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Refined descendant invariants of toric surfaces

Lev Blechman Eugenii Shustin

Abstract

We construct refined tropical enumerative genus zero invariants of toric
surfaces that specialize to the tropical descendant genus zero invariants in-
troduced by Markwig and Rau when the quantum parameter tends to 1. In
the case of trivalent tropical curves our invariants turn to be the Göttsche-
Schroeter refined broccoli invariants. We show that this is the only possible
refinement of the Markwig-Rau descendant invariants that generalizes the
Göttsche-Schroeter refined broccoli invariants. We discuss also the computa-
tional aspect (a lattice path algorithm) and exhibit some examples.

MSC-2010: 14N10, 14T05
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Introduction

Starting from Mikhalkin’s foundational work [13] tropical geometry has served
as an ultimate tool to solve important enumerative problems. Later it has become
clear that tropical geometry provides new insights to various problems of “classi-
cal” geometry. The present work has been inspired by two such phenomena. One
is that the genus zero descendant invariants of the plane and other toric surfaces,
defined as integrals over the moduli spaces of stable maps of rational curves,
can be computed via enumeration of certain plane tropical curves [11]. Another
exciting phenomenon is the existence of refined tropical enumerative invariants,
i.e., tropical enumerative invariants depending on a parameter [2, 7, 9]. We will
comment on this in more detail.

F. Block and L. Göttsche [2] defined a refined multiplicity of a plane trivalent
tropical curve being a symmetric Laurent polynomial in one variable y1/2. They
showed that, for y = 1, its value is the Mikhalkin multiplicity as introduced in
[13, Definition 4.15]) and, for y = −1, its value is the Welschinger multiplicity
as introduced in [13, Definition 7.19]. Notice that, under appropriate conditions,
enumeration of plane trivalent tropical curves with Mikhalkin and Welschinger
multiplicities gives Gromov-Witten and Welschinger invariants of toric del Pezzo
surfaces, respectively (see [13, Theorems 1 and 6]). In general, the enumerative
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meaning of the refined count remains in question, though in certain cases it is
related to the quantization of real plane curves in the sense of [15].

I. Itenberg and G. Mikhalkin [9] showed that the total refined multiplicity of
the plane tropical curves having given degree and genus and passing through an
appropriate number of generic points in the plane does not depend on the choice
of the point constraints. This is a generalization of the invariance of the count
of tropical curves of given degree and genus with Mikhalkin and Welschinger
multiplicities established earlier in [4, Theorem 4.8] and [8, Theorem 1].

L. Göttsche and F. Schroeter [7] advanced further and introduced another
refined tropical invariant of genus zero, which, for y = −1 specializes to the so-
called broccoli invariant (see [6]) and, for y = 1 specializes to the genus zero

tropical descendant invariant
〈
τ0(2)n0τ1(2)n1

〉
∆

of a toric surface associated to a

convex lattice polygon ∆ as introduced in [11].

The main result of this paper is a construction of a refinement of an arbitrary

genus zero tropical descendant invariant
〈∏

k≥0 τk(2)nk

〉
∆

; we present such a re-

fined invariant in Theorem 2.1, Section 2.2. The construction is inductive with the
Göttsche-Schroeter invariants as the base, while in the induction step, we replace
the vertices of valency> 3 with trees having vertices of smaller valency. In Section
2.5, we show that the combinatorial type of trees used in the induction step does
not matter, and one always obtains the same refined invariant, which generalizes
the Block-Göttsche and Göttsche-Schroeter invariants.

Similarly to the Block-Göttsche and Göttsche-Schroeter invariants our invari-
ant counts certain rational plane tropical curves through a generic configuration of
points, and each curve is counted with a refined multiplicity equal to the product
of multiplicities of vertices (normalized by the automorphisms). This property
allows one to use combinatorial computational tools like the “lattice path algo-
rithm”. In Appendix to this paper, we indicate how to modify the Markwig-Rau
lattice path algorithm [11, Section 9] in order to compute our refined invariant
and provide an example of computation.

Another refined tropical count related to descendant Gromov-Witten invariants
has been suggested in [10]. The tropical objects counted there are plane tropical
disks (i.e., halves of tropical curves) which have only trivalent vertices equipped
with the refined Block-Göttsche multiplicities. In turn, we consider the entire
tropical curves admitting multi-valent marked vertices, and the main novelty
of our work is the definition of refined multiplicities of marked vertices of any
valency.

We remark that our invariant is not in general a Laurent polynomial in y (or
even in y1/2) if we allow marked vertices of valency > 3, but it may have poles at
y = 0 and y = −1. We estimate the order of the pole at y = −1 in Proposition 2.4
(Section 2.2) and show that our upper bound is sharp (Section 3).

An interesting question is how to extend the definition of tropical descendant
invariants and their refinements to curves of positive genus. The particular case
of genus one curves with at most trivalent marked vertices has been settled in
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[17]. Another perspective question is whether the refined tropical descendant
invariant can be interpreted via Mikhalkin’s quantization of algebraic curves [15].

1 Plane marked rational tropical curves

We shortly recall some basic definitions concerning plane rational tropical curves,
adapted to our setting (for details, see [4, 5, 11, 12, 13, 16] and especially [3]).

1.1 Plane rational tropical curves

Under an n-marked plane rational tropical curve we understand a triple (Γ, p, h),
where

• Γ is a finite connected metric tree without vertices of valency ≤ 2, whose set
Γ0 of vertices in nonempty, and the set of edges Γ1 contains a subset Γ1

∞ , ∅
consisting of edges isometric to [0,∞) (called ends), while Γ1 \ Γ1

∞ consists of
edges isometric to compact segments in R (called finite edges);

• h : Γ → R2 is a proper continuous map such that h is nonconstant, affine-
integral on each edge of Γ in the length coordinate (i.e., given by (x, y) =
(a, b)t + (x0, y0) with (a, b) ∈ Z2 \ {0} and t being the length coordinate on the
considered edge) and, at each vertex V of Γ, the balancing condition holds

∑

E∈Γ1, V∈E

aV(E) = 0 , (1)

where aV(E) is the image under the differential D(h
∣∣∣
E
) of the unit tangent

vector to E emanating from its endpoint V (called the directing vector of E
centered at V);

• p = (p1, ..., pn) is a sequence of n points of Γ.

We call a vertex V ∈ Γ0 flat if the vectors in the left-hand side of (1) span a
one-dimensional subspace of R2

Notice that each vector aV(E) can be written as aV(E) = mv, where m is a positive
integer (called the weight of the edge E of (Γ, p, h)) and v ∈ Z2 \ {0} is primitive.
The degree of the plane rational tropical curve (Γ, p, h) is the multi-set of vectors

∆(Γ, p, h) =
{
aV(E)), E ∈ Γ1

∞

}
.

The balancing condition yields that ∆(Γ, p, h) is a balanced multi-set, i.e.

∑

b∈∆(Γ,p,h)

b = 0 .
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We call∆(Γ, p, h) primitive if it contains only primitive vectors, and we call∆(Γ, p, h)
nondegenerate, if Span

R
∆(Γ, p, h) = R2.

With a plane rational tropical curve (Γ, h) we associate an unparameterized (or
embedded) plane tropical curve in the sense of [12, Section 2.1] or [13, Section 2],
which we denote T = h∗(Γ). This is a closed finite rationalI one-dimensional
polyhedral subcomplex of R2 supported at h(Γ). Its edges are equipped with
positive integral weights as follows: for an edge e of T pick any of its interior
points x ∈ e, and define the weight w(e) of e as the sum of the weights of those
edges of Γ, whose h-images cover x. It is easy to see that the balancing condition
(1) yields the balancing condition for T at each vertex v ∈ T0 in the form

∑

v∈e

w(e) · av(e) = 0 ,

where e ranges over all the edges of T incident to v, and av(e) denotes the primitive
integral vector directing e and emanating from v. The degree∆(T) of T is the multi-
set of vectors w(e) · av(e), where e runs over all unbounded edges of T. If we take
the vectors b ∈ ∆(T) in the natural cyclic order, rotate them by π

2
clockwise, and

attach the initial point of each vector to the endpoint of the preceding one, we
obtain a convex lattice polygon P(T) (denoted also P(∆)), called the Newton polygon
of T and of (Γ, p, h). There is a duality between the edges and vertices of T on one
side and the edges and polygons of a certain (dual) subdivision of P(T), see [12,
Proposition 2.1]. We denote the dual object byD(∗). The weight w(e) of an edge e
of T equals the lattice length of the dual edgeD(e) in the above subdivision.

By a combinatorial type of a plane rational marked tropical curve (Γ, p, h) we
mean the combinatorial type of the pair (Γ, p) enhanced with the collection of
directing vectors aV(E) for all edges E ∈ Γ1 and vertices V ∈ E.

1.2 Moduli spaces of plane rational marked tropical curves

The moduli spaces of plane rational marked tropical curves are our main objects
of study. Here we recall some information on moduli spaces, following [3, 4, 5,
11, 14, 13] and adapting notations to our setting.

Under an isomorphism (Γ, p, h) → (Γ′, p′, h′) we understand an isometry ϕ :
Γ → Γ′, identifying the ordered sequences ϕ : p → p′, and satisfying h = h′ ◦ ϕ.
Isomorphism classes of plane rational n-marked tropical curves of degree ∆ are
parameterized by the moduli spaceM0,n(R2,∆).

We will also use labeled tropical curves. In this case, we fix a linear order on ∆
and denote the obtained sequence by ∆lab. A labeled n-marked plane rational tropical
curve of degree∆lab is a triple (Γlab, p, h), where (Γ, p, h) is an n-marked plane rational
tropical curve of degree∆, and Γlab is the graph Γwith a linear order on the set of its
ends Γ1

∞ such that h equips the i-th end of Γlab with the i-th directing vector in ∆lab

for all i (cf. [3, Definition 4.1]). Notice that a labeled metric tree Γlab does not admit

IHere “rational” means “with rational slopes”.

4



nontrivial automorphisms. Thus, the moduli spaceMlab
0,n(R2,∆lab) parameterizes

just n-marked plane rational tropical curves of degree ∆lab. According to [3,
Section 4, Lemma 4.6 and Proposition 4.7] (see also [5, Lemma 2.1]), the geometry
ofM0,n(R2,∆) andMlab

0,n(R2,∆lab) can be described as follows.

Lemma 1.1 (1) The spaceMlab
0,n(R2,∆lab) can be identified with a polyhedral fan of pure

dimension |∆| − 1 + n in some Euclidean spaceRN. Open cells of this fan are in bijection
with the combinatorial types of the labeled curves (Γlab, p, h) ∈ Mlab

0,n(R2,∆lab), while

independent parameters are: the coordinates of h(V) ∈ R2 for a chosen vertex V ∈ Γlab,
the lengths of the finite edges whose interior is disjoint from p, and the distances from each
marked point pi ∈ p \ Γ0 to an endpoint of the edge E ⊃ {pi}. The faces of a cell correspond
to the case of vanishing of some parameters. The top-dimensional cells correspond to Γ
trivalent and p ∩ Γ0 = ∅.

(2) The group G of permutations ϕ : ∆lab → ∆lab such that ϕ(b) = b for each b ∈ ∆lab

acts onMlab
0,n(R2,∆lab), and one has the finite surjective quotient map

π0,n :Mlab
0,n(R2,∆lab)→M0,n(R2,∆) .

Furthermore, for any element [(Γ, p, h)] ∈ M0,n(R2,∆), we have

∣∣∣π−1
0,n([(Γ, p, h)])

∣∣∣ = |G|

|Aut(Γ, p, h)|
. (2)

Furthermore, for any sequence n = (nk)k≥0 ∈ Z
∞
+ , where Z+ = {m ∈ Z : m ≥ 0}

and n =
∑

k≥0 nk, introduce

M0,n(R2,∆) =
{
(Γ, p, h) ∈ M0,n(R2,∆) :

pi ∈ p are interior points of edges for 1 ≤ i ≤ n0,

pi ∈ p are (k + 2) − valent vertices for
∑

j<k

n j < i ≤
∑

j≤k

n j, k ≥ 1
}
.

Denote by M̂0,n(R2,∆) the closure ofM0,n(R2,∆) inM0,n(R2,∆). Respectively, we

have the labeled analogue Mlab
0,n

(R2,∆lab) ⊂ M̂lab
0,n

(R2,∆lab) ⊂ Mlab
0,n(R2,∆lab). The

following statement is straightforward from Lemma 1.1.

Lemma 1.2 The space M̂ lab
0,n

(R2,∆lab) is either empty, or is a finite polyhedral fan of pure

dimension |∆| − 1 +
∑

k≥0(1 − k)nk. Its open top-dimensional cells parameterize tropical
curves (Γlab, p, h) with Γ \ p trivalent and p ∩ Γ0 consisting of exactly

∑
i≥1 ni points

among which ni points are (i+ 2)-valent vertices of Γ for all i ≥ 1. The space M̂0,n(R2,∆)

is the quotient of M̂ lab
0,n

(R2,∆lab) by the action of the group G.

Introduce the evaluation maps

Ev : M̂ lab
0,n

(R2,∆lab)→ M̂0,n(R2,∆)→ R2n, Ev(Γ, p, h) = h(p) .
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Suppose that a sequence n = (nk)k≥0 ∈ Z
∞
+ satisfies dim M̂ lab

0,n
(R2,∆lab) = 2n, that

is, ∑

k≥0

(k + 1)nk = |∆| − 1,
∑

k≥0

nk = n . (3)

Denote by Me,lab

0,n
(R2,∆lab), resp., Me

0,n
(R2,∆), the union of those open cells of

dimension 2n = |∆| − 1 +
∑

k≥0(1 − k)nk inMlab
0,n

(R2,∆lab), resp.,M0,n(R2,∆), whose

Ev-images have dimension 2n, and by M̂ e,lab

0,n
(R2,∆lab), resp., M̂ e

0,n
(R2,∆), the

closure inMlab
0,n(R2,∆lab), resp., M̂0,n(R2,∆). By Eve we denote the restriction of Ev

to M̂ e,lab

0,n
(R2,∆lab) and M̂ e

0,n
(R2,∆).

Let us recall the regularity notion due to Mikhalkin [13, Sections 2.6 and 4.5].
We say thata curve (Γ, p, h) is regular, if each component K of the set Γ\p is regular,
that is, K is trivalent, has no flat vertices and contains exactly one unbounded
edge. The following statement is a reformulation of [13, Lemmas 4.20 and 4.22].

Lemma 1.3 Let a component K of Γ \ p for some plane rational tropical curve (Γ, p, h) be
regular. Then the following holds.

(1) The edges of the closure K ⊂ Γ admit a unique orientation (called the regular
orientation) such that the marked points are sources, the unbounded edges are oriented
towards infinity, and each vertex of K is incident to exactly two incoming edges.

(2) Denote by (ΓK, pK, hK) the plane rational tropical curve, where pK = p∩K, and ΓK

is obtained from K by extending each edge incident to a marked point to an unbounded
edge, while hK linearly extends h beyond the marked points. Put ∆K = deg(ΓK, pK, hK)
and n′ = |pK|. Then the map

Ev :M0,n′(R
2,∆K)→ R2n′

defines a linear isomorphism of the germII ofM0,n′(R
2,∆K) at [(ΓK, pK, hK)] onto a germ

of R2n′ at hK(pK).

Lemma 1.3 has an interesting consequence for us:

Lemma 1.4 For an arbitrary nondegenerate balanced multiset ∆ ⊂ Z2 \ {0} and a se-
quence n = (ni)i≥0 ∈ Z

∞
+ satisfying (3), the moduli spaceMe

0,n
(R2,∆) contains an element

represented by a regular curve (Γ, p, h). Moreover, the induced embedded plane tropical
curve T = h∗(Γ) is dual to a subdivision of the Newton polygon P(∆) into n0+2

∑
i≥1 ni−1

nondegenerate convex polygons, obtained by drawing n0 + 2
∑

i≥1 ni − 2 chords that join
certain pairs of integral points in ∂P(∆) and do not intersect each other in their interior
points.

It follows that the moduli spaces Me
0,n

(R2,∆) ⊂ M0,n(R2,∆) are nonempty,

which strengthens the second assertion of Lemma 1.2.

IIHere and further on, under the germ we understand a sufficiently small Euclidean neighbor-
hood of the central element.
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Proof of Lemma 1.4. Suppose that there exists a regular element [(Γ, p, h)] ∈
M0,n(R2,∆). Then, by Lemma 1.3, it belongs toMe

0,n
(R2,∆). Furthermore, denote

by m1 the number of the unmarked trivalent vertices of such a curve (Γ, p, h).
Comparing the Euler characteristic χ(Γ) = 1, the number |Γ1|, and formula (3), we
obtain

m1 =
∑

i≥0

ni − 1 . (4)

We construct the curve (Γ, p, h) asserted in the lemma using the ideas of [9,
Proposition 2.10], where the case of n = (n0, 0, 0, ...) was considered.

The boundary of the Newton polygon P(∆) can be represented as the union of
cyclically ordered integral segments [vk, vk+1], k = 0, ..., |∆| − 1, v|∆| = v0, obtained
by rotating the vectors ak ∈ ∆, k = 0, ..., |∆| − 1, by π

2
clockwise (see Section 1.1).

The setV = {v0, ..., v|∆|−1} includes all the vertices of P(∆).

We prove the lemma by induction on
∑

i≥1 ni. For the base of induction, sup-
pose that ni = 0 for all i ≥ 1. Then there exists a subdivision of P(∆) into m1

(nondegenerate) triangles obtained by drawing m1 − 1 chords joining some pairs
of points inV so that no two chords intersect in their interior points. This is easily
derived by induction on |∆|: if |∆| ≥ 4, then there exist two non-collinear segments
[vi−1, vi], [vi, vi+1] such that [vi−1, vi+1] 1 ∂∆. The obtained triangulation is convex,
i.e., lifts to a graph of a convex piecewise-linear function ν : P(∆)→ R, and hence,
the subdivision is dual to a plane tropical curve T, which is an embedded trivalent
tree. Picking a marked point on all but one ends of T, we obtain a regular tropical
curve as desired.

For the induction step suppose that nk > 0 for some k ≥ 1. If |∆| = k + 2, then Γ
has one (k+2)-valent marked vertex and |∆| = k+2 ends incident to it. The tropical
curve T = h∗(Γ) is dual to the entire polygon P(∆). If |∆| = k + 3, then formulas
(3) and (4) imply that n0 = nk = 1, ni = 0, i , 0, k, and m1 = 1. As noticed in
the preceding paragraph, there exist two non-collinear segments [vi−1, vi], [vi, vi+1]
such that [vi−1, vi+1] 1 ∂∆. The chord [vi−1, vi+1] defines the required subdivision
of P(∆), while the corresponding curve (Γ, p, h) has a marked (k + 2)-valent vertex
joined by a bounded edge orthogonal to the above chord with an unmarked
trivalent vertex, and an extra marked point is chosen in one of the ends incident to
the unmarked vertex. In the remaining case |∆| ≥ k+4, we have m1 ≥ 1 by formulas
(3) and (4). We claim that there exists 0 ≤ i ≤ |∆| − 1 such that the chord [vi, vi+k+1]
is not contained in ∂P(∆). Indeed, otherwise, either all points vi, ..., vi+k+1 lie on
one line, or all points vi+k+1, ..., vi lie on one line (here we follow the cyclic order in
V), and this holds for all i = 0, ..., |∆| − 1, which is only possible when all points
v0, ..., v|∆|−1 lie of one line, contrary to the assumption that ∆ is nondegenerate. For
a similar reason, at least one of the chords [vi, vi+k+2], [vi−1, vi+k+1] is not contained
in ∂P(∆). If, for instance, [vi, vi+k+2] 1 ∂P(∆), then we obtain the polygons (see
Figure 1(a))

• P′ = conv(vi+k+2, vi+k+3, ..., vi) = P(∆′), where the nondegenerate, balanced
multiset ∆′ consists of the vectors a j ∈ ∆, j < {i, ..., i + k + 1}, and the vector
a′ = ai + ... + ai+k+1;
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•

vi vi+k+1

vi+k+2P′

P′′

(Γ′, p′, h′)

(Γ′′, p′′, h′′)

Figure 1: Proof of Lemma 1.4

• P′′ = conv(vi, vi+1, ..., vi+k+2) = P(∆′′), where the nondegenerate, balanced
multiset ∆′′ consists of the vectors ai, ..., ai+k+1 ∈ ∆ and the vector −a′.

Let n
′
= (n′

i
)i≥0, n′

k
= nk−1, n′

i
= ni, i , k. Since∆′ and n

′
satisfy (3), and

∑
n′

i
<

∑
ni,

by induction assumption we get a curve (Γ′, p′, h′) ∈ Me
0,n′

(R2,∆′) matching the

requirements of Lemma. We also get a plane tropical curve (Γ′′, p′′, h′′) of degree
∆′′, having a marked (k + 2)-valent vertex and an unmarked trivalent vertex and
associated with the subdivision of P′′ by the chord [vi, vi+k+1]. Finally, we obtain
the desired element [(Γ, p, h)] ∈ Me

0,n
(R2,∆) by gluing the curves (Γ′, p′, h′) and

(Γ′′, p′′, h′′) along their ends directed by the vectors a′ and −a′, respectively (see
Figure 1(b)). �

The next statement provides a geometric background for the proof of the in-
variance of the refined enumeration of tropical curves introduced in the present
paper. It is very similar to considerations in [11, Sections 3 and 4].

Proposition 1.5 Let ∆ ⊂ Z2 \ {0} be a non-degenerate balanced multi-set, and let
a sequence n = (nk)k≥0 ∈ Z

∞
+ satisfy (3). Then the target space of the map

Eve : M̂ e,lab

0,n
(R2,∆lab)→ R2n splits into the disjoint union

R2n = X2n ∪ X2n−1 ∪X2n−2 ,

where

(1) X2n is the union of finitely many open polyhedra of dimension 2n, and, for
each element x ∈ X2n, its preimage (Eve)−1(x) is finite; furthermore, each curve
(Γlab, p, h) ∈ (Eve)−1(x) belongs toMlab

0,n
(R2,∆lab) and is regular;

(2) X2n−1 is the union of finitely many (relatively) open polyhedra of dimension 2n− 1,
and, for each point x ∈ X2n−1, its preimage (Eve)−1(x) is finite; furthermore, each
curve (Γlab, p, h) ∈ (Eve)−1(x) is as follows:

(2i) either (Γ, p, h) is as in item (1);

8



(2ii) or (Γlab, p, h) ∈ Mlab
0,n

(R2,∆lab), and all but one components of the set Γ \ p

are regular, while the remaining component has one unbounded edge, one
four-valent vertex, and the rest of vertices are trivalent;

(2iii) or (Γlab, p, h) ∈ Mlab
0,n′

(R2,∆lab), where n
′
= (n′

i
)i≥0 ∈ Z

∞
+ , and there exists

k ≥ 0 such that nk > 0, n′
k
= nk − 1, n′

k+1
= nk+1 + 1, and n′

i
= ni for all

i , k, k + 1; furthermore, all but one components of the set Γ \ p are regular,
while the remaining component is bounded, trivalent, and incident to one of
the (k + 3)-valent marked vertices;

(3) X2n−2 is a closed finite polyhedral complex of dimension ≤ 2n − 2.

Proof. Define

X2n = R2n \ Eve
(
M̂ e,lab

0,n
(R2,∆lab) \Me,lab

0,n
(R2,∆lab)

)
.

Now, letM2n−1 be the union of those (2n−1)-dimensional cells of M̂ e,lab

0,n
(R2,∆lab)\

Me,lab

0,n
(R2,∆lab), which are injectively projected into R2n by Eve. Then define

X2n−1 = Eve(M2n−1) \ Eve
(
M̂ e,lab

0,n
(R2,∆lab) \ (Me,lab

0,n
(R2,∆lab) ∪M2n−1)

)
,

X2n−2 = Eve
(
M̂

e,lab

0,n
(R2,∆lab) \ (Me,lab

0,n
(R2,∆lab) ∪M2n−1)

)
.

So, claim (3) follows by construction.

The finiteness of (Eve)−1(x) for each x ∈ X2n ∪ X2n−1 follows from Lemma 1.2
and the fact that the cells ofMe,lab

0,n
(R2,∆lab) ∪M2n−1 are injectively mapped into

R2n.

Let us show the regularity of any curve (Γlab, p, h) ∈ (Eve)−1(x), x ∈ X2n. Note that
no component γ of Γ\p is bounded. Indeed, otherwise, it would yield a constraint
to the position of the images of the marked points on ∂γ, that is, the image of the
corresponding 2n-cell ofMe

0,n
(R2,∆) would be of dimension < 2n (cf. [13, Lemma

4.20]). Since the number of connected component of Γ \ p is 1+
∑

k≥0(k+ 1)nk = |∆|

(see (3)), we derive from the above observation that each component of Γ \ p
contains exactly one unbounded edge. Notice that there are no flat unmarked
vertices: indeed, otherwise, contrary to the finiteness of (Eve)−1(x) we would
obtain a one-parameter family inside (Eve)−1(x) when varying the position of such
a flat vertex along the line containing the images of its incident edges. Finally, all
components of Γ\p must be trivalent due to the condition of maximal-dimensional
image (cf. [13, Proposition 2.23]).

For claim (2), note that by construction, elements of any (2n − 1)-cell of

M̂ e,lab

0,n
(R2,∆lab) are degenerations of elements of some 2n-cell. Hence, they appear

via either moving one of the marked points outside Γ0 to a vertex of Γ, or con-
tracting exactly one bounded edge. In the former case, we fit the situation (2iii)
with k = 0. In the latter case, either a marked vertex collates with an unmarked,
trivalent one, which fits the situation (2iii) with some k > 0, or two unmarked

9



trivalent vertices collate, that is, conditions of (2ii) are satisfied. Note also that,
in item (2ii), the regular orientation on the complement to the marked points for
elements of the 2n-cell that degenerate to the considered curve (Γlab, p, h), induces
an orientation on the edges of the special component of Γ\p such that three edges
incident to the unmarked four-valent vertex are incoming and one is outgoing. �

2 Refined count of plane rational marked tropical

curves

Throughout this section, we fix a standard basis in R2, and for any a = (a1, a2),

b = (b1, b2) ∈ R2, set a ∧ b = det

(
a1 a2

b1 b2

)
. We also set

[α]−y =
yα/2 − y−α/2

y1/2 − y−1/2
, [α]+y =

yα/2 + y−α/2

y1/2 + y−1/2
, for all α ∈ R , (5)

y being a formal parameter.

2.1 Refined multiplicity of a plane rational marked tropical curve

Let us be given a nondegenerate, balanced multi-set ∆ ⊂ Z2 \ {0} and its linearly
ordered form ∆lab, a positive integer n and a sequence n = (nk)k≥0 ∈ Z

∞
+ satisfying

(3). Let (Γ, p, h) ∈ Me
0,n

(R2,∆) be regular, and let (Γ lab, p, h) ∈ Me,lab

0,n
(R2,∆) be one

of the labeled preimages of (Γ, p, h). We start with defining a refined multiplicity
RMy(Γ, p, h,V) (depending on a formal parameter y) for each vertex V ∈ Γ0.

(1) Refined multiplicity of a trivalent vertex. Suppose that V ∈ Γ0 is trivalent and
choose two distinct edges E1,E2 ∈ Γ

1 incident to V. Define the Mikhalkin’s multi-
plicity of the vertex V by (cf. [13, Definition 2.16])

µ(Γ, h,V) = |aV(E1) ∧ aV(E2)| . (6)

Due to the balancing condition (1), this number does not depend on the choice
of the pair of edges incident to V and, in fact, is equal to the lattice area of the
triangle D(h(V)), dual to the vertex h(V) of the embedded plane tropical curve
T = h∗(Γ). Following [2, 7], we define

RMy(Γ, p, h,V) =


[µ(Γ, h,V)]+y , if V ∈ p,

[µ(Γ, h,V)]−y , if V < p.
(7)

(2) Refined multiplicity of a marked vertex of valency ≥ 4. For any balanced
sequence

A = (ai)i=1,...,m, m ≥ 2, ai ∈ R
2, i = 1, ...,m,

m∑

i=1

ai = 0 ,

10



we will recursively define an expression θy(A) containing a formal parameter y.

If m = 2, we set θy(A) = 1. If m = 3, we set θy(A) = [|a1 ∧ a2|]
+
y . Note that,

due to the balancing condition, this definition does not depend on the choice of
order in the sequence A. Furthermore, it holds that θy(A) = RMy(Γ, p, h,V) when
V ∈ Γ0 ∩ p is trivalent, and ai = aV(Ei), i = 1, 2, 3, with E1,E2,E3 being the edges of
Γ incident to V.

If m ≥ 4, then, for each pair 1 ≤ i < j ≤ m, we form the two balanced sequences

• A′
i j

consisting of the vectors ak, 1 ≤ k ≤ m, k , i, j, and one more vector
ai j := ai + a j,

• A′′
i j
= (ai, a j,−ai j).

Then we set
θy(A) =

∑

1≤i< j≤m

θy(A′i j) · θy(A′′i j) . (8)

It is easy to see that θy(A) does not depend on the choice of the order in A. At
last, observe that θy(A) can be written as the sum over all plane rational trivalent
tropical curves of degree A counted with multiplicity proportional to the product
of the factors [µ(V)]+y over all trivalent vertices V of a given curve.

Now, given a vertex V ∈ Γ0 ∩ p of valency m and somehow ordered edges
E1, ...,Em of Γ incident to V, we define

RMy(Γ, p, h,V) = θy(∆V), ∆V = (aV(Ei))i=1,...,m . (9)

Finally, put

RMy(Γ lab, p, h) =
∏

V∈Γ0

RMy(Γ, p, h,V), RMy(Γ, p, h) =
RMy(Γ lab, p, h)

|Aut(Γ, p, h)|
. (10)

2.2 Invariance of the refined count

Theorem 2.1 Let ∆ ⊂ Z2 \ {0} be a nondegenerate balanced multi-set, a sequence n =
(nk)k≥0 ∈ Z

∞
+ satisfy (3), and the set X2n ⊂ R2n be as in Proposition 1.5. Then the

expression

RDy(∆, n, x) =
∑

(Γ,p,h)∈Me
0,n

(R2,∆)

h(p)=x

RMy(Γ, p, h) (11)

does not depend on the choice of x ∈ X2n.

The proof is presented in Sections 2.3 and 2.4.

Remark 2.2 Note that the invariant RDy is an extension of other known refined invari-
ants:
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• if n = (n0, 0, ...), i.e., nk = 0 for all k ≥ 1, then RDy(∆, n) coincides with the genus
zero Block-Göttsche refined invariant [2];

• if n = (n0, n1, 0, ...), i.e., nk = 0 for all k ≥ 2, and all the vectors in ∆ are primitive,
then RDy(∆, n) coincides with the Göttsche-Schroeter refined invariant [7].

The invariant RDy(∆, n) provides a refinement of the tropical descendant invari-
ants as introduced in [11]. Namely, introduce the normalized refined descendant
invariant

NRDy(∆, n) =
∏

k≥1

[
3 · 2k+1

(k + 2)!(k + 1)!

]nk

· RDy(∆, n) .

Lemma 2.3 Given a nondegenerate balanced multi-set ∆ ⊂ Z2 \ {0} and a sequence
n = (nk)k≥0 ∈ Z

∞
+ satisfying (3), we have

lim
y→1

NRDy(∆, n) =

〈∏

k≥0

τk(2)nk

〉

∆

. (12)

Proof. Along [11, Theorem 8.4], the tropical descendant invariant〈∏
k≥0 τk(2)nk

〉
∆

can be computed by counting rational marked tropical curves in
(Eve)−1(x) ⊂ Me

0,n
(R2,∆) with the multiplicities

ω(Γ, p, h) =
1

|Aut(Γ, p, h)|

∏

V∈Γ0\p

µ(Γ, h,V) .

On the other hand, for a trivalent vertex V of Γ with µ = µ(Γ, h,V), we have

lim
y→1

RMy(Γ, p, h,V) = lim
y→1

yµ/2 − y−µ/2

y1/2 − y−1/2
= µ = µ(Γ, h,V) ,

if V is unmarked, and

lim
y→1

RMy(Γ, p, h,V) = lim
y→1

yµ/2 + y−µ/2

y1/2 + y−1/2
= 1 ,

if V is marked. If V is a four-valent marked vertex, then formula (8) yields six
summands, each one equal to 1, and hence by (9) RM1(Γ, p, h,V) = 6 = 4!3!/(3 ·23).
Then we inductively apply formula (8) and obtain for any marked vertex of
valency k + 2

lim
y→1

RMy(Γlab, p, h,V) =
(k + 2)!(k + 1)!

3 · 2k+1
, k ≥ 2 .

Thus, (12) follows. �

The invariant RDy(∆, n) is often a rational function of y:
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Proposition 2.4 Given a nondegenerate balanced multi-set∆ ⊂ Z2\2Z2 and a sequence
n = (nk)k≥0 ∈ Z

∞
+ satisfying (3), we have

RDy(∆, n) =
F(y + y−1)

(y + 2 + y−1)m
, (13)

where m ≥ 0 and F is a (nonzero) polynomial of degree

deg F = pa(P(∆)) +
|∂P(∆) ∩Z2| − |∆|

2
+m ,

where pa(P(∆)) is the number of interior integral points of the Newton polygon P(∆).
Furthermore,

m ≤
∑

k≥1

k(n2k + n2k+1) . (14)

Proof. To show that RDy(∆, n) is a (rational) function of y, we move y around
the circle Sc = {|y| = c}, 0 < c ≪ 1, and check that the value of RDy(∆, n) does
not change sign. Indeed, notice that the recursion (8) yields that RDy(∆, n)
can be expressed as the sum of multiplicities of finitely many trivalent ratio-
nal tropical curves (Γ(3), h(3)) of degree ∆, and each multiplicity is of the form
s
∏

V∈Γ0
(3)

[µ(Γ(3), h(3),V)]±y with some s ∈ Q. The factor [µ(Γ(3), h(3),V)]±y changes its

sign as y travels along Sc iff µ(Γ(3), h(3),V) is even. Thus, the claim comes from the
statement of [9, Proposition 2.3(4)]: if ∆ does not contain even vectors, then the
number of vertices of Γ(3) with even µ(Γ(3), h(3),V) is even.

To compute the denominator of the function RDy(∆, n), we consider a sum-
mand Σ = s

∏
V∈Γ0

(3)
[µ(Γ(3), h(3),V)]±y that appears in the expression of the preceding

paragraph. Note that yµ/2 − y−µ/2 is always divisible by y1/2 − y−1/2 and, in ad-
dition, is divisible by y1/2 + y−1/2 as µ is even, and yµ/2 + y−µ/2 is divisible by
y1/2 + y−1/2 if µ is odd. Hence, either the denominator in Σ cancels out, or is
equal to (y1/2 + y−1/2)m′−m′′ , where m′, resp. m′′, is the number of marked, resp.
unmarked, vertices V ∈ Γ0

(3)
with even value µ(Γ(3), h(3),V). As observed in the

preceding paragraph, the number m′ +m′′ is even, and hence the denominator of
Σ takes form (y1/2 + y−1/2)2m = (y + 2 + y−1)m with an integer m.

Formula for deg F is similar to that in [9, Proposition 2.10]. For a summand
Σ = s

∏
V∈Γ0

(3)
[µ(Γ(3), h(3),V)]±y as above, the difference between the top exponents of

y in the nominator and denominator equals

1

2

∑

V∈Γ0
(3)

(µ(Γ(3), h(3),V) − 1) =
1

2

∑

V∈Γ0
(3)

µ(Γ(3), h(3),V) −
|∆|

2
+ 1 .

Taking into account the geometric meaning of µ(Γ(3), h(3),V), we obtain that the
latter expression takes its maximal value for the summands associated with the
curve (Γ, p, h) from Lemma 1.4, for which the trivalent trees are obtained by a
further subdivision of P(∆) by chords into |∆| − 3 triangles. Hence, the considered
maximal value is

Area(P(∆)) −
|∆|

2
+ 1

Pick’s formula
= pa(P(∆)) +

|∂P(∆) ∩Z2| − |∆|

2
.
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To establish the bound (14), we again consider the formula RDy(∆, n) =∑
(Γ(3),h(3))

s
∏

V∈Γ0
(3)

[µ(Γ(3), h(3),V)]±y , representing the invariant via the sum over triva-

lent curves (Γ(3), h(3)). The number of factors of type [µ(Γ(3), h(3),V)]+y then equals∑
k≥1 knk, which yields (y1/2 + y−1/2)

∑
k≥1 knk in the denominator. We shall show that

(y1/2 + y−1/2)
∑

k≥1 n2k+1 divides the nominator, and thus derive (14).

Consider a marked vertex of odd valency and a trivalent tree that appears in
the computation of the refined multiplicity of that vertex via recursion (8). The
following holds: if Mikhalkin multiplicities of all the trivalent vertices in the tree
are even, then the original marked vertex is incident to an edge of an even weight.
We leave this claim as an easy exercise for the reader. Following the ideas from [17,
Proof of Proposition 4.2] and [7, Proof of Lemma 3.12], we introduce a subgraph
Γeven ⊂ Γ including all the edges of even weight and their endpoints. Now, if V
is a marked vertex of odd valency, which does not belong to Γeven, then in each
trivalent tree associated with V, there is a vertex of odd Mikhalkin multiplicity.
On the other hand, the closure of each component K of Γeven \ p contains at least

as many unmarked vertices of Γ as the marked ones. Indeed, such a closure K is
a tree with univalent and unmarked trivalent vertices. By the Euler characteristic
formula, the number of trivalent vertices equals the number of univalent vertices
minus 2. By the regularity condition, there is an unmarked univalent vertex, and
hence the number of unmarked vertices is at least the number of marked ones.
Notice that the unmarked vertices of K are, in fact, unmarked trivalent vertices of
Γ of even Mikhalkin multiplicities (the edges of K all are finite, since the ends of
Γ have odd weights by the hypotheses of the lemma). It follows that each of the
latter vertices provides a factor y1/2 + y−1/2 in the nominator, which finally yields
at least

∑
k≥1 n2k+1 factors y1/2 + y−1/2 in the nominator of RDy(∆, n), and we are

done. �

In general, the denominator in formula (13) is unavoidable, and the bound (14)
is sometimes sharp as one can see in the examples of Corollary 3.3 in Section 3.

2.3 Proof of the invariance: Preliminaries

It will be convenient to consider labeled tropical curves. In view of formu-
las (2) and (10), the invariance of RDy(∆, n, x) is equivalent to the invariance of
RDlab

y (∆, n, x).

So, we choose two generic configurations x(0), x(1) ∈ X2n ⊂ R2n. By the di-
mension reason, there exists a continuous path x(t) ∈ R2n, 0 ≤ t ≤ 1, that
joins the chosen configurations, avoids X2n−2, but may finitely many times hit
(2n − 1)-dimensional cells of X2n−1, which may cause changes in the structure of
(Eve)−1(x(t)). We shall consider all possible wall-crossing phenomena and verify
the constancy of RDlab

y (∆, n, x(t)) (as a function of t) in the in these events. To relax

notations we simply denote labeled tropical curves by Γ or Γ and write RDlab
y (x(t))

for RDlab
y (∆, n, x(t)).

14



Let x(t∗) be generic in an (2n − 1)-dimensional cell of X2n−1. Denote by H0

the germ of this cell at x(t∗) and by H+,H− ⊂ R2n the germs of the halfspaces
with common boundary H0. Let C∗ = (Γ, p, h) ∈ (Eve)−1(x(t∗)) be as described in

Proposition 1.5(2), and let F0 ⊂ M̂
e,lab

0,n
(R2,∆) be the germ at C∗ of the (2n − 1)-

cell projected by Eve onto H0. We shall analyze the 2n-cells of M̂ e,lab

0,n
(R2,∆)

attached to F0, their projections onto H+ ,H−, and prove the constancy of RDlab
y (x(t)),

t ∈ (t∗ − ε, t∗ + ε), 0 < ε≪ 1.

In the case of Proposition 1.5(2i), the curve C∗ deforms keeping its combinatorics
as t ∈ (t∗ − ε, t∗ + ε), and hence this deformation does not affect the contribution to
RDlab

y (x(t)).

In the case of Proposition 1.5(2ii), in the deformation of the curve C∗ when
t ∈ (t∗− ε, t∗+ ε) the multiplicative contributions of the marked and the unmarked
trivalent vertices to the refined multiplicity of the current curve do not change,
and one has only to study the deformation of a neighborhood of the unmarked
four-valent vertex. The proof of the constancy of RDlab

y (x(t)) in this situation can
be found in [9, Theorem 1 and Pages 5314–5316] or in [17, Section 4.2].

2.4 Proof of the invariance: Collision of a marked and an un-

marked vertices

The remaining task is to show the invariance when crossing the wall described in
Proposition 1.5(2iii).

(1) Preparation. Let C∗ = (Γ, p, h) ∈ (Eve)−1(x(t∗)), where x(t∗) ∈ X2n−1, satisfy
the conditions of Proposition 1.5(2iii). That is Γ has a (k + 3)-valent vertex V ∈
Γ0 ∩ p, and C∗ is the limit of one or several families (which we call C∗-families)
(Γ(t), p(t), h(t)) ∈ (Eve)−1(x(t)), where either t ∈ (t∗, t∗ + ε), or t ∈ (t∗ − ε, t∗), and
such that the edge joining some (k + 2)-valent vertex V(t) ∈ Γ(t)0 ∩ p(t) and a

trivalent vertex W(t) ∈ Γ(t)0 \ p(t) collapses as t → t∗, while limt→t∗ h(t)
(
V(t)

)
=

limt→t∗ h(t)
(
W(t)

)
= h(V).

Observe that the orientation of the edges of Γ incident to V, which is induced
by the regular orientation of a C∗-family, is as follows: one edge (which we denote
E0) is oriented towards V, and the remaining edges (which we denote E1, ...,Ek+2)
are oriented outwards; moreover, the edge E0 is the same for all C∗-families, since
it is distinguished by the property to be a part of the unique bounded component
of the complement Γ \ p. Note also, that in each C∗-family (Γ(t), p(t), h(t)), the
corresponding edge E0(t) is incident to the unmarked trivalent vertex W(t).

Without loss of generality, we can suppose that, for each C∗-family, the image

h(t)
(
E0(t)

)
stays on the same fixed line L, while h(t)

(
V(t)

)
moves along a segment

transversally intersecting L at the point h(V). Let U be a small (Euclidean) neigh-
borhood of V in Γ. It follows from Lemma 1.3, that for each small deformation
of the fragment (Γ, p, h)

∣∣∣
U

that keeps the image of the deformed edge E0 on the
line L, there exists a unique extension up to a deformation of the entire curve C∗
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Figure 2: Degeneration as in Proposition 1.5(2iii) with k = 0

such that the images of all marked points but V stay fixed and the combinatorial

type of the part (Γ, p, h)
∣∣∣
Γ\U

does not change. In view of the first formula in (10),

to prove the constancy of RDlab
y (x(t)), t ∈ (t∗ − ε, t∗ + ε), it is enough to consider

only deformations of the fragment (Γ, p, h)
∣∣∣
U

. Equivalently, we can assume that Γ
consists of the unique (k + 3)-valent vertex V and edges E0, ...,Ek+2 incident to V,
while p includes V and one more marked point on the edge E0.

(2) The cases k = 0 and k = 1. In this situation, the required statements were
proved in [9, Theorem 1] and [7], respectively. We provide details for complete-
ness.

If k = 0, the deformation of C∗ in M̂ e,lab

0,n
(R2,∆) is presented in Figure 2. It

immediately follows from (7) that such a bifurcation does not affect the value of
RMlab

y (x(t)), t ∈ (t∗ − ε, t∗ + ε).

Let k = 1. Suppose that the h-images of the four edges incident to V lie of four
distinct lines in R2. Then C∗ admits three types of deformations that correspond
to three types of splitting of the four-valent vertex into a pair of trivalent vertices
(see Figure 3). We have to study two cases according as the edge h(E0) is dual
to a side of the parallelogram inscribed into the quadrangle or not (see Figures
3(a,b), where the edge dual to h(E0) is labeled by asterisk, and the triangles dual
to the marked trivalent vertices are shown by fat lines). Thus, (in the notations of

Section 2.3) the three top-dimensional cells F1, F2, F3 of M̂ e,lab

0,n
(R2,∆) attached to

F0, project onto H+ or onto H− according as the moving point x(t)
2

belongs to R2
+ or

R2
−. In the notation of Section 2.1, for the Mikhalkin’s multiplicities of the trivalent

vertices (see Figures 3(a,b)), we have the following additional geometric relations
that can be derived from the balancing condition or by elementary geometry tools
(cf. relations in [7, Items (B) and (C) in Page 25])


µ3 = µ1 + µ5, in Figure 3(a),

µ1 = µ4 + µ6, in Figure 3(b).
(15)

The constancy of RDlab
y (x(t)), t ∈ (t∗ − ε, t∗ + ε), reduces to the relation

(zµ3 − z−µ3)(zµ4 + z−µ4) = (zµ1 − z−µ1)(zµ2 + z−µ2) + (zµ5 − z−µ5)(zµ6 + z−µ6) (16)

in case of Figure 3(a), and to the relation

(zµ1 − z−µ1)(zµ2 + z−µ2) = (zµ3 + z−µ3)(zµ4 − z−µ4) + (zµ5 + z−µ5)(zµ6 − z−µ6) (17)
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Figure 3: Degeneration as in Proposition 1.5(2iii) with k = 1

in case of Figure 3(b). Both the above equalities immediately follow from the
elementary geometric facts

µ1 + µ2 = µ3 + µ4, µ1 − µ2 = µ6 − µ5, µ3 − µ4 = µ5 + µ6 ,

and formulas (15).

The case when some two edges incident to V are mapped to the same line inR2

(in Figure 3 this means that the quadrangle turns into a trapeze or a parallelogram),
can be treated in the same manner. One can also regard this case as a limit of
the general case considered above and derive the required invariance from the
continuous dependence in the variables µ1, ..., µ6 of the expressions in (16) and
(17).

(3) The case of arbitrary k ≥ 1. Let A = {a0, ..., ak+2} be the multiset of the vectors

ai := aV(Ei), i = 0, ..., k + 2 .
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Introduce new vectors

aI =
∑

i∈I

ai for any subset I ⊂ {0, 1, ..., k + 2} ,

and multisets

AI = {a j, 0 ≤ j ≤ k + 2, j < I} ∪ {aI} for any subset I ⊂ {0, 1, ..., k + 2} ,

AI,J = {a j, 0 ≤ j ≤ k+2, j < I∪J}∪{aI, aJ} for any disjoint subsets I, J ⊂ {0, 1, ..., k+2} .

The C∗-families bijectively correspond to the vectors ai, 1 ≤ i ≤ k + 2, satisfying
a0∧ai , 0, so that, in the deformation along the family (Γi(t), pi(t), hi(t)), the vertex
V splits into an unmarked trivalent vertex Wi(t) ∈ L, incident to two ends directed
by the vectors a0, ai, and a marked (k + 1)-valent vertex Vi(t). Since the position
of Vi(t) with respect to the line L is determined by sign(a0 ∧ ai), we can write the
required constancy relation in the form

k+2∑

i=1

[a0 ∧ ai]
−
y · RMy(Γi(t), pi(t), hi(t),Vi(t)) = 0

(for any t , t∗ sufficiently close to t∗), or, equivalently (see formula (9)),

k+2∑

i=1

[a0 ∧ ai]
−
y · θy(A{0,i}) = 0 . (18)

We shall prove relation (18) in a greater generality, assuming only that
∑k+2

i=0 ai = 0,
and we shall use the induction on k ≥ 1.

For k = 1, relation (18) reduces to one of the equalities (16) or (17) proved above.
So, assume that k ≥ 2.

Since |A{i, j}| = k + 2 < k + 3 = |A|, the induction assumption yields

∑

1≤s≤k+2
s,i, j

(
[a0 ∧ as]

−
y · θy(A{i, j},{0,s})

)
+ [a0 ∧ a{i, j}]

−
y · θy(A{0,i, j}) = 0 . (19)

Multiplying (19) by = [ai ∧ a j]
+
y , we obtain

∑

1≤s≤k+2
s,i, j

(
[a0 ∧ as]

−
y · [ai ∧ a j]

+
y · θy(A{i, j},{0,s})

)
+ [a0∧a{i, j}]

−
y · [ai∧a j]

+
y ·θy(A{0,i, j}) = 0 ,

(20)

Now, for the multiset
{
a0, ai, a j,−a{0,i, j}

}
, the induction base yields

[a0 ∧ ai]
−
y · [a j ∧ a{0,i, j}]

+
y + [a0 ∧ a j]

−
y · [ai ∧ a{0,i, j}]

+
y − [a0 ∧ a{0,i, j}]

−
y · [ai ∧ a j]

+
y = 0 ,

which after multiplication by θy(A{0,i, j}) turns into

[a0 ∧ ai]
−
y · [a j ∧ a{0,i, j}]

+
y · θy(A{0,i, j}) + [a0 ∧ a j]

−
y · [ai ∧ a{0,i, j}]

+
y · θy(A{0,i, j})
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− [a0 ∧ a{0,i, j}]
−
y · [ai ∧ a j]

+
y · θy(A{0,i, j}) = 0 . (21)

We sum up relations (20) and (21), observing that the last summands in their
left-hand side cancel out in view of a0 ∧ a{0,i, j} = a0 ∧ a{i, j}. Then we sum up the
resulting equalities for all pairs (i, j) such that 1 ≤ i < j ≤ k + 2 and obtain the
following:

0 =
∑

1≤i< j≤k+2

∑

1≤s≤k+2
s,i, j

[a0 ∧ as]
−
y · [ai ∧ a j]

+
y · θy(A{i, j},{0,s})

+
∑

1≤i< j≤k+2

(
[a0 ∧ ai]

−
y · [a j ∧ a{0,i, j}]

+
y + [a0 ∧ a j]

−
y · [ai ∧ a{0,i, j}]

+
y

)
θy(A{0,i, j})

=

k+2∑

s=1

(
[a0 ∧ as]

−
y ·

∑

1≤i< j≤k+2
i, j,s

[ai ∧ a j]
+
y · θy(A{0,i, j})

)

+

k+2∑

s=1

(
[a0 ∧ as]

−
y ·

∑

s< j≤k+2

[a j ∧ a{0,s}]
+
y · θy(A{0,s, j})

)

+

k+2∑

s=1

(
[a0 ∧ as]

−
y ·

∑

1≤i<s

[ai ∧ a{0,s}]
+
y · θy(A{0,s,i})

)

=

k+2∑

s=1

[a0 ∧ as]
−
y ·

( ∑

1≤i< j≤k+2
i, j,s

[ai ∧ a j]
+
y · θy(A{i, j},{0,s})+

∑

1≤i≤k+2
i,s

[ai ∧ a{0,s}]
+
y · θy(A{0,s,i})

)
.

It remains to notice that by definition (8), the expression in the parentheses equals
θy(A{0,s}). �

2.5 On the uniqueness of the refinement

The summands in the right-hand side of the recursion (8) are enumerated by
splittings of a tree with a unique (k+2)-valent vertex into trees with a (k+1)-valent
vertex and a trivalent vertex. One, however, can use a recursion based on splittings
into trees of other type (for instance, into trees having two trivalent vertices and
a k-valent vertex etc.). Iterating such a recursion, we finally end up with the sum

of the form
∑
α

(
cα

∑
T µy(T)

)
, where α runs over the set of combinatorial types of

trivalent trees with k + 2 leaves, T ranges over all possible labelings of the leaves
of a fixed tree of type α by elements of the sequence A, and µy(T) is the product
of the factors [µ(V)]+y over all the vertices of T.

We intend to show that any such definition leads to a refined invariant that
differs from RDy(∆, n) by a constant multiplicative factor depending only on
combinatorics of splittings used in the recursion. In this sense we speak of the
uniqueness of the refinement of rational descendant tropical invariants.

19



Let ∆ be a balanced sequence of m ≥ 3 vectors in R2. Let α be a trivalent tree
with m leaves, Leaf(α) the set of its leaves, α0 the set of its trivalent vertices. Let
ϕ : Leaf(α) → ∆ be a bijection. It is easy to show that there exists a unique map
ψϕ : Fl(α) → R2, where Fl(α) is the set of pairs (V,E) with V ∈ α0 and E an edge
incident to V, such that

• if E ∈ Leaf(α) then ψϕ(V,E) = ϕ(E),

• if E is incident to two vertices V1,V2 ∈ α0, then ψϕ(V1,E) + ψϕ(V2,E) = 0,

• for any vertex V ∈ α0 and E1,E2,E3 edges of α incident to V,

ψϕ(V,E1) + ψϕ(V,E2) + ψϕ(V,E3) = 0 .

Denote the triple of vectors in the latter relation by ∆α,ϕ(V). Define

θy,α(∆) =
∑

ϕ

∏

V∈α0

θy(∆α,ϕ(V)) , (22)

where ϕ ranges over all bijections Leaf(α)→ ∆.

Lemma 2.5 For any m ≥ 3, any balanced sequence ∆ of m vectors in R2, and any
trivalent trees α, β with m leaves, one has θy,α(∆) = θy,β(∆).

Proof. Introduce the following notation: for any sequence of vectors b1, ..., br

(r ≥ 2) and a permutation σ ∈ Sr, put σΛ(b1, ..., br) =
∑

1≤i< j≤r bσ(i) ∧ bσ( j).

Given a trivalent tree αwith m leaves, for any a ∈ ∆ and any E ∈ Leaf(α), define

θy,α(∆, a,E) =
∑

ϕ(E)=a

∏

V∈α0

θy(∆α,ϕ(V)) , (23)

where ϕ ranges over all bijections Leaf(α)→ ∆ satisfying ϕ(E) = a. In view of the
relations

θy,α(∆) =
∑

a∈∆

θy,α(∆, a,E) for all E ∈ Leaf(α) , (24)

the following claim completes the proof of Lemma: For any a ∈ ∆ and E ∈ Leaf(α),
the following holds

θz2,α(∆, a,E) =
2m−2

(z + z−1)m−2

∑

σ∈Sm−1

zσΛ(∆\{a}) , (25)

where the right-hand side does not depend neither on the choice of E nor on the
combinatorial type of α.

We prove formula (25) by induction on m. For m = 3, formula (25) immediately
follows from (23). Suppose that m ≥ 4.
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If E is incident to a trivalent vertex together with another edge E′ ∈ Leaf(α),
then by definition (23), we obtain

θz2 ,α(∆, a,E) =
∑

b∈∆\{a}

za∧b + zb∧a

z + z−1
· θz2 ,γ(∆̃, a + b, Ẽ) ,

where the trivalent tree γ with m − 1 leaves is obtained from α by removing the

leaves E,E′, the sequence ∆̃ is obtained from ∆ by removing a and b and adding

the vector a + b (say, as the last vector), and Ẽ ∈ Leaf(γ) is the third edge of α
incident to V. Using the induction assumption, we obtain

θz2 ,α(∆, a,E) =
∑

b∈∆\{a}

za∧b + zb∧a

z + z−1
·

2m−3

(z + z−1)m−3

∑

σ∈Sm−2

zσΛ(∆\{a,b})

=
2m−3

(z + z−1)m−2

∑

b∈∆\{a}

∑

σ∈Sm−2

(
za∧b+σΛ(∆\{a,b} + zb∧a+σΛ(∆\{a,b}

)
. (26)

Since a = −b −
∑

c∈∆\{a,b} c, the exponents of z in the latter expression turn into

a ∧ b + σΛ(∆ \ {a, b} =
∑

c∈∆\{a,b}

b ∧ c + σΛ(∆ \ {a, b}) = σbΛ(∆ \ {a}) ,

b ∧ a + σΛ(∆ \ {a, b} =
∑

c∈∆\{a,b}

c ∧ a + σΛ(∆ \ {a, b}) = σbΛ(∆ \ {a}) ,

where permutations σb, σb of ∆ \ {a} are obtained from σ by sending b to the first
or to the last place, respectively. It follows that, when b ranges over all vectors of
∆ \ {a} and σ ranges over all permutations of ∆ \ {a, b}, the permutations σb and
σb twice run over all permutations of ∆ \ {a}, and hence (26) yields the required
relation (25).

Let E be the only leaf incident to a vertex V ∈ α0. Removing E from α, we obtain
two trees α1, α2 sharing the vertex V, with m1 and m2 leaves, respectively, where
m1,m2 ≥ 3 and m1 +m2 = m+ 1. Denote by E1, E2 the leaves of α1, α2, respectively,
incident to V. Hence

θz2 ,α(∆, a,E) =
∑

I1∪I2=∆\{a}
I1∩I2=∅

|I1|=m1−1, |I2|=m2−1

zb1∧b2 + zb2∧b1

z + z−1
· θy,α1

(∆1, b1,E1) · θy,α2
(∆2, b2,E2) ,

where
bi = −

∑

b∈Ii

b, ∆i = Ii ∪ {bi}, i = 1, 2 .

Since m1,m2 < m, we apply the induction assumption and obtain

θz2 ,α(∆, a,E) =
∑

I1∪I2=∆\{a}
I1∩I2=∅

|I1|=m1−1, |I2|=m2−1

zb1∧b2 + zb2∧b1

z + z−1
·

2m−3

(z + z−1)m−3
·

∑

σ1∈Sm1−1

zσ1Λ(I1)·
∑

σ2∈Sm2−1

zσ2Λ(I2)
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=
2m−3

(z + z−1)m−2

∑

I1∪I2=∆\{a}
I1∩I2=∅

|I1 |=m1−1, |I2|=m2−1

∑

σ1∈Sm1−1

σ2∈Sm2−1

(
zb1∧b2+σ1Λ(I1)+σ2Λ(I2) + zb2∧b1+σ1Λ(I1)+σ2Λ(I2)

)
.

Since b1 = −
∑

b∈I1
b and b2 = −

∑
c∈I2

c, we get

b1 ∧ b2 + σ1Λ(I1) + σ2Λ(I2) = σ12Λ(∆ \ {a}) ,

b2 ∧ b1 + σ1Λ(I1) + σ2Λ(I2) = σ21Λ(∆ \ {a}) ,

where σ12, resp. σ21, is a permutation of ∆ \ {a} obtained from σ1, σ2 by setting the
elements of I1 before I2, resp. after I2. It follows that each of the permutations
σ12 and σ21 ranges over the whole group of permutations of ∆ \ {a}, which finally
yields formula (25). �

3 Examples

In this section we calculate the invariant RMlab
y (∆) in a series of examples, in which

the upper bound (14) to the degree of the denominator is sharp.

The first example is degenerate and plays an auxiliary role.

Lemma 3.1 Let m1, ...,mr be positive integers, where r ≥ 2, and m = m1 + ... +mr. Set
∆0

r = {(m1, 0), ..., (mr, 0), (−a, 0)} and nr = (nk)k≥0 such that nr−1 = 1, nk = 0, k , r − 1
(i.e., consider tropical curves with a marked (r + 1)-valent vertex). Then

RDlab
y (∆0

r , nr) =
r! · (r + 1)!

6(y1/2 + y−1/2)r−1
.

Proof. The formula evidently holds for r = 2, and it can be proved by induction
on r using the recursive formula

RDlab
y (∆0

r , nr) =

(
r + 1

2

)
·

2

y1/2 + y−1/2
· RDlab

y (∆0
r−1, nr−1)

that immediately follows from (8) and (9). �

The next example deals with a nondegenerate Newton triangle.

Lemma 3.2 Let h and m1, ...,mr be positive integers, where r ≥ 2, and m = m1 + ...,mr.
Set

∆h
m1...mr

= {(m1, 0), ..., (mr, 0), (−1,−h), (1 −m, h)} (cf. Figure 4) .

Then

RDlab
y (∆h

m1...mr
, nr) =

(r + 2)!

12 · (y1/2 + y−1/2)r

×
∑

I

(r − |I|)! · |I|! ·
{
yh(m/2−

∑
i∈I mi) + yh(

∑
i∈I mi−m/2)

}
, (27)

where the sum runs over all subsets I ⊂ {1, 2, ..., r}.
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m1

m2

...

mr

mr−1

Figure 4: Newton polygon P(∆h
m1...mr

)

Proof. Formula (9) yields the relation

RDlab
y (∆h

m1...mr
, nr) =

{
ymh/2 + y−mh/2

}
· RDlab

y (∆0
r , nr)+

+ 2

r∑

i=1

ymih/2 + y−mih/2

y1/2 + y−1/2
· RDlab

y (∆h
m1...m̂i...mr

, nr−1)+

+
∑

i, j

2

y1/2 + y−1/2
· RDlab

y (∆h
m1...m̂i...m̂ j...mr,mi+m j

, er−1)

(28)

that corresponds to the three types of splittings shown in Figure 5.

∑
mi

m1

m2

...

mr

mr−1

mi

m1

m2

...

m̂i

...

mr

m1

...

m̂i

...

m̂ j

...

mr

mi +m j
mi

m j

Figure 5: Splittings in formula (28)

A routine induction on r, skipped here for brevity, completes the proof. �

Corollary 3.3 (1) Let, in the notation of Lemma 3.2, r = 2k ≥ 2, m1 = ... = m2k = 1,
and h = 2. Then

RDlab
y (R2,∆2

2k×1) =
(2k)! · (2k + 2)!

6
·

y2k + y2k−2 + ... + y2−2k + y−2k

(y + 2 + y−1)k
. (29)
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(2) Let, in the notation of Lemma 3.2, r = 2k+ 1 ≥ 3, m1 = ... = m2k+1 = 1, and h > 1
satisfy gcd(h, 2k) = 1. Then

RDlab
y (R2,∆h

(2k+1)×1) =
(2k + 3)! · (2k + 1)!

6(y + 2 + y−1)k
·

h−1∑

i=0

(−1)iy(h−1)/2−i ·

k∑

i=−k

yhi . (30)

This is a consequence of formula (27). Note that the bound (14) to the degree of
denominators of refined descendant invariants turns into an equality under the
hypotheses of Corollary 3.3, since the denominator in formulas (29) and (30) is
coprime to other terms.

Appendix: Lattice path algorithm

In [13] Mikhalkin proved that the Gromov-Witten invariants of toric surfaces can
be computed by summing up multiplicities of finitely many specific trivalent
plane tropical curves with marked points on edges, and he suggested a combina-
torial algorithm (so-called lattice path algorithm), which associated the counted
tropical curves with certain subdivisions of the given Newton polygon into convex
lattice polygons, while the Mikhalkin’s multiplicity of a tropical curve in count
appeared to be the product of multiplicities of the pieces of the corresponding
subdivision. H. Markwig and J. Rau [11, Section 9] generalized this algorithm to
computation of descendant rational tropical Gromov-Witten invariants: now re-
placing rational plane tropical curves with marked points on edges and at vertices
by suitable subdivisions of the Newton polygon and computing the multiplicity
of each curve as the product of multiplicities of the elements of the corresponding
subdivision. The same algorithm applies well for the computation of our refined
descendant invariant, since we enumerate the same collection of rational marked
tropical curves and our refined multiplicity is also the product of multiplicities of
the vertices.

For the background of the algorithm we refer to [11, Section 9]. Here we just
describe it and explain how to compute the refined descendant invariant. As
illustration, we consider the example studied in [11, Example 9.28].

Let ∆ ⊂ Z2 \ {0} be a nondegenerate balanced multi-set. Let λ : R2 → R be
a linear functional injective on Z2. Orient each line λ = const so that after the
clockwise rotation by π

2
it becomes λ-ordered. Fix the linear λ-order on the set

P(∆ ∩ Z2) denoted by ≺. Denote by qmin and qmax the minimal and the maximal
points in P(∆). A lattice λ-path of length m in P(∆) is a broken line with vertices
q0 ≺ q1 ≺ ... ≺ qm such that q0 = qmin, qm = qmax. Each lattice λ-path γ divides the
strip Σ = {λ(qmin) ≤ λ(x, y) ≤ λ(qmax)} into two parts, whose closures we denote
Σ+(γ) and Σ−(γ) in accordance with the orientation of the lines λ = const. The
algorithm consists of the three procedures:

(A) construction of the initial data, two lattice λ-paths, γ+0 , γ
−
0 in P(∆) such that

γ−0 ⊂ Σ
−(γ+0 ) and γ+0 ⊂ Σ

+(γ−0 );
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(B) subdivision of the domains Σ+(γ+0 ) ∩ P(∆) and Σ−(γ−0 ) ∩ P(∆) into lattice
triangles and parallelograms;

(C) computation of the refined weight of each admissible subdivision resulting
from the two preceding procedures and summing up over all these subdi-
visions.

For the procedure (A), take any sequence m1,m2, ...,mn ≥ 2, in which any value
m ≥ 2 is attained exactly nm−2 times, and take arbitrary partitions

mi = m′i +m′′i such that m′i ,m
′′
i ≥ 1, i = 1, ..., n .

Then take two latticeλ-paths γ+0 , having
∑

i m′
i
+1 vertices, andγ−0 , having

∑
i m′′

i
+1

vertices, and such that

• γ−0 ⊂ Σ
−(γ+0 ), γ+0 ⊂ Σ

+(γ−0 ),

• for each k = 1, ..., n − 1, the vertex v+
s′(k)

of γ+0 coincides with the vertex v−
s′′(k)

of γ−0 , where s′(k) =
∑

i≤k m′
i

and s′′(k) =
∑

i≤k m′′
i

,

• for each k = 1, ..., n, the convex hull Qk (called a rag rug element in [11])
of the vertices v+

i
, s′(k − 1) ≤ i ≤ s′(k), of γ+0 together with the vertices v−

i
,

s′′(k− 1) ≤ i ≤ s′′(k), of γ−0 is such that all the aforementioned vertices belong
to ∂Qk.

The procedure (B) is the same as in [13, Section 7.2]. It produces two sequences
of lattice λ-paths, γ+

k
, k ≥ 0, and γ−

k
, k ≥ 0. Given a lattice λ-path γ+

k
, resp. γ−

k
, with

vertices q0 ≺ q1 ≺ ... ≺ qm, we take

j = min
{
1 ≤ i < m, [qi−1, qi+1] ⊂ Σ+(γ+k ), qi < [qi−1, qi+1]

}
,

resp.

j = min
{
1 ≤ i < m, [qi−1, qi+1] ⊂ Σ−(γ−k ), qi < [qi−1, qi+1]

}
.

If such j does not exist, we say that the path γ+
k
, resp. γ−

k
, is terminal. If such j

exists, we define the lattice λ-path γk+1 (resp. γ−
k+1

)

• either by the sequence of vertices q0, ..., q j−1, q j+1, ..., qm; in this case we in-
clude the triangle conv(q j−1, q j, q j+1) into the set of tiles of the constructed
subdivision,

• or by the sequence q0, ..., q j−1, q′j, q j+1, ..., qm, where conv(q j−1, q jq
′
j
, q j+1) is a

parallelogram, provided that q′
j
∈ P(∆); in this case we include the parallel-

ogram conv(q j−1, q jq
′
j
, q j+1) into the set of tiles of the constructed subdivision

of P(∆).

Letγ+
k

andγ−
l

be terminal. We say that the obtained subdivision of P(∆) is admissible
if γ+

k
∪ γ−

l
= ∂P(∆), and it meets
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• the degree condition: the segments of γ+
k

and γ−
l
, being rotated by π

2
and

oriented as exterior normal vectors to ∂P(∆), form the entire multiset ∆, and

• the connectedness condition of the following dual graph G: each rag rug
element Qi, 1 ≤ i ≤ n, and each triangle in Σ+(γ+0 ) ∪ Σ−(γ−0 ) corresponds to
a vertex of G, each parallelogram corresponds to two vertices that are asso-
ciated with two pairs of parallel sides; two vertices, coming from polygons
in Σ+(γ+0 ) (resp., Σ−(γ−0 )) are joined by an arc if the corresponding polygons
share a common side, a vertex corresponding to Qi and a vertex correspond-
ing to a polygon in Σ+(γ+0 ) (resp., Σ−(γ−0 )) are joined by an arc if γ+0 (resp., γ−0 )
and the polygon share a segment.

The refined multiplicity of an admissible subdivision is of the form Z1Z2/Z3.
Here, Z1 is the product of the factors [ν]−y over all triangles in Σ+(γ+0 )∪Σ−(γ−0 ) that
are [ν]−y , where ν is the lattice area of the triangle. The term Z2 is the product of
the refined multiplicities of all rag rug elements: if

Qk = conv({v′i }s′(k−1)≤i≤s′ (k), {v
′′
i }s′′(k−1)≤i≤s′′ (k)) ,

we build a multiset of vectors∆k obtained from the segments [v′
i
, v′

i+1
], s′(k−1) ≤ i <

s′(k), rotated by π
2

and oriented towards Σ+(γ+0 ), and from the segments [v′′
i
, v′′

i+1
],

s′′(k − 1) ≤ i < s′′(k), rotated by π
2

and oriented towards Σ−(γ−0 ), and we set the
refined multiplicity of Qk to be θy(∆k). At last, Z3 is the product of orders of
the automorphisms groups of ∆1, ....,∆n. The invariant RDy(∆, n) equals the sum
of the refined multiplicities of all the admissible subdivisions resulting from the
above algorithm.

Example. Let us compute the refined descendant invariant for the case

∆ = {3 × (1, 1), 3 × (0,−1), 3 × (−1, 0)} , n = (2, 0, 2, 0, 0, ...) ,

considered in [11, Example 9.28]. Here, n = 4, and we choose the sequence
(m1,m2,m3,m4) = (4, 2, 4, 2), and the functional λ(x, y) = x − ξy with 0 < ξ ≪ 1.
These data define

P(∆) = conv((0, 0), (3, 0), (0, 3)), qmin = (0, 3), qmax = (3, 0) .

It is shown in [11, Example 9.28] that there are 11 admissible subdivisions, and
they are presented in Figure 6. The fat lines designate the λ-paths γ+0 and γ−0 ; the
meaning of labels in parentheses we illustrate by an example: in figure marked
“type 1”, the segment [(0, 3), (0, 0)] lies both, on γ+0 and γ−0 , while in γ+0 it covers just
one segment and inγ−0 three segments of length 1. Each of the figures marked “type
1”, “type 2”, “type 3” represents one admissible subdivision, each of the figures
marked “type 4” and “type 6” represents two admissible subdivisions obtained by
cutting the trapeze into a triangle and a parallelogram, and, finally, figure marked
“type 5” represents four admissible subdivisions obtained by cutting each of the
two trapezes into a triangle and a parallelogram (in fact, for each of these three
types, different admissible subdivisions correspond to the same isomorphism
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(1,1)
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(1,1) (1,1)

(1,1)
(1,1)

type 5

(1,1) (1,1)

type 6

Figure 6: Lattice path algorithm

(2)

A B

(1,1)

C D

(1,1)(1,1)

E

(3)(1,1,1)

Figure 7: Rag rug elements

class of plane marked rational tropical curves). Various type of rag rugs elements
occurring in the admissible subdivisions are shown in Figures 7.

The refined multiplicities of the admissible subdivision are (for types 4, 5, and
6 we sum up the multiplicities over all obtained subdivisions):
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(1): θy(∆E) · [3]−y · [2]−y · [1]−y · θy(∆A) ·
1

3!
= 16 ·

y2 + 2y + 3 + 2y−1 + y−2

y + 2 + y−1

(2): θy(∆B) · θy(∆C) · ([1]−y )3 ·
1

2!
= 16 ·

y2 + 5y + 6 + 5y−1 + y−2

(y + 2 + y−1)2

(3): θy(∆B) · θy(∆C) · ([1]−y )3 ·
1

2!
= 16 ·

y2 + 5y + 6 + 5y−1 + y−2

(y + 2 + y−1)2

(4): θy(∆D) · θy(∆C) · ([1]−y )3 ·
1

(2!)2
= 48 ·

y + 1 + y−1

(y + 2 + y−1)2

(5): (θy(∆D))2 · ([1]−y )3 ·
1

(2!)2
=

144

(y + 2 + y−1)2

(6): θy(∆D) · θy(∆B) · ([1]−y )3 ·
1

2!
= 48 ·

y + 4 + y−1

(y + 2 + y−1)2

Finally,

RDy(∆, n) = 16 ·
y3 + 6y2 + 24y + 46 + 24y−1 + 6y−2 + y−3

(y + 2 + y−1)2

and

NRDy(∆, n) =
1

36
RDy(∆, n) =

4

9
·

y3 + 6y2 + 24y + 46 + 24y−1 + 6y−2 + y−3

(y + 2 + y−1)2

Notice, that if we substitute y = 1 into the latter expression, we get NRD1(∆, n) =
3 in agreement with [11, Example 9.28].

Remark. A possible generalization of the floor diagram algorithm as in [1]
seems to be more involved, since the refined multiplicities of the floors do not
admit reasonable explicit formulas contrary to the case considered in [1] and
corresponding to y = 1.
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