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Parametrically constrained geometry relaxations
for high-throughput materials science
Maja-Olivia Lenz 1, Thomas A. R. Purcell 1*, David Hicks 2, Stefano Curtarolo 2, Matthias Scheffler1 and Christian Carbogno 1

Reducing parameter spaces via exploiting symmetries has greatly accelerated and increased the quality of electronic-structure
calculations. Unfortunately, many of the traditional methods fail when the global crystal symmetry is broken, even when the
distortion is only a slight perturbation (e.g., Jahn-Teller like distortions). Here we introduce a flexible and generalizable parametric
relaxation scheme and implement it in the all-electron code FHI-aims. This approach utilizes parametric constraints to maintain
symmetry at any level. After demonstrating the method’s ability to relax metastable structures, we highlight its adaptability and
performance over a test set of 359 materials, across 13 lattice prototypes. Finally we show how these constraints can reduce the
number of steps needed to relax local lattice distortions by an order of magnitude. The flexibility of these constraints enables a
significant acceleration of high-throughput searches for novel materials for numerous applications.

npj Computational Materials           (2019) 5:123 ; https://doi.org/10.1038/s41524-019-0254-4

INTRODUCTION
Symmetry preservation and breaking is one of the most
fundamental processes in physics and chemistry. Many properties
and applications, such as piezoelectricity,1–4 pyroelectricity,5,6

ferroelectricity,7–10 topological insulators,11,12 and nonlinear
optics,13–15 require certain selection rules to be met, and therefore
require certain crystallographic symmetries to be maintained.
Furthermore, it is not only global symmetry, the space and point
groups of a material, but also local symmetry breaking that
matters. For example, defects can cause significant changes in a
material’s mechanical16,17 and optical18,19 properties, as well as in
its electronic20–22 and thermal transport23–25 coefficients. These
effects can be particularly important at thin-film interfaces where
interactions between different layers can induce systematic
distortions in the structure of the film. In turn, these distortions
can lead to novel properties in the materials, such as artificial
ferroelectricity in layered perovskite supercell structures.26,27

Clearly, such problems cannot be addressed by enforcing a global
symmetry constraint, e.g., space group conservation, for the whole
system, but require selectively preserving and breaking a
material’s symmetries locally, e.g., around defects or in the
individual perovskite layers. This is paramount in computational
material science, especially in high-throughput studies, which
often aim at calculating and exploring yet unknown properties of
already known materials, e.g., band structures,28 defect-formation
energies,29 elastic and thermal properties,30 and topological
constants.31,32 Similarly, many high-throughput studies aim at
discovering potentially stable or metastable materials by decorat-
ing complex, well-known crystal structures such as Heuslers33 and
perovskites34 with different species, or by systematically exploring
a given alloy system.35 To streamline such calculations, it is
essential to keep both global and local symmetries under control,
especially when complex materials or material properties are
targeted. In this work, we achieve this goal by proposing and
implementing parametric geometric constraints that allow for the
enforcing or breaking of symmetries, both globally and locally.
Before applying these constraints, an understanding of how they

map onto the target systems (e.g., the number of atoms in the unit
cell, space group, or the effects of local distortions on the
structure) is necessary. To facilitate setting up such constraints, we
rely on the AFLOW Library of Crystallographic Prototypes36,37 to
generate the initial mapping of real space onto a reduced
parameter space that fully describes a system. One can then
manually alter the initial mapping to add or lift constraints as
needed. This allows for the efficient targeting of specific geometric
configurations and avoids revisiting and recalculating already-
investigated configurations.
Traditionally, crystallographic symmetries are incorporated in

first-principles codes already at the electronic-structure level (e.g.,
by sampling k-space grids in the irreducible part of the Brillouin
zone, as implemented in Vasp38 or by sampling real space in
symmetry defined “irreducible wedges”, as done in PARSEC39),
since it leads to significant savings in memory and computational
workload for highly symmetric crystals. Also, by this means the
obtained forces on the atoms and stresses on the lattice vectors
fully reflect the crystallographic symmetries. Since geometry
relaxation algorithms such as steepest descent, conjugate
gradient, Newton–Raphson, quasi-Newton (e.g., BFGS40), and
truncated-Newton methods41 rely on the forces and stresses to
update the atomic and lattice degrees of freedom, global
symmetries are inherently preserved in such approaches. How-
ever, this does not allow for the partial, local symmetry breaking
discussed above. To address such cases in first-principles
calculations, it is typically necessary to lift all crystallographic
symmetry constraints and treat the atomic and lattice degrees of
freedom as a set of freely changing parameters. Besides the
increased computational cost, such unconstrained structure
optimization can lead to long and inefficient relaxation trajec-
tories, resulting in structures far from the ideal geometry. While in
some cases, this problem can be circumvented by fixing atomic,
lattice, or internal42,43 degrees of freedom (as done in Quantum
Espresso44 or VASP38), mapping local distortions onto these
constraints requires cumbersome manual inspection and analysis,
if it is even possible. A more direct approach targeting how the
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distortion changes the native crystal structure provides an easier
and better way of treating these systems.
Here, we present a scheme to incorporate parametric con-

straints in structure optimizations that treats all levels of symmetry
equally. The proposed approach employs a mapping of the
relevant degrees of freedom onto a lower-dimensional represen-
tation of the structure; the respective forces and stresses are then
automatically mapped in this reduced representation. With that,
the implemented formalism does not require altering the
employed relaxation algorithm, while still allowing the introduc-
tion of arbitrary constraints in a user-friendly manner. We first
describe how the methodology works and the tools that can be
used to quickly generate new structures. We demonstrate that
these constraints allow for performing geometry optimizations on
dynamically stabilized structures, which are not easily addressable
otherwise. By analyzing the constrained and unconstrained
relaxations of a test set of 359 materials, we then show that
these constraints are also computationally beneficial for the
relaxation of stable materials. Finally, we illustrate how the
parameters can be used to selectively break symmetries and
accelerate relaxations in supercells.

Transformation to reduced space
For a free relaxation, the optimizer acts on the full 3N þ 9
dimensional potential-energy surface EðR; LÞ of a material, which
is encoded by the atomic, R, and lattice, L, degrees of freedom.
The lattice degrees of freedom are stored as the three
components of the three lattice vectors in the chosen unit cell,
and the atomic degrees of freedom are the 3N components of the
positions of the N atoms in a unit cell, represented by Cartesian or
fractional coordinates. The forces, F, acting on the atomic degrees
of freedom are the derivatives of the energy with respect to R

F ¼ � dE
dR

; (1)

while the forces acting on the lattice vectors stem from the
stresses, σ,

σ ¼ 1
V
dE
dL

; (2)

where V is the volume of the unit cell. In ab initio approaches, E is
determined by solving the electronic-structure problem, and the

respective derivatives are obtained analytically via the
Hellmann–Feynman Theorem. However, in practice this requires
to account for additional terms, such as the Pulay terms and
multipole corrections, as done in FHI-aims.45,46

Because the underlying potential-energy surfaces (PES) are
complex, relaxing certain polymorphs of a material on these surfaces
can be challenging or even impossible. As an example, zirconia (ZrO2)
can exist in its pure form in three different crystal phases: a high-
temperature (T > 237 0�C) cubic phase, an intermediate temperature
(117 0 �C � T � 237 0 �C) tetragonal phase, and a low-temperature
(T < 117 0 �C) monoclinic phase.47 In particular, the cubic phase is a
dynamically stabilized phase representing an average structure that is
rarely, if ever actualized in pristine ZrO2.

48 Accordingly, this phase
constitutes a saddle point of the PES, and its phonon band structure
exhibits an imaginary mode at the X point,49 as illustrated in Fig. 1a.
The associated eigenvector, illustrated in the respective inset,
describes a pairwise, antiparallel distortion of the oxygen atoms that
goes hand-in-hand with a stretching of the lattice and leads to the
tetragonal structure.47 To help illustrate this, in Fig. 1b we plot a two-
dimensional PES for a 12-atom zirconia unit cell over a reduced
parameter set describing the cubic lattice parameter a and the
motion along the imaginary mode, z2. The PES has two wells
corresponding to the equivalent tetragonal structures, and a saddle
point between them representing a high-symmetry configuration, i.e.,
the high-temperature cubic phase. On this PES, a free relaxation of
the cubic phase would result in the material relaxing toward a local
minima; however, by constraining the relaxation to act only on a, the
cubic phase can be obtained as shown in the outsets in Fig. 1b.
To help demonstrate how parametric constraints can facilitate

addressing these stable/unstable polymorphs, we provide the
respective constraints in Tables 1 and 2. As discussed later, these
symmetry blocks correspond to the input files that are required in
the proposed formalism for the 12-atom zirconia unit cell. For the
cubic polymorph, all atoms are at fixed fractional coordinates and
only one parameter, i.e., the lattice constant, a, can change in a
parametrically constrained relaxation. For the relaxation algorithm,
this means that the optimizer can now act only on a, and all other
degrees of freedom remain untouched. Clearly, this ensures that
the initial space group is retained during the relaxation. As
mentioned above, such constraints are necessary, since this
polymorph corresponds to a saddle point of the PES. This means
that an unconstrained or free relaxation would effectively allow

Fig. 1 Reduced Parameter Space for 12-Atom Zirconia Supercell. An illustration of the new relaxation scheme. a The phonon band
structures of cubic ZrO2. The inset illustrates the eigenvector of the imaginary mode that drives the system toward the tetragonal structure in
a six-atom supercell. b A two-dimensional potential-energy surface for ZrO2. The minimum energy structure is set to 0.0 eV, and the contour
lines correspond to a 0.2 eV increase in energy. The maroon dot represents a structure corresponding to a high-temperature cubic phase of
the material. The outsets show the one-dimensional potential-energy surface along each mode.
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the system to break its symmetry and to descend into a local
minimum. To explicitly explore these local minima, the constraints
imposed on the cubic cell can be lifted in a stepwise manner,
whereby the information contained in the imaginary phonon
eigenvectors can be incorporated as parametric constraints. As
shown in Tables 1 and 2, the pairwise distortion of the oxygen
atoms for the imaginary mode at X (Fig. 1a) can be described by
introducing one additional parameter for the oxygen distortion,
z2, and one for the tetragonality of the lattice c. These constraints
ensure that the geometry optimization occurs along the imaginary
phonon mode and leads to the tetragonal minimum. Conversely, a
free relaxation can again lead to other local minima of the PES. In
this textbook example, the same constraints could have been
imposed by relaxing cubic and tetragonal zirconia in their
primitive cells with six and three atoms, respectively. However,
this is not always the case: some materials, e.g., bismuth oxide,50,51

discussed later, have high-temperature polymorphs with the same
number of sites as their stable structures, or more.
The previous input example illustrates the flexibility of these

constraints, but knowledge of which reduced parameters to use
and their relation to the full geometry, must be known before
generating an input file. For crystals, these are determined by the
space group and the Wyckoff positions, and can therefore be
manually constructed. Luckily, these parameters are already a part
of the definitions used in the AFLOW Library of Crystallographic
Prototypes, allowing for an easy way to define these constraints
for numerous materials via their utilities.36,37 The library sorts
materials by their space group, stoichiometry, and occupied
Wyckoff sites, as calculated with AFLOW-SYM,52 placing all
materials that share those features into the same crystal

prototype.36,37 A reduced parameter space can then be generated
from a prototype definition, and used to describe that class of
materials. For example, the tetragonal phase of zirconia can be
described by only three parameters: the length of the lattice
vectors in the a and b directions (a), the ratio of the lattice vectors
(ca), and the magnitude of the oxygen distortions (z2). These
parameters represent the same ones we defined earlier from the
analysis of the phonon band structure, with an additional
parameter allowing for the relaxation of the lattice upon the
atomic distortions. For all prototypes defined in the library, the
automatized generation of input geometries for VASP,38 FHI-
aims,45 Quantum Espresso,44 Abinit,53 and more codes is
supported by AFLOW. The AFLOW library contains 590 unique
structure prototypes across all 230 space groups, and is thus
extremely suitable as a starting point for high-throughput studies.
As of version 3.1.204, the option --add_equations can be
added to the AFLOW command to generate FHI-aims geometry.
in files already containing the additional block required for the
constrained relaxation. Because of this, we use the crystal
prototypes defined by the AFLOW Library of Crystallographic
Prototypes throughout this work. Due to the analytic representa-
tion of the parametric expressions, it is also straightforward to add
additional parameters to allow for lower-symmetric structures or
distortions as well as removing parameters to constrain specific
components even further. In addition, because the AFLOW
prototypes are partially based on the space group and occupied
Wyckoff sites, it is also straightforward to adapt their techniques to
include structure classes not currently in the library.

RESULTS
Relaxing metastable and unstable systems
In some cases, constraining a relaxation is necessary to keep the
structure in its given polymorph. Similar to what was seen for
zirconia, a material can have many phases that are metastable or
unstable at zero-point conditions, but are stabilized by entropic
contributions at higher temperatures or pressures. Here, we define
a metastable phase to be one that is in a local minimum of the
PES. While freely relaxing stable or metastable structures is
possible by using an initial geometry near its corresponding
(global or local) minimum on the PES, unstable systems will tend
to relax towards lower energy and usually lower-symmetric
structures, unless they are somehow constrained.
To demonstrate the ability of these constraints to optimize such

structures, we relax the 12-atom cubic zirconia unit cell from Fig. 1.
While most relaxations will be performed on the primitive cells of
structures, we use this system as a simple, demonstrative example.
The initial geometry for the cubic phase was taken from the
AFLOW Library of Crystallographic Prototypes, while the one for
the tetragonal phase is the same as the cubic phase with a minor
perturbation along the imaginary mode seen in Fig. 1.
All calculations are done using the FHI-aims package, a full-

potential, all-electron electronic-structure code. FHI-aims utilizes
numeric atom-centered orbital basis functions, grouped into
different tiers beyond the minimal set needed to describe free
atoms. For these calculations, we use ‘tier 1’ (as defined in Blum
et al.45) with ‘light’ basis settings, which were shown to calculate
the lattice parameter and cohesive energy of face-centered cubic
gold within 0.001Å and 20meV,45 respectively. We use PBEsol as
the exchange-correlation functional; SCF convergence criteria of
10�6 eV/Å and 5 ´ 10�4 eV/Å for the density and forces, respec-
tively; and the structures are relaxed until the maximum forces on
the degrees of freedom are below 0.005 eV/Å. All other inputs
were taken to be the default values in FHI-aims. While a larger
basis set and using a hybrid functional would increase the
accuracy of the calculations, we do not expect it to affect the
performance of the relaxation scheme.

Table 1. Example of lattice vector parametric constraints.

Cubic Tetragonal

Lx Ly Lz Lx Ly Lz

L1 a 0 0 a 0 0

L2 0 a 0 0 a 0

L3 0 0 a 0 0 c

Parametric expressions for each component of the lattice vectors in the 12-
atom cubic and tetragonal ZrO2 supercell

Table 2. Example of atomic parametric constraints.

Cubic Tetragonal

Atom L1 L2 L3 L1 L2 L3

Zr 0.00 0.00 0.00 0.00 0.00 0.00

Zr 0.50 0.50 0.00 0.50 0.50 0.00

Zr 0.00 0.50 0.50 0.00 0.50 0.50

Zr 0.50 0.00 0.50 0.50 0.00 0.50

O 0.25 0.25 0.25 0.25 0.25 0.25 − z2
O 0.25 0.75 0.25 0.25 0.75 0.25 − z2
O 0.75 0.75 0.75 0.75 0.75 0.75 + z2
O 0.25 0.25 0.75 0.25 0.25 0.75 + z2
O 0.75 0.25 0.25 0.75 0.25 0.25 − z2
O 0.25 0.75 0.75 0.25 0.75 0.75 − z2
O 0.75 0.75 0.75 0.75 0.75 0.75 + z2
O 0.25 0.25 0.25 0.25 0.25 0.25 + z2

Parametric expressions for each component of the atomic positions in the
twelve atom cubic and tetragonal ZrO2 supercell
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Figure 2a shows that using the constraints both the cubic and
tetragonal phase of ZrO2 can be converged in four and ten steps,
respectively, while only the tetragonal phase can be obtained in
30 steps with a free relaxation. The free relaxation of the cubic
phase proceeds toward the tetragonal phase, but initially stalls at
a non-physical simple cubic structure in 37 steps. If the relaxation
convergence criteria is further reduced to 0.001 eV/Å, the
structure reaches the tetragonal phase in 114 steps.
Another example of a material with many metastable phases is

bismuth oxide. Bismuth oxide exists in several different poly-
morphs50 including the low-temperature monoclinic phase, α-; the
high-temperature, face-centered cubic phase, δ-; the metastable,
body-centered cubic phase, γ-; and the metastable, tetragonal
phase β-Bi2O3.

51 Upon heating α-Bi2O3 transforms into δ-Bi2O3 at
around 730 °C, and remains stable until it melts at ~825 °C.51

Depending on the cooling procedure, δ-Bi2O3 transitions to one of
the two metastable phases, β- or γ-Bi2O3, at ~650 °C or ~640 °C,
respectively.51 Upon further cooling, β-Bi2O3 and γ-Bi2O3, respec-
tively, return to the α-phase at ~300 °C and at a temperature
dependent on the cooling rate.51 Importantly, unlike ZrO2, both
the tetragonal and body-centered cubic phases have as many or
more atoms in their primitive cells than the α-phase, so freely
relaxing both structures in their primitive cells should not prevent
them from exploring lower symmetry structures. For these

calculations, we use the same computational settings as those
used for ZrO2, but with the ‘intermediate’ settings for the basis set.
The ‘intermediate’ settings and basis sets in FHI-aims increase the
accuracy of the default numerical settings, but more importantly
add an f -orbital to the ‘tier 1’ basis set for oxygen, which is
necessary for describing monoclinic structures containing oxygen.
Figure 2b shows the relaxation of the α-, β-, and γ-bismuth

oxide phases. Multiple experimental crystal structure refinements
exist51 for both the β- and γ-phases, so we take the relaxed
structures from the Materials Project,54 which were initialized from
structures taken from the ICSD. In all cases, the constrained
relaxation takes less time to converge with the γ-, β-, and α-phase,
respectively, needing 42, 17, and 20 steps to converge. Freely
relaxing both the α and β-phases simply increases the number of
steps needed to converge the system to 25 and 66 steps,
respectively, but removing the constraints for γ-Bi2O3 causes it to
relax to an unknown, non-symmetric structure in 160 steps. While
it is possible that the divergent relaxation is a result of an incorrect
structure refinement, if that is the case, then it suggests that
comparing the final energy and geometry of the constrained and
free relaxation trajectories can be used to indicate if a structure is
correct. Since the free relaxation of the γ-phase departs from the
known phases of the material, a more in-depth study of it would
be impossible without the constraints, as the fully relaxed
structures no longer represent the same material.
Both of these cases demonstrate the need for constraining

relaxations to their crystal prototype for high-throughput applica-
tions. For the high-symmetry phases of both zirconia and bismuth
oxide, the free relaxation not only initially converged to a different
phase but also to unknown and potentially physically unrealizable
ones. While the relaxation of ZrO2 does eventually reach one of its
known phases, bismuth oxide remains in an incorrect structure.
Any further calculations on those structures would be erroneous
and could lead to both false positives and skewed property
descriptors during both high-throughput and machine learning
studies. While integrity checks could be made for some of the
materials, the consistent breaking of the system’s symmetry and
the inconsistent degree of that symmetry breaking makes
developing standardized checks impractical. This will be particu-
larly useful for testing the predictions from crystal structure
discovery methods, where exact knowledge of lattice type and
decorations is necessary. Combining these constraints, with an
automatically generated parametric representation, would provide
an efficient means to optimize the newly predicted structures.

Bench-marking the algorithm
As the above examples show the implemented constraints not
only ensure that symmetry is preserved but also accelerate the
relaxation because the optimization of a reduced representation
with less free parameters is by definition a less demanding task. To
quantify this, the new relaxation algorithm is tested on a set of 359
materials across multiple lattice systems and AFLOW prototypes,
as summarized in Table 3 and explicitly listed in the Supplemen-
tary Information (Supplementary Tables 1, 2). The chosen
prototypes represent a sample of common materials with varied
space groups and parametric relation complexity. To further
understand how the method performs within a class, we try to
include only prototypes with a significant amount of available
structures. The initial geometry of each material is taken from
either the AFLOW55 or the Materials Project54 database and
converted into the right format using the Atomic Simulation
Environment (ASE).56 All relaxations are done in FHI-aims using the
same settings as the zirconia calculations, using both the PBE and
PBEsol functionals.
Table 4 and Fig. 3 illustrate the largest benefit of using the

constraints: the preservation of the initial crystallographic proto-
types. Approximately, 6% of all materials tested relax to a different

Fig. 2 Using parameteric constraints to converge to unstable and
metastable phases. Convergence behavior of the free (squares) and
constrained (circles) relaxations for a the tetragonal phase (green)
and cubic (purple) phases of ZrO2 and b the α-phase (blue), β-phase
(gray), and γ-phase (red) of Bi2O3. For both the cubic phase of ZrO2
and the γ-phase of Bi2O3, the free relaxation breaks the symmetry
and finds an energetically lower structure which is the tetragonal
phase for ZrO2 and an unknown phase for Bi2O3 . The energy scale
on the y-axis is set to 1meV below the minimum energy for each
material.
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structure according to the AFLOW-XTAL-MATCH tool.57 This tool
measures the similarity between two materials using techniques
similar to those of Burzlaff, et al.58 and produces a misfit value, m,

m ¼ 1� ð1� dev Þð1� disp Þð1� fail Þ; (3)

where dev, disp, and fail are normalized representations of
deviations in the lattice vectors, atomic positions, and a failure
indicator for when an atomic deviation is more than half the
shortest distance in the coordination polyhedra. From m, we can
determine if a structure is considered a match using the following
mapping:

m � 0:1 : structures are similar

0:1<m � 0:2 : structures are within same family

m> 0:2 : structures are not compatible:

All of the 26 materials with divergent relaxations in the data set
follow the same pattern as cubic ZrO2 and γ-Bi2O3. Therefore,
constraining these material’s relaxation is vital because without
them all further calculations on these materials would no longer
be physically relevant.
Constraining the relaxation has benefits even when the final

structures are similar, as it significantly reduces the number of
steps needed for the trajectories to converge. When the
constrained and free relaxations proceed toward the same
structures, the constraints reduce the number of relaxation steps
by an average of 33.11% and 52.43% for calculations using the
PBE and PBEsol functional, respectively. Including the divergent
structures, respectively, increases the saving to 34.68% and
53.80%, but this is expected as the constrained and free
relaxations are acting on qualitatively different PESs. Here we
define the savings, S, as

S ¼ Nfree � Nconstrained

Nconstrained
´ 100% (4)

where Nfree is the number of steps needed to converge the free
relaxation and Nconstrained is the number of steps needed to
converge the constrained relaxation. The seemingly better
performance of the constraints when using PBEsol is likely
because of larger differences between the initial and final
structures when using this functional. On average, comparing
the starting geometries with the freely relaxed ones gave an
average m of 0.07654 (0.01630 when m≠ 1) and 0.1322 (0.02038
when m≠ 1) for the PBE and PBEsol calculations, respectively.
Since increasing the distance to the final structure also increases

the likelihood of the free relaxation deviating from the con-
strained trajectory, larger savings using the PBEsol functional are
expected. This is also supported by the larger differences between
the final structures of constrained and free relaxations for the
PBEsol functional.
Unfortunately, the savings are not consistent across the various

prototypes. Figure 4 shows the total number of steps needed to
relax the structures with and without constraints for the PBEsol
calculations, sorted by the space group, and then the maximum
number of relaxation steps needed. Similar to the average savings
shown in Table 4, as the number of free parameters approaches
the number of degrees of freedom in a material the savings from
constraining the relaxation decrease. In some cases using, the
constraints actually increases the number of steps needed for the
relaxation to converge, but in all of these cases, for PBEsol
calculations, the relaxation trajectories take unproductive steps
shown in the inset of Fig. 4 for PtS2. In these cases, the extra
degrees of freedom allow the relaxation trajectories to pass the
problematic regions faster and therefore converge to the final
structures in fewer steps. For the PBE calculations, there are also
some cases where the relaxation takes a few extra steps at the end
of the trajectory where the total forces are near the convergence
criteria. These results suggest that for lower symmetry structures,
the potential savings from constraining the relaxation can be
considerably smaller.
Constraining the relaxation can also decrease the computa-

tional time needed to perform further calculations after the
relaxations. Despite their similarity to the final geometries of the
constrained relaxation, freely relaxed structures always break
symmetry to some degree. To measure how well the relaxation
preserves symmetry, we compare the spglib calculated space
groups of the initial and converged structures.59 The package
spglib calculates the space group of a material by iteratively
searching for a given structure’s primitive cell and symmetry
operations and using those to generate the space group. The
algorithm determines if a structure is preserved under a certain
symmetry operation, by checking if the operator transforms all the
atoms in the structure to sites occupied by the same type of atom
within a given small euclidean distance, ε. By default, ε is set to
10−5Å, and none of the tested materials remain in their initial
space groups using this setting. To preserve the symmetry for the
freely relaxed structures, a larger user-defined tolerance threshold
is needed (0.01Å is used in Table 4), consistent with findings
reported by Hicks, et al.52 However, when using the constraints,
the symmetry is always perfectly preserved for all materials. This is

Table 3. Summary of materials test set.

AFLOW prototype Space group # of Materials Atoms per unit cell Free parameters Full d.o.f./# free parameters

AB_oP8_62_c_c 62 8 8 7 4.71

A2B_oP12_62_2c_c 62 35 12 9 5.00

A2BC4_tI14_82_bc_a_g 82 35 7 5 6.00

A2BC4D_tI16_121_d_a_i_b 121 29 8 4 8.25

AB2_hP3_164_a_d 164 25 3 3 6.00

AB_hP4_186_b_b 186 37 4 2 5.25

AB_cF8_216_c_a 216 37 2 1 15.00

ABC_cF12_216_b_c_a 216 54 3 1 18.00

AB2_cF12_225_a_c 225 13 3 1 18.00

AB2C_cF16_225_a_c_b 225 14 4 1 21.00

AB_cF8_225_a_b 225 19 2 1 15.00

A_cF8_227_a 227 3 2 1 15.00

A2BC4_cF56_227_d_a_e 227 50 14 2 25.50

Summary of the materials used in the test data set
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advantageous as exploiting symmetry can greatly reduce the time
needed to do further calculations for many applications. In
particular, for phonon calculations using the finite difference
approach, the symmetry of the system determines the number of
atomic displacements, and therefore the number of force
calculations, needed to calculate a complete set of force
constants. The package phonopy, a very popular Python package
for calculating phonon spectra with finite differences,60 uses the
default spglib settings to calculate the symmetry of a material,
which would misrepresent all of the tested materials obtained via
a free relaxation. Commensurate phonon calculations can be
achieved by performing symmetry constrained relaxations and
using more robust symmetry tools, such as AFLOW-SYM.52

Systems with local symmetries or distortions
One of the key advantages of defining constraints in this way is
the ability to locally break symmetry to account for point defects.
While the previously discussed benefits of lower relaxation times

and relaxing unstable structures could also be achieved by using
symmetrized forces, that method would not be able to locally
break a structure’s symmetry. However, many of these defects
exhibit some type of short range order, such as Jahn-Teller-type
lattice distortions,61–63 that can be parametrically added on top of
the standard crystal structure. By including these distortions one
can reduce the computational cost of relaxing supercells with
defects, which is important when using a supercell approach to
study point defects. This approach uses density-functional
methods to calculate the total energy of a system in a series of

Table 4. Summary of constraint performance.

PBE PBEsol

AFLOW prototype Space group # of
materials

Average
savings

# Preserved
space
group free

# XTAL match Average
savings

# Preserved
space
group free

# XTAL match

AB_oP8_62_c_c 62 8 10.23 3 8 24.61 4 8

A2B_oP12_62_2c_c 62 35 10.84 19 29 18.32 20 33

A2BC4_tI14_82_bc_a_g 82 35 40.32 29 32 59.98 28 34

A2BC4D_tI16_121_d_a_i_b 121 29 44.01 23 26 58.13 21 26

AB2_hP3_164_a_d 164 25 7.03 10 24 19.68 5 24

AB_hP4_186_b_b 186 37 30.34 23 36 41.68 19 36

AB_cF8_216_c_a 216 37 29.71 28 36 54.83 31 36

ABC_cF12_216_b_c_a 216 54 33.35 44 54 74.03 36 46

AB2_cF12_225_a_c 225 13 57.63 8 9 54.20 7 9

AB2C_cF16_225_a_c_b 225 14 19.77 12 14 80.02 7 12

AB_cF8_225_a_b 225 19 32.50 11 19 51.72 7 19

A_cF8_227_a 227 3 35.12 3 3 47.62 3 3

A2BC4_cF56_227_d_a_e 227 50 67.10 37 47 73.58 37 47

Full data set 359 34.68 69.64% 93.87% 53.80 62.67% 92.76%

Summary of the free and constrained relaxation performance by AFLOW prototype

Fig. 3 Constrained and unconstrained relaxations go to the same
structure. The misfit between the fully relaxed and constrained
structures using AFLOW-XTAL-MATCH. All structures below the
horizontal line are considered matching. The structures are ordered
by space group and then by m.

Fig. 4 Constraints accelerate relaxation trajectories. The total
number of steps needed for the constrained (green) and free
(purple) relaxations. Negative step numbers represent the cases
where the constrained relaxations take longer than the free
relaxation. The bar for orthorhombic N2O is not shown in the
figure, since the free relaxation took 310 steps, and the constrained
one required 296 steps to converge. The inset shows the
constrained (green circles) and free relaxation (purple squares)
trajectory of platinum (IV) sulfide, which is one of the materials
where the constrained relaxation takes more steps than the free
relaxation. The zero of the energy scale is set to 1 meV below the
energy of the relaxed structure (horizontal dashed line).
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supercells of increasing size to study the effects of a defect on the
system. If a scaling law is known for the system, the results of
these calculations can be extrapolated to the experimentally
relevant dilute limit. As the supercell size increases, the time
needed to calculate each step also increases, therefore any
reduction in the number of steps needed can save a significant
amount of computational time.
To illustrate the ability of the new relaxation scheme to study

point defects in materials, we study a polaronic distortion in MgO
previously studied in our department at the Fritz Haber Institute.64

Polarons are quasiparticles that couple point charges with lattice
distortions in a material, reducing its charge-carrier mobility.
Typically, the size of the polaron is controlled by the
electron–phonon interaction, with a stronger interaction leading
to a smaller polaron.64,65 Because of the reduced charge-carrier
mobility, understanding how polarons form and migrate through
a material is vital for a number of applications ranging from
catalysis66–68 to thermoelectricity.65 For rock-salt MgO, the lattice
distortions for an electron hole polaron are Jahn-Teller like, with
the oxygen and magnesium ions being, respectively, attracted and
repelled from the hole. To model this system, we assume the
electron hole is located on a fixed oxygen atom placed in the
center of the supercell. We then allow the other ions to relax from
their initial position along a line going through the center of the
cell, with the magnitude and sign of the motion being controlled
by a single free parameter for each atom. This constraint choice
reduces the number of degrees of freedom to N � 1, where N is
number of atoms in the supercell. While these constraints map all
other interactions onto the main Coulombic distortion, we expect
those interactions to have a minor effect on the final structure.
Moreover, the restrictiveness of the constraints can be decreased
further on subsequent calculations until the desired level of
accuracy is achieved.
Figure 5 illustrates the uncorrected polaron energy for the free

and constrained relaxation trajectories for these supercells.64

Because charge localization is necessary when studying polarons,
the HSE 06 functional is used with a screening parameter of 0.11
Bohr−1 with a fraction of exact exchange, α, of one. For the
unrestricted spin relaxation, the SCF density, forces, total energy,
and eigenvalues were all converged to 10−4 eV/Å, 10−4 eV/Å,

10−5 eV, and 10−2 eV, respectively. Five empty states per atom are
used, and the structures were relaxed until the total forces on the
free parameters were below 10−4 eV/Å. The constrained relaxation
for the distorted geometry converges the 64-atom supercell in
11 steps, which is only one-eighth of the steps needed by the free
relaxation. Significantly better performance is seen for the 216-
atom supercell, which converges in 10 constrained relaxation
steps, 96% less than in the unconstrained case needing 234 steps.
This increase in efficiency is likely a result of the constraints
focusing on the primary Coulombic interaction, reducing the
amount of fine-tuning it needs to do to balance out the weaker
perturbation in the other interionic interactions. Using the
constraints does cause the relaxation to converge to a structure
with slightly higher energy, but this is because the chosen
constraints approximate an isolated polaron and thus do not
account for the artificial interactions with periodic images due to
the finite supercell size. In practice, this effect is rather negligible,
since we find that the obtained polaron energy is 78.4 meV higher
in energy than the free relaxation in the 2 × 2 × 2 supercell and
69.1 meV higher in the 3 × 3 × 3 supercell.

DISCUSSION
In this work, we presented a new scheme for parametrically
relaxing structures in a general, symmetry-reduced space. After
explaining the algorithm, we test it on 359 different materials
across a broad range of material classes. In all cases, the new
method was able to strictly preserve the symmetry of the
materials, and on average reduced the number of steps needed
to converge a material by 50%. We also demonstrated for the
example of bismuth oxide how the constraints can be used to
relax to metastable phases. Finally, we showcased the relaxation
of structures with local symmetry breaking with known distortion
patterns for polarons in MgO.
This new method will have a profound impact on computa-

tional materials discovery. Not only does the decreased cost of
relaxing a material increase the velocity of high-throughput
searches but it also allows for those searches to explore
metastable and dynamically stabilized structures. The method
also has the promise to improve the efficiency of supercell
calculations and to study only physically relevant structures.
Finally, by monitoring the difference between the full forces and
symmetrized forces new stable phases can potentially be
discovered from metastable or unstable polymorphs. Although
we showed that the proposed algorithm is applicable to
accelerate and improve standard solid-state physics calculations,
its flexibility allows it to be applied to a much wider range of
problems, e.g., transition-state searches or interface relaxations.
Similarly, it is easily generalizable to other forms of coordinates
and straightforwardly implementable in any electronic-structure
theory code, and has already been implemented as constraints
with ASE by the authors.

METHODS
Implementation details
In practice, the parametric constraints are implemented in the following
fashion. Let us assume a (3 × 3)-dimensional lattice vector matrix, L, and a
ðN ´ 3Þ-dimensional matrix, RF , for the fractional atomic positions. Given
the atomic forces, FR , on the Cartesian atomic positions and the stress
tensor σ, we can calculate the derivatives of the energy with respect to the
lattice components69

dE
dL

¼ LT�1
V � σ; (5)

where V is the unit-cell volume and obtain the generalized forces on the

Fig. 5 Constraints quickly find distorted geometries. The con-
vergence of the free (squares) and constrained (circles) relaxation of
a polaronic distortion in a 2 × 2 × 2 (purple) and 3 × 3 × 3 (green)
supercell of rock-salt MgO. The zero of the energy scale is set to be 1
meV below the energy of the minimal energy structure. The
horizontal dashed lines correspond to the final energy of
constrained relaxation.
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lattice, FL, after cleaning from the atomic contributions

FL ¼ � dE
dL

�RT
F FR: (6)

Each of these matrices denoted by calligraphic letters, RF , FR , L, and
FL , can be flattened to one-dimensional vectors that we will name RF , FR ,
L, and FL , respectively. In the parameter representation, these quantities
reduce to their small-letter counterparts, the MR-dimensional r and Fr and
the ML-dimensional l and Fl , via

r ¼ J�1
Rf RF � tRfð Þ; (7a)

l ¼ J�1
L L� tLð Þ; (7b)

Fr ¼ J T
R FR; (7c)

Fl ¼ J T
L FL; (7d)

where MR and ML are the number of free parameters in the atomic and
lattice degrees of freedom; J R , J Rf , and J L are the Jacobian matrix for
the transformations, and tRf and tL are the translation vectors for the
respective fractional atomic and lattice degrees of freedom. Here, J R
represents the transformation of the atomic coordinates from Cartesian
space to the reduced space, which is calculated from J Rf by

J R ¼

LT 0 ¼ 0

0 LT ¼ 0

..

. ..
. . .

. ..
.

0 0 ¼ LT

0
BBBB@

1
CCCCA
J Rf : (8)

The translation vectors are used to include any constant shifts, which are
not captured by the Jacobians. Because J R , J Rf , and J L are not square
and therefore not regularly invertible, we use the generalized left inverse70

defined for a matrix A as

A�1;L ¼ ATA
� ��1

AT ; (9)

provided A has full column rank. The transformation back to real space
can then be performed by inverting Eqs (7a)–(7d). The back-transformation
of the forces to the full space is not necessary but can be helpful to obtain
symmetrized Cartesian or Fractional forces, to check for the convergence
of the relaxation.
To facilitate the construction of the Jacobian matrices, we assume a

linear relationship between the full coordinates and the parameters. In
principle, J Rf , and J L can be constructed at each step by using analytical
expressions to describe each real space degree of freedom as a function of
the reduced parameter set; however, by assuming a linear relationship
between the spaces they can be initialized at the start of the calculation
and used at every step. For the atomic positions, this assumption is already
fulfilled by using fractional instead of Cartesian coordinates. If we allow
angles as unit-cell parameters, which is the case for the monoclinic and
triclinic lattice systems, the relations become nonlinear containing for

example expressions like c � cosðβÞ. In these cases, the easiest solution is to
substitute each nonzero lattice vector component with an independent
parameter.
Before the relaxation, the Hessian, H, is initialized in the full coordinate

space, split into atomic and lattice blocks (HR and HL, respectively), and
individually transformed into reduced coordinate space, Hr and Hl via
separate Jacobians, J R and J L

Hr ¼ J T
RHRJ R; (10)

Hl ¼ J T
LHLJ L: (11)

Here,J R is also divided by the average unit vector length, V1=3, soHr and
Hl are on a similar scale. The total Hessian is then recombined resulting in

H ¼ Hr 0

0 Hl

� �
: (12)

Figure 6 illustrates the procedure for relaxing structures with these
constraints. During the relaxation, a full SCF cycle is completed to obtain
the forces and the stress tensor for the current geometry, at each step. If
the convergence criterion is fulfilled, i.e., if the forces are below a given
threshold, then the relaxation stops and returns the current geometry.
Otherwise the lattice vectors as well as the atomic positions and their
respective forces are mapped onto the reduced space using the
transformation described in Eqs. (7a–d). The atomic coordinates and
forces are, respectively, scaled by V1=3 and V�1=3, and then passed on to
the optimizer. In FHI-aims this is usually a BFGS/modified BFGS
optimizer. Once the optimized parameters are obtained, the full
geometry is reconstructed from the parameters and a new relaxation
step can begin.

DATA AVAILABILITY
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CODE AVAILABILITY
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