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Reducing parameter spaces via exploiting symmetries has greatly accelerated and increased the
quality of electronic-structure calculations. Unfortunately, many of the traditional methods fail
when the global crystal symmetry is broken, even when the distortion is only a slight perturbation
(e.g. Jahn-Teller like distortions). Here we introduce a flexible, user-defined parametric relaxation
scheme, and implement it in the all-electron code FHI-aims. This approach utilizes geometeric
constraints to maintain symmetry at any level. After demonstrating the method’s ability to relax
metastable structures, we highlight its adaptability and performance over a test set of 340 materials,
across thirteen lattice prototypes. Finally we show how these constraints can reduce the number
of steps needed to relax local lattice distortions by an order of magnitude. The flexibility of these
constraints enables a significant acceleration of the high-throughput searches for novel materials and
crystal structures.

I. INTRODUCTION

Symmetry preservation and breaking is one of the
most fundamental processes in physics and chem-
istry. Many properties and applications such as,
piezoelectricity [1–4], pyroelectricity [5, 6], ferroelec-
tricity [7–10], topological insulators [11, 12], and
non-linear optics [13–15], require certain selection
rules to be met, and therefore require certain crys-
tollagraphic symmetries to be maintained. Further-
more, it is not only global symmetry, the space and
point groups of a material, but also local symme-
try breaking that matters. For example, defects can
cause significant changes in a material’s mechani-
cal [16, 17] and optical [18, 19] properties as well as
in its electronic [20–22] and thermal transport [23–
25] coefficients. Selectively preserving and breaking
a material’s symmetries is therefore paramount in
computational material science, especially in high-
throughput studies, which often aim to discover novel
materials with improved properties by systemati-
cally scanning through material space. To stream-
line such calculations it is essential to keep both
global and local symmetries under control. This al-
lows for the efficient targeting of specific geometric
configurations and avoids revisiting and recalculat-
ing already investigated configurations.

Traditionally, crystallographic symmetries are in-
corporated in first-principles codes already at the
electronic-structure level (e.g., by sampling k-space
grids in the irreducible part of the Brillouin zone [26]
or by sampling real space in symmetry defined “ir-
reducible wedges” [27]) since it leads to significant
savings in memory and computational workload for
highly symmetric crystals. Also, by this means the
obtained forces on the atoms and stresses on the
lattice vectors fully reflect the crystallographic sym-
metries. Since geometry relaxation algorithms such
as steepest descent, conjugate gradient, Newton-
Raphson, quasi-Newton (e.g. BFGS [28]), and
truncated-Newton methods [29] rely on the forces

and stresses to update the atomic and lattice de-
grees of freedom, global symmetries are inherently
preserved in such approaches. However, this does
not allow for local symmetry breaking. To address
such cases in first-principles calculations, it is typi-
cally necessary to lift all crystallographic symmetry
constraints and treat the atomic and lattice degrees
of freedom as a set of freely changing parameters.
Besides the increased computational cost, such un-
constrained structure optimization can lead to long
and inefficient relaxation trajectories. While this is-
sue can be alleviated by representing the structure
via internal coordinates [30, 31], targeting a specific
local symmetry typically requires manual inspection
and analysis by the user. This is particularly cum-
bersome if multiple, competing structures with dif-
ferent local configurations need to be addressed.

Here we present a scheme to incorporate geomet-
ric constraints in structure optimizations that treats
global and local symmetries equally. The proposed
approach employs a mapping of the relevant degrees
of freedom onto a lower-dimensional representation
of the structure; the respective forces and stresses
are then automatically mapped in this reduced rep-
resentation. With that, the implemented formalism
does not require to alter the employed relaxation al-
gorithm, while still allowing the introduction of ar-
bitrary constraints in a user-friendly manner. We
first describe how the methodology works and the
tools that can be used to quickly generate new struc-
tures. We demonstrate that these constraints allow
to perform geometry optimizations for dynamically
stabilized structures, which are not easily address-
able otherwise. By analyzing the constrained and
unconstrained relaxations of a test set of 340 mate-
rials, we then show that these constraints are also
computationally beneficial for the relaxation of sta-
ble materials. Finally we illustrate how the parame-
ters can be used to preserve local symmetries and
accelerate relaxations in supercells.
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II. METHODS

A. Transformation to reduced space

For a free relaxation, the optimizer acts on the full
3N+9 dimensional potential-energy surface E(R,L)
of a material, which is encoded by the atomic, R,
and lattice, L, degrees of freedom. The lattice de-
grees of freedom are stored as the three components
of the three lattice vectors in the chosen unit cell,
and the atomic degrees of freedom are the 3N pos-
sible positions of the N atoms in a unit cell, repre-
sented by Cartesian or fractional coordinates. The
forces, F , acting on the atomic degrees of freedom
are the derivatives the energy with respect to R

F = − dE
dR

, (1)

while the forces acting on the lattice vectors stem
from the stresses σ

σ =
1

V

dE

dL
, (2)

where V is the volume of the unit cell. In
ab initio approaches, E is determined by solving
the electronic-structure problem, and the respec-
tive derivatives are obtained analytically via the
Hellmann-Feynman Theorem. However, in practice
this requires to account for additional terms, such as
the Pulay terms and multipole corrections, as done
in FHI-aims [32, 33].

Because the underlying potential-energy surfaces
(PES) are complex, relaxing certain polymorphs of
a material on these surfaces can be challenging or
even impossible. As an example, zirconia (ZrO2)
can exist in its pure form in three different crystal
phases: a high temperature (T > 2370 ◦C) cubic
phase, an intermediate temperature (1170 ◦C ≤ T ≤
2370 ◦C) tetragonal phase, and a low temperature
(T < 1170 ◦C) monoclinic phase [34]. When transi-
tioning from the cubic phase to the tetragonal phase
the oxygen atoms distort along the c-axis of the
tetragonal structure, and the lattice subsequently
stretches along that direction [34]. To help illustrate
this, in Figure 1a we plot a two dimensional PES
for a twelve atom zirconia unitcell over a reduced
parameter set taken from the AFLOW Library of
Crystallographic Prototypes. The library sorts ma-
terials by their space group, stoichiometry, and oc-
cupied Wyckoff sites, as calculated with AFLOW-
SYM [35], placing all materials that share those fea-
tures into the same crystal prototype [36, 37]. A re-
duced parameter space can then be generated from a
prototype definition, and used to describe that class
of materials. For example the tetragonal phase of
zirconia can be described by only three parameters:
length of the lattice vectors in the a and b directions
(a), the ratio of the lattice vectors ( c

a ), and the mag-
nitude of the oxygen distortions (z2). If only oxy-

gen distortions z2 along the z-axis are allowed, the
PES in Figure 1a has two wells corresponding to the
equivalent tetragonal structures, and a saddle point
between them representing a high-symmetry config-
uration, i.e., the the high-temperature cubic phase
for c = a. On this PES, a free relaxation of the cubic
phase would result in the material relaxing towards
one of the two wells; however, by constraining the
relaxation to act only on a, the stable cubic phase
can be obtained as shown in the outsets in Figure 1a.
While the same effects could be achieved by relaxing
the cubic zirconia structure in its primitive cell, the
minimum volume unit cell of a structure, some ma-
terials such as bismuth dioxide [38, 39], have high-
temperature polymorphs with the same number of
sites as their stable structures.

To help demonstrate how the constraints are used
in a calculation, we provide a sample FHI-aims ge-
ometry input file for the twelve atom zirconia unit-
cell in Figure 1b. In a free relaxation the geometry
of zirconia would be optimized over all of the com-
ponents of the lattice vectors and the atomic coordi-
nates, effectively allowing any of the input parame-
ters to change. While this will find the lowest energy
structure, the fully relaxed geometry may no longer
be in the same phase as it began in, as the optimizer
can push it towards a lower energy portion of the
PES. However, once the parameter space is mapped
onto one defined by the symmetry of the structure,
only geometeries within the initial space group can
be explored. For the tetragonal phase ZrO2, this
means that the optimizer can now act only on a, c

a ,
and z2. To simplify the inputs the value of c

a ∗ a is
reduced to simply c in Figure 1b. In practice this re-
duction means that only the colored and boldfaced
components of the atomic positions and lattice vec-
tors can change, and they must obey the equations
in the symmetry lv and symmtry frac portion of file.
Under these constraints both the cell and positions
are allowed to relax without breaking the symmetry
of the initial structure. A further reduction to the
cubic cell is possible by respectively fixing the z2 and
c
a to zero and one, and allowing only the diagonal
elements of the cell to change.

The previous input example illustrates the flexi-
bility of these constraints is shown in the previous
example, but knowledge of which reduced parame-
ters to use and their relation to the full geometry,
must be known before generating an input file. For
crystals, these are determined by the spacegroup and
the Wyckoff positions and can therefore be manu-
ally constructed. Because the Wyckoof sites and
space groups are part of AFLOW’s crystal proto-
type definition, an easy way to get access many
of these is through their utilities [36, 37]. For all
prototypes defined in the library, the automatized
generation of input geometries for VASP [26], FHI-
aims [32], Quantum Espresso [40], Abinit [41] and
more codes is supported by AFLOW. As of ver-
sion 3.1.204, the option --add equations can be
added to the AFLOW command to generate FHI-
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lattice_vector 4.97 0.00 0.00
lattice_vector 0.00 4.97 0.00
lattice_vector 0.00 0.00 4.97

atom_frac 0.00 0.00 0.00 Zr
atom_frac 0.50 0.50 0.00 Zr
atom_frac 0.50 0.00 0.50 Zr
atom_frac 0.00 0.50 0.50 Zr
atom_frac 0.25 0.25 0.25 O
atom_frac 0.75 0.75 0.25 O
atom_frac 0.25 0.75 0.75 O
atom_frac 0.75 0.25 0.75 O
atom_frac 0.25 0.25 0.75 O
atom_frac 0.75 0.75 0.75 O
atom_frac 0.25 0.75 0.25 O
atom_frac 0.75 0.25 0.25 O

symmetry_n_params 3 2 1
symmetry_params a c z2
symmetry_lv a , 0 , 0
symmetry_lv 0 , a , 0
symmetry_lv 0 , 0 , c # c = (c/a)*a
symmetry_frac 0.00 , 0.00 , 0.00
symmetry_frac 0.50 , 0.50 , 0.00
symmetry_frac 0.50 , 0.00 , 0.50
symmetry_frac 0.00 , 0.50 , 0.50
symmetry_frac 0.25 , 0.25 , 0.25-z2
symmetry_frac 0.75 , 0.75 , 0.25-z2
symmetry_frac 0.25 , 0.75 , 0.75+z2
symmetry_frac 0.75 , 0.25 , 0.75+z2
symmetry_frac 0.25 , 0.25 , 0.75-z2
symmetry_frac 0.75 , 0.75 , 0.75-z2
symmetry_frac 0.25 , 0.75 , 0.25+z2
symmetry_frac 0.75 , 0.25 , 0.25+z2

FIG. 1. An illustration of the new relaxation scheme. a) A two- dimensional potential-energy surface for ZrO2. The
minimum energy structure is set to 0.0 eV and the contour lines correspond to a 0.2 eV increase in energy. The
red dot represents a structure corresponding to a high temperature cubic phase of the material. The outsets show
the one-dimensional potential-energy surface along each mode. b) The sample geometry input file for the tetragonal
ZrO2 in FHI-aims. The input geometry values are color coded to the reduced parameter that controls its value. For
the cubic structures all non-itallics values are fixed.

aims geometry.in files already containing the addi-
tional block required for the constrained relaxation.
Because of this, we use the crystal prototypes de-
fined by the AFLOW Library of Crystallographic
Prototypes throughout this work.

To accomplish the parameter space reduction in
real materials, let us assume a (3 × 3)-dimensional
lattice vector matrix L and a (N × 3)-dimensional
matrix RF for the fractional atomic positions.
Given the atomic forces FR on the fractional atomic
positions and the stress tensor σ, we can calculate
the derivatives of the energy with respect to the lat-
tice components [42]

dE

dL = LT−1
V · σ (3)

where V is the unit cell volume and obtain the gen-
eralized forces on the lattice FL after cleaning from

the atomic contributions

FL = − dE

dL −RF
T FR. (4)

Each of these matrices denoted by calligraphic let-
ters, RF , FR, L and FL, can be flattened to one-
dimensional vectors that we will name RF , FR, L
and FL respectively. In the parameter represen-
tation these quantities reduce to their small-letter
counterparts, the MR-dimensional r, Fr and ML-
dimensional l and Fl, via

r = J −1
Rf (RF − tRf ) (5a)

l = J −1
L (L− tL) (5b)

Fr = J T
Rf FR (5c)

Fl = J T
L FL. (5d)

where JRf and J L are the Jacobian matrix for the
transformations and tRf and tL are the transforma-
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tion vectors for the respective fractional atomic and
lattice degrees of freedom. The transformation vec-
tors are used to include any constant shifts, which
are not captured by the Jacobians. Because JRf

and JL are not square and therefore not regularly
invertible, we use the generalized left inverse [43] de-
fined for a matrix A as

A−1,L =
(
ATA

)−1

AT , (6)

provided A has full column rank. The transforma-
tion back to real space can then be performed by in-
verting Equations 5a-5d. The back-transformation
of the forces to the full space is not necessary but
can be helpful to obtain symmetrized Cartesian or
Fractional forces, to check for the convergence of the
relaxation.

To facilitate the construction of the Jacobian ma-
trices, we assume a linear relationship between the
full coordinates and the parameters. In principle,
JRf and J L can be constructed at each step by us-
ing analytical expressions to describe each real space
degree of freedom as a function of the reduce param-
eter set; however, by assuming a linear relationship
between the spaces they can be initialized at the
start of the calculation and used at every step. For
the atomic positions, this assumption is already ful-
filled by using fractional instead of Cartesian coor-
dinates. If we allow angles as unit cell parameters,
which is the case for the monoclinic and triclinic lat-
tice systems, the relations become non-linear con-
taining for example expressions like c · cos (β). In
these cases the easiest solution is to substitute each
non-zero lattice vector component with an indepen-
dent parameter.

Before the relaxation the Hessian, H, is initialized
in the full coordinate space, split into atomic and
lattice blocks (HR and HL respectively), and indi-
vidually transformed into reduced coordinate space,
Hr and Hl via separate Jacobians, JR and J L

Hr = J T
RHRJR (7)

Hl = J T
LHLJ L. (8)

Here JR represents the transformation of the
atomic coordinates from Cartesian space to the re-
duced space, which is calculated from JRf by

JR =


L 0 . . . 0
0 L . . . 0
...

...
. . .

...
0 0 . . . L

JRf . (9)

JR is then divided by the average unit vector
length, V 1/3, so Hr and Hl are on a similar scale.
The total Hessian is then recombined resulting in

H =

(
Hr 0
0 Hl

)
. (10)

Figure 2 illustrates the procedure for relaxing
structures with these constraints. During the re-
laxation, a full SCF cycle is completed to obtain the
forces and the stress tensor for the current geome-
try, at each step. If the convergence criterion is ful-
filled, i.e. if the forces are below a given threshold,
then the relaxation stops and returns the current
geometry. Otherwise the lattice vectors as well as
the atomic positions and their respective forces are
mapped onto the reduced space using the transfor-
mation described in Equations 5a-5d. The atomic
coordinates and forces are respectively scaled by
V 1/3 and V −1/3, and then passed on to the opti-
mizer. In FHI-aims this is usually a BFGS/TRM
optimizer. Once the optimized parameters are ob-
tained, the full geometry is reconstructed from the
parameters and a new relaxation step can begin.

B. Data Availability

The full input and output files for the cal-
culations in this work are available in the
NOMAD repository with the identifier [DOI:
10.17172/NOMAD/2019.08.05-1] [44].

III. APPLICATIONS AND BENCHMARKS

A. Relaxing Metastable and Unstable Systems

In some cases, constraining a relaxation is neces-
sary to keep the structure in its given polymorph.
Similar to what was seen for zirconia, a material can
have many phases that metastable or unstable at
zero point conditions that are stabilized by entropic
contributions at higher temperatures or pressures.
Here we define a metastable phase to be one that is
in a local minimum on its PES. While freely relaxing
stable or metastable structures is possible by respec-
tively using an initial geometry near its correpond-
ing global or local minimum on the PES, unstable
systems will tend to relax towards lower energy and
usually lower-symmetric structures, unless they are
somehow constrained. To demonstrate the ability
of these constraints to optimize such structures, we
relax the twelve atom cubic zirconia unitcell from
Figure 1. While most relaxations will be performed
on the primitive cells of structures, we use this sys-
tem as a simple, demonstrative example. All cal-
culations are done using the FHI-aims package, a
full-potential, all-electron electronic structure code.
FHI-aims utilizes numeric atom-centered orbital ba-
sis functions, grouped into different tiers beyond the
minimal set needed to describe free atoms. For these
calculations we use tier 1 (double numeric plus po-
larization basis set) with light basis settings which
were shown to calculate the lattice parameter and
cohesive energy of face-centered cubic gold within
0.001 Å and 20 meV [32], respectively. We use
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FIG. 2. Workflow of the relaxation constrained to the “parameter reduced space”.

the PBEsol as the exchange-correlation functional;
SCF convergence criteria of 10−6 eV/Å and 5×10−4

eV/Å for the density and forces, respectively; and
the structures are relaxed until the maximum forces
on the degrees for freedom are below 0.005 eV/Å.
All other inputs were taken to be the default val-
ues in FHI-aims. While a larger basis set and using
a hybrid functional would increase the accuracy of
the calculations, we do not expect it to affect the
performance of the relaxation scheme.

Figure 3a shows that using the constraints both
the cubic and tetragonal phase of ZrO2 can be con-
verged in 4 and 10 steps, respectively, while only the
tetragonal phase can be obtained in 30 steps with
a free relaxation. The free relaxation of the cubic
phase proceeds towards the tetragonal phase, but
initially stalls at a non-physical simple cubic phase
in 37 steps. If the relaxation convergence criteria is
further reduced to 0.001 eV/Å the structure reaches
the tetragonal phase in 114 steps.

Another example of a material with many
metastable phases is bismuth oxide. Bismuth oxide
exists in several different polymorphs [38] including
the low temperature monoclinic phase α-; the high-
temperature, face-centered cubic phase δ-; and the
metastable, tetragonal phase β-Bi2O3 [39]. Upon
heating α-Bi2O3 transforms into δ-Bi2O3 at around
730◦C, and remains stable until it melts at approxi-
mately 825◦C [39]. Depending on the cooling proce-
dure, δ-Bi2O3 transitions to the β-phase or another
metastable phase at approximtely 650◦C [39]. Upon
further cooling β-Bi2O3 returns to the α-Bi2O3 at
∼300◦C [39]. Importantly, unlike ZrO2, both the
tetragonal and monoclinic phases have twenty atoms
in their primitive cells, so both structures should
be accessible from the other one. For these calcu-
lations we use the same computational settings as
those used for ZrO2, but with the intermediate set-

tings for the basis set. The intermediate settings
and basis sets in FHI-aims increases the accuracy of
the default numerical settings, but more importantly
adds an f -orbital to the double numeric plus polar-
ization basis set for oxygen, which is necessary for
describing monoclinic structures containing oxygen.

Figure 3b shows the relaxation for the tetrago-
nal and monoclinic bismuth oxide phases. In both
cases the constrained relaxation takes less time to
converge with the constrained β- and α-phase need-
ing 17 and 20 steps to converge, respectively. While
for the α-phase removing the constraints simply in-
creases the number of steps needed to converge sys-
tem to 25 steps, the β-phase relaxes towards the α-
phase, but stops an unknown, lower symmetry phase
in 78 steps. Beyond the lower energy the final struc-
ture is both the lattice vectors and atomic coordi-
nates are significantly different from both the start-
ing and final constrained geometry meaning Since
the free relaxation of the β-phase departs from the
known phases of the material, a more in-depth study
of it would be impossible without the constraints as
the fully relaxed structures no longer represent the
same material.

Both of these cases demonstrate the need for
constraining relaxations to their crystal prototype
for high-throughput applications. For the high-
symmetry phases of both zirconia and bismuth ox-
ide, the free relaxation not only initially converged to
a different phase, but also unknown and potentially
physically unrealizable ones. While the relaxation of
ZrO2 does eventually reach one of its known phases,
bismuth oxide remains in incorrect structure. Any
further calculations on those structures would be er-
roneous and could lead to both false positives and
skewed property descriptors. While integrity checks
could be made for some of the materials, the consis-
tent breaking of they system’s symmetry and the in-
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FIG. 3. Convergence behaviour of the free (squares) and constrained (circles) relaxations for a) the tetragonal
phase (green) and cubic (purple) phases of ZrO2 and b) the tetragonal (red) and monoclinic (blue) phase of Bi2O3.
Both cubic phase of ZrO2 and the tetragonal phase of Bi2O3 the free relaxation breaks the symmetry and finds an
energetically lower structure which is the tetragonal phase for ZrO2 and an unknown phase for Bi2O3. The energy
scale on the y-axis is set to 1 meV below the minimum energy for each material.

consistent degree of that symmetry breaking makes
developing standardized checks impractical. This
will be particularly useful for crystal structure dis-
covery where exact knowledge of lattice type and
decorations is necessary.

B. Bench-marking the Algorithm

As the above examples show, the implemented
constraints not only ensure that symmetry is pre-
served, but also accelerate the relaxation because
the optimization of a reduced representation with
less free parameters space is by definition a less de-
manding task. To quantify this, the new relaxation
algorithm is tested on a set of 340 materials across
multiple lattice systems and AFLOW prototypes, as
summarized in Table I. The initial geometry of each
material is taken from either the AFLOW [45] or
Materials Project [46] database and converted into
the right format using the Atomic Simulation Envi-
ronment [47]. All relaxations are done in FHI-aims
using the same settings as the zirconia calculations,

using both the PBE and PBEsol functionals.

Table II and Figure 4 illustrates the largest benefit
of using the constraints: the preservation of the ini-
tial crystallographic prototypes. Approximately 7%
of all materials tested relax to a different structure
according to the AFLOW-XTAL-MATCH tool [48].
This tool measures the similarity between two ma-
terials using techniques similar to those of Burzlaff,
et al.[49] and produces a misfit value, m,

m = 1− (1− dev)(1− disp)(1− fail), (11)

where dev, disp, and fail are normalized representa-
tions of deviations in the lattice vectors, atomic po-
sitions, and a failure indicator for when an atomic
deviation is more than half the shortest distance in
the coordination polyhedra. From m we can deter-
mine if a structure is considered a match using the
following mapping

m ≤ 0.1 : structure are similar

0.1 < m ≤ 0.2 : structures are within same family

m > 0.2 : structures are not compatible.
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TABLE I. Summary of the materials used in the test dataset

AFLOW Prototype
Space
Group

# of
Materials

Atoms per
Unitcell

Free
Parameters

Full d.o.f. /
# Free Parameters

AB oP8 62 c c 62 8 8 7 4.71
A2B oP12 62 2c c 62 35 12 9 5.00

A2BC4 tI14 82 bc a g 82 35 7 5 6.00
A2BC4D tI16 121 d a i b 121 29 8 4 8.25

AB2 hP3 164 a d 164 25 3 3 6.00
AB hP4 186 b b 186 37 4 2 5.25
AB cF8 216 c a 216 35 2 1 15.00

ABC cF12 216 b c a 216 42 3 1 18.00
AB2C cF16 225 a c b 225 11 4 1 21.00

AB2 cF12 225 a c 225 13 3 1 18.00
AB cF8 225 a b 225 17 2 1 15.00

A cF8 227 a 227 3 2 1 15.00
A2BC4 cF56 227 d a e 227 50 14 2 25.50

FIG. 4. The misfit between the fully and constrained relaxed structures using AFLOW-XTAL-MATCH. All structures
below the horizontal line are considered matching. The structures are ordered by spacegroup and then by m

All the 22 materials with divergent relaxations in the
data set follow the same pattern as ZrO2 and Bi2O3.
Therefore constraining these material’s relaxation is
vital because without them all further calculations
on these materials would no longer be physically rel-
evant.

Constraining the relaxation has benefits even
when the final structures are similar as it signifi-
cantly reduces the number of steps needed for the
trajectories to converge. When the constrained and
free relaxations proceed towards the same struc-
tures, the constraints reduce the number of relax-
ation steps by an average of 32.51% and 49.74%
for calculations using the PBE and PBEsol func-
tional, respectively. Including the divergent struc-
tures respectively decreases the saving to 31.75%
and 49.01%, but this is expected as the constrained
relaxation and free relaxations are acting on quali-

tatively different PESs. Here we define the savings,
S, as

S =
Nfree −Nconstrained

Nconstrained
× 100% (12)

where Nfree is the number of steps need to converge
the free relaxation and Nconstrained is the number of
steps need to converge the constrained relaxation.
The seemingly better performance of the constraints
when using the PBEsol, is likely because of larger
differences between the initial and final structures
when using this functional. On average compar-
ing the starting geometries with the freely relaxed
ones gave an average m of 0.09451 (0.02926 when
m 6= 1) and 0.1418 (0.03223 when m 6= 1) for the
PBE and PBEsol calculations, respectively. And
since increasing the distance to the final structure
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TABLE II. Summary of the free and constrained relaxation performance by AFLOW prototype.

PBE PBEsol

AFLOW Prototype
Space
Group

# of
Materials

Average
Savings

# Preserved
Space Group

Free

# XTAL
Match

Average
Savings

# Preserved
Space Group

Free

# XTAL
Match

AB oP8 62 c c 62 8 10.23 3 8 24.61 4 8
A2B oP12 62 2c c 62 35 10.84 19 29 18.32 20 33

A2BC4 tI14 82 bc a g 82 35 23.25 29 32 51.75 28 34
A2BC4D tI16 121 d a i b 121 29 35.44 23 26 47.69 21 26

AB2 hP3 164 a d 164 25 7.03 10 24 19.68 5 24
AB hP4 186 b b 186 37 30.34 23 36 41.68 19 36
AB cF8 216 c a 216 35 31.41 26 34 54.47 29 34

ABC cF12 216 b c a 216 42 42.88 32 42 72.91 30 37
AB2C cF16 225 a c b 225 11 25.16 9 11 79.47 5 9

AB2 cF12 225 a c 225 13 57.63 8 9 54.20 7 9
AB cF8 225 a b 225 17 36.32 9 17 51.19 6 17

A cF8 227 a 227 3 35.12 3 3 47.62 3 3
A2BC4 cF56 227 d a e 227 50 67.10 37 47 73.58 37 47

Full Dataset 340 31.75 67.94% 93.52% 49.01 62.94% 93.24%

also increases the likelihood of the free relaxation
deviating from the constrained trajectory, larger sav-
ings using the PBEsol functional is expected. This is
also supported by the larger differences between the
final structures of constrained and free relaxations
for the PBEsol functional.

Unfortunately, the savings are not consistent
across the various prototypes. Figure 5 shows the
total number of steps needed to relax the structures
with and without constraints for the PBEsol cal-
culations, sorted by the space group and then the
maximum number of relaxation steps needed. Sim-
ilar to the average savings shown in Table II as the
number of free parameters approaches the number
of degrees of freedom in a material the savings from
constraining the relaxation decrease. In some cases
using the constraints actually increase the number
of steps needed for the relaxation to converge, but
in all of these cases the relaxation trajectories takes
unproductive steps shown in the inset of Figure 5
for PtS2. In these cases the extra free parameters
allow the relaxation trajectories to pass the problem-
atic regions faster and therefore converge to the final
structures in fewer steps. These results suggest that
for lower symmetry structures, the potential savings
from constraining the relaxation can be considerably
smaller.

Constraining the relaxation can also decrease the
computational time needed to perform further cal-
culations after the relaxations. Despite their simi-
larity to the final geometries of the constrained re-
laxation, freely relaxed structures always break sym-
metry to some degree. To measure how well the re-
laxation preserves symmetry we compare the spglib
calculated space groups of the initial and converged
structures [50]. spglib calculates the space group of
a material by iteratively searching for a given struc-
ture’s primitive cell and symmetry operations and

using those to generate the space group. The algo-
rithm determines if a structure’s space group has
a certain symmetry operation, by checking if the
operator transforms all the atoms in the structure
to sites occupied by the same type of atom within
a given small euclidean distance, ε. By default ε
is set to 10−5 Å, and none of the tested materials
remain in their initial space groups using this set-
ting. To preserve the symmetry for the freely relaxed
structures, a larger user-defined tolerance threshold
is needed (0.01 Å is used in Table II), consistent
with findings reported by Hicks, et al. [35]. How-
ever, when using the constraints, the symmetry is
always perfectly preserved for all materials. This
is advantageous as exploiting symmetry can greatly
reduce the time needed to do further calculations
for many applications. In particular phonon calcu-
lations using the finite difference approach where the
symmetry of the system determines the number of
atomic displacements, and therefore the number of
force calculations, needed to calculate a complete set
of force constants. By default Phonopy, a very pop-
ular Python package for calculating phonon spectra
with finite differences [51], uses the default spglib
settings to calculate the symmetry of a material,
which would misrepresent all of the tested materials
using free relaxation. Commensurate phonon cal-
culations can be achieved by performing symmetry
constrained relaxations and using more robust sym-
metry tools, such as AFLOW-SYM [35].

C. Systems with local symmetries or
distortions

One of the key advantages of defining constraints
in this way is the ability to locally break symmetry
to account for point defects. While the previously
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discussed benefits of lower relaxation times and re-
laxing unstable structures could also be achieved
by using symmeterized forces, that method would
not be able to locally break its symmetry. How-
ever many of these defects exhibit some type of short
range order, such as Jahn-Teller-type lattice distor-
tions [52–54], that can be parameterically added on
top of the standard crystal structure. By including
these distortions one can reduce the computational
cost of relaxing supercells with defects, which is im-
portant when using a super cell approach to study
point defects. This approach uses density functional
methods to calculate the total energy of a system in
a series of supercells of increasing size to study the
effects of a defect on the system. If a scaling law is
known for the system the results of these calculation
can be extrapolated to the experimentally relevant
dilute limit. As the supercell size increases the time
needed to calculate each step also increases, there-
fore any reduction in the number of steps needed can
save a significant amount of computational time.

To illustrate the ability of the new relaxation
scheme to study point defects in materials, we study
a polaronic distortion in MgO previously studied
in our department [55]. Polarons are quasiparticles
that couple point charges with lattice distortions in
a material, reducing its charge carrier mobility. For
rock salt MgO the lattice distortions for an electron
hole polaron are Jahn-Teller like, and we generate
a set of parameters to describe them for a 64 and
216 atom supercell. Figure 6 illustrates the uncor-
rected polaron energy for the free and constrained

relaxation trajectories for these supercells [55]. Be-
cause charge localization is necessary when study-
ing polarons, the HSE 2006 functional is used with
a screening parameter of 0.11 Bohr−1 with exact ex-
change. The unrestricted spin relaxation converged
the SCF density, forces, total energy, and eigenvalues
were all converged to 10−4 eV/Å, 10−4 eV/Å, 10−5

eV, and 10−2 eV, respectively. Each atom calculated
5 empty states above those used by the Kohn-Sham
orbitals and the structures were relaxed until the
total forces on the free parameters were below 10−4

eV/Å. Starting from a distorted geometry the con-
strained relaxations take a fewer number of steps to
converge the 64 and 216 atom supercells respectively
needing 11 and 10 steps compared with 88 and 234
steps for the free relaxation. Using the constraints
does cause the relaxation to converge to a structure
with slightly higher energy, but this is because the
chosen constraints are valid for an isolated polaron
and thus do not account for the artificial interactions
with periodic images due to the finite supercell size.
In practice, this effect is rather negligible, since we
find that the obtained polaron energy is 78.4 meV
higher in energy than the free relaxation in the 2x2x2
supercell and 69.1 meV higher in the 3x3x3 super-
cell.

IV. CONCLUSIONS

In this work we presented a new scheme for
parametrically relaxing structures in a user-defined,
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symmetry-reduced space. After explaining the algo-
rithm, we test it on 340 different materials across a
broad range of material classes. In all cases the new
method was able to strictly preserve the symmetry
of the materials, and on average reduced the number
of steps needed to converge a material by 50%. We
also demonstrated how the constraints can be used
to relax to metastable phases, and relax structures
with local symmetry braking with known distortion
patterns.

This new method will have a profound impact on
computational materials discovery. Not only does
the decreased cost of relaxing a material increase
the velocity of high-throughput search, but it also
allows for those searches to explore metastable and
dynamically stabilized structures. The method also
has the promise to improve the efficiency of super-
cell calculations and study only the physically rel-
evant structures. Finally by monitoring the differ-
ence between the full forces and symmeterized forces
new stable phases can potentially be discovered from
metastable or unstable polymorphs. Although we
showed that the proposed algorithm is applicable to
accelerate and improve standard solid-state physics
calculations, its flexibility allows it to be applied to
a much wider range of problems, e.g., transition-
state searches. Similarly, it is easily generizable to
other form of coordinates and straightforwardly im-
plementable in any electronic-structure theory code.

V. ACKNOWLEDGEMENTS

TARP would like to acknowledge Florian Knoop
for valuable discussions. This project was supported

by TEC1p (the European Research Council (ERC)
Horizon 2020 research and innovation programme,
grant agreement No 740233), BigMax (the Max
Planck Society’s Research Network on Big-Data-
Driven Materials-Science), and the NOMAD pillar
of the FAIR-DI e.V. association. SC and DH ac-
knowledges U.S. DOD-ONR (Grants No. N00014-
17-1-2090). D.H. acknowledges support from the
U.S. DOD through the National Defense Science and
Engineering Graduate (NDSEG) Fellowship Pro-
gram. We thank the Max Planck Computing and
Data Facility for computational resources. The
Authors declare no Competing Financial or Non-
Financial Interests

VI. AUTHOR INFORMATION

A. Author Contributions

MOL and TARP contributed equally on this work
by implementing and bench-marking the discussed
relaxation scheme. DH worked to incorporate the
constraints into AFLOW. SC, MS, and CC directed
the project. All authors analysed the data and wrote
the manuscript.

B. Competing Interests

The Authors declare no Competing Financial or
Non-Financial Interests”



11

[1] P K Panda. Review: Environmental friendly lead-
free piezoelectric materials. Journal of Materials
Science, 44(19):5049–5062, 2009.

[2] Zhong Lin Wang. Progress in piezotronics and piezo-
phototronics. Advanced Materials, 24(34):4632–
4646, sep 2012.

[3] Kang Min Ok. Toward the Rational Design of Novel
Noncentrosymmetric Materials: Factors Influencing
the Framework Structures. Accounts of Chemical
Research, 49(12):2774–2785, 2016.

[4] Thanh D. Nguyen, Sheng Mao, Yao Wen Yeh,
Prashant K. Purohit, and Michael C. McAlpine.
Nanoscale flexoelectricity. Advanced Materials,
25(7):946–974, feb 2013.

[5] Carlos Moure and Octavio Peña. Recent advances
in perovskites: Processing and properties. Progress
in Solid State Chemistry, 43(4):123–148, dec 2015.

[6] L. I. Isaenko, A. P. Yelisseyev, S. I. Lobanov, P. G.
Krinitsin, and M. S. Molokeev. Structure and opti-
cal properties of Li2Ga2GeS6 nonlinear crystal. Op-
tical Materials, 47:413–419, sep 2015.

[7] Dragan Damjanovic. Ferroelectric, dielectric and
piezoelectric properties of ferroelectric thin films
and ceramics. Rep. Prog. Phys, 61:1267, 1998.

[8] Tian Hang, Wen Zhang, Heng Yun Ye, and Ren Gen
Xiong. Metal-organic complex ferroelectrics. Chem-
ical Society Reviews, 40(7):3577–3598, jun 2011.

[9] Enwei Sun and Wenwu Cao. Relaxor-based ferro-
electric single crystals: Growth, domain engineer-
ing, characterization and applications. Progress in
Materials Science, 65:124–210, aug 2014.

[10] Ping Ping Shi, Yuan Yuan Tang, Peng Fei Li,
Wei Qiang Liao, Zhong Xia Wang, Qiong Ye,
and Ren Gen Xiong. Symmetry breaking in
molecular ferroelectrics. Chemical Society Reviews,
45(14):3811–3827, jul 2016.

[11] R. J. Cava, Huiwen Ji, M. K. Fuccillo, Q. D. Gibson,
and Y. S. Hor. Crystal structure and chemistry of
topological insulators. Journal of Materials Chem-
istry C, 1(19):3176–3189, apr 2013.

[12] Gregory A. Fiete. Topological insulators: Crys-
talline protection. Nature Materials, 11(12):1003–
1004, dec 2012.

[13] Owen R Evans and Wenbin Lin. Crystal engineer-
ing of NLO materials based on metal-organic coor-
dination networks. Accounts of Chemical Research,
35(7):511–522, 2002.

[14] Kui Wu and Shilie Pan. A review on structure-
performance relationship toward the optimal de-
sign of infrared nonlinear optical materials with bal-
anced performances. Coordination Chemistry Re-
views, 377:191–208, dec 2018.

[15] Jialiang Xu, Xinyue Li, Jianbo Xiong, Chunqing
Yuan, Sergey Semin, Theo Rasing, and Xian-He Bu.
Halide Perovskites for Nonlinear Optics. Advanced
Materials, page 1806736, mar 2019.

[16] Minh Quy Le and Danh Truong Nguyen. The role
of defects in the tensile properties of silicene. Ap-
plied Physics A: Materials Science and Processing,
118(4):1437–1445, mar 2014.

[17] Thi X.T. Sayle, Beverley J Inkson, Ajay Karakoti,
Amit Kumar, Marco Molinari, Günter Möbus,
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