed description of the figure and colors please see figure A.15 or
section 7.1 and 7.2.
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A.1. Temperature anomalies within Germany

Figure A.19.: 100 year return levels of the daily temperature anomalies throughout
Germany. For a detailed description of the figure and colors please see figure A.15 or
section 7.1 and 7.2.
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A.1. Temperature anomalies within Germany

Figure A.20.: Results of the likelihood ratio test whether to use a stationary model over
a first order linear one. All stations, for which the null hypothesis of a better description
with a stationary model was rejected, are enclosed by a green color. The cirlces are
filled with the slope of the 10 year return levels fitted using the VGLM. Since it has
a non-linear dependence on time the slope was estimated by fitting a straight line in
its curve. This value might therefore not yield a perfect approximation of the actual
temporal evolution but it is sufficient to determine its overall tendency.
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A.2. Raw temperature series throughout Germany

the south still remains. This means deviations from the climatology towards higher
temperatures during daytime become more pronounced. At the same time the extreme
deviations towards lower temperatures during nighttime become smaller for a return
period of around 10 years. But for very large extremes, e.g with return periods of 100
years, those deviations actually become larger in many parts of Germany. Mostly in the
south there will be a further decrease instead.
Finally, we also perform the VGLM analysis on the whole set of daily temperature

anomalies of the DWD stations. As shown in figure A.20 for most of the daily maxima
the null hypothesis of using a stationary GEV distribution have been rejected at a 5%
significance level. This means that there is indeed a very high probability for the large
fluctuations around the temperature climatology to change in time, possibly due to the
climate change. The nature of the changes is in agreement with the findings of the time
window analysis. Most of the 10 year return levels do show a positive trend but for eight
stations a decrease in combination with a significant trend in the GEV parameters could
be found. In case of the daily minima around half of the hypotheses had to be rejected
and none of them showed a decrease in the return levels. This asymmetry is caused by
the different variances of the block maxima and block minima series. The latter, featuring
almost double the variance of the block maxima, has bigger noise levels and the resulting
trends have to be larger in order to not pass the likelihood ratio test. In other words,
just because there are more stations of the daily minima passing the hypothesis test does
not necessarily mean the extreme minima are “more” stationary than the maxima. It is
just harder to be verified in a statistical sense and since the slopes in the block minima
are often even larger than for the corresponding block maxima it is most probably both
sides of the overall temperature anomaly distribution being non-stationary.

A.2. Raw temperature series throughout Germany

The analysis of the raw temperature series will be kept rather concise. Only those results
differing from the ones of the temperature anomalies in the last section will be reported.

Figures A.21 shows the temporal evolution of the mean values of the raw temperature
series throughout Germany. Their shift is much less pronounced as in the anomalies but
still present. In addition, for the maxima the shift is a lot bigger than for the minima.
The outlier at very low temperatures of both the maxima and minima is the measurement
station at the Zugspitze, the highest mountain within Germany. Since the measurement
takes place at the top of the mountain, the mean values are much smaller but the series
does nevertheless not represent an artifact and will be included in the remainder of the
analysis.

The variances depicted in figure A.22 show a different behavior compared to the ones of
the anomalies in A.2. For the maxima the distribution in the second window underwent
a small shift but in the third window it, again, looks almost exactly like in the first one.
In case of the anomalies we did find a slight shift towards higher values instead. For
the minima the behavior of the variances is more similar to the anomalies. It features
a shift towards smaller values for the second and third window. But now the third
window has a larger spread than the second one. Why is the behavior different? The
annual cycle present in the raw series does not simply increase the overall variance to
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Figure A.21.: Distribution of the mean values of the raw temperature series within
Germany. For more details see section 7.1.

Figure A.22.: Distribution of the variances of the raw temperature series within Germany.
For more details see section 7.1.
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Figure A.23.: Distribution of the skewness values of the raw temperature series within
Germany. For more details see section 7.1.

values about four times as high as the ones for the anomalies, it also changes the way
fluctuations contribute to the estimates. For the anomalies all fluctuations, regardless of
their direction, do increase the variance. But when dealing with raw series only those
fluctuations do increase the variance, which result in a larger absolute values after adding
both the raw temperature and the fluctuation itself. Therefore, most fluctuations towards
lower values in summer or towards higher values during winter will cause the variances to
decrease. Due to heteroscedasticity of the temperature distribution the overall behavior
of the raw series compared to the temperature anomalies does change.

While the skewness of the daily maximum temperature anomalies was predominantly
positive, it is mostly of negative value for the raw series (see figure A.23). In the second
and third time window the distribution shifts towards higher values, obtains a larger
spread, and is now approximately centered around zero. For the daily minima the picture
is qualitatively the same as for the temperature anomalies.
The kurtosis is in general of smaller values than for the anomalies. It also shows a

similar behavior compared to the anomalies for the daily minima in figure A.24. This
includes a shift towards lesser values and a broader spread. But there is are important
differences between the two. In case of the daily minima of the raw series the kurtosis
features a bimodal structure in the distribution of the third time window. For the daily
maxima the behavior of the raw series is opposite compared to the anomalies. Here, the
distribution does not shift towards lesser values but gains more spread and more mass at
higher kurtosis values.
The spatial distribution of the mean values in figure A.25 is almost the same as for
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Figure A.24.: Distribution of the kurtosis values of the raw temperature series within
Germany. For more details see section 7.1.

the anomalies. The variance in figure A.26, on the other hand, feature a less pronounced
trend in the north-south direction. Most of the increases for the maxima occur in the
south of Germany and most of the decreases in the north, in contrast to the anomalies,
which yielded a more uniform increase throughout all of Germany. For the minima there
is, again, a tendency for larger decreases to occur in the south of Germany. But compared
to the anomalies this pattern is also less pronounced.

The skewness in figure A.27 is very similar to the anomalies. A slightly stronger shift
towards positive values can be found in both the daily maxima and minima. In addition,
the increase in skewness in the south of Germany is a lot more pronounced.
The differences between figure A.28, depicting the kurtosis for the raw temperatures

series throughout Germany, and figure A.8, the corresponding one for the temperature
anomalies, are subtle but many. For the daily minima the values of the kurtosis seem
to be more or less uniformly distributed with a small trend between north and south
with lesser values in the north. While no such pattern was found for the daily minimum
temperature anomalies, the exact opposite pattern was discovered for the daily maximum
temperature anomalies. For the daily maxima of the raw series, on the other hand, no
trend is visible and the values seem to be uniformly distributed. In addition, the largest
changes towards higher kurtosis in the daily maxima do occur in the north close to the
sea. For the minima the decrease in kurtosis in the south of Germany is even more
pronounced than for the anomalies. But, again, the distributions of the raw temperature
series are bimodal and the results for the moments of such series might be misleading.
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A.2. Raw temperature series throughout Germany

Figure A.25.: Mean values of the raw temperature series throughout Germany. The figure
is analog to A.5, depicting the mean values for the daily temperautre anomalies instead.
See section 7.1 and 7.2 for a detailed description.
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Figure A.26.: Variances of the raw temperature series throughout Germany. See figure
A.25 and section 7.1 and 7.2 for a detailed description.
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Figure A.27.: Skewness values of the raw temperature series throughout Germany. See
figure A.25 and section 7.1 and 7.2 for a detailed description.
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Figure A.28.: Kurtosis values of the raw temperature series throughout Germany. See
figure A.25 and section 7.1 and 7.2 for a detailed description.
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Figure A.29.: Distribution of the location parameters for the daily raw temperature
series. This plot is the counterpart of figure A.10 and a more detailed description of the
underlying data and analysis can be found in there and in section 7.1 and 7.2.

A.2.1. Non-stationary EVA and significance
Now let’s turn to the last part of the temperature analysis. The change in location in
figure A.29 is approximately the same as for the anomalies.
The scale parameters in figure A.30, on the other hand, show a different behavior.

Apart from a shift for the daily minima in the third time window towards lower values,
the distributions remain at roughly the same positions. The scale of the daily maxima,
which is on average of higher values than for the anomalies, has more mass at larger
values in the third time window than in all others. On closer inspection the usage of a
first order linear model to describe those changes does not seem very plausible. But as
mentioned beforehand, since a more complex model would not pass a likelihood ratio
test, we will keep it as a baseline to probe an overall change of the distribution. Even
if we find the test to reject the null hypothesis of a stationary model we will not claim
the changes to be perfectly linear. Instead, we learn that there are indeed changes in
the distribution function. But their actual nature can be better accesses using the time
window approach.

Figure A.31 shows the changes in the shape parameters. The ones of the daily minima
do look quite similar to their counterparts of the temperature anomalies. But then again,
although a shift towards higher values takes place, only a fraction of the mass is covering
positive shape values for the minima of the raw temperature series. In addition, the shift
of the maxima towards lower shapes is stronger than for the anomalies.

The resulting return levels in figure A.32 and A.33 match the results of the anomalies
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Figure A.30.: Distribution of the scale parameters for the daily raw temperature series.
A more detailed description of the underlying data and analysis can be found in section
7.1 and 7.2.
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Figure A.31.: Distribution of the shape parameters for the daily raw temperature series.
A more detailed description of the underlying data and analysis can be found in section
7.1 and 7.2.
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Figure A.32.: Distribution of the 10 year return levels for the daily raw temperature
series. A more detailed description of the underlying data and analysis can be found in
section 7.1 and 7.2.
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Figure A.33.: Distribution of the 100 year return levels for the daily raw temperature
series. A more detailed description of the underlying data and analysis can be found in
section 7.1 and 7.2.
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Figure A.34.: Location parameters of the daily raw maximum temperature series through-
out Germany. For a detailed description see figure A.15 and section 7.1 and 7.2.

almost perfectly. The only differences are, that there is no change in spread of the 10
year return level distribution for the daily maxima and the spread is getting more less
and less for the 100 year return levels. In addition, the Brocken station is no outlier
anymore.

The spatial distribution of the location parameters of the daily raw temperature series
in figures A.34 matches the one for the anomalies in figure A.15 in most parts. In case of
the scale parameters in figure A.35 the decrease of the daily maxima now mostly occurs
in the center of Germany while there is the tendency to an increase in the remaining
regions. The decrease in scale for the daily minimum temperature series is even more
pronounced compared to the anomalies.
The shape parameters in figure A.36 feature their strongest decrease for the daily

maxima in the south and most of their increases in the north of Germany. But still, the
highest shape values can be found for both the daily minima and maxima in the south of
Germany. The increase in shape of the minima is more uniformly spread compared to
the anomalies.
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Figure A.35.: Scale parameters of the daily raw maximum temperature series throughout
Germany. For a detailed description see section 7.1 and 7.2.
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Figure A.36.: Shape parameters of the daily raw maximum temperature series throughout
Germany. For a detailed description see section 7.1 and 7.2.
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Figure A.37.: 10 year return levels of the daily raw maximum temperature series through-
out Germany. For a detailed description see figure A.15 and section 7.1 and 7.2.
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Figure A.38.: 100 year return levels of the daily raw maximum temperature series
throughout Germany. For a detailed description see figure A.15 and section 7.1 and 7.2.
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Figure A.39.: Results of the likelihood ratio test whether to use a stationary model over
a linear one for the daily raw temperature series. This plot is the couterpart of figure
A.20, which shows the results for the daily temperature anomalies and provides a more
detailed description.

Figures A.37 and A.38 show the resulting return levels of the daily raw temperature
series. As a result of the changes in the shape parameters the increase in return levels
of the maxima is strongest in the north while there is even a decrease in the 100 year
return levels in the south of Germany. For the minima, on the other hand, the results are
quite similar to the anomalies. Thus, the extremely hot and cold days become smaller in
magnitude in the south of Germany and larger in the north. The medium extreme hot
days become larger in all of Germany but at a faster pace in the north. The medium
extreme cold days become lesser in all of Germany but more fast in the south.

The result of the VGLM analysis in figure A.39 are quite similar to the corresponding
ones for the daily anomalies. In general less null hypothesis could be rejected for both
the daily minima and maxima. This is probably due to the increase in variance for the
block maxima, which we already experienced in the case study of the Potsdam series in
section 7.4.
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Figure A.40.: Distributions of all mean values calculated from the daily accumulated
precipitation throughout Germany. A detailed description of the preprocessing of the 57
stations can be found in section 7.1. To increase the comparability with the case study
of the Potsdam station the corresponding results were marked with a vertical line.

A.3. Precipitation throughout Germany

For a general discussion of the precipitation data and how they do differ from the
temperature data, please see section 7.6.
The mean values of all 57 precipitation series provided by the DWD can be found in

figure A.40. A slight shift in the overall mass of the distribution towards higher values
can be seen but in general the distribution remains constant in time.
More pronounced changes can be found for the variances in figure A.41. The bulk of

the distribution obtains more mass at higher values in both the second and the third
time window. At the same time, the largest variances in the ensemble are getting smaller.
The skewness in figure A.42 shows the opposite behavior compared to the findings of the
Potsdam case study in section 7.6.
The distribution of the kurtosis in figure A.43, on the other hand, gains more mass

at lower values. The very large values in the first and second time window are getting
smaller by a factor of approximately three. Thus, while constant in their mean values, the
variability of the rain becomes larger and medium sized precipitation events become more
frequent in Germany. But the magnitude of extreme precipitation events will possibly
decrease. We will check this assumption in the next section.
The maps for the mean values in figure A.44 and the variances in A.45 do show the

very similar patterns. The largest decreases do happen in the south west of Germany
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Figure A.41.: Distribution of all variances of the daily accumulated precipitation within
Germany. For a more detailed description see figure A.40 and section 7.1.

Figure A.42.: Distribution of all skewness values of the daily accumulated precipitation
within Germany. For a more detailed description see figure A.40 and section 7.1.
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Figure A.43.: Distribution of all kurtosis values of the daily accumulated precipitation
within Germany. For a more detailed description see figure A.40 and section 7.1.

while the biggest increases do occur in the north and north west.
For the skewness in figure A.46 and the kurtosis in A.47, again, the patterns appear to

be quite similar. Now, both the largest values and the largest decreases can be found
in the east of Germany. The dominance in color for the differences between the time
windows is due to the heavy tailed nature of the precipitation data, as can be seen for
the Potsdam series in figure 7.19. The biggest negative difference is caused by a series
featuring its largest events, more than three times the size of the second largest one, in
the first time window. For the biggest positive difference in both kurtosis and skewness
the largest event, now more than double the size of the second largest, is located in the
third time window. In both cases the overall series itself looks pretty stationary.
But overall the maps seem to be as coherent and uniform as the corresponding ones

for the temperature series. This result is unexpected since the correlation length in
temperature data is said to be larger than for precipitation and the latter is stronger
affected by the local elevation profile.

To further investigate the spatial correlations between the moments of the distributions,
all estimates were plotted against both the longitude and latitude of the corresponding
station in figure A.48. One can see a pronounced trend in the skewness and kurtosis to
have both higher values and a larger variability for higher longitudes. The mean, and to
some extends also the variance, does decrease with higher longitudes. The main reason
for this correlation can be found in atmospheric dynamics over Europe. In general, air
saturates with water over the Atlantic Ocean and moves eastwards to central Europe.
The probability of rain to occur thus is higher in the west of Germany, which the humid
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Figure A.44.: Mean values of the daily accumulated precipitation throughout Germany.
This map illustrates the spatial information missing in figure A.40. The colors within
the circles, ranging from orange to red, display the values of the mean within the third
and last time window. The colors of their outer surrounding, on the other hand, show
the magnitude of the temporal evolution calculated from the values of the third window
minus the ones of the first. Note that for better comparability of the different maps in
this analysis the color ranges were fixed as described in section 7.2
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Figure A.45.: Variances of the daily accumulated precipitation throughout Germany. See
figure A.44 and section 7.2 for a detailed description.

180



A.3. Precipitation throughout Germany

Figure A.46.: Skewness of the daily accumulated precipitation throughout Germany. See
figure A.44 and section 7.2 for a detailed description.
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Figure A.47.: Kurtosis of the daily accumulated precipitation throughout Germany. See
figure A.44 and section 7.2 for a detailed description.
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Figure A.48.: Plot of the dependence of the first four moments of the daily accumulated
precipitation series on the geographic location of the corresponding measurement station.
The rows do display the different moments while the columns represent the longitudes
and latitudes of the stations.
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air passes first. Similar patterns can be found for the latitudes. Both the mean and
variance are larger and more variable in the south of Germany and the kurtosis and
skewness do increase in both value and variability with higher latitudes. The increase
of the mean precipitation in the south is probably due to presence of several larger
mountainsides, where the humid air has to drop a lot of its water content in order to
pass the hills and mountains. The increase in skewness and kurtosis, on the other hand,
might be attributed to a general correlation between lesser values and variability in mean
and variance and higher values and variability in skewness and kurtosis judging from
figure A.48. But upon closer inspection of the corresponding map plots this hypothesis is
high improbable. The correlation between skewness or kurtosis and latitude is probably
an artifact because of the overall shape of Germany. This causes all stations in the east
to also be located at relative high latitudes. Therefore, the correlation between the third
and fourth moment and the latitude is probably due to the correlation between both
quantities and the longitudes of their measurement stations.

Speaking of correlations, the similarities in the maps of the mean and variance as well
as skewness and kurtosis also do appear in figure A.48. Both the first and second and
the third and fourth moments seem to be highly correlated. And indeed, the Pearson
correlation is 0.958 between the mean and variance and 0.943 between the skewness
and kurtosis. This finding might be very useful in determining the right distribution for
numerical simulations of precipitation events.

A.3.1. Non-stationary EVA and significance

The changes in the location parameters in figure A.49 are more pronounced than the ones
in the mean values of the raw precipitation series. The bulk of the distribution, again,
gets more and more mass at higher values while at the same time the largest location
parameters become smaller. The scale parameters in figure A.50 do shift towards smaller
values.

The same is true for the shape parameters in figure A.51. Therefore, more and more
mass of the distribution function is located at negative shape values. From all we have
discussed so far it may seem counterintuitive to have a precipitation series with a negative
shape parameter. But not every time series and not every time window features a very
dominant precipitation event, which surpasses all others. For some stations one can find
block maxima, which look instead similar to the ones of raw daily temperature series of
the Potsdam in figure 7.8.
Compared to the findings of the case study, the overall changes in the return levels

throughout Germany in figure A.52 and A.53 are much more pronounced. For both
return periods the distributions shift towards lower values and become much more narrow.
For the 100 year return levels the distribution loses a lot of weight at its right tail. This
means, while the overall distribution of the precipitation remains approximately constant
throughout Germany, the extreme rainfall events do occur more seldom and do have a
smaller magnitude.
The maps of the mean values in figure A.44 and the location parameter in figure

A.54 are very similar and a stronger tendency for the occurrence of decreases in the 10
year return levels in figure A.57 can be found. Apart from this, all other maps of the
time window approach do not show any spatial patterns at all. In contrast to the four
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Figure A.49.: Distributions of all location parameters calculated for the daily accumulated
precipitation of the 57 different stations provided by the DWD. For a distribution of a
specific color only the annual block maxima of the corresponding time window were used.
In order compare to the results with the case study of the Potsdam station, its results
are marked with vertical lines. For detailed description see section 7.1 and 7.2.
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Figure A.50.: Distribution of all scale parameters for the daily accumulated precipitation
throughout Germany. For details see figure A.49 and section 7.1 and 7.2.

Figure A.51.: Distribution of all shape parameters for the daily accumulated precipitation
throughout Germany. For details see figure A.49 and section 7.1 and 7.2.
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Figure A.52.: Distribution of all 10 year return levels for the daily accumulated precipita-
tion throughout Germany. For details see figure A.49 and section 7.1 and 7.2.

Figure A.53.: Distribution of all 100 year return levels for the daily accumulated precipi-
tation throughout Germany. For details see figure A.49 and section 7.1 and 7.2.
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Figure A.54.: Location parameters of the daily accumulated precipitation throughout
Germany. For a detailed description of the figure and colors please see section 7.1 and
7.2.
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Figure A.55.: Scale parameters of the daily accumulated precipitation throughout Ger-
many. For a detailed description of the figure and colors please see section 7.1 and
7.2.
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Figure A.56.: Shape parameters of the daily accumulated precipitation throughout
Germany. For a detailed description of the figure and colors please see section 7.1 and
7.2.
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Figure A.57.: 10 year return levels of the daily accumulated precipitation throughout
Germany. For a detailed description of the figure and colors please see section 7.1 and
7.2.

moments of the series their extreme events do appear to be indeed almost independent
of each other. At most at regional scales on a distance of a few hundreds of kilometers
correlations between the results can be found.

Finally, let’s review the results of the VGLM analysis of the precipitation data through-
out Germany in figure A.59. For almost none of the stations the null hypothesis could be
rejected. Therefore, statistically speaking, no trend in the extreme precipitation events in
Germany could be found. But this doesn’t match the results obtained in the time window
analysis were the distributions of the return levels were found to shift towards lower
values, especially for the 100 year return levels. But this change is either not of the a
nature, which can be well described by a first order linear model, or it is not pronounced
enough to pass the likelihood ratio test. Thus, as a final results of the precipitation
analysis, we indeed find a general tendency towards less extreme precipitation events but
actual nature of the changes in the extremes do depend on the geographic location and
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Figure A.58.: 100 year return levels of the daily accumulated precipitation throughout
Germany. For a detailed description of the figure and colors please see section 7.1 and
7.2.
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Figure A.59.: Results of the likelihood ratio test whether to use a stationary model over
a first order linear one for the daily accumulated precipitation. All stations, for which
the null hypothesis of a better description with a stationary model was rejected, are
enclosed by a green color. The cirlces are filled with the slope of the 10 year return
levels fitted using the VGLM. Since it has a non-linear dependence on time the slope
was estimated by fitting a straight line in its curve. This value might therefore not yield
a perfect approximation of the actual temporal evolution but it is sufficient to determine
its overall tendency.
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more data is required to statistically validate this result.
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