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1. Introduction

There are a couple of connections established among invariants in dynamical

systems, group rings, and L2-invariants. These connections are obtained via a

type of dynamical system called algebraic actions. Given a discrete group �, each

Z�-module M can be treated as an action of � on the discrete abelian group M by

group automorphisms. The Pontryagin dual bM ofM naturally inherits an action of

� by continuous automorphisms from the module structure of M. Conversely, by

Pontryagin duality, each action of � on a compact Hausdorff abelian group arise

this way and thus we call such a dynamical system an algebraic action [37].

A surprising fact is that one can recover certain algebraic information about

M by taking advantage of purely dynamical information about � Õ bM. However,

the dynamical information itself does not use the algebraic structure of bM. For

example, Li and Thom showed that, in the setting of amenable group actions,

the entropy of � Õ bM coincides with the L2-torsion of M (see [30]). One

ingredient of establishing this connection is Peters’ algebraic characterization of

entropy [34]. This correspondence has interesting applications to the vanishing

results on L2-torsion and Euler characteristic [30, 7]. In the same spirit, Li and

the author showed that the mean topological dimension of � Õ bM coincides with

the von Neumann–Lück rank of M (see [27]). Establishing this correspondence

relies on the study of the mean rank as an algebraic invariant of Z�-modules

and Lück’s result on dimension-flatness for amenable groups [33, Theorem 6.73].
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Based on this connection, the mean dimension of algebraic actions for amenable

groups is well understood [27].

Mean topological dimension is a newly-introduced dynamical invariant by

Gromov [14], systematically studied by Lindenstrauss and Weiss [31], and remains

to be further explored [8]. As a dynamical analogue of the covering dimension, it

is closely related to the topological entropy, and takes a crucial role in embedding

problem of dynamical systems [15, 16, 17, 18, 19, 20, 31].

On the other hand, using Lück’s extended von Neumann dimension for any

module over the group von Neumann algebra L� of a discrete group � (see [33,

Chapter 6]), for any Z�-module M we call the von Neumann–Lück dimension

for L� ˝Z� M as the von Neumann–Lück rank vrk.M/ of M. Von Neumann-

Lück dimension is a length function on L�-modules [33, Theorem 6.7] and

von Neumann–Lück rank is a length function onZ�-modules when� is amenable

[28, Definition 2.1], [27, Section 5.2], and [29, Theorem 3.3.4].

Mean rank is also a length function on Z�-modules of an amenable group �

(see [27, Section 3]). As a dynamical analogue of the rank of abelian groups, it

serves as a bridge connecting mean dimension and von Neumann–Lück rank [27,

Theorem 1.1].

Towards more general groups, Bowen and Kerr and Li developed an entropy

theory based on the idea of approximating the dynamical data by external finite

models when the acting group can be approximated by finite groups [2, 25]. The

groups admitting this approximation are the so-called sofic groups, which include

residually finite groups and amenable groups [13, 40]. The extended notion of

entropy extends the classic notion but no longer decreases when passing to a

factor system. Similarly mean dimension has been extended to the case of sofic

group actions [26]. To deal with this nonamenable phenomenon, Li and the au-

thor introduced the relative sofic invariants, established an alternative addition

formula, and used them to relate mean dimension with von Neumann–Lück rank

for sofic groups [28]. Similar approaches also independently appear in the works

of other experts. Kerr reformulated the definition of sofic measure entropy via

restricting the approximate models of a finite partition to another coarser parti-

tion [24]. Hayes gave a formula for this invariant in terms of a given compact

model in [22]. A similar notion for Rokhlin entropy, called outer Rokhlin entropy,

was developed by Seward in [38]. Using the microstate technique, Hayes proved

that von Neumann–Lück rank of a finitely presentedZ�-moduleM coincides with

sofic mean dimension of � Õ bM under certain conditions [21].

Via a projective resolution of any Z�-module M, we can treat von Neumann–

Lück rank of M as the 0-th L2-Betti number ˇ
.2/
0 .M/ of M (see Proposi-

tion 3.5). From [28, Theorem 1.3], we know the sofic mean dimension mdim†.bM/
of � Õ bM correspondences to ˇ

.2/
0 .M/ when � is a countable sofic group and M

is countable. Here† is a fixed sofic approximation sequence for �. For the higher

L2-Betti numbers of M, Hanfeng Li asked the following question.
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Question 1.1. If � is sofic, what dynamical invariants of � Õ bM correspond to

the j -th L2-Betti numbers ˇ
.2/
j .M/ of M for j � 1?

In this paper, motivated by the above question, we mainly study dynamical ana-

logues of the L2-Betti numbers ˇ
.2/
j .C�/ of a chain complex C� of Z�-modules:

� � �
@2

�! C1

@1

�! C0 �! 0.D C�1/:

In the spirit of Elek [11] (also for the notational convenience), we introduce

the j -th mean rank mrkj .C�/ of C� and the j -th mean dimension mdimj .C�/

of cC� WD HomZ.C�;R=Z/ for any sofic group � (see Definition 3.1). These

definitions use the relative sofic invariants as opposed to Elek’s approach where

he considered the case that � is amenable and therefore there is no nonamenable

phenomenon appeared.

Let � Õ X and � Õ Y be two algebraic actions, X and Y be metrizable

spaces, and � WX ! Y be a �-equivariant continuous homomorphism. We say �

satisfies Juzvinskiı̆ formula for mean dimension if mdim†.X/ D mdim†.ker�/C

mdim†.im�/. The main result of this paper is as follows.

Theorem 1.2. Suppose that vrk.Cj / <1 for some j � 0. Then

(1) ˇ
.2/
j .C�/ D vrk.coker @j C1/ � vrk.im @j jCj �1/:

(2) If � is sofic, we have ˇ
.2/
j .C�/ D mrkj .C�/. If furthermore Cj and Cj �1 are

countable, we have mrkj .C�/ D mdimj .cC�/.

(3) If im @j C1 D ker @j and vrk.Cj �1/ < 1, we have that ˇ
.2/
j .C�/ D 0 if and

only if

vrk.Cj �1/ D vrk.coker @j /C vrk.im @j /:

If furthermore� is sofic,Cj andCj �1 are countable, we have that ˇ
.2/
j .C�/D0

if and only if b@j satisfies Juzvinskiı̆ formula for mean dimension.

From Theorem 1.2, the notion of j -th mean rank provides an equivalent alge-

braic definition of L2-Betti numbers from module theory. Secondly, the L2-Betti

numbers exactly measure the failure of the additivity of dynamical invariants.

In [11], Elek introduced an analogue of the L2-Betti numbers for amenable lin-

ear subshifts. It was shown that Juzvinskiı̆ formula for entropy can fail when the

group � has nonzero Euler characteristic [10]. Hayes proved that Juzvinskiı̆ for-

mula for entropy fails when � has nonzero L2-torsion [23]. Gaboriau and Se-

ward established some inequalities relating Juzvinskiı̆ formula for entropy with

L2-Betti numbers [12]. Bowen and Gutman established Juzvinskiı̆ formula for the

f -invariant of finitely generated free group actions in some cases [3].
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To respond to Question 1.1, we introduce the j -th mean dimension mdimj .bM/
of � Õ bM and j -th mean rank mrkj .M/ of M (Definition 3.3 and Definition 3.1).

As the first application, the following corollary may shed some light on Ques-

tion 1.1.

Corollary 1.3. When mrkj .M/ is defined, we have mrkj .M/ D ˇ
.2/
j .M/. If

furthermore M is countable, we have mdimj .bM/ D ˇ.2/
j .M/:

For the second application, we give a dynamical characterization of Lück’s

dimension-flatness. We say � satisfies Lück’s dimension-flatness over Z if

ˇ
.2/
j .M/ vanishes for any j � 1 and Z�-module M. It was proven that

amenable groups satisfy Lück’s dimension-flatness [33, Theorem 6.37]. We

say � satisfies Juzvinskiı̆ formula for von Neumann–Lück rank if vrk.M/ D

vrk.ker'/ C vrk.im'/ for any Z�-module homomorphism 'WM ! N of Z�-

modules M and N. It is similarly defined when we talk about whether � satisfies

Juzvinskiı̆ formula for mean rank.

Corollary 1.4. � satisfies Lück’s dimension-flatness over Z if and only if �

satisfies Juzvinskiı̆ formula for von Neumann–Lück rank. If � is sofic, then �

satisfies Lück’s dimension-flatness over Z if and only if � satisfies Juzvinskiı̆

formula for mean rank and mean dimension.

We remark that the first statement of the above corollary can also be proved

using standard properties of Tor functor and additivity of von Neumann–Lück

dimension. In the light of results on the failure of Juzvinskiı̆ formula [21, Propo-

sition 7.2], [23, Corollary 6.24], and [12, Theorem 6.3], we show that taking sub-

groups respects the property of Lück’s dimension-flatness in Proposition 4.4. As

a consequence, if ˇ
.2/
j .H/ > 0 for some subgroup H of � and some j � 1, then

� violoates Juzvinskiı̆ formula for mean dimension.

Lück conjectured that a group is amenable if and only if it satisfies Lück’s

dimension-flatness [33, Conjecture 6.48]. Bartholdi and Kielak implicitly proved

this conjecture using a new characterization of amenability [1, Theorem 1.1]. It

follows that

Corollary 1.5. A countable group is amenable if and only if it satisfies Juzvinskiı̆

formula for von Neumann–Lück rank.

This paper is organized as follows. We recall some background knowledge in

Section 2. In Section 3 we introduce the j -th mean rank, j -th mean dimension,

and establish some basic properties. We prove the main results and show some

applications in Section 4.

Throughout this paper, � will be a countable discrete group. For any set S ,

we denote by F.S/ the set of all nonempty finite subsets of S . All modules are
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assumed to be left modules unless specified. For any d 2 N, we write Œd � for the

set ¹1; � � � ; dº and Sym.d/ for the permutation group of Œd �.

Acknowledgements. We are grateful to Lewis Bowen, Ben Hayes, Fabian Hen-

neke, Yonatan Gutman, Huichi Huang, Yang Liu, Yongle Jiang, Wolfgang Lück,

Jianchao Wu, and Xiaolei Wu for helpful discussions and comments. The author

is supported by Max Planck Institute for Mathematics in Bonn.

2. Preliminaries

2.1. Group rings. The integral group ring of �, denoted by Z�, consists of all

finitely supported functions f W� ! Z. We shall write f as
P

s2� fss, where

fs 2 Z for all s 2 � and fs D 0 for all except finitely many s 2 �. The algebraic

operations on Z� are defined by

X

s2�

fssC
X

s2�

gss D
X

s2�

.fs C gs/s; and
� X

s2�

fss
�� X

t2�

gt t
�
D

X

s;t2�

fsgt .st/:

We similarly have the product if one of f and g sits in C
� .

For any countable Z�-module M, treated as a discrete abelian group, its Pon-

tryagin dual bM consisting of all continuous group homomorphisms M ! R=Z,

coincides with HomZ.M;R=Z/. By Pontryagin duality, bM is a compact metriz-

able space under compact-open topology. Furthermore, the Z�-module structure

of M naturally induces an adjoint action � Õ bM by continuous automorphisms.

To be precise,

hs�; ui WD h�; s�1ui

for all � 2 bM; u 2M, and s 2 �.

2.2. Relative von Neuman-Lück rank . Let `2.�/ be the Hilbert space of

square summable functions f W� ! C, i.e.
P

s2� jfsj
2 < C1. Then � has two

canonical commuting unitary representations on `2.�/, namely the left regular

representation � and the right regular representation � defined by

�.s/.x/ D sx and �.s/.x/ D xs�1

for all x 2 `2.�/ and s 2 �. Here we treat � as a subset of C�. The (left)

group von Neumann algebra of �, denoted by L�, consists of all bounded linear

operators `2.�/! `2.�/ commuting with �.s/ for all s 2 �.

Denote by ıe�
the unit vector of `2.�/ being 1 at the identity element e� of

�, and 0 everywhere else. The canonical trace on L� is the linear functional

trL� WL� ! C given by trL�.T / D hT ıe�
; ıe�
i. For each n 2 N, the extension

of trL� toMn.L�/ sending .Tj;k/1�j;k�n to
Pn

j D1 trL�.Tj;j / will still be denoted

by trL� .
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For any finitely generated projective L�-module P, one has P Š .L�/1�nP

for some n 2 N and some P 2 Mn.L�/ with P 2 D P . The von Neumann

dimension of P is defined as

dim0
L�.P/ WD trL�.P / 2 Œ0; n�;

which does not depend on the choice of n and P . For an arbitrary L�-module M,

its von Neumann–Lück dimension [33, Definition 6.6] is defined as

dimL�.M/ WD sup
P

dim0
L�.P/;

for P ranging over all finitely generated projective L�-submodules of M.

The following theorem collects the fundamental properties of the von Neu-

mann–Lück dimension [33, Theorem 6.7]. Given a unital ringR, a length function

on leftR�-modules is a function on leftR�-modules satisfying certain conditions

([28, Definition 2.1]).

Theorem 2.1. dimL� extends dim0
L� and is a length function on L�-modules

with dimL�.L�/ D 1.

Definition 2.2. For any Z�-modules M1 � M2, the von Neumann–Lück rank of

M1 relative to M2 is defined as

vrk.M1jM2/ WD dimL�.im 1˝ i/;

where 1˝ i is the natural map L� ˝M1 ! L� ˝M2.

Note that when M1 DM2, we have vrk.M1/ D vrk.M1jM2/.

2.3. Amenable and sofic groups . The group � is called amenable if for any

K 2 F.�/ and any ı > 0 there is a F 2 F.�/ with jKF n F j < ıjF j.

A sequence of maps † D ¹�i W� ! Sym.di /ºi2N is called a sofic approxima-

tion for � if it satisfies:

(1) limi!1 j¹v 2 Œdi �W �i;s�i;t.v/ D �i;st .v/ºj=di D 1 for all s; t 2 �,

(2) limi!1 j¹v 2 Œdi �W �i;s.v/ ¤ �i;t .v/ºj=di D 1 for all distinct s; t 2 �,

(3) limi!1 di D C1.

The group � is called a sofic group if it admits a sofic approximation.

Any amenable group is sofic since one can use a sequence of asymptotically-

invariant subsets of the amenable group, i.e. Følner sequence, to construct a

sofic approximation. Residually finite groups are also sofic since a sequence

of exhausting finite-index subgroups naturally induces a sofic approximation in

which each approximating map is actually a group homomorphism. We refer the

reader to [5, 6] for more information on sofic groups.

Throughout the rest of this paper, � will be a countable sofic group, and

† D ¹�i W� ! Sym.di /ºi2N will be a sofic approximation for �.
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2.4. Relative mean dimension and relative mean rank. We first recall the

notion of the covering dimension. For any finite open cover U of a compact

metrizable spaceZ, denote the overlapping number of U by ord.U/, i.e. ord.U/ D

maxx2X

P
U 2U 1U .x/ � 1. Set

D.U/ D inf
V

ord.V/

for V ranging over all finite open covers of Z finer than U, i.e. each element of V

is contained in some element of U. Then the covering dimension of Z is defined

as supUD.U/ for U ranging over all finite open covers of Z.

Let � act continuously on a compact metrizable space X .

Definition 2.3. Let � be a compatible metric on X . For any d 2 N, there is a

compatible metric on Xd defined by

�2.';  / D
� 1
d

X

v2Œd�

�.'v;  v/
2
�1=2

:

Let � be a map from � to Sym.d/, F 2 F.�/, and ı > 0. The set of approximately

equivariant maps Map.�; F; ı; �/ is defined to be the set of all maps 'W Œd � ! X

such that �2.s'; ' ı �.s// � ı for all s 2 F .

Now let � act on another compact metrizable space Y and � WX ! Y be a

surjective �-equivariant continuous map. Denote by Map.�; �; F; ı; �/ the set

of all � ı ' for ' ranging in Map.�; F; ı; �/. Note that Map.�; �; F; ı; �/ is a

closed subset of Y d . For any finite open cover U of Y , denote by Ud the open

cover of Y d consisting of …v2Œd�Uv , where each Uv sits in U. Restricting Ud

to Map.�; �; F; ı; �/, we obtain a finite open cover Ud jMap.�;�;F;ı;�/ WD ¹U \

Map.�; �; F; ı; �/ºU 2Ud of Map.�; �; F; ı; �/.

Definition 2.4. For any finite open cover U of Y we define

mdim†.�;U; �; F; ı/D lim
i!1

D.Ud jMap.�;�;F;ı;�i //

di

:

If Map.�; F; ı; �i/ is empty for all sufficiently large i , we set

mdim†.�;U; �; F; ı/D �1:

We define the mean topological dimension of � Õ Y relative to the extension

� Õ X as

mdim†.Y jX/ WD sup
U

inf
F 2F.�/

inf
ı>0

mdim†.�;U; �; F; ı/;
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where U ranges over finite open covers of Y . By a similar argument as in [26,

Lemma 2.9], we know mdim†.Y jX/ does not depend on the choice of �. The

sofc mean topological dimension of � Õ X is defined as

mdim†.X/ WD mdim†.X jX/

for � WX ! X being the identity map.

Example 2.5. Let M1 � M2 be countable Z�-modules. Then the induced map
bM2 ! bM1 is a surjective �-equivariant continuous map of compact metrizable

spaces. Thus mdim†.bM1jbM2/ is well-defined.

Now we recall the notion of the relative mean rank. For any Z�-module

M, denote by F .M/ the set of finitely generated abelian subgroups of M. Let

A;B 2 F .M/; F 2 F.�/, and � be a map from � to Sym.d/ for some d 2 N.

Denote by M.A;B; F; �/ the image of A
d in Md=M.B; F; �/ under the quotient

map Md ! Md=M.B; F; �/. Here M.B; F; �/ denotes the abelian subgroup of

Md Š Z
d˝ZM generated by the elements ıv˝b�ısv˝sb for all v 2 Œd �; b 2 B,

and s 2 F .

Definition 2.6. Let M1 � M2 be Z�-modules. For any A 2 F .M1/;B 2

F .M2/, and F 2 F.�/, set

mrk†.AjB; F / D lim
i!1

rk.M.A;B; F; �i//

di

:

We define the mean rank of M1 relative to M2 as

mrk†.M1jM2/ D sup
A2F .M1/

inf
F 2F.�/

inf
B2F .M2/

mrk†.AjB; F /:

The sofic mean rank of M1 is then defined as

mrk†.M1/ WD mrk†.M1jM1/:

Applying [28, Theorem 1.1],[28, Theorem 7.2], [28, Theorem 10.1], and run-

ning a similar argument as in the proof of [28, Proposition 8.5] for relative mean

rank, we have:

Theorem 2.7. For any Z�-modules M1 � M2, we have mrk†.M1jM2/ D

vrk.M1jM2/ and

mrk†.M2/ D mrk†.M1jM2/Cmrk†.M2=M1/:

If furthermore M2 is countable, we have mdim†.bM1jbM2/ D mrk†.M1jM2/.
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The following proposition collects basic properties of the sofic mean rank [28,

Section 3].

Proposition 2.8. Let M1 and M2 be Z�-modules. The following are true.

(1) mrk†.Z�/ D 1.

(2) We have

mrk†.M1jM1 ˚M2/ D mrk†.M1/

and

mrk†.M1 ˚M2/ D mrk†.M1/Cmrk†.M2/I

(3) if M1 � M2 and M1 is the union of an increasing net of Z�-submodules

¹M0
j ºj 2J, then

mrk†.M
0
j jM2/% mrk†.M1jM2/:

If furthermore mrk†.M2/ <1, then

mrk†.M2=M
0
j /& mrk†.M2=M1/:

(4) Assume that M1 � M2, M1 is finitely generated, and M2 is the union of an

increasing net of Z�-submodules ¹M0
j ºj 2J of M2 containing M1. Then

mrk†.M1jM
0
j /& mrk†.M1jM2/:

3. L2-Betti number, j -th mean rank, and j -th mean dimension

Let C� be a chain complex of Z�-modules:

� � �
@2

�! C1

@1

�! C0

@0

�! 0.D C�1/:

Applying the covariant tensor functorL�˝Z� �, we get a chain complexL�˝Z�C�

of L�-modules:

� � �
1˝@2

�! L� ˝ C1

1˝@1

�! L� ˝ C0 ! 0I

applying the contravariant Pontryagin dual functor HomZ.�;R=Z/ WDb�, we get a

chain complex cC� of algebraic actions such that the maps ¹b@j ºj are �-equivariant:

� � �
b@2

 �cC1

b@1

 �cC0  � 0:

Since R=Z is an injective Z-module, when im @j C1 D ker @j , we have ker b@j C1 D

im b@j .
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Definition 3.1. For each j � 0, the j-th L2-Betti number of C� is defined as

ˇ
.2/
j .C�/ D dimL� Hj .L� ˝Z� C�/:

If vrk.Cj / <1 for all j � 1 and Cj D 0 as j is large enough, we define the Euler

characteristic of C� as

�.C�/ WD
X

j �0

.�1/j vrk.Cj /:

When vrk.Cj / <1 for some j � 0 and � is sofic, we define the j -th mean rank

of C� as

mrkj .C�/ D mrk†.coker @j C1/ �mrk†.im @j jCj �1/:

If furthermore Cj and Cj �1 are countable, we define the j-th mean topological

dimension of C� as

mdimj .cC�/ WD mdim†.ker b@j C1/ �mdim†.im b@j j1Cj �1/:

Remark 3.2. (1) When C� is a chain complex of C�-modules, since C� is flat

as a Z�-module, we have ˇ
.2/
j .C�/ D dimL� Hj .L� ˝C� C�/, which extends the

definition of L2-Betti numbers for chain complexes of C�-modules [33, Defini-

tion1.16, Theorem 6.24].

(2) By Theorem 2.7, we know that the j -th mean rank and j -th mean dimen-

sion are well defined.

(3) Wall gave some criteria when a chain complex of Z�-modules can be

realized as the chain complex of a �-CW complex [39, Theorem 2].

Let M be a Z�-module. A projective resolution of M is an exact sequence of

Z�-modules

� � �
@2

�! C1

@1

�! C0

@0

�!M �! 0

in which each Cj is a projective Z�-module. Denote by C� its deleted projective

resolution

� � �
@2

�! C1

@1

�! C0 �! 0;

which is a chain complex of Z�-modules. We similarly have the notion of free

resolution. Apply the notion of free module, we know that any Z�-module admits

a free resolution [36, Proposition 10.32].

Definition 3.3. For each j � 0, we define the j-th L2-Betti number of M as

ˇ
.2/
j .M/ WD ˇ

.2/
j .C�/:

The j-th L2-Betti number ˇ
.2/
j .�/ of � is defined as the j-th L2-Betti number of

the trivial Z�-module Z.
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If vrk.Cj / < 1 for all j � 1 and Cj D 0 as j is large enough, we define the

Euler characteristic of M as

�.M/ WD �.C�/:

When vrk.Cj / <1 for some j � 0 and � is sofic, we define the j -th mean rank

of M as

mrkj .M/ WD mrkj .C�/:

If furthermore M is countable, we can choose C� such that each Cj for j � 0 is

countable and define the j-th mean topological dimension of M as

mdimj .bM/ WD mdimj .cC�/:

Remark 3.4. ˇ
.2/
j .M/ is the von Neumann–Lück dimension of torZ�

j .L�;M/

(see [36, p. 836] for definition). Based on the Comparison Theorem for projective

resolutions [36, Theorem 10.46], any two projective resolutions of M are homo-

topy equivalent, we know that ˇ
.2/
j .M/ does not depend on the choice of projective

resolutions [36, Corollary 10.51]. We refer the reader to [4, Chapter VIII] for dis-

cussions on when a Z�-module admits a “small” projective resolution.

Proposition 3.5. For any Z�-module M, we have ˇ
.2/
0 .M/ D vrk.M/ and

mrk0.M/ D mrk†.M/. WhenM is countable, we have mdim0.bM/ D mdim†.bM/.

Proof. From the exactness, we have

L� ˝ C0= im 1˝ @1 D L� ˝ C0= ker 1˝ @0 Š im 1˝ @0 D L� ˝M

and

C0= im @1 D C0= ker @0 Š im @0 DM:

So by definition, we have

ˇ
.2/
0 .M/ D dimL�.L� ˝ C0= im 1˝ @1/ D dimL�.L� ˝M/ D vrk.M/

and

mrk0.M/ D mrk†.coker @1/ D mrk†.C0= im @1/ D mrk†.M/:

From the exactness, we have ker b@1 D im b@0 Š bM. So when M is countable,

we have

mdim0.bM/ D mdim†.ker b@1/ D mdim†.bM/: �
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Example 3.6. Let � D F2 be the free group with generators a and b. Set

f D .a�1; b�1/T 2 .Z�/2�1. ThenM WD .Z�/1�1=.Z�/1�2f has the following

free resolution:

0 �! .Z�/1�2 R.f /
�! .Z�/1�1 �!M �! 0;

where R.f / sends x to xf . Note that M Š Z as the Z�-modules for the

trivial Z�-module Z. By [33, Lemma 6.36], we know L� ˝Z� Z D 0. Thus

ˇ
.2/
0 .M/ D 0. It follows that ˇ

.2/
1 .M/ D dimL� ker 1˝R.f / D ˇ

.2/
0 .M/��.M/ D

0 � .1 � 2/ D 1. This example is essentially the same as 0 ! ker " ! Z�
"
!

Z! 0, where " is the argumentation map. See [9, Chapter IV, Theorem 2.12] for

a characterization of when ker " is a projective Z�-module.

4. Main Results

Corollary 1.3 follows when we apply Theorem 1.2 to a deleted projective resolution

of a Z�-module M.

Proof of Theorem 1.2. (1) Note that for any Z�-module homomorphism

'WM ! N and the inclusion map i W im' ! N, we have im 1 ˝ ' D im 1 ˝ i .

Thus dimL�.im 1˝ '/ D vrk.im'jN/. For Z�-modules im @j C1 � Cj , we have

vrk.Cj / D vrk.im @j C1jCj /C vrk.coker @j C1/:

Since the function dimL�.�/ is additive, we have

ˇ
.2/
j .C�/ D dimL�.ker 1˝ @j / � dimL�.im 1˝ @j C1/

D .dimL�.L� ˝ Cj / � dimL�.im 1˝ @j // � dimL�.im 1˝ @j C1/

D .vrk.im @j C1jCj /C vrk.coker @j C1//

� dimL�.im 1˝ @j / � dimL�.im 1˝ @j C1/

D vrk.coker @j C1/ � vrk.im @j jCj �1/:

(2) For any subgroup H of a discrete abelian group G, denote by H? the

elements of bG which vanish on H . By Pontryagin duality, we have H? Š1G=H .

Thus

ker b@j C1 D ¹� 2cCj W� ı @j C1 D 0º D .im @j C1/
? Š 5Cj = im @j C1 D 4coker @j C1:

By definition, we have mdim†.im b@j j1Cj �1/ D mdim†.1im @j j1Cj �1/. Thus by

Theorem 2.7, the equalities follow from (1).
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(3) By the addition formula of von Neumann–Lück dimension, we first have

vrk.Cj �1/ D vrk.im @j jCj �1/C vrk.coker @j /:

When C� is exact at Cj , we have coker @j C1 D im @j . Thus the first statement

follows from (1). The second statement follows from Pontryagin duality and the

first statement. �

The follow proposition is an immediate consequence of Theorem 1.2, which

can also be proved directly.

Proposition 4.1. Let C� be a chain complex of Z�-modules: 0 ! Ck ! � � � !

C0 ! 0 for some k 2 N. If vrk.Cj / <1 for all j � 1, then

X

0�j �k

.�1/jˇ
.2/
j .C�/ D �.C�/ D

X

0�j �k

.�1/j mrkj .C�/:

In particular, when C� is exact, we have

�.C�/ D
X

0�j �k

.�1/j .mrk†.im @j / �mrk†.im @j jCj �1//:

The following lemma reduces the Juzvinskiı̆ formula for mean rank to the

finitely generated case.

Lemma 4.2. Suppose that mrk†.M1jM2/ D mrk†.M1/ holds when M2 is a

finitely generated free Z�-module and M1 is a finitely generated Z�-submodule

of M2. Then mrk†.M1jM2/ D mrk†.M1/ holds for any Z�-modules M1 �

M2. In particular, � satisfies Juzvinskiı̆ formula for mean rank if and only if

mrk†.M1jM2/ D mrk†.M1/ holds when M2 is a finitely generated free Z�-

module and M1 is a finitely generated Z�-submodule of M2.

Proof. Case 1 . M2 is finitely generated.

Write M2 as M2 D .Z�/n=N and M1 as M1 D M0
1=N for some n 2 N and

some Z�-submodules N � M0
1 � .Z�/

n. Write N as the union of an increasing

net of finitely generated submodules ¹Nj ºj 2J of N. Note that for each j , by

Proposition 2.8, we have

mrk†.Nj / D mrk†.Nj jNj / � mrk†.Nj jM
0
1/ � mrk†.Nj j.Z�/

n/ D mrk†.Nj /:

Thus mrk†.Nj j.Z�/
n/ D mrk†.Nj jM

0
1/ for all j . Moreover, by Proposition 2.8,

mrk†.Nj.Z�/
n/ D sup

j 2J

mrk†.Nj j.Z�/
n/ D sup

j 2J

mrk†.Nj jM
0
1/ D mrk†.NjM

0
1/:
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Then by Theorem 2.7 and Proposition 2.8, we have

mrk†.M1jM2/

D mrk†..Z�/
n=N/ �mrk†..Z�/

n=M0
1/

D .n �mrk†.Nj.Z�/
n// � .n�mrk†.M

0
1j.Z�/

n//

D mrk†.M
0
1/ �mrk†.NjM

0
1/

D mrk†.M
0
1=N/ D mrk†.M1/:

Case 2. M1 is finitely generated.

Write M2 as the union of an increasing net of finitely generated submodules

¹M0
j ºj 2J of M2 containing M1. By Proposition 2.8 and the conclusion of Case 1,

we have

mrk†.M1jM2/ D inf
j 2J

mrk†.M1jM
0
j / D inf

j 2J
mrk†.M1/ D mrk†.M1/:

Now we consider the general case. Write M1 as the union of an increasing net

of finitely generated submodules ¹M0
j ºj 2J of M1. Applying Proposition 2.8 and

the conclusion of Case 2, we have

mrk†.M1jM2/ D sup
j 2J

mrk†.M
0
j jM2/ D sup

j 2J

mrk†.M
0
j jM1/ D mrk†.M1/:

Suppose that � satisfies Juzvinskiı̆ formula for mean rank. Let M2 be a

finitely generated free Z�-module and M1 be finitely generated Z�-submodule

of M2. Consider the quotient map M2 ! M2=M1. Then the conclusion follows

immediately by Theorem 2.7. The converse direction also follows immediately by

Theorem 2.7. �

Remark 4.3. Let L be a function as in [28, Lemma 7.7] satisfying all the proper-

ties (i)–(v). Then the corresponding result in Lemma 4.2 still holds without change

of proof. In particular, the corresponding statement holds for von Neumann–Lück

rank.

Proof of Corollary 1.4. The second statement follows from Theorem 2.7 and the

first statement. Suppose � satisfies Lück’s dimension-flatness, in particular, for

any finitely presented Z�-module M, we have ˇ
.2/
1 .M/ D 0. Write M as M D

.Z�/n=.Z�/mf for some f 2Mm;n.Z�/. Then a projective resolution of M can

be

� � �
@2

�! .Z�/m
@1

�! .Z�/n �!M �! 0;

where @1 D R.f /. Then by Theorem 1.2, we have

vrk.im @1/ � vrk.im @1j.Z�/
n/ D vrk.coker @2/ � vrk.im @1j.Z�/

n/

D ˇ
.2/
1 .M/

D 0:
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By Remark 4.3, we have � satisfies Juzvinskiı̆ formula for von Neumann–Lück

rank.

For the “if” part, by Theorem 1.2, we first have ˇ
.2/
1 .M/ D 0 for any finitely

presented Z�-module M. Since both dimL�.�/ and torZ�
j .L�; �/ commutes with

the colimits [33, Theorem 6.7] [36, Proposition 10.99], we have ˇ
.2/
1 .M/ D 0 for

any Z�-module M.

Let 0 ! N ! F ! M ! 0 be an exact sequence of Z�-modules such that

F is free. Then a projective resolution of N induces a projective resolution of M.

So ˇ
.2/
2 .M/ D ˇ

.2/
1 .N/ D 0. Inductively we have ˇ

.2/
j .M/ D 0 for all j � 1 and

Z�-module M. �

The following proposition was implicitly proven in [33, Conjecture 6.48]. For

convenience, we give a proof.

Proposition 4.4. Let� be a discrete group (not necessarily sofic) andH be a sub-

group of �. Then for any ZH -module M, we have ˇ
.2/
j .Z� ˝ZH M/ D ˇ

.2/
j .M/.

In particular, taking subgroups respects the property of Lück’s dimension-flatness.

Proof. Let C� !M be a free resolution of M. Since Z� is a flat ZH -module, we

get a free resolution Z� ˝ZH C� ! Z� ˝ZH M of the Z�-module Z� ˝ZH M.

Since the induction functor L� ˝LH � is flat [33, Theorem 6.29 (1)], we have

L� ˝LH Hj .LH ˝ZH C�/ Š Hj .L� ˝LH .LH ˝ZH C�//

Š Hj .L� ˝Z� .Z� ˝ZH C�//:

Thus by [33, Theorem 6.29 (2)], we have

ˇ
.2/
j .Z� ˝ZH M/ D dimL� Hj .L� ˝Z� .Z� ˝ZH C�//

D dimL�.L� ˝LH Hj .LH ˝ZH C�//

D dimLH Hj .LH ˝ZH C�/ D ˇ
.2/
j .M/: �

As a consequence of Corollary 1.4 and Proposition 4.4, we have:

Corollary 4.5. If a subgroup H of a sofic group � violoates Lück’s dimension-

flatness, then � violoates Juzvinskiı̆ formula for mean dimension. In particular, if

ˇ
.2/
j .H/ > 0 for some j � 1, then � violoates Juzvinskiı̆ formula for mean rank

and mean dimension.

We refer the reader to [35, Section 5] for some discussions onL2-Betti numbers

of subgroups. Lück’s dimension-flatness for amenable groups [33, Theorem 6.37]

can be interpreted in terms of relative sofic mean rank.
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Corollary 4.6. Amenable groups satisfy Lück’s dimension-flatness.

Proof. By [28, Theorem 5.1], we know mrk†.M1jM2/ D mrk†.M1/ holds for

any Z�-modules M1 � M2. By Theorem 2.7, � satisfies Juzvinskiı̆ formula for

mean rank. Thus by Corollary 1.4, � satisfies Lück’s dimension-flatness. �

Corollary 4.7. Let� be a residually finite group and ¹�iºi be a sequence of finite-

index decreasing normal subgroups of � with the intersection ¹e�º. Let C� be a

chain complex of finitely generated free Z�-modules. Then

mrkj .C�/ D lim
i!1

rk.Hj .�i n C�//

j�=�i j
:

Proof. Since residually finite groups satisfy Lück’s approximation formula for

L2-Betti numbers [32, Theorem 0.1], by the similar argument as in [33, Lemma

13.4], we have

ˇ
.2/
j .C�/ D lim

i!1

rk.Hj .�i n C�//

j�=�i j
:

Then the conclusion follows from Theorem 1.2. �

References

[1] L. Bartholdi and D. Kielak, Amenability of groups is characterized by Myhill’s

Theorem. To appear in J. Eur. Math. Soc. (JEMS). Preprint, 2016.

arXiv:1605.09133v2 [cs.FL]

[2] L. Bowen, Measure conjugacy invariants for actions of countable sofic groups.

J. Amer. Math. Soc. 23 (2010), no. 1, 217–245. Zbl 1201.37005 MR 2552252

[3] L. Bowen and Y. Gutman, A Juzvinskiı̆ addition theorem for finitely generated

free group actions. Ergodic Theory Dynam. Systems 34 (2014), no. 1, 95–109.

Zbl 1300.37004 MR 3163025

[4] K. S. Brown, Cohomology of groups. Corrected reprint of the 1982 original. Grad-

uate Texts in Mathematics, 87. Springer-Verlag, New York, 1994. Zbl 0584.20036

MR 1324339

[5] V. Capraro and M. Lupini, Introduction to sofic and hyperlinear groups and Connes’

embedding conjecture. With an appendix by V. Pestov. Lecture Notes in Mathematics,

2136. Springer, Cham, 2015. Zbl 1383.20002 MR 3408561

[6] T. Ceccherini-Silberstein and M. Coornaert, Cellular automata and groups.

Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. Zbl 1218.37004

MR 2683112

[7] N.-P. Chung and A. Thom, Some remarks on the entropy for algebraic actions

of amenable groups. Trans. Amer. Math. Soc. 367 (2015), no. 12, 8579–8595.

Zbl 1357.37027 MR 3403066

http://arxiv.org/abs/1605.09133v2
http://zbmath.org/?q=an:1201.37005
http://www.ams.org/mathscinet-getitem?mr=2552252
http://zbmath.org/?q=an:1300.37004
http://www.ams.org/mathscinet-getitem?mr=3163025
http://zbmath.org/?q=an:0584.20036
http://www.ams.org/mathscinet-getitem?mr=1324339
http://zbmath.org/?q=an:1383.20002
http://www.ams.org/mathscinet-getitem?mr=3408561
http://zbmath.org/?q=an:1218.37004
http://www.ams.org/mathscinet-getitem?mr=2683112
http://zbmath.org/?q=an:1357.37027
http://www.ams.org/mathscinet-getitem?mr=3403066


Dynamical correspondences of L2-Betti numbers 105

[8] M. Coornaert, Topological dimension and dynamical systems. Translated and revised

from the 2005 French original. Universitext. Springer, Cham, 2015. Zbl 1326.54001

MR 3242807

[9] W. Dicks, Groups, trees, and projective modules. Lecture Notes in Mathematics, 790.

Springer, Berlin etc., 1980. Zbl 0427.20016 MR 0584790

[10] G. Elek, The Euler characteristic of discrete groups and Yuzvinskii’s entropy ad-

dition formula. Bull. London Math. Soc. 31 (1999), no. 6, 661–664. Zbl 1017.37007

MR 1711022

[11] G. Elek, Amenable groups, topological entropy and Betti numbers. Israel

J. Math. 132 (2002), 315–335. Zbl 1016.37009 MR 1952628

[12] D. Gaboriau and B. Seward, Cost, `2-Betti numbers and the sofic entropy of some

algebraic actions. To appear in J. Anal. Math. Preprint, 2015.

arXiv:1509.02482 [math.GR]

[13] M. Gromov, Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc.

(JEMS) 1 (1999), no. 2, 109–197. Zbl 0998.14001 MR 1694588

[14] M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic

maps. Math. Phys. Anal. Geom. 2 (1999), no. 4, 323–415. Zbl 1160.37322 MR 1742309

[15] Y. Gutman, Embedding Z
k-actions in cubical shifts and Z

k-symbolic extensions. Er-

godic Theory Dynam. Systems 31 (2011), no. 2, 383–403. Zbl 1218.37013 MR 2776381

[16] Y. Gutman, Mean dimension and Jaworski-type theorems. Proc. Lond. Math.

Soc. (3)111 (2015), no. 4, 831–850. Zbl 1352.37017 MR 3407186

[17] Y. Gutman, Embedding topological dynamical systems with periodic points in cubical

shifts. Ergodic Theory Dynam. Systems 37 (2017), no. 2, 512–538. Zbl 06704321

MR 3614036

[18] Y. Gutman, E. Lindenstrauss, and M. Tsukamoto, Mean dimension of Zk-actions.

Geom. Funct. Anal. 26 (2016), no. 3, 778–817. Zbl 1378.37056 MR 3540453

[19] Y. Gutman and M. Tsukamoto, Mean dimension and a sharp embedding theorem:

extensions of aperiodic subshifts. Ergodic Theory Dynam. Systems 34 (2014), no. 6,

1888–1896. Zbl 1316.37012 MR 3272776

[20] Y. Gutman and M. Tsukamoto, Embedding minimal dynamical systems into Hilbert

cubes. Preprint2 2015. arXiv:1511.01802 [math.DS]

[21] B. Hayes, Metric mean dimension for algebraic actions of sofic groups. Trans. Amer.

Math. Soc. 369 (2017), no. 10, 6853–6897. Zbl 1376.37014 MR 3683096

[22] B. Hayes, Mixing and spectral gap relative to Pinsker factors for sofic groups.

In S. Morrison and D. Penneys (eds.), Proceedings of the 2014 Maui and 2015

Qinhuangdao conferences in honour of Vaughan F. R. Jones’ 60 th birthday. . Pro-

ceedings of the Centre for Mathematics and its Applications, Australian National

University, 46. Australian National University, Centre for Mathematics and its Ap-

plications, Canberra, 2017, 193–221. MR 3635672

[23] B. Hayes, Fuglede–Kadison determinants and sofic entropy. Geom. Funct. Anal. 26

(2016), no. 2, 520–606. Zbl 1377.22005 MR 3513879

http://zbmath.org/?q=an:1326.54001
http://www.ams.org/mathscinet-getitem?mr=3242807
http://zbmath.org/?q=an:0427.20016
http://www.ams.org/mathscinet-getitem?mr=0584790
http://zbmath.org/?q=an:1017.37007
http://www.ams.org/mathscinet-getitem?mr=1711022
http://zbmath.org/?q=an:1016.37009
http://www.ams.org/mathscinet-getitem?mr=1952628
http://arxiv.org/abs/1509.02482
http://zbmath.org/?q=an:0998.14001
http://www.ams.org/mathscinet-getitem?mr=1694588
http://zbmath.org/?q=an:1160.37322
http://www.ams.org/mathscinet-getitem?mr=1742309
http://zbmath.org/?q=an:1218.37013
http://www.ams.org/mathscinet-getitem?mr=2776381
http://zbmath.org/?q=an:1352.37017
http://www.ams.org/mathscinet-getitem?mr=3407186
http://zbmath.org/?q=an:06704321
http://www.ams.org/mathscinet-getitem?mr=3614036
http://zbmath.org/?q=an:1378.37056
http://www.ams.org/mathscinet-getitem?mr=3540453
http://zbmath.org/?q=an:1316.37012
http://www.ams.org/mathscinet-getitem?mr=3272776
http://arxiv.org/abs/1511.01802
http://zbmath.org/?q=an:1376.37014
http://www.ams.org/mathscinet-getitem?mr=3683096
http://www.ams.org/mathscinet-getitem?mr=3635672
http://zbmath.org/?q=an:1377.22005
http://www.ams.org/mathscinet-getitem?mr=3513879


106 B. Liang

[24] D. Kerr, Sofic measure entropy via finite partitions. Groups Geom. Dyn. 7 (2013),

no. 3, 617–632. Zbl 1280.37007 MR 3095712

[25] D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups.

Invent. Math. 186 (2011), no. 3, 501–558. Zbl 06004405 MR 2854085

[26] H. Li, Sofic mean dimension. Adv. Math. 244 (2013), 570–604. Zbl 1353.37018

MR 3077882

[27] H. Li and B. Liang, Mean dimension, mean rank, and von Neumann–Lück rank,

J. Reine Angew. Math. 739 (2018), 207–240. Zbl 1392.37018 MR 3808261

[28] H. Li and B. Liang, Sofic mean length. Preprint, 2015 arXiv:1510.07655v1 [math.GR]

[29] B. Liang, Mean dimension, mean length, and von Neumann–Lück rank, Ph.D. thesis.

State University of New York at Buffalo, Buffalo, N.Y., 2016. MR 3553563

[30] H. Li and A. Thom, Entropy, determinants, and L2-torsion. J. Amer. Math. Soc. 27

(2014), no. 1, 239–292. Zbl 1283.37031 MR 3110799

[31] E. Lindenstrauss and B. Weiss, Mean topological dimension. Israel J. Math. 115

(2000), 1–24. Zbl 0978.54026 MR 1749670

[32] W. Lück, Approximating L2-invariants by their finite-dimensional analogues. Geom.

Funct. Anal. 4 (1994), no. 4, 455–481. Zbl 0853.57021 MR 1280122

[33] W. Lück, L2-invariants: theory and applications to geometry and K-theory. Ergeb-

nisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys

in Mathematics, 44. Springer-Verlag, Berlin, 2002. Zbl 1009.55001 MR 1926649

[34] J. Peters, Entropy on discrete abelian groups. Adv. in Math. 33 (1979), no. 1, 1–13.

Zbl 0421.28019 MR 0540634

[35] J. Peterson and A. Thom, Group cocycles and the ring of affiliated operators. Invent.

Math. 185 (2011), no. 3, 561–592. Zbl 1227.22003 MR 2827095

[36] J. J. Rotman, Advanced modern algebra. Second edition. Graduate Studies in Mathe-

matics, 114. American Mathematical Society, Providence, R.I., 2010. Zbl 1206.00007

MR 2674831

[37] K. Schmidt, Dynamical systems of algebraic origin. Progress in Mathematics, 128.

Birkhäuser Verlag, Basel, 1995. Zbl 0833.28001 MR 1345152

[38] B. Seward, Krieger’s finite generator theorem for actions of countable groups II.

Preprint, 2015. arXiv:1501.03367v3 [math.DS]

[39] C. T. C. Wall, Finiteness conditions for CW complexes. II. Proc. Roy. Soc. Ser. A 295

(1966), 129–139. Zbl 0152.21902 MR 0211402

[40] B. Weiss, Sofic groups and dynamical systems. Sankhyā Ser. A 62 (2000), no. 3,
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