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ON SUMS OF TORUS KNOTS CONCORDANT

TO ALTERNATING KNOTS

PAOLO ACETO AND ANTONIO ALFIERI

Abstract. We consider the question, asked by Friedl, Livingston and Zentner,
of which sums of torus knots are concordant to alternating knots. After a brief
analysis of the problem in its full generality, we focus on sums of two torus knots.
We describe some effective obstructions based on Heegaard Floer homology.

1. Introduction

In [7] Friedl, Livingston and Zentner studied the knot concordance group C modulo
the subgroup Calt ⊂ C spanned by alternating knots. In particular they ask the
following question.

Question 1.1. Which sums of torus knots are concordant to alternating knots?

According to Murasugi [15] the Alexander polynomial of an alternating knot is
alternating, meaning that its coefficients are non-zero and alternate in sign. Using
this criterion one can see that a (p, q) torus knot is alternating if and only if (p, q) =
(2n+1, 2) for some n ≥ 0. Murasugi’s theorem was re-proved by Ozsváth and Szabó

in [19] where they find that the knot Floer homology ĤFKi,j(K) of an alternating
knotK is supported on the diagonal i−j = σ/2, where σ denotes the knot signature.
As a consequence of this theorem one can further prove that a linear combination
of torus knots is alternating if and only if is a sum of (2n+1, 2) torus knots. Based
on these facts we näıvely formulate the following conjecture.

Conjecture 1.2. A sum of torus knots is concordant to an alternating knot if and
only if it is a sum of (2n+ 1, 2) torus knots.

Since both the Alexander polynomial, and the rank of the knot Floer homology
groups are not concordance invariants, the arguments based on these basic tools can-
not be used to prove Conjecture 1.2. It is therefore necessary to look for concordance
invariants which admit relatively simple descriptions for alternating knots.
In [18] Ozsváth, Stipsicz and Szabó associate to a knot K ⊂ S3 a continuous

piecewise linear function ΥK : [0, 2] → R only depending on the concordance type
of K. Making use of the computation in [19] one can prove [18, Theorem 1.14] that
for an alternating knot K

ΥK(t) =
σ(K)

2
· (1− |t− 1|) . (1)

Based on the restriction imposed by Equation (1), Friedl, Livingston and Zentner
[7] proved that torus knots of the form (n+1, n) with n ≥ 3 are linearly independent
in C/Calt. Their method can be adapted to prove the following.

Proposition 1.3. Let K = m1Tp1,q1# . . .#mkTpk,qk be a sum of torus knots. Sup-
pose that pi > qi, and that there is no qi coefficient appearing with repetitions in the
list of coefficients {q1, . . . , qk}. Then K is concordant to an alternating knot if and
only if it is a multiple of a (2n+ 1, 2) torus knots.

http://arxiv.org/abs/1712.05252v2
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Using the obstruction of Equation (1) one can further see that the following holds.

Proposition 1.4. A sum of positive torus knots is concordant to an alternating
knot if and only if it is a sum of (2n+ 1, 2) torus knots.

Note that Proposition 1.3 and 1.4 hold more generally for algebraic knots.
It follows from Proposition 1.4 that in order to prove Conjecture 1.2 one has

to deal with connected sums where both positive and negative torus knots occur.
Going in this direction, as a by-product of his connected sum formula for knots in
involutive knot Floer homology, Zemke [28] proved that the knot T6,5#−T4,3#−T5,4
is not concordant to a thin knot, and hence to an alternating knot. In [2], using the
Kim-Livingston secondary upsilon invariant [13], Allen proved that a knot of the
form K = Tp+2,p# − Tp+1,p, p ≥ 5 odd, is not concordant to a thin knot. In order
to find further evidence for Conjecture 1.2 we study sums of two torus knots. Here
is our main result.

Theorem 1.5. If a non-alternating sum of two torus knots is concordant to an
alternating knot then it is of the form T6n+2,3#− T6n+1,3 with n ≥ 1.

We do not know if the knots in the family T6n+2,3#−T6n+1,3 are concordant to al-
ternating knots. However, eventhough their topological significance is unclear these
knots may serve as useful test cases for the implementation of further obstructions.
We now summarize the crucial steps leading to Theorem 1.5. A knot K ⊂ S3

whose upsilon function satisfies Equation (1) is said upsilon-alternating. In Section
2 we give a complete characterization of upsilon-alternating sums of two torus knots.

Lemma 1.6. Let K be a non-slice, non-alternating, connected sum of two torus
knots. If K is upsilon-alternating then one of the following holds:

(1) K = T2mr+2,r#− T2mr+1,r with m ≥ 1, and r ≥ 5odd,
(2) K = T6c−1,3#− T6c−2,3 with c ≥ 1,
(3) K = T6c+2,3#− T6c+1,3 with c ≥ 1.

Recall that, since torus knots are linearly independent in the concordance group,
the non-sliceness assumption simply means that the connected sum is algebraically
nontrivial i.e. it is not of the form Tp,q#− Tp,q.
In Section 3 using a connected sum formula for the Kim-Livingston secondary

invariant [1] we prove the following theorem, which deals with the first family in
Lemma 1.6.

Theorem 1.7. For q ≥ 1, and r ≥ 5 odd, K = Tqr+2,r#− Tqr+1,r is not concordant
to a Floer thin knot. In particular, a knot of this form is not concordant to an
alternating knot.

The methods of Proposition 1.7 cannot be used to prove that the knots in the
other families of Lemma 1.6 are not concordant to alternating knots. In fact, we
have the following proposition.

Proposition 1.8. For q ≥ 1 one can find an acyclic, Z-graded, (Z ⊕ Z)-filtered
chain complex A∗ and a filtered chain homotopy equivalence

CFK∞(T3q+2,3)⊕ A∗ ≃ CFK∞(T3q+1,3)⊗ CFK∞(T3,2) .

The same holds if we substitute CFK∞ and the tensor product with their involutive
counterparts CFKI∞ [10, 28].
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Consequently, the knots belonging to family (2) and (3) of Lemma 1.6 (corre-
sponding respectively to the cases when q is odd and even) cannot be distinguished
from a Floer thin knot by means of any upsilon type invariant [1].
Studying the Heegaard Floer correction terms [24] of double branched covers and

using a result by Owens and Strle [17], we prove the following theorem which deals
with the second family in Lemma. 1.6.

Theorem 1.9. Knots of the form K = T6c−1,3# − T6c−2,3 are not concordant to
alternating knots.

Combining Lemma 1.6 with the results of Theorem 1.7 and 1.9 we obtain a proof
of Theorem 1.5.

Acknowledgements. The authors would like to thanks András I. Stipsicz, Francesco Lin,
Brendan Owens, Jennifer Hom, Irving Dai, and Ian Zemke for many useful conversations.
Special thanks are also due to András Nemethi for generously sharing his expertise. The
first authour was partially supported by ERC grant LTDBud and by MPIM. The second
author was partially supported by the NKFIH grant K112735.

2. Uspilon-alternating knots

2.1. Preliminaries on the upsilon invariant. The upsilon invariant, introduced
by Ozsváth, Stipsicz and Szabó [18], associates to a knot K ⊂ S3 a continuous
piecewise linear function ΥK : [0, 2] → R with the following properties:

• (Invariance) ΥK(t) is a knot concordance invariant,
• (Relation with τ) ΥK(t) = −t · τ(K) for t near to zero, where τ denotes the
concordance invariant introduced by Ozsváth and Szabó in [20],

• (Symmetry) ΥK(t) = ΥK(2− t) for all t ∈ [0, 2],
• (Additivity) if K = K1#K2 is a connected sum then

ΥK(t) = ΥK1
(t) + ΥK2

(t) ,

• (Mirror) Υ−K(t) = −ΥK(t) where −K denotes the mirror of K,
• (Slice Genus) if gs denotes the smooth slice genus then

|ΥK(t)| ≤ tgs(K) .

Thus K 7→ ΥK(t) descends to a group homomorphism from the concordance group
to C0

PL[0, 2] the vector space of continuous piecewise linear functions [0, 2] → R. We
will review the definition of ΥK(t) in Section 3 following [14]. In this section we only
need Proposition 2.1 below which provides an algorithm for computing the upsilon
function of torus knots.

Proposition 2.1 (Bodnár & Némethi, Feller & Krcatovich [6, 3]). Denote by Υa,b(t)
the upsilon function of the torus knot Ta,b with a > b, then

Υa,b(t) = Υa−b,b(t) + Υa+1,a(t) .

Consequently, if qi and ri denote respectively the quotients and the remainders oc-
curring in the Euclidean algorithm for a and b (so that r0 = a, r−1 = b, and
ri−1 = qiri + ri+1), we have that

Υa,b(t) =

n∑

i=0

qi ·Υri+1,ri(t) .
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The functions Υi+1,i(t) can be explicitly computed: for t ∈ [2n/i, 2n + 2/i] we
have that Υi+1,i(t) = −n(n+1)− i(i− 1− 2n)t/2. Notice that Υi+1,i(t) has its first
singularity at t = 2/i. It follows that:

• the functions {Υi+1,i(t)}
∞

i=2 are linearly independent in C0
PL[0, 2],

• ifK is a (p, q) torus knot then ΥK(t) has its first singularity at t = 2/min(p, q).

Proof of Proposition 1.3. The upsilon function of a linear combination

K = m1Tp1,q1# . . .#mkTpk,qk

(pi > qi) has its first singularity at t = 2/q, where q = maxi
{
qi | such that mi 6= 0

}
.

Since the the upsilon function of an alternating knot has at most one singularity
at t = 1, ΥK(t) has the form of the upsilon function of an alternating knot only if
q = q1 = 2, meaning that K = m1 · Tp1,2. �

Proof of Proposition 1.4. As a consequence of Proposition 2.1, the upsilon function
of a sum of positive torus knots K can be uniquely written as sum

ΥK(t) =

∞∑

i=2

mi ·Υi+1,i(t)

with finitely many non-zero mi’s, mi ≥ 0, and mi = 0 if and only if Υi+1,i does not
appear in any of the expressions of the upsilon functions of the summands of K in
terms of the basis {Υi+1,i}

∞
i=2 of Proposition 2.1.

Since the Υi+1,i’s are linearly independent and have their first singularity at t =
2/i, we have that ΥK(t) is a multiple of f(t) = (1− |1− t|) if and only if mi = 0 for
i > 2. This forces K to be a sum of (n, 2) torus knots proving the claim. �

2.2. Upsilon-alternating linear combinations of two torus knots. Linear
combinations of two torus knots with the upsilon function of an alternating knot
can be characterized as follows.

Proposition 2.2. Let K be a linear combination of two torus knots. Then K is
upsilon-alternating if and only if (up to mirroring) one of the following holds

(1) K is slice (since torus knots are linearly independent in the concordance
group this can only happen if K is zero as linear combination),

(2) K is alternating, more specifically it is of the form K = aTn,2#bTm,2 for
some a, b ∈ Z and m,n > 0 odd,

(3) K = aTcbr+1,r#− bTcar+1,r with a, b, c > 0, r ≥ 3, and either:
• r is even
• r is odd, and c is even,
• r and c are odd, a and b are even,

(4) K = aTcbr+2,r#− bTcar+2,r with a, b, c > 0, r ≥ 3 odd, and either
• c is even
• c is odd, a and b are even,
• c and a are odd, and r ≡ 1 (mod 4),

(5) K = aTcbr+2,r#− bTcar+1,r with a, b, c > 0, r ≥ 3, and either:
• r is odd, and either c is even, or a and b are even,
• b and c are odd, a is even, and r ≡ 1 (mod 4),
• a, b and c are odd, r ≡ −1 (mod 4), and b(r − 1) = 2a.
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Proof. Let K be a non-zero linear combination of two torus knots. We first char-
acterize those K with ΥK(t) multiple of f(t) = 1 − |1 − t|, then we compute their
signature to prove that in fact the relation Υ(t) = σ/2 · (1 − |1 − t|) holds only in
the cases displayed in the statement.
Suppose that ΥK(t) has at most one singularity at t = 1, meaning that Υ′

K(t) is
discontinuous at most at t = 1. Notice that this is the same as saying that ΥK(t) is
a multiple of Υ3,2(t) = 1− |1− t|.
Note that as a consequence of Proposition 1.4 and Proposition 1.3 we can assume

that K is in the form aTm,n# − bTm′,n for some positive integers a, b ∈ Z, and a
pair of coprime positive integers (m,n) and (m′, n). Assume m > n and m′ > n.
Denote by r = (m,n, r1, . . . , rs, 1), q = (q0, . . . , qs) and r′ = (m′, n, r′1, . . . , r

′
s, 1),

q′ = (q′0, . . . , q
′
s′) the vectors of residues and quotients of the Euclidean algorithm

for the pairs (m,n) and (m′, n) respectively. Set r−1 = m, r′−1 = m′, r0 = r′0 = n
and rs = rs′ = 1 so that

ri−1 = qiri + ri+1 r′j−1 = q′jr
′
j + r′j+1 ,

for i = 0, . . . , s and j = 0, . . . , s′.
According to Proposition 2.1 we have

Υm,n(t) =

s∑

i=0

qi ·Υri+1,ri(t) ; Υm′,n(t) =

s′∑

i=0

qi ·Υr′i+1,r′i
(t)

and consequently

ΥK(t) = a

(
s∑

i=0

qi ·Υri+1,ri(t)

)
− b

(
s′∑

j=0

qi ·Υr′j+1,r′j
(t)

)
. (2)

We now want to solve the functional equation Υm,n(t)−Υm′,n(t) = C ·Υ3,2(t) for
m and m′. We distinguish three cases.
Case I. rs = rs′ > 2. By linear independence of the Υi+1,i’s, from Equation 2 we

can conclude that s = s′, ri = r′i for i = 0, . . . , s and aq = bq′. Assume that s ≥ 1.
By imposing the condition

qsrs + 1 = rs−1 = r′s−1 = q′sr
′
s + 1 = q′srs + 1

one can conclude that qs = q′s, a = b and m = m′, i.e. K = aTm,n − aTm,n is slice. If
s = 0 we can conclude that K is in the form aTnbc+1,n#− bTnac+1,n.
Case II. rs = 2 and rs′ > 2. By inspecting Equation 2 we see that s′ = s − 1,

ri = r′i for i = 0, . . . , s− 1 and bq′ = a · (q0, . . . , qs−1). If s ≥ 2 then we obtain

qs−1rs−1 + 1 = rs−2 = r′s−2 = q′s−1r
′
s−1 + 2 = q′s−1rs−1 + 2

which is a contradiction (mod rs). Thus s = 1 and K is in the form aTnbc+2,n# −
bTnac+1,n with n odd.
Case III. rs = rs′ = 2. Because of Equation 2 we have s = s′, ri = r′i for

i = 0, . . . , s and a · (q0, . . . , qs−1) = b · (q′0, . . . , q
′
s−1). Assume that s ≥ 2. By

imposing the condition

qs−1rs−1 + 2 = rs−2 = r′s−2 = q′s−1r
′
s−1 + 1 = q′s−1rs−1 + 1

one can conclude that qs = q′s, a = b and m = m′, i.e. K = aTm,n#−aTm,n an hence
that K slice. Thus either s = 0 and K = aTm,2#− bTm′,2 (m and m′ odd), or s = 1
and K = aTnbc+2,n#− bTnac+2,n.
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f(m, r) r odd r even

m odd 1
2
· (m+ 1)(r2 − 1) 1

2
· (mr2 + r2 − 4)

m even 1
2
· (mr2 −m) 1

2
·mr2

Table 1

Summarising, we have shown that if K is a non-slice linear combination of two
torus knots with ΥK(t) = C · (1− |1− t|) then either:

• K = aTn,2#bTm,2 with a, b ∈ Z and m,n > 0 odd,
• K = aTcbr+1,r#− bTcar+1,r with a, b, c > 0, and r ≥ 3,
• K = aTcbr+2,r#− bTcar+2,r with a, b, c > 0, and r ≥ 3 odd,
• or K = aTcbr+2,r#− bTcar+1,r with a, b, c > 0, and r ≥ 3 odd.

In order to conclude that the arithmetic conditions in the statement are satisfied
notice that if ΥK(t) = C · (1− |1− t|) then C = −τ(K). Consequently, such a K is
upsilon-alternating if and only if the relation τ(K) = −σ(K)/2 holds.
Therefore we need to evaluate the signature of the knots in the list above and

compare it with the value of their τ invariant. The τ invariant of these knots is
particularly easy to compute: τ is linear, and for the (p, q) torus knot Ozsváth and
Szabó [20] proved that τ = (p−1)(q−1)/2. The signature of torus knots on the other
hand can be inductively computed as follows [8]. Let σ(q, r) denote the signature
of the negative (q, r) torus knot −Tq,r. Extend σ(q, r) to the set of pairs (p, r) ∈ Z2

with r < 0, p > |r|, and gcd(p, q) = 1 setting σ(p, r) = σ(p, p− r). Then

σ(q, r) = (−1)mσ(r, (−1)mk) + f(m, r) , (3)

where m and k respectively denote the quotient and the residue of the Euclidean
division of q and r (q = mr+ k with r > k > 0), and f(m, r) is the function defined
by Table 1. By means of Equation 3 the computation of the signature of the knots
listed above reduces to the one of σ(r, r−1) and σ(r, r−2). An inductive argument
again based on Equation 3 shows that σ(r, r − 1) = (r − 1)2/2 when r ≥ 3 is odd,
and σ(r, r − 1) = (r2 − 4)/2 otherwise. Furthermore, σ(r, r − 2) = (r − 1)2/2− 2 if
r ≡ −1 (mod 4), and σ(r, r− 2) = (r− 1)2/2 if otherwise r ≡ 1 (mod 4). With this
said the claimed arithmetic conditions follows immediately. �

As an immediate corollary of Proposition 2.2 one gets Lemma 1.6.

3. Obstructions from the Kim-Livingston secondary invariant

In [23] Ozsváth and Szabó introduced a package of three-manifolds invariants
called Heegaard Floer homology. This circle of ideas was then used by the same
authors [22], and independently by Rasmussen [26] to introduce a knot invariant
called knot Floer homology. For a concise introduction to these topics see [11].
Recall that knot Floer homology associates to a knot K ⊂ S3 a finitely-generated,

Z-graded, (Z⊕Z)-filtered chain complex CFK∞(K) = (
⊕

x∈B Z2[U, U
−1]·x, ∂) with

the following properties

• ∂ is Z2[U, U
−1]-linear and given a basis element x ∈ B, ∂x =

∑
y
nx,yU

mx,y ·y
for suitable coefficients nx,y ∈ Z2, and non-negative exponents mx,y ≥ 0,

• the multiplication by U drops the homological (Maslov) grading M by two,
and the filtration levels (denoted by A and j) by one,
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• H∗(CFK
∞(K)) = Z2[U, U

−1] graded so that degU = −2.

In [22] Ozsváth and Szabó show that the filtered chain homotopy type of CFK∞(K)
only depends on the isotopy class of K. The knot Floer complex CFK∞(K) of a
knot K ⊂ S3 can be pictorially described as follows:

(1) picture each Z2-generator U
m ·x of CFK∞(K) on the planar lattice Z×Z ⊂

R2 in position (A(x)−m,−m) ∈ Z× Z,
(2) label each Z2-generator U

m ·x of CFK∞(K) with its Maslov gradingM(x)−
2m ∈ Z,

(3) connect two Z2-generators U
n · x and Um · y with a directed arrow if in the

differential of Un · x the coefficient of Um · y is non-zero.

The Ozsváth-Stipsicz-Szabó upsilon invariant is defined starting form this picture as
follows. For t ∈ [0, 2] and r ∈ R let Ft,r be the sub-complex of CFK∞(K) spanned
by the generators contained in the half-plane defined by the equation t/2A + (1 −
t/2)j ≤ r. Then ΥK(t) = −2 · γK(t) where γK(t) is the minimum r for which the
inclusion Ft,r →֒ CFK∞(K) induces a surjective map on H0.
As shown by Kim and Livingston in [13], other concordance invariants can be ob-

tained by looking at which filtration levels certain expected homologies are realised.

This leads to a two variable concordance invariant Υ
(2)
K,t(s). Given t ∈ [0, 2] let Z+

and Z− denote the set of cycles with Maslov grading zero generatingH0(CFK
∞(K))

and contained in Ft+δ,γK(t+δ) and Ft−δ,γK(t−δ) respectively. Since H0(CFK
∞(K)) ≃

Z2 has only one non-zero element, for given ξ+ ∈ Z+ and ξ− ∈ Z− there exists a
chain with Maslov grading one β ∈ CFK∞(K) such that ∂β = ξ+ − ξ−. We denote
by γK,t(s) the minimum r for which Fs,r contains a 1-chain realising a homology

between a cycle in Z+ and one in Z−. Set Υ
(2)
K,t(s) = −2 · (γK,t(s)− γK(t)). Notice

that ΥK,t(s) is not defined if Z+ ∩ Z− 6= ∅, in such a case we set ΥK,t(s) = −∞.

Proof of Theorem 1.7. This is an argument along the line of [1, Proposition 1.2].
More precisely, suppose by contradiction that for some q ≥ 1, r ≥ 5 odd, there exists
an alternating knot J for which the torus knot Tqr+2,r is concordant to Tqr+1,r#J .
Then,

Υ
(2)
Tqr+2,r,4/r

(
4

r

)
= Υ

(2)
Tqr+1,r#J,4/r

(
4

r

)
= Υ

(2)
Tqr+1,r ,4/r

(
4

r

)
,

where the first equality is because Υ(2) is a concordance invariant, and the second one
is consequence of [1, Theorem 6.2]. Notice that [1, Theorem 6.2] can be applied at
t = 4/r < 1 (here r > 5 by assumption) since the upsilon function of an alternating
knot can have a singularity only at t = 1. We now show that

Υ
(2)
Tqr+2,r,4/r

(
4

r

)
6= Υ

(2)
Tqr+1,r,4/r

(
4

r

)
.

Given positive integers a1, . . . , a2k we construct a finitely generated Z-graded,
Z⊕ Z-filtered, chain complex C∗(a1, . . . , a2k) as follows. Set

C∗(a1, . . . , a2k) = Z2{x0, . . . , xk, y0, . . . , yk−1} ⊗ Z2[U, U
−1] ,

and consider the differential
{
∂xi = 0 i = 0, . . . , k

∂yi = xi + xi+1 i = 0, . . . , k − 1
.
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. . .•◦◦•◦••◦
76543210

Figure 1. The elements of the semigroup generated by 5 and 3 correspond
to the black dots. The staircase of the torus knot T5,3 can be computed
from the coloring above by counting the gaps between blue (black dotted)
and red (white dotted) numbers. In this case r1 = 1, r2 = 1, r3 = 2,
b1 = 2, b2 = 1, b3 = 1, and CFK∞(T5,3) = S∗(1, 2, 1, 1, 2, 1).

Define 



A(xi) = ni

j(xi) = mi

M(xi) = 0

and





A(yi) = ni

j(yi) = mi+1

M(yi) = 1

where {
ni = g −

∑i
j=0 a2j

n0 = 0

{
mi =

∑i
j=1 a2j−1

m0 = 0
,

and coherently extend these gradings to Z2{x0, . . . , xk, y0, . . . , yk−1}⊗Z2[U, U
−1] so

that the multiplication by U drops the Maslov gradingM by two, and the Alexander
filtration A as well as the algebraic filtration j by one. The resulting complex is the
staircase complex of parameters a1, . . . , a2g denoted by C∗(a1, . . . , a2g).
The knot Floer complex of a (p, q) torus knot has a representative of the form

C∗(a1, . . . , a2k). Let g = (p− 1)(q − 1)/2 denotes the four-dimensional genus of the
(p, q) torus knot. The semigroup generated by p and q, Sp,q = {np +mq | n,m ∈
Z≥0}, determines a colouring of {0, . . . , 2g − 1}: color by red the numbers in Sp,q ∩
{0, . . . , 2g − 1} and by blue the one in its complement (Z \ Sp,q) ∩ {0, . . . , 2g − 1}.
By counting the gaps between blue and red numbers as suggested by Figure 1 we
get two sequences of numbers r1, . . . rk and b1, . . . , bk. In [25] Petres shows that
CFK∞(Tp,q) ≃ C∗(r1, b1, . . . , rk, bk).
The semigroup of the torus knot Tqr+1,r is given by

Sqr+1,r =
r−2⋃

j=0

{
n ≡ 0 mod r, jpr + 1 ≤ n ≤ (r − 1)pr

}
∪ Z≥(r−1)pr .

Thus CFK∞(Tqr+1,r) = C∗(1, r − 1, . . . 1, r − 1, 2, r − 2, . . . , 2, r − 2, . . . ) where the
pair (i, r − i) appears q times. Notice that at t = 4/r we have Z+ = {xq} and
Z− = {x2q}. A chain with Maslov grading one realising a homology between xq and

x2q is given by β =
∑2q−1

i=q yi. Thus

γTqr+1,r,
4

r

(
4

r

)
= min

ξ

{
2

r
· A(β + ∂ξ) +

r − 2

r
· j(β + ∂ξ)

}

=
2

r
·A(β) +

r − 2

r
· j(β)

= q(r − 2) + 2

(
r − 2

r

)
,

where the minimum in the first line is taken over all ξ ∈ CFK∞(Tqr+1,r) with
Maslov grading two. Here the second equality is due to the fact that the differential
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of CFK∞(Tqr+1,r) vanishes on chains with even Maslov grading. The third one is a
direct computation. Summing up we obtain

Υ
(2)

Tqr+1,r,
4

r

(
4

r

)
= −2

(
γTqr+1,r,

4

r

(
4

r

)
− γTqr+1,r

(
4

r

))

= −2

(
γTqr+1,r,

4

r

(
4

r

)
+

1

2
Υqr+1,r

(
4

r

))

= −2

(
q(r − 2) + 2

(
r − 2

r

)
− q(r − 2)

)
,

which leads to

Υ
(2)

Tqr+1,r,
4

r

(
4

r

)
= −4 ·

r − 2

r
.

For the torus knot Tqr+2,r we have Sqr+2,r = S1 ∪ S2 ∪ Z≥(r−1)(pr+1), where

S1 =

(r−1)/2⋃

j=0

{
n ≡ 2j mod r, jpr + 1 ≤ n ≤ (r − 1)(pr + 1)

}

and

S2 =

(r−1)/2⋃

j=1

{
n ≡ 2j − 1 mod r, (r − 1− 2 + j)(pr + 1)/2 ≤ n ≤ (r − 1)(pr + 1)

}
.

Thus CFK∞(Tqr+2,r) = C∗(1, r − 1, . . . 1, r − 1, 1, 1, 1, r − 3, . . . , 1, 1, 1, r − 3, . . . )
where the pattern (1, . . . , 1, r − (2j + 1)) with 2j + 1 many 1’s appears q times. In
this case at t = 4/r we have Z+ = {xq} and Z− = {x3q}. A chain with Maslov

grading one realising a homology between xq and x3q is given by β =
∑3q−1

i=q yi.

Following the same argument we did for CFK∞(Tqr+1,r), we conclude that

γTqr+2,r,
4

r

(
4

r

)
=

2

r
A(β) +

r − 2

r
j(β) = q(r − 2) +

r − 1

r
+

(
2−

6

r

)

Thus

Υ
(2)

Tqr+2,r,
4

r

(
4

r

)
= −2

(
γTqr+2,r,

4

r

(
4

r

)
− γTqr+2,r

(
4

r

))

= −2

(
γTqr+2,r,

4

r

(
4

r

)
+

1

2
Υqr+2,r

(
4

r

))

= −2

(
2−

6

r

)
,

which leads to

Υ
(2)

Tqr+2,r,
4

r

(
4

r

)
= −4 ·

r − 3

r
.

Hence, Υ
(2)
Tqr+2,r,4/r

(
4
r

)
> Υ

(2)
Tqr+1,r ,4/r

(
4
r

)
proving the claim. �

The strategy used in the proof of Theorem 1.7 cannot be adapted to deal with the
other families of Lemma 1.6. To see why this is the case recall the following result.
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Theorem 3.1 (Hom [11]). If two knots K1 and K2 are concordant then there exists
Z-graded, (Z⊕ Z)-filtered, acyclic chain complexes A1 and A2 such that

CFK∞(K1)⊕A1 ≃ CFK∞(K2)⊕A2 , (4)

where ≃ denotes filtered chain homotopy equivalence. �

In [10] Hendricks and Manolescu show that the knot Floer complex CFK∞(K)
naturally comes with an order four automorphism ιK squaring to the Sarkar map
[27]. In the same paper they prove that the filtered chain homotopy type of the
pair CFKI∞(K) = (CFK∞(K), ιK) is an invariant of K. In fact, in [9] Hom and
Hendricks prove that for CFKI∞ an analogue of Theorem 3.1 holds.

Theorem 3.2 (Hendricks & Hom [9]). If two knots K1 and K2 are concordant
then there exists Z-graded, (Z ⊕ Z)-filtered, acyclic chain complexes A1 and A2

together with involutions ιA1
and ιA2

such that (CFK∞(K1), ιK1
) ⊕ (A1, ιA1

) ≃
(CFK∞(K2), ιK2

)⊕ (A2, ιA2
). �

We now prove that Equation (4) holds in the remaining cases of Lemma 1.6.

Proof of Proposition 1.8. With the same notation as in the proof of Theorem 1.7 we
have that CFK∞(T3k+1,3) = C∗(1, 2, . . . , 1, 2, 2, 1, . . . , 2, 1), CFK

∞(T3,2) = C∗(1, 1),
CFK∞(T3k+2,3) = C∗(1, 2, . . . , 1, 2, 1, 1, 2, 1, . . . , 2, 1). Denote by z0, . . . , z2q the gen-
erators of the staircase chain complex of CFK∞(T3k+1,3) so that M(z2i) = 0,
M(z2i+1) = 1, ∂z2i = 0, and ∂z2i+1 = z2i + z2i+2. Similarly, denote by a, b and
c the generators of CFK∞(T3,2) so that M(a) =M(b) = 0, M(c) = 1, ∂a = ∂b = 0,
and ∂c = a + b. Set

z′i =





a⊗ zi if i = 0, . . . , q

c⊗ zq if i = q + 1

b⊗ zi−2 if i = q + 2, . . . , 2q + 2





αi = c⊗ z2i+1

βi = a⊗ z2i+1 + c⊗ z2i
γi = b⊗ z2i+1 + c⊗ z2i+2

ǫi = b⊗ z2i + a⊗ z2i+2

.

and notice that

• CFK∞(T3q+1,3) = SpanZ2[U,U−1]〈z
′
0, . . . , z

′
2q+2〉 ⊕A∗ where

A∗ =

q⊕

i=1

SpanZ2[U,U−1]〈αi, βi, γi, ǫi〉 ,

• ∂αi = βi + γi, ∂βi = ∂γi = ǫi, ∂ǫi = 0, and consequently A∗ is acyclic (being
sum of acyclic complexes),

• M(z2i) = 0, M(z2i+1) = 1, ∂z2i = 0, and ∂z2i+1 = z2i + z2i+2 which means
that SpanZ2[U,U−1]〈z

′
0, . . . , z

′
2q+2〉 is a staircase complex. In fact, a careful

check of the Alexander and the algebraic filtrations shows that

CFK∞(T3q+2,3) = SpanZ2[U,U−1]〈z
′
0, . . . , z

′
2q+2〉 .

Summing up we get that CFK∞(T3q+1,3) ⊗ CFK∞(T3,2) = CFK∞(T3q+2,3) ⊕ A∗

with A∗ acyclic. Notice that this can also be seen as a consequence of [12, Lemma
3.18]. To prove the corresponding statement for CFKI∞ we need to check that

(1) the involution of CFKI∞(T3q+1,3)⊗̃CFKI
∞(T3,2) restricts to ιT3q+2,3

on the
sub complex spanned by z′0, . . . , z

′
2q+2,

(2) ιT3q+1,3
× ιT3,2

leaves A∗ invariant.
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Here CFKI∞(T3q+1,3)⊗̃CFKI
∞(T3,2) = (CFK∞(T3q+1,3)⊗ CFK∞(T3,2), ιT3q+1,3

×
ιT3,2

) denotes the product introduced by Zemke in [28]. We will adopt Zemke’s
notation for the rest of this proof. According to [10, Section 7] the knot involution
of a (p, q) torus knot acts on the associated staircase complex as a reflection about
the x = y axis. Thus,

ιT3q+1,3
× ιT3,2

(z′i) = ιT3q+1,3
⊗ ιT3,2

z′i + U−1(φT3q+1,3
⊗ ψT3,2

) ◦ (ιT3q+1,3
⊗ ιT3,2

)z′i

= b⊗ z2q−i + U−1(φT3q+1,3
⊗ ψT3,2

)b⊗ z2q+2−i

= z′2q+2−i

where the third identity is due to the fact that φT3,2
vanishes on b. Similarily

(using the fact that φT3,2
vanish on a and ψT3q+1,3

does so on zq) one proves that
ιT3q+1,3

× ιT3,2
(z′q+1) = z′q+1, and ιT3q+1,3

× ιT3,2
(z′i) = z′i−2q−2 for i = q + 2, . . . , 2q + 2

leading to a proof of (1). The proof of (2) is an analogous computation. �

4. Obstructions from the Owens-Strle theorem

In this section we deal with the second family of Lemma 1.6. We start by dis-
cussing an example in full detail, then we proceed with the necessary computations
for the whole family. The main goal of this section is to prove Theorem 1.9.

4.1. A first example. It follows from Proposition 2.2 that the knot K = T5,3#−
T4,3 is upsilon-alternating. In order to prove that T5,3# − T4,3 is not concordant to
an alternating knot we will make use of the following result by Owens and Strle [17].

Theorem 4.1 (Owens & Strle). Let Y be a rational homology sphere with |H1(Y ;Z)| =
δ. If Y bounds a negative-definite four-manifold X and either δ is square-free or
there is no torsion in H1(X ;Z) then

max
s∈Spinc(Y )

4d(Y, s) ≥

{
1− 1/δ if δ is odd,

1 if δ is even
.

The inequality is strict unless the intersection form of X is (n − 1)〈−1〉 ⊕ 〈δ〉.
Moreover, the two sides of the inequality are congruent modulo 4/δ. �

More precisely, we will need the following lemma.

Lemma 4.2. Let K ⊂ S3 be a knot with δ = | det(K)| square-free. Set

dmax(K) = max
s∈Spinc(Σ2(K))

4d(Σ2(K), s) , dmin(K) = min
s∈Spinc(Σ2(K))

4d(Σ2(K), s) .

If K is concordant to an alternating knot then

dmax(K) ≥ 1− 1/δ and 1/δ − 1 ≥ dmin(K) .

Proof. Suppose that K is concordant to an alternating knot J . Let W be the
double cover of S3 × I branched along a concordance between K and J . It is well
known that W is a rational homology cobordism between Σ2(K) and Σ2(J). By
taking the double cover of the four-ball branched along pushed-in copies of the black
and the white surface of an alternating diagram of J we obtain simply connected
definite four-manifolds bounding Σ2(J). By gluing these simply connected definite
pieces to W along Σ2(J) we obtain a positive-definite filling X+ and a negative-
definite filling X− of Σ2(K). Since δ = | det(K)| = |H1(Σ2(K);Z)| is a square-free
odd number, we can apply Theorem 4.1 to the pairs (X, Y ) = (X−,Σ2(K)) and
(X, Y ) = (−X+,−Σ2(K)), and obtain the claimed inequalities. �
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Proposition 4.3. The knot T5,3#− T4,3 is not concordant to an alternating knot.

Proof. Set K = T5,3#− T4,3. Since 3 = det(K) = |H1(Σ2(K);Z)| is square-free, as
a consequence of Lemma 4.2 we have that

dmax(K) ≥ 2/3 and − 2/3 ≥ dmin(K) (5)

We conclude by showing that one of these inequalities does not hold. Notice that
Σ2(K) = Σ(2, 3, 5)♯ − Σ(2, 3, 4) has three Spinc structures. These are obtained
by taking the sum of the spin structure of the Poincaré sphere Σ(2, 3, 5) with the
three Spinc structures {s, t, t} of −Σ(2, 3, 4). The Brieskorn spheres Σ(2, 3, 5) and
Σ(2, 3, 4) are respectively the boundaries of the negative-definite E8 and E6 plumb-
ings. The d-invariants of these graph manifolds where computed in [21], we have

d(Σ(2, 3, 5)) = 2, d(Σ(2, 3, 4), s) =
3

2
, and d(Σ(2, 3, 4), t) = d(Σ(2, 3, 4), t) =

1

6
.

Thus, the d-invariants of Σ2(K) are {11/6, 5/3, 5/3} and we can conclude that
dmax(K) = 44/6 and dmin(K) = 20/3. This contradicts the second inequality in
(5) and proves the claim. �

4.2. The family T6c−1,3# − T6c−2,3. In this subsection we prove Proposition 1.9.
We do this by generalising the argument used for T5,3# − T4,3 to the knots Kc =
T6c−1,3# − T6c−2,3. The double branched cover of each Kc is a difference of two
Brieskorn spheres, namely Σ2(Kc) = Σ(2, 3, 6c−1)♯−Σ(2, 3, 6c−2). Since |det(Kc)| =
3 the branched double covers Σ2(Kc) have three Spin

c structures (one Spin and two
conjugated Spinc structures). We will prove that the associated correction terms
are {11/6, 5/3, 5/3} independently from c. Then the same argument given in the
previous section will lead to a contradiction with the inequalities of Lemma 4.2.

Lemma 4.4. For c ≥ 1 we have d(Σ(2, 3, 6c− 1)) = 2.

Proof. This is well known. One way to carry out the computation is via the so called
knot surgery formula. Note that Σ(2, 3, 6c−1) can be obtained as 1/c-surgery along
the trefoil knot. As explained in [16], these correction terms can be computed via the
formula d(S3

1/c(T3,2)) = 2V0(T3,2), where V0 is the first in a sequence of concordance

invariants {Vi}i≥0 first introduced by Rasmussen in [26]. For torus knots (and more
generally for algebraic knots) these invariants can be computed combinatorially from
the gap function of the semigroup [4]. For the trefoil knot one has V0 = 1 and Vi = 0
for i ≥ 1. �

In order to compute the correction terms of the Brieskorn spheres Σ(2, 3, 6c− 2)
we will make use of the algorithm introduced by Ozsváth and Szabó in [21] which
we briefly recall. The manifolds Σ(2, 3, 6c−2) can be described as the boundary of a
negative-definite plumbing of spheres XΓ with associated star-shaped, three-legged
graph Γ. These particular graphs have at most one bad vertex in the sense of [21,
Definition 1.1]. The correction terms of such a plumbed three-manifold YΓ = ∂XΓ

can be computed according to the following formula [21, Corollary 1.5]

d(YΓ, s) = max
K2 + |Γ|

4
, (6)

where the maximum is taken over all characteristic vectors K ∈ H2(XΓ,Z) repre-
senting a Spinc structure restricting to s. The algorithm given in [21] describes how
to find a characteristic vector K which maximises the left hand-side of Equation 6.
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Let Γ be a negative-definite plumbing graph with at most one bad vertex. Recall
that K ∈ H2(XΓ,Z) = Hom(H2(XΓ,Z),Z) is characteristic for the intersection
pairing QΓ of XΓ if

〈K,α〉 ≡ α2 mod 2

for every α ∈ H2(XΓ;Z) =
⊕

v∈Γ Z · v. We denote by Char(QΓ) the set of charac-
teristic vectors of QΓ. We say that K0 ∈ Char(QΓ) is admissible if

m(v) + 2 ≤ 〈K0, v〉 ≤ −m(v)

for every v ∈ Γ, where m(v) denotes the weight of the vertex v. Given an admissible
vector K0 one can inductively construct a sequence (K0, K1, . . . , Kn) in which a
term Ki is obtained from its predecessor Ki−1 by summing twice the Poincarè dual
PD(v) of a vertex v of Γ such that 〈K, v〉 = −m(v). We will refer to the operation
K 7→ K + 2PD(v) as a flip move at the vertex v. A sequence (K0, . . . , Kn) is said
to terminate in a full-path if one of the following holds

(1) m(v) ≤ 〈Kn, v〉 ≤ −m(v)− 2 for every vertex v,
(2) 〈Kn, v〉 > −m(v) for some vertex v.

If the former holds we say that the full-path is good, otherwise we say that it is bad.
It follows from [21, Proposition 3.2 ] that the maximum in Equation 6 is achieved by
an admissible characteristic vector representing the Spinc structure s and initiating
a good full-path. In the following lemma we collect some useful remarks that will
be extensively used in the proof of Lemma 4.6. These remarks already appeared in
the literature, see for example [5].

Lemma 4.5. Let Γ be a negative-definite plumbing graph.

(1) If K0 initiates a bad full-path then any other full-path starting with K0 is
bad.

(2) If Γ′ ⊂ Γ is a connected subgraph and K ′
0 ∈ Char(XΓ′) is a characteristic

vector starting a bad full-path in Γ′ then any characteristic vector K0 ∈
Char(XΓ) restricting to K ′

0 on H2(XΓ′ ;Z) starts a bad full-path on Γ.
(3) Suppose that Γ′ ⊂ Γ is a connected subgraph whose vertices are all −2-

weighted. Then for any good full-path (K0, . . . , Kn) we have that 〈K, v〉 = 2
for at most one vertex v ∈ Γ′.

Lemma 4.6. For c ≥ 1 the Brieskorn sphere Σ(2, 3, 6c− 2) has one spin structure
s and two conjugated Spinc structures t and t. We have

d(Σ(2, 3, 6c− 2), s) =
3

2
, and d(Σ(2, 3, 6c− 2), t) = d(Σ(2, 3, 6c− 2), t) =

1

6
.

Proof. Let us assume that c ≥ 2. We start by describing in full detail the case c = 2.
The Brieskorn sphere Σ(2, 3, 10) can be described via the following negative-definite
plumbing graph

•••

• •

• •

−2−2−3

−2

−2

−2

−2▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

qqqqqqqqqqqqqqq
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We represent characteristic vectors by recording their value on the vertices of the
plumbing graph. For example the expression




0 0
1 0 0

0 0




denotes the carachteristic vector which assumes the value 1 at the −3-weighted ver-
tex and vanishes on all the other vertices. According to Lemma 4.5 if a characteristic
vector starts a good full-path then its value on the −3-weighted vertex is in {±1, 3}
and it is non-vanishing on at most one more vertex (in this case the corresponding
value is necessarily equal to 2). Therefore, we may list these vectors as follows




0 0

α 0 0
0 0



 ,




0 0

α 2 0
0 0



 ,




0 0

α 0 2
0 0



 ,




2 0

α 0 0
0 0



 ,




0 2

α 0 0
0 0



 ,




0 0

α 0 0
2 0



 ,




0 0

α 0 0
0 2



 ,

where α ∈ {±1, 3}. The only characteristic vectors which start good full-paths are




0 0
±1 0 0

0 0


 ,




0 2
−1 0 0

0 0


 ,




0 0
−1 0 0

0 2


 .
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The first two vectors belong to a good full-path of length one. The third vector
belongs to the following good full-path:




0 2

−1 0 0
0 0



 ∼




2 −2

−1 0 0
0 0



 ∼




−2 0

−1 0 2

0 0



 ∼




0 0

−1 2 −2
2 0



 ∼




0 0

1 −2 0
2 0



 ∼




0 0

1 −2 2

−2 2



 ∼




2 0

1 0 −2
0 2



 ∼




2 0

1 0 −2
2 −2



 ∼




−2 2

1 0 0
2 −2



 ∼




−2 2

1 0 2

−2 0



 ∼




0 2

1 2 −2
0 0



 ∼




0 2

3 −2 0
0 0



 ∼




2 −2

3 −2 0
0 0



 ∼




−2 0

3 −2 2

0 0



 ∼




0 0

3 0 −2
2 0



 ∼




0 0

3 0 0
−2 2



 ∼




0 0

3 0 0
0 −2



 ∼




0 0

−3 2 0
0 −2



 ∼




0 0

−1 −2 2

0 −2



 ∼




2 0

−1 0 −2
2 −2



 ∼




−2 2

−1 0 0
2 −2



 ∼




−2 2

−1 0 2

−2 0



 ∼




0 2

−1 2 −2
0 0



 ∼




0 2

1 −2 0
0 0



 ∼




2 −2

1 −2 0
0 0



 ∼




−2 0

1 −2 2

0 0



 ∼




0 0

1 0 −2
2 0



 ∼




0 0

1 0 0
−2 2



 ∼




0 0

1 0 0
0 −2



 .

In the full-path above the boldfaced coefficients are the ones associated with the
vertices on which the flip move is performed. Because of the obvious symmetry of
the plumbing graph we also have a good full-path




0 0
−1 0 0

0 2


 ∼ · · · ∼




0 −2
1 0 0

0 0


 .

Via a straightforward but tedious computation one can find bad full-paths for all
the other possible charcteristic vectors. Here we illustrate a specific example which
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will be useful later on in this proof.



0 0

3 0 0
0 0



 ∼




0 0

−3 2 0
0 0



 ∼




0 0

−1 −2 2

0 0



 ∼




2 0

−1 0 −2
2 0



 ∼




−2 2

−1 0 2

−2 2



 ∼




0 2

−1 2 −2
0 2



 ∼




2 −2

−1 2 −2
2 −2



 ∼




−2 0

−1 2 2

−2 0



 ∼




0 0

−1 4 −2
0 0



 .

When c ≥ 3 the Brieskorn sphere Σ(2, 3, 6c−2) can be described via the following
negative-definite plumbing graph

••••. . .•

• •

• •

−2−2−3−2−2

−2

−2

−2

−2▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

qqqqqqqqqqqqqqq

where the length of the leftmost −2-chain is c − 2. It follows from our previous
argument (when c = 2) and from the second statement in Lemma 4.5 that if a
characteristic vector starts a good full-path then it belongs to the following list




0 0

x1 . . . xc−2 ±1 0 0
0 0



 ,




0 2

x1 . . . xc−2 −1 0 0
0 0



 ,




0 0
x1 . . . xc−2 −1 0 0

0 2


 ,

where at most one of the xi’s is non-zero (and if so it is necessarily equal to 2).
A characteristic vector of the form

K0 =




0 0
x1 . . . xc−2 1 0 0

0 0




does not start a good full-path if one of the xi’s is non-zero. To see this suppose that
we have xi = 2 for some i. Then, we can write down the following bad full-path

K0 ∼ · · · ∼




0 0
. . . −2 2 1 0 0

0 0


 ∼




0 0
. . . 0 −2 3 0 0

0 0


 ∼

∼




0 0
. . . 0 0 −3 2 0

0 0


 ∼ · · · ∼




0 0
. . . 0 0 −1 4 −2

0 0


 .
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where the first omitted sequence of moves is the obvious sequence of flips which
starts with a flip move at xi = 2, while the second one is the one suggested by the
full-path




0 0
3 0 0

0 0


 ∼ · · · ∼




0 0
−1 4 −2

0 0




described above.
Similarly, the characteristic vector




0 2
x1 . . . xc−2 −1 0 0

0 0




does not start a good full-path if one of the xi’s is non-zero. In fact, if xi = 2 for
some i then the (good) full-path




0 2

−1 0 0
0 0



 ∼ · · · ∼




0 0

1 0 0
0 −2





induces a sequence of flip moves



0 2
x1 . . . xc−2 −1 0 0

0 0


 ∼ · · · ∼




0 0
x1 . . . xc−2 + 2 1 0 0

0 −2




leading to a bad full-path



0 2
x1 . . . xc−2 −1 0 0

0 0


 ∼ · · · ∼




0 0
. . . 4 . . . 3 0 0

0 −2


 .

Symmetrically one may find a bad full-path



0 0
x1 . . . xc−2 −1 0 0

0 2


 ∼ · · · ∼




0 −2
. . . 4 . . . 3 0 0

0 0


 .

when at least one of the xi’s is equal to 2.
Summarising we found that only a characteristic vector of the form




0 0

0 . . . 0 −1 0 0
0 2



 ,




0 2

0 . . . 0 −1 0 0
0 0



 ,




0 0

0 . . . 0 1 0 0
0 0



 ,




0 0

x1 . . . xc−1 1 0 0
0 0



 ,

with at most one of the xi’s is non-zero and equal to 2, can start a good full path.
In fact one can easily check that all of them do. By means of Equation 6 one can
now conclude the argument (we omit the easy but tedious computations). �
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[22] P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Advances in Mathemat-

ics, 8 (2004), pp. 58–116.
[23] , Holomorphic disks and topological invariants for closed three manifolds, Annals of Math-

ematics, 159 (2004), pp. 1027–1158.
[24] , Holomorphic triangles and invariants for smooth four-manifolds, Advances in Mathe-

matics, 202 (2006), pp. 326–400.
[25] T. Peters, A concordance invariant from the Floer homology of ±1 surgeries. arXiv:

1003.3038, 2010.
[26] J. Rasmussen, Floer homology and knot complements. arXiv: math/0306378, 2003.
[27] S. Sarkar, Moving basepoints and the induced automorphisms of link Floer homology, Algebr.

Geom. Topol., 15 (2015), pp. 2479–2515.
[28] I. Zemke, Connected sums and involutive knot Floer homology. arXiv:1705.01117, 2017.



ON SUMS OF TORUS KNOTS CONCORDANT TO ALTERNATING KNOTS 19

University of Oxford - Mathematical Institute

E-mail address : Paolo.Aceto@maths.ox.ac.uk

Central European University, Budapest, Hungary

E-mail address : alfieri antonio@phd.ceu.edu


	1. Introduction
	Acknowledgements

	2. Uspilon-alternating knots
	2.1. Preliminaries on the upsilon invariant
	2.2. Upsilon-alternating linear combinations of two torus knots

	3. Obstructions from the Kim-Livingston secondary invariant
	4. Obstructions from the Owens-Strle theorem
	4.1. A first example
	4.2. The family T6c-1,3# -T6c-2,3

	References

