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ABSTRACT
Based on operator identities and their formal adjoints, we derive two symmetry operators for the linearized Einstein operator on vacuum
backgrounds of Petrov type D and, in particular, the Kerr spacetime. One of them is of differential order four and coincides with a result of
Cohen and Kegeles. The other one is a new operator of differential order six. The corresponding operator identities are based on the Teukolsky
equation and the Teukolsky-Starobinsky identities, respectively. The method applies to other field equations as well, which is illustrated with
the Maxwell equation. The resulting symmetry operators are connected to Hertz and Debye potentials as well as to the separability of the
Teukolsky equation for both Maxwell and linearized gravity.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5092587., s

I. INTRODUCTION
A remarkable property of the Kerr black hole spacetime is that certain wave equations derived from the spin-s field equations are sepa-

rable. Geometrically, this cannot be explained by the two isometries of the Kerr solution alone but also requires its Killing-Yano tensor. The
connection to separability is made by partial differential operators involving the Killing vectors and Killing-Yano tensor such that solutions
of a field equation are mapped to solutions. We call such operators symmetry operators.

Second order symmetry operators for the scalar wave equation on Kerr were first discussed by Carter.1 Symmetry operators for spin-1/2
fields were analyzed by Carter and McLenaghan2 and Kamran and McLenaghan3 and for spin-1 fields Kalnins and Miller4 constructed two
second order symmetry operators, see also Ref. 5 for an overview. Recently, symmetry operators up to second order for scalar wave, massless
spin-1/2, and Maxwell equations on 4-dimensional Lorentzian spacetimes were classified in Ref. 6.

For spin-2, linearized gravity, only partial results are known. Cohen and Kegeles7 constructed Hertz potentials for spin-2, which is
a covariant form of the scalar Debye potential construction presented earlier by Cohen and Kegeles,8 Chrzanowski,9 and also Wald.10

Both can be thought of as higher order versions of the well-known vector potential construction for Maxwell fields, and they can be
interpreted as symmetry operators. In this paper, we use a method introduced by Wald10 to rederive the covariant result of Cohen and
Kegeles. Furthermore, we show that a slight extension of Wald’s adjoint method can be used to construct a new symmetry operator of order
six.

We start by reviewing symmetry operators for the scalar wave equation ◽ϕ = 0 on a Kerr background. The two isometries generated
by, say, ξa, ζa correspond to time translation and angular rotation, directly leading to first order (in this case even commuting) symmetry
operators via Lie dragging,

[Lξ ,◻] = 0 [Lζ ,◻] = 0. (1)

Moreover, as Carter showed11 the operator Q =∇aKab∇
b, with Kab being a Killing tensor, leads to

[Q,◻] = 0, (2)
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i.e., it is a symmetry operator not reducible to compositions of Lie derivatives along isometries. It is this operator which encodes the sep-
arability of the r and θ coordinates on the Kerr spacetime in Boyer-Lindquist coordinates. However, we note that Q is neither purely
radial in the sense that Q = f ij(r)∂i∂ j nor purely angular in the sense that Q = f ij(θ)∂i∂ j. Only by adding/subtracting terms van-
ishing due to the field equation can this form be accomplished and we find a similar structure for the Maxwell field and linearized
gravity.

As was shown by Andersson and Blue,12 symmetry operators play an important role in proving decay of scalar waves on a Kerr back-
ground. This decay result can be seen both as a tool and as a model problem for the black hole stability problem. An essential step in their
proof was to prove integrated local energy estimates or Morawetz estimates. For this to work, they needed to identify trapped modes, i.e.,
waves following the orbiting null geodesics of the Kerr spacetime and make the estimate insensitive to these phenomena. This could be done
using the symmetry operators and a direct relation between them and the constants of motion for the geodesic equation. Furthermore, by
inserting symmetry operators into energy estimates, one can easily increase the differential order of the estimates, which is needed to prove
pointwise estimates.

We expect that similar techniques could be used also for higher spin fields, such as Maxwell fields and linearized gravity. We therefore
need a large set of symmetry operators. Lie derivatives along isometries are obvious first order symmetry operators, and we are not discussing
them and their compositions further. Apart from these, there are only two second order symmetry operators for Maxwell constructed from
the Killing-Yano tensor (see Ref. 6).

It is the goal of this paper to derive analogous symmetry operators for the linearized Einstein operator itself on vacuum spacetimes
of Petrov type D. The method we use is based on operator identities originally proposed by Wald.10 An operator identity is an equality
of operators which requires only commutators and no field equations for its verification; hence, it is a property of the background and
not the particular field theory we study on it. It should be pointed out that the method is constructive, but we cannot say anything about
completeness of the generated set of symmetry operators yet. Suppose E is a formally self-adjoint differential operator defining the field
equation

Ef = 0
under consideration. Applying a differential operator S on this gives an integrability condition SEf = 0. For certain operators S, there is an
alternative form of the composed operator SE satisfying an operator identity SE = OT such that the operator O has particularly nice properties
(in the cases discussed in this paper, it is formally self-adjoint). From this setup, a symmetry operator for E follows from

Theorem 1 (Ref. 10). Suppose the identity

SE = OT, (3)

holds for linear partial differential operators S, E, O, and T. Suppose ψ satisfies O†ψ = 0, where † denotes the adjoint of the operator with respect
to some inner product. Then, S†ψ satisfies E†S†ψ = 0. Thus, in particular, if E is self-adjoint, then ϕ = S†ψ is a solution of Eϕ = 0.

Proof. The adjoint of (3) is given by E†S† = T†O†. Applied to ψ, we obtain E†S†ψ = 0. ◽

We find that there are two integrability conditions, for Maxwell and linearized gravity, which fit into this scheme. The first one is
the second order Teukolsky master equation (TME), a wave equation for certain field strength components of the Maxwell field or certain
curvature components of the linearized gravitational field. We denote the TME operator by O so that its operator identity is given by (3). The
second one is the Teukolsky-Starobinsky identity (TSI), a differential relation between the aforementioned components. It is of differential
order two for the Maxwell equation and of order four for linearized gravity. We introduce hats to distinguish from the first case and write
ŜE = ÔT, with Ô being the TSI operator. For linearized gravity on a curved background, an additional term occurs in the operator identity
and we refer to Sec. IV B for details. The covariant form of the spin-1 TME and TSI can be found in Ref. 13, and for linearized gravity, its full
form was first derived in Ref. 14.

Remark 2. In the original work,10 Wald applied the theorem to the TME for Maxwell and linearized gravity in a Newman-Penrose
component form and made two key observations:

1. Connecting the TME to covariant field equations
First, use the (self-adjoint) wave equations for the vector potential (spin-1) or the linearized metric (spin-2) to define the E operator covari-
antly. Then, there exists an operator S connected to the TME operator O via (3). In fact, the operator S can be read-off from the source
terms of the TME in Teukolsky’s original work.

2. Adjointness property of the TME component operator
The TME operator (component) for one extreme scalar (say, ϕ0 for spin-1 or Ψ̇0 for spin-2) is, up to rescaling by a scalar field, the adjoint
of the TME operator for the other extreme scalar (ϕ2 for spin-1 or Ψ̇4 for spin-2).

Identifying O† with the Debye potential operator, Wald provided a rederivation of the spin-1 Debye potential formulation of Cohen and
Kegeles15 and the first complete proof of the spin-2 Debye potential formulation initiated by Cohen and Kegeles8 and Chrzanowski9. See also
Ref. 16 for an overview.
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We note that the second observation mentioned in the remark is naturally encoded in the self-adjointness of the covariant TME oper-
ator, as we will see below. Therefore, the Debye potential formulation can also be discussed in terms of symmetry operators (see Secs. III B
and IV C).

For the Maxwell case, we find that the symmetry operator following from the TSI operator identity is closely related to the separability
of the TME operator (from that point of view, it is the generalization of the Carter operator). To see this, one needs to make use of the
freedom to add/subtract terms vanishing due to the field equations to produce symmetry operators which are “purely angular” or “purely
radial” in the sense discussed in the paragraph after Eq. (2). The symmetry operator following from the TME operator identity is equivalent
to a Hertz potential construction [see also Ref. 17 (Chap. 5)]. Both symmetry operators are of differential order two, and they coincide with
the irreducible symmetry operators found in the complete classification6 (see Remark 6).

The two symmetry operators for linearized gravity are of higher order than in the spin-1 case. The one we get from the TSI operator
identity is of order six. Since the TME operator is of order two, the relation to separability is not as immediate as for the spin-1 case (see,
however, Lemma 21 and Remark 22). From the TME operator identity, we get a fourth order operator, which is equivalent to the covariant
Hertz potential formalism of Cohen and Kegeles.7

We use Penrose’s 2-spinor formalism and irreducible decompositions leading to symmetric spinors exclusively. The main information
about the type D geometry is encoded in the existence of a Killing spinor κAB satisfying ∇A′(AκBC) = 0. On the Kerr spacetime, the Killing
spinor contains the same information as the Killing-Yano tensor. We therefore construct covariant operators involving the Killing spinor
which allows us to express all symmetry operators covariantly.

All calculations in this paper were performed in the xAct18 suit for Mathematica, and, in particular, we have used and developed the
SymManipulator and SpinFrames packages for this work. The typeset ready equations were produced with TexAct.

A. Overview
In Sec. II, we introduce the inner products for the adjoint method and a set of algebraic and differential operators tied to the Petrov

type D geometry. In Sec. III, we analyze the source-free Maxwell equation (spin-1) in covariant spinorial form. The self-adjointness of TME
and TSI is shown and afterward used in Theorem 5 to construct two second order symmetry operators. In Subsection III B, the symmetry
operators for spin-1 are related to the covariant and Geroch-Held-Penrose (GHP) component forms of Hertz and Debye potentials and to the
separability of the TME. In Sec. IV, we formulate the linearized gravity equations in terms of suitable operators. The TME and TSI are then
separately treated in Subsections IV A and IV B, respectively. In each case, formal self-adjointness is shown and used to construct a symmetry
operator. These are the main results of the paper and stated in Theorems 13 and 16, respectively. In Subsection IV C, the symmetry operators
for spin-2 are related to the covariant and GHP component forms of Hertz and Debye potentials and to the separability of the TME. In Sec. V,
we summarize the results and also point to interesting directions for the future. In Appendix A, we present the formal adjoints of the operators
introduced in this paper. Appendix B contains a list of commutator relations for some of these operators. In Appendix C, we list the GHP
component form of the selected operators.

II. PRELIMINARIES
We use the 2-spinor formalism and sign convention of Penrose and Rindler19 in which 24Λ denotes the Ricci scalar, ΦABA′B′ is the

trace-free Ricci spinor and ΨABCD is the Weyl spinor. All spinors can be decomposed into irreducible parts, which are symmetric, so we can
work with symmetric spinors exclusively. Throughout the paper, we will therefore assume that all spinors are symmetric unless explicitly
stated otherwise. We denote the space of symmetric spinors of valence (k, l) by Sk,l. Sets of spinor indices are collected into a multi-index, e.g.,
Ak ∶= A1 . . .Ak, or suppressed completely in cases where it does not lead to confusion.

Anti-self-dual and self-dual 2-forms are equivalent to elements of S2,0 and S0,2, respectively. Anti-self-dual and self-dual 4-tensors
with Weyl symmetries correspond to elements of S4,0 and S0,4, respectively. To avoid clutter in the notation, we use the same symbol for
corresponding operators (e.g., E) in the spin-1 and 2 cases in Secs. III and IV, respectively.

Component expressions with respect to a spinor dyad (oA, ιA) will be expressed in the GHP notation. For certain operators in GHP
form, we will talk about “purely angular” or “purely radial” operators. By this, we mean that after separation of variables, the “purely angular”
operators will only involve angular variables and the “purely radial” operators will only involve radial variables.

Following Ref. 13, Sec. 2.2, we denote the formal adjoint of a linear differential operator A with respect to the bilinear pairing

(ϕAkA′l ,ψAkA′l ) = ∫ ϕAkA′lψ
AkA′l dμ (4)

by A†, and the adjoint with respect to the sesquilinear pairing

⟨ϕAkA′l ,ψAlA′k⟩ = ∫ ϕAkA′l ψ
AkA′l dμ (5)

by A⋆. We refer to them as †-adjoint and ⋆-adjoint, respectively. The integrations are formal and with respect to the geometric volume element
dμ of some background geometry. The adjoints of certain natural operators with respect to both inner products are listed in Appendix A. Also
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note that A†(ϕ) = A⋆(ϕ̄). For A : Sk,l → Su,v, the adjoint operators map according to A† : Su,v → Sk,l and A⋆ : Sv,u → Sl,k. The adjoint
operator argument in Theorem 1 will be used for both the †-adjoint and the ⋆-adjoint.

We consider vacuum type D spaces and collect certain algebraic and differential operators on such spaces which were first introduced
(with examples) in Ref. 14. The fundamental operators C, C †, T, D acting on Sk,l are defined as the irreducible parts of the covariant derivative
∇AA′φBC⋯DB′C′⋯D′ of the symmetric spinor φ ∈ Sk,l. See Ref. 6 for a detailed discussion of their properties including commutators. The main
feature of the Petrov type D geometry is encoded in the symmetric Killing spinor κAB found in Ref. 20, satisfying

∇(A∣A′ ∣κBC) = 0. (6)

In a principal dyad, the Killing spinor takes the simple form

κAB = − 2κ1o(AιB), (7)

with κ1 ∝ Ψ−1/3
2 and Ψ2 being the only nonvanishing component of the Weyl spinor. The constant factor of proportionality can be chosen

arbitrarily. However, see Lemma 21 for an explicit form in the Schwarzschild geometry. Note that κ1 and Ψ2 can be expressed covariantly
via the relations κABκAB = −2κ1

2 and ΨABCDΨABCD
= 6Ψ2

2, respectively. Hence, we can allow κ1 and Ψ2 in covariant expressions. From a
commutator, it follows that

ξAA′ = −∇BA′κA
B (8)

is a Killing vector field. Another important vector field is defined by

UAA′ = −
κABξB

A′

3κ2
1
= −∇AA′ log(κ1). (9)

Setting∇(n ,m)AA′ ∶= ∇AA′ + nUAA′ + mŪAA′ for constants n, m, we define the extended fundamental operators acting on φ ∈ Sk,l by

(D(n,m)φ)Ak−1
A′l−1 ∶= ∇

BB′
(n,m)φAk−1B

A′l−1 B′ , (10a)

(C(n,m)φ)Ak+1
A′l−1 ∶= ∇(n,m) (A1

B′φA2...Ak+1)

A′l−1 B′ , (10b)

(C †
(n,m)φ)Ak−1

A′l+1 ∶= ∇
B(A′1
(n,m)φAk−1B

A′2...A
′

l+1), (10c)

(T(n,m)φ)Ak+1
A′l+1 ∶= ∇(n,m) (A1

(A′1φA2...Ak+1)
A′2...A

′

l+1). (10d)

For n = m = 0, they coincide with the fundamental operators of Ref. 6 and the indices will be suppressed in that case. Because UAA′ is a
logarithmic derivative, we have

C(n,m) = κ
n
1 κ̄

m
1′(Cκ

−n
1 κ̄−m

1′ ●), (11)
and similarly for the other operators. In particular, it follows that the commutator of extended fundamental spinor operators with
n1 = n2, m1 = m2 reduces to the commutator of the fundamental spinor operators given in Ref. 6 (Lemma 18). We can also use this to
commute factors of κ1 or κ̄1′ in or out of the extended fundamental spinor operators like

κn
1 κ̄

m
1′(C(p,q)●) = (C(p+n,q+m)κ

n
1 κ̄

m
1′●), (12)

and similarly for the other operators. Because κ1 ∝ Ψ−1/3
2 , we also find

Ψn
2(C(p,q)●) = (C(p−3n,q)Ψ

n
2●). (13)

Since the Killing spinor (7) is an element in S2,0, there are three possible actions within the algebra of symmetric spinors, namely,
by first contraction zero, one or two indices and then symmetrizing. Including a normalization, we define them as algebraic operators
Ki : Sk,l → Sk−2i+2,l, i = 0, 1, 2 via

(K0φ)Ak+2A′l ∶= 2κ−1
1 κ(A1A2φA3...Ak+2)A′l

, (14a)

(K1φ)AkA′l ∶= κ
−1
1 κ(A1

FφA2...Ak)FA′l
, (14b)

(K2φ)Ak−2A′l ∶= −
1
2κ
−1
1 κCDφA1...Ak−2CDA′l . (14c)

The commutators of the K-operators and the extended fundamental operators are given in Appendix B, and the complex conjugated operators
act analogously on the primed indices.

Definition 3 (Spin decomposition). For any symmetric spinor φA1...A2s with integer s, define s + 1 symmetric valence 2s spin-projectors
P i : S2s,0 → S2s,0, i = 0 . . . s solving

φA1...A2s =
s

∑
i=0
(P iφ)A1...A2s , (15)

with (P iφ)A1...A2s depending only on the dyad components φs+i and φs−i.
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These spin-projectors can be expressed in terms of the K-operators, and they are independent of the choice of principal frame, see Ref. 14
(Example 2.7). The adjoints of the extended fundamental operators, the K-operators, and the spin-projectors are given in Appendix A.

On a vacuum type D background in a principal dyad, the wave operator

C(c−k,0)C
†
(c,0) (16)

is diagonal in Sk,0 on its dyad components φi, i = 0, . . . , k for any constant c. Consequently, the spin-projectors commute with this diagonal
wave operator.

III. SPIN-1
In this section, we consider second order symmetry operators for the source-free Maxwell equation

(C †ϕ)AA′ = 0 (17)

for the field strength ϕAB ∈ S2,0. The field strength can locally be represented in terms of a real vector potential αAA′ via

ϕAB = (Cα)AB. (18)

The symmetry operators of this section naturally lead to complex vector potentials, and we refer to Remark 8 for the general picture of
symmetries for complex Maxwell fields.

A. Maxwell symmetry operators
We start by defining the operators

E : S1,1 → S1,1, E ∶= C †C, (19a)
T : S1,1 → S2,0, T ∶= C. (19b)

The first operator is the real Maxwell operator,

(Eφ)AA′ =
1
2∇BB′∇AA′φBB′

− 1
2∇BB′∇

BB′φAA′ , (20)

having vector potentials for source-free Maxwell solutions in its kernel, and the second operator is the map (18) from a vector potential to its
anti-self-dual field strength. Because of reality of E and properties of the adjoints of the fundamental operators given in Appendix A, we find

E†
= E⋆ = E = E. (21)

The operator defined in (19a) differs from Ref. 10 by a factor of −2. We also do not restrict the operator given in (19b) to depend only on
particular dyad components. To construct operator identities, define

S : S1,1 → S2,0, S ∶= κ2
1K1K1C(−2,0), (22a)

O : S2,0 → S2,0, O ∶= κ2
1K1K1C(−2,0)C

†, (22b)

Ŝ : S1,1 → S0,2, Ŝ ∶= κ1κ̄1′K
1
C †
(−2,0)K

1, (22c)

Ô : S2,0 → S0,2, Ô ∶= κ1κ̄1′K
1
C †
(−2,0)K

1C †. (22d)

For any solution ϕAB to the source-free Maxwell equation (17), it follows that (Oϕ)AB = 0 and (Ôϕ)A′B′ = 0. These are the covariant TME and
TSI, respectively, see (C4) and (C5) for the GHP component form. We collect remarkable properties in

Lemma 4. The TME operator is †-self-adjoint, and the TSI operator is ⋆-self-adjoint,

O†
= O, Ô⋆ = Ô. (23)

Furthermore, the operators factorize into

O = −F†F, (24a)

Ô = −F̂⋆F̂, (24b)

with

F : S2,0 → S1,1, F ∶= C †
(1,0)K

1
(κ1●), (25a)

F̂ : S2,0 → S1,1, F̂ ∶= C †K1
(κ1●). (25b)
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Proof. The proof relies on rescalings of the form (12) and K-operator commutators given in Appendix B. Commuting κ1K1 from the
left of the diagonal wave operator in (22b) to the right yields

κ2
1K1K1C(−2,0)C

†
= κ1K1C(−1,0)C

†
(1,0)K

1
(κ1●),

from which (24a) follows. Commuting the K1 and the κ1 in (22d) to the right and arranging extended indices yields

κ1κ̄1′K
1
C †
(−2,0)K

1C †
= κ̄1′K

1
C †
(−1,0)C

†
(1,0)K

1
(κ1●)

= κ̄1′K
1
C †C †K1

(κ1●),

from which (24b) follows. From these factorizations, the self-adjointness (23) of TME and TSI follows from the property (A1) of the adjoint
of compositions. ◽

Lemma 4 naturally leads to variational principles for the TME and the TSI. These, together with conservation laws, will be discussed in a
separate paper. Here, however, we use the self-adjointness to prove the main result of this section.

Theorem 5. Let ϕAB be a solution to the source-free Maxwell equation (17) on a vacuum background of Petrov type D.
1. With the operators S, E, O, T defined above, we have the identity

SE = OT, (26)

and the map
ϕAB ↦ (S†ϕ)AA′ = (C

†
(2,0)K

1K1
(κ2

1ϕ))AA′
(27)

generates a new complex vector potential for a solution to the vacuum Maxwell equation.
2. With the operators Ŝ,E, Ô,T defined above, we have the identity

ŜE = ÔT, (28)

and the map
ϕAB ↦ (Ŝ

⋆

ϕ)AA′ = (K
1
C †
(0,2)K

1
(κ1κ̄1′ϕ))AA′

(29)

generates a new complex vector potential for a solution to the vacuum Maxwell equation.

Proof. The operators can be viewed as different parts of third order operators,

(30)

so the identities (26) and (28) follow by construction. The rest follows from Theorem 1 by using (21) and (23). ◽

Remark 6. In Ref. 6, among others, second order symmetry operators for the source-free Maxwell equation (17) are completely classified. In
particular, on a vacuum Petrov type D background the list contains, besides second Lie derivatives along isometries, one linear operator and one
antilinear operator. Both operators were presented in terms of complex vector potentials, AAA′ and BAA′ , and a comparison reveals

(S†ϕ)AA′ = (C
†
(2,0)K

1K1
(κ2

1ϕ))AA′

= (K1C †
(2,0)K

1
(κ2

1ϕ))AA′

= BAA′ , (31a)

(Ŝ
⋆

ϕ)AA′ = (K
1
C †
(0,2)K

1
(κ1κ̄1′ϕ))AA′

= 1
3(Cκ̄)

B
A′(K1

(κ1ϕ))AB
+ κ̄1′(K

1
C †K1

(κ1ϕ))AA′

= AAA′ . (31b)

This shows that all irreducible, in the sense that they do not factor into first order symmetry operators, and second order symmetry operators for
the Maxwell equation (17) on vacuum type D backgrounds follow from the adjoint operator argument.
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We collect further properties of the complex vector potentials in

Corollary 7. Let ϕAB be a solution to the source-free Maxwell equation (17) on a vacuum background of Petrov type D.

1. The vector potential (27) satisfies

(D(2,0)S
†ϕ) = 0, (32)

(TS†ϕ)AB = (Oϕ)AB = 0. (33)

The first equation can be interpreted as a generalized Lorenz gauge, and the second one states that the anti-self-dual field strength of the
vector potential vanishes on-shell. The self-dual field strength reads

χ̄A′B′ = (TS†ϕ)A′B′ . (34)

This is the antilinear symmetry operator of Ref. 6. In particular, it follows that taking the real part of the complex vector potential, (27)
does not alter the (self-dual) field strength due to the complex conjugate of (33).

2. The vector potential (29) satisfies

(T Ŝ
⋆

ϕ)A′B′ = (Ôϕ)A′B′ = 0, (35)

which states that its self-dual field strength vanishes on-shell. The anti-self-dual field strength reads

ψAB = (TŜ
⋆

ϕ)AB. (36)

This is the linear symmetry operator of Ref. 6. Here, again, it follows that taking the real part of the complex vector potential, (27) does not
alter the (anti-self-dual) field strength due to the complex conjugate of (35).

In Sec. IV, we find that the complex potentials (metrics) in the linearized gravity case on a type D background do have both self-dual and
anti-self-dual field strength (curvature) and hence taking the real part does have an effect in that case.

Remark 8. In general, for a complex vector potential αAA′ , there is an anti-self-dual and a self-dual field strength

ϕAB = (Cα)AB, π̄A′B′ = (C
†α)A′B′ , (37)

solving the left and right Maxwell equations

(C †ϕ)AA′ = 0, (Cπ̄)AA′ = 0. (38)

The equations are not coupled and the last equation can be read as the complex conjugate of (C †π)AA′ = 0, so it is sufficient to analyze one of
the equations. In addition, because E is a real operator, the above argument goes through for π̄A′B′ with the symmetry operators being complex
conjugates of (34) and (36). Therefore, with constants c1, c2, c3, and c4, the general irreducible symmetry operator reads

(
ψ
χ̄ ) =

⎛

⎝

c1TŜ
⋆

c2TS⋆

c3TS† c4TŜ
†
⎞

⎠
(
ϕ
π̄ ). (39)

The operator K1 performs a sign-flip on one of the extreme components, for example, in S2,0, the spinor (K1ϕ)AB has GHP components
(K1ϕ)0 = ϕ0, (K1ϕ)1 = 0, (K1ϕ)2 = −ϕ2. We note the following operator identity for S† acting on the sign-flipped field,

(S†K1φ)AA′ = (κ2
1K1C †φ)AA′ + (TK2κ2

1φ)AA′ . (40)

If φAB is a source-free Maxwell field, it states that the left-hand side is a pure gauge vector potential because the right-hand side is a gradient
(the first term vanishes for Maxwell fields). The analog for linearized gravity has recently been derived in Ref. 14, see (78) below, and will be
used to construct a symmetry operator from the TSI in Subsection IV B. Next, we provide an interpretation of the two symmetry operators
(34) and (36) in the sense of connecting it to the concepts of potentials and separability.

B. Hertz potentials, Debye potentials, and Teukolsky separability
To discuss the antilinear symmetry operator (34), we briefly recall the Hertz potential construction for spin-1 on a curved background

along the lines of Ref. 7 (Sec. III). Let P̄A′B′ ∈ S0,2 be a Hertz potential, i.e., solving the Hertz equation
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(C †CP)A′B′ = − 2(C †G)A′B′ , (41)

with some (arbitrary) Nisbet gauge spinor GAA′ (on Minkowski space, setting GAA′ = 0, the Hertz equation is given by ◻P̄A′B′ = 0). Then, αAA′ ,
generated via the Hertz map

αAA′ = (CP)AA′ + 2GAA′ , (42)

is a complex vector potential, and its anti-self-dual field strength,

χAB = (Cα)AB, (43)

solves the Maxwell equation (17) on any background as follows from a commutator. The self-dual field strength (C †α)A′B′ vanishes identically
because of (41). This implies that taking the real part of (42) does not change the field strength (43).

Restricting to a vacuum type D background and choosing

GAA′ = PA′
B′UB′A, (44)

the Hertz equation (41) becomes

(C †C(0,−2)P)A′B′ = 0, (45)

which is a diagonal wave operator, cf. the complex conjugate of (16). It is actually the complex conjugate of the TME (22b), if we set

PA′B′ = κ̄2
1′(K

1K1ϕ̄)A′B′ . (46)

With this choice of PA′B′ and the gauge (44), the field strength (43) of the Hertz map is the complex conjugate of the antilinear symmetry
operator (34). Note that only the gauge choice (44) converts the Hertz equation into the TME and only in this case can the Hertz map be
interpreted as a symmetry operator.

Because the Hertz equation in the form (45) is diagonal, one can choose PA′B′ to have only one nonvanishing dyad component. This
weighted scalar is called Debye potential and solves (up to rescaling by κ̄1′ ) either one of the scalar TMEs (C4) in case it is an extreme
component, or the Fackrell-Ipser equation (DT(−2,0)K2ϕ) = 0 in case it is the middle component. If one chooses the Hertz potential to be
a (rescaled) Maxwell field, then each of its three components, used as Debye potential, leads to the same new solution (42). To see this in
terms of the symmetry operator, it is important to make use of the freedom to modify the symmetry operator by terms vanishing due to
the field equations. The situation is similar to the scalar wave operator ◽ on Kerr and its Carter symmetry operator Q = ∇aKab∇

b, with Kab
being the Killing tensor. The linear combination Q ±Σ◽, for a specific function Σ, is “purely radial” or “purely angular” and leads directly to
separation of variables. We present the components of the antilinear symmetry operator (34) in (C7) in Appendix C and here instead look at
an alternative form in

Lemma 9. The antilinear symmetry operator (34) can be represented in the form

χ̄A′B′ = (TS†ϕ)A′B′ ± (TS†K1ϕ)A′B′ , (47)

with the second term vanishing for solutions of the field equations [see (40)]. For the plus sign, the components are (see Appendix C)

χ̄0′ = 2ð′ð′(κ2
1ϕ0),

χ̄1′ = 2(þ′ð′ + τ̄þ′)(κ2
1ϕ0),

χ̄2′ = 2þ′þ′(κ2
1ϕ0),

(48a)

depending only on ϕ0 and for the minus sign, they are

χ̄0′ = 2þþ(κ2
1ϕ2),

χ̄1′ = 2(þð + τ̄′þ)(κ2
1ϕ2),

χ̄2′ = 2ðð(κ2
1ϕ2),

(48b)

depending only on ϕ2.

Equation (48) are the Debye maps previously discussed, e.g., in Refs. 7, 10, and 21. The difference between (48a) and (48b) is the TSI (C5)
which leads us to interpret the antilinear symmetry operator (34) as a covariant characterization of the Teukolsky-Starobinsky constant, see
Ref. 4 for an explicit proof in the Kerr case. From the above, it also follows that the gradient term on the right-hand side of (40) maps between
ingoing and outgoing radiation gauge.
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The extreme components of the operator (34) can alternatively be made “purely angular” or “purely radial” by choosing another form as
follows:

Lemma 10. The antilinear symmetry operator (34) can be represented in the form

χ̄A′B′ = (TS†ϕ)A′B′ ± (K
1κ2

1C
†
(−2,0)K

1C †ϕ)A′B′ , (49)

with the second term vanishing on solutions. For the plus sign, the components are

χ̄0′ = 2ð′ð′(κ2
1ϕ0), (50a)

χ̄1′ = (þð + τ̄′þ)(κ2
1ϕ2) + (þ′ð′ + τ̄þ′)(κ2

1ϕ0), (50b)

χ̄2′ = 2ðð(κ2
1ϕ2), (50c)

while for the minus sign, they are

χ̄0′ = 2þþ(κ2
1ϕ2), (51a)

χ̄1′ = (þð + τ̄′þ)(κ2
1ϕ2) + (þ′ð′ + τ̄þ′)(κ2

1ϕ0), (51b)

χ̄2′ = 2þ′þ′(κ2
1ϕ0). (51c)

Note that the four representations (48a), (48b), (50), and (51) of the antilinear symmetry operator lead to the same field χ̄A′B′ . This
freedom in the representation may be important in the analysis of further properties of the symmetry operator.

Next, we consider the linear symmetry operator (36). Its GHP components are given in (C6), and here, we consider again an alternative
form with the additional term being, up to a multiplying function, the TME operator (22b).

Lemma 11. The linear symmetry operator (36) can be represented in the form

ψAB = (TŜ
⋆

ϕ)AB ± κ1κ̄1′(K1K1C(−2,0)C
†ϕ)AB, (52)

with the second term vanishing on solutions. It leads to the “purely angular” extreme components

ψ0 = 2ð(κ1κ̄1′(ð′ − 2τ′))ϕ0 + 1
3(κ̄1′Lξ − κ1Lξ̄)ϕ0, (53a)

ψ2 = 2ð′(κ1κ̄1′(ð − 2τ))ϕ2 −
1
3(κ̄1′Lξ − κ1Lξ̄)ϕ2, (53b)

for the plus sign and to the “purely radial” extreme components

ψ0 = 2þ(κ1κ̄1′(þ
′
− 2ρ′))ϕ0 −

1
3(κ̄1′Lξ + κ1Lξ̄)ϕ0, (54a)

ψ2 = 2þ′(κ1κ̄1′(þ − 2ρ))ϕ2 + 1
3(κ̄1′Lξ + κ1Lξ̄)ϕ2, (54b)

for the minus sign.

See (C8) for the Lie derivative of weighted scalars. The difference between (53) and (54) is the TME (C4), see also Ref. 17 (Sec. 5.4). This
leads us to interpret the linear symmetry operator (36) as a covariant characterization of the TME separability (and therefore of the Teukolsky
separation constant, see Ref. 4 for an explicit proof in the Kerr case).

Summarized, we succeeded calculating both irreducible symmetry operators for Maxwell on vacuum type D backgrounds using the
adjoint operator method and self-adjointness of the TME and TSI.

IV. SPIN-2
Let δgABA′B′ = δgBAB′A′ be the spinorial form of a symmetric tensor field representing a linearized metric and define the irreducible parts

GABA′B′ ∶= δg(AB)(A′B′), /G∶= δgC
C

C′
C′ . (55)

Note that δgABA′B′ is not a symmetric spinor, but GABA′B′ is. We use the covariant spinor variational operator ϑ developed in Ref. 22. It
is invariant under linearized tetrad rotations which allows us to do calculations covariantly. For relations to linearized dyad components
(Newman-Penrose scalars), which involve the linearized tetrad, see Ref. 22 (Remark 6). We can express the variation of the three irreducible
curvature spinors ΨABCD, ΦABA′B′ and Λ on a vacuum background as differential operators acting on the linearized metric via

ϑΛ = − 1
24(DDG) + 1

32(DT /G), (56)

ϑΦABA′B′ =
1
2 GCD

A′B′ΨABCD + 1
2(C

†CG)ABA′B′ + 1
6(TDG)ABA′B′ −

1
8(TT /G)ABA′B′ , (57)

ϑΨABCD = −
1
4 /G ΨABCD + 1

2(CCG)ABCD. (58)
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It is convenient to introduce a modification of the linearized Weyl spinor ϑΨABCD,

ϕABCD ∶= ϑΨABCD + 1
4 /G ΨABCD. (59)

In a type D principal frame, this modification only affects the middle component. A variation of the Einstein spinor on a vacuum background
without sources leads to the spinorial form of the linearized Einstein equation

ϑE ∶= −2ϑΦABA′B′ − 6εABε̄A′B′ϑΛ = 0. (60)

Multiplied by a factor of −2, the operator reads

−2ϑE = −∇AA′∇BB′δgC
C

C′
C′ +∇CC′∇AA′δgB

C
B′

C′ +∇CC′∇BB′δgA
C

A′
C′
−∇CC′∇

CC′δgABA′B′

− εABε̄A′B′∇DD′∇CC′δgCDC′D′ + εABε̄A′B′∇DD′∇
DD′δgC

C
C′

C′ . (61)

A computation shows that this operator is self-adjoint. On a Petrov type D background, the irreducible components of (61) lead to the matrix
equation

(
ϑΦ
3ϑΛ) = (

E − 1
8 TT

− 1
8 DD 3

32 DT
)(

G
/G),

with

E : S2,2 → S2,2, E ∶= 1
2 C †C + 1

6 TD + 1
2Ψ2(K1K1

−K0K2
). (62)

This operator is real and self-adjoint,

E†
= E⋆ = E = E, (63)

as follows from Appendix A. To define the T-operator, we consider the map from linearized metric to its Weyl-curvature (58). Because the
trace term only contributes to the middle component on a type D background in a principal frame, and we are interested in the extreme
components only, we define

T : S2,2 → S4,0, T ∶= 1
2 CC (64)

so that (59) is equivalent to (TG)ABCD = ϕABCD. Because the equations are considerably more complicated for linearized gravity than in the
spin-1 case, we investigate the TME and TSI separately in Subsections IV A and IV B and interpret the resulting symmetry operators in
Subsection IV C.

A. The TME and a fourth order symmetry operator
In this section, we derive an operator identity based on the TME, analogous to (26) in the spin-1 case. Because (62) is the linearized trace-

free Ricci spinor of a trace-free metric, (EG)ABA′B′ = (ϑΦ[G,0])ABA′B′ , we can use the spin-2 TME with sources, derived in Ref. 14, Eq. (3.13),
given by

κ4
1(P2K1C(−4,0)CϑΦ)ABCD = (CC †

(4,0)K
1P2κ4

1ϑΨ)ABCD + 3Ψ2(K1P2κ4
1ϑΨ)ABCD. (65)

Motivated by (65), define the operators

S : S2,2 → S4,0, S ∶= κ4
1P2C(−4,0)C, (66)

O : S4,0 → S4,0, O ∶= CC †
(4,0)κ

4
1P2 + 3Ψ2κ4

1P2. (67)

Equation (65) could have been written without the K1 operators, see the Proof of Theorem 13 below for details.
The modified linearized curvature ϕABCD of any source-free solution of the linearized Einstein equation (60) on a vacuum type D

background solves the TME

(Oϕ)ABCD = 0. (68)

See (C9) for the GHP component form. Remarkable properties of this operator are summarized in

Lemma 12. The TME operator is †-self-adjoint,

O†
= O. (69)
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Furthermore, it factorizes, up to a potential term, into
O = F†F + 3Ψ2κ4

1P2, (70)
with

F : S4,0 → S3,1, F ∶= C †
(2,0)P

2
(κ2

1●). (71)

Proof. Because (67) is diagonal, we can apply another (idempotent) spin-2 projector without altering the result and commute κ2
1 out to

get

O = κ2
1P2C(−2,0)C

†
(2,0)(P

2κ2
1●) + 3Ψ2κ4

1P2

= F†F + 3Ψ2κ4
1P2.

From this, the †-self-adjointness of O follows. ◽

Theorem 13. With the operators S, E, O, T defined above, we have the identities

SE = OT, (72a)
STT = 0. (72b)

If GABA′B′ is the trace-free part of a solution to the source-free vacuum linearized Einstein equation (60) with modified
curvature ϕABCD = (TG)ABCD, then the map

ϕABCD ↦ (S†ϕ)ABA′B′ = (C
†C †
(4,0)P

2κ4
1ϕ)ABA′B′ (73)

generates a new complex solution to the source-free vacuum linearized Einstein equation.

Proof. Applying another K1 to (65), using K1K1P2
= P2, and identifying the operators (67) lead to identity (72a) for the trace-

free part of the linearized metric. The right-hand side of (65) does not depend on /G, and therefore, (SϑΦ[0, /G])A′B′C′D′ = 0, where
(ϑΦ[0, /G])ABA′B′ = (TT /G)ABA′B′ . This proves the identity (72b).

From Theorem 1 together with the self-adjointness of E and O given in (63) and (69), respectively, it follows that (73) maps into the
kernel of E. The adjoint of (72b) yields

DDS†ϕ = 0, (74)
which ensures that (73) has vanishing Ricci scalar curvature. Hence, it generates new solutions to linearized gravity from solutions to the TME
(68). ◽

For later reference, we define

hABA′B′ ∶= (S†ϕ)ABA′B′ (75)
for the new complex metric generated from TME solutions via (73). Analogous to Corollary 7 for spin-1, we collect the curvature of the new
solution in

Lemma 14. The complex linearized metric (75) has a self-dual and an anti-self-dual curvature

χ̄A′B′C′D′ = (Th)A′B′C′D′

= 1
2(C

†C †C †C †
(4,0)P

2κ4
1ϕ)A′B′C′D′ , (76a)

ψABCD = (Th)ABCD

= 1
2(CCC †C †

(4,0)P
2κ4

1ϕ)ABCD

= 1
2Ψ2κ3

1(LξK1P2ϕ)ABCD. (76b)

The last equality holds on-shell.

Proof. The first equation is just an expansion of the operators and (76b) follows from

ψABCD =
1
2(CC †Oϕ)ABCD −

1
2Ψ2(Oϕ)ABCD + 1

2Ψ2κ3
1(LξK1P2ϕ)ABCD, (77)

which is an operator identity when starting with the first equality in (76b). This operator identity follows from a lengthy calculation involving
the commutator of CC †. ◽
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Note that the anti-self-dual curvature (76b) reduces to first order and (77) is the analog of (33). Restricting to the real or imaginary part
of (73) leads to a mixture of the two curvatures. An interpretation of the symmetry operator is given in Subsection IV C.

B. The TSI and a sixth order symmetry operator
In this section, we derive an operator identity based on the TSI, analogous to (28) in the spin-1 case. The covariant form of the spin-2

TSI can be deduced from the identity, derived in Ref. 14, Eq. (4.19),

(S†K1ϕ)ABA′B′ = (TA)ABA′B′ + 1
2Ψ2κ3

1(LξG)ABA′B′ + (N̂ϑΦ)ABA′B′ , (78)

where the S† operator is given in (73) and

N̂ ∶= − κ4
1K0K2T(−7,0)K

2C − 3Ψ2κ4
1K1 + κ4

1K1C †
(−4,0)C + 4

3κ
4
1T(−7,0)K

2C, (79)

AAA′ ∶= −
1
2Ψ2κ3

1ξ
BB′
(K0K2G)ABA′B′ + 2

3κ
3
1ξ

B
A′(K1K2ϕ)AB + (K1TK2K2

(κ4
1ϕ))AA′ −

1
4Ψ2κ4

1(K1T(2,0) /G)AA′ + 2
3κ1

4
(K2CϑΦ)AA′ . (80)

The right-hand-side of (78) can be shown to be a complex, trace-free solution to the source-free linearized Einstein equation if (GABA′B′ , /G)
is, see Ref. 14 (Corollary 4.3). The same holds for the left-hand-side of (78). The analog of (78) in the spin-1 case is (40), and there it is a
pure gauge vector potential. Here, the last term on the right-hand side of (78) is the trace-free part of a linearized diffeomorphism but the first
term is not.

By applying 1
2 C †C †, or equivalently the T operator, to (78) we get the corresponding self-dual curvature. It turns out to be convenient

to apply P2
to pick out the extreme components and a K1

operator to flip the sign on one of them. This combination of operators on the
Lie derivative term just gives a Lie derivative of the complex conjugated curvature. The (TA)ABA′B′ term is the trace-free part of a linearized
diffeomorphism and will therefore not contribute to the gauge independent extreme components of the curvature. As we will see in Theorem
16, the remaining terms can be compactly expressed in terms of the operators

Ô : S4,0 → S0,4, Ô ∶= 2κ−1
1 κ̄3

1′P
2K1TS†K1, (81a)

Ŝ : S2,2 → S0,4, Ŝ ∶= 2κ−1
1 κ̄3

1′P
2K1TN̂, (81b)

L̂ : S0,4 → S0,4, L̂ ∶= Ψ2κ2
1κ̄

3
1′P

2K1Lξ . (81c)

In particular, the modified curvature ϕABCD = (TG)ABCD of any source-free solution to the linearized Einstein equation (61) on a vacuum
type D background solves the TSI

(Ôϕ)A′B′C′D′ − (L̂ϕ)A′B′C′D′ = 0. (82)

See (C10) for the GHP component form. Remarkable properties of these operators are summarized in

Lemma 15. The operator (81a) is ⋆-self-adjoint,

Ô⋆ = Ô, (83)
and the Lie derivative term (81c) is †-self-adjoint,

L̂†
= L̂. (84)

Furthermore, (81a) factorizes into

Ô = − F̂⋆F̂, (85)
with

F̂ : S4,0 → S2,2, F̂ ∶= C †C †K1κ3
1P2. (86)

Proof. Using an extended index identity, we get

Ô = P2κ̄3
1′K

1
C †C †C †C †K1κ3

1P2
= − F̂⋆F̂.

From this, the ⋆-self-adjointness of Ô is manifest. (84) follows directly from the adjoints given in Appendix A. ◽

Theorem 16. With the operators Ŝ,E, Ô,T defined above, we have the identities

ŜE = ÔT − L̂T, (87a)

ŜTT = 0. (87b)
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If GABA′B′ is the trace-free part of a solution to the source-free vacuum linearized Einstein equation (60) with modified curvature
ϕABCD = (TG)ABCD, then the real part of the map

ϕABCD ↦ (Ŝ
⋆

ϕ)ABA′B′ = − 2(N̂⋆T†K1P2κ3
1κ̄
−1
1′ ϕ)ABA′B′ (88)

generates a new solution to the source-free vacuum linearized Einstein equation.

For convenience, we state the adjoints of (79) and (64) explicitly,

N̂⋆ = 1
3 κ̄

4
1′C(0,−4)K

0
D(0,3) − κ̄

4
1′C(0,−4)C

†K1
− 1

4 κ̄
4
1′C(0,−4)K

0
D(0,3)K

0K2
+ 3Ψ̄2κ̄4

1′K
1
, (89a)

T†
= 1

2 C †C †. (89b)

Proof. Applying the operatorP2K1T to the identity (78) and identifying the different pieces with the operators (81) give the relation (87a)
after finding that the (TA)ABA′B′ term can be seen as the trace-free part of a linearized diffeomorphism, which will not contribute to the gauge
invariant extreme components of the curvature. The only terms in (78) that depends on /G are (TA)ABA′B′ and (N̂ϑΦ)ABA′B′ , but as we have
already concluded, the (TA)ABA′B′ term does not contribute to the extreme components of the curvature. Therefore, (ŜϑΦ[0, /G])A′B′C′D′ = 0,
where (ϑΦ[0, /G])ABA′B′ = (TT /G)ABA′B′ . This gives the identity (87b).

The ⋆-adjoint of (87a), using the self-adjointness of the operators Ô (83), L̂ (84), and E (63), yields

(EŜ
⋆

φ)ABA′B′ = (T⋆Ôφ)ABA′B′ − (T
⋆L̂φ)ABA′B′ . (90)

We want to use a solution of the TSI (82) to generate new solutions, but the right-hand side of the last equation is not of that form. However,
taking the real part of the “new metric,” we find

(E(Ŝ
⋆

ϕ + Ŝ†ϕ̄))ABA′B′ = (T⋆(Ôϕ − L̂ϕ̄))ABA′B′ + (T†
(Ôϕ̄ − L̂ϕ))ABA′B′ . (91)

Now, the two terms on the right-hand side contain the right-hand side of (87a) and its complex conjugate. Therefore, solutions of the TSI (82)
generate metrics in the kernel of the E operator. The adjoint of (87b) gives

DDŜ
⋆

ϕ = 0. (92)

As the DD operator is real, we see that also the linearized scalar curvature of the new metric vanishes. Hence, the mapping
ϕABCD ↦ Re(Ŝ

⋆

ϕ)ABA′B′ to the real part generates new solutions to linearized gravity from solutions to the TSI equation (82). ◽

For later reference, we define
kABA′B′ ∶= Re(Ŝ

⋆

ϕ)ABA′B′ (93)

for the new real metric generated from TSI solutions via (88). Since the metric is real, its self-dual curvature is the complex conjugate of the
anti-self-dual curvature and hence it is sufficient to calculate the latter via

ψABCD = (Tk)ABCD

= 1
2(TŜ

⋆

ϕ)ABCD + 1
2(TŜ

†
ϕ̄)ABCD. (94)

The first part cannot be reduced by the field equations, but at least the extreme components of the second part can be reduced due to the
following identity:

2(P2TŜ
⋆

ϕ)A′B′C′D′ = (P
2
C †CÔϕ)A′B′C′D′ − Ψ̄2(P

2Ôϕ)A′B′C′D′ . (95)

Next, we provide an interpretation along the lines of the spin-1 case.

C. Hertz potentials, Debye potentials, and Teukolsky separability
To discuss the complex metric (75), we briefly recall the Hertz potential construction for linearized gravity on a vacuum type D back-

ground similar to Ref. 7 (Sec. V). Let P̄A′B′C′D′ be a Hertz potential with vanishing nonextreme components with respect to a principal dyad,
i.e., a symmetric spinor solving the Hertz equation

(C †C(0,4)P̄)A′B′C′D′ + 3Ψ̄2P̄A′B′C′D′ = 0. (96)

Then, the complex, symmetric spinor HABA′B′ generated via the Hertz map,
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HABA′B′ = (CC(0,4)P̄)ABA′B′ , (97)

solves the linearized Einstein equation (60).

Remark 17. In Ref. 7 (Sec. V), the more general Hertz equation

(C †CP̄)A′B′C′D′ + 3P̄A′B′C′D′ Ψ̄2 = (C
†G)A′B′C′D′ , (98)

and Hertz map

HABA′B′ = (CCP̄)ABA′B′ − (CG)ABA′B′ , (99)

with a “gauge” spinor GAA′B′C′ , were proposed. We checked that the linearized Ricci scalar vanishes, ϑΛ[H] = 0, but for the trace-free Ricci spinor
components, we find, e.g.,

(EH)00′ = − 6Ψ̄2(ð + τ̄′)( 1
4G00′ + P̄0′ τ̄′), (100)

which fixes G00′ . Therefore, GAA′B′C′ is not a freely specifiable gauge field on a curved background. For the case GAA′B′C′ = −4P̄A′B′C′D′ ŪD′
A, which

has components G00′ = −4P̄0′ τ̄′,G01′ = 0,G02′ = 0, G03′ = 4P̄4′ ρ̄,G10′ = −4P̄0′ ρ̄′,G11′ = 0,G12′ = 0,G13′ = 4P̄4′ τ̄, we end up with (96) and (97).
This choice was made in the course of the proof in Ref. 7 (Sec. V).

The operator in (96) is diagonal, cf. the complex conjugate of (16). It is actually the complex conjugate of the TME operator (67), if we
set

PA′B′C′D′ = κ̄4
1′(P

2ϕ̄)A′B′C′D′ . (101)

With this choice of PA′B′C′D′ , the Hertz map (97) is the complex conjugate of the symmetry operator (73) viewed as a map from metric to
metric, HABA′B′ = h̄ABA′B′ . This shows that the spin-2 Hertz potential formalism on vacuum type D backgrounds can be understood as the
symmetry operator (73).

Because (96) is diagonal, one can choose the Hertz potential PA′B′C′D′ to have only one nonvanishing extreme dyad component. This
weighted scalar is called Debye potential and solves (up to rescaling by κ̄1′ ) by construction one of the complex conjugated scalar TMEs (C9).

If we use the linearized curvature as a Hertz potential via (101), the extreme components used as Debye potentials generate different
new solutions to the linearized Einstein equation. However, the difference is not very complicated and we derive it explicitly. We do this
in two steps. First a modification of the symmetry operator analogous to (47) is made, but this modification is not pure gauge on a curved
background. Then, in the second step we add the correction term to have a pure gauge modification and to show that both extreme curvature
scalars generate the same new solution to linearized gravity.

A modification of the symmetry operator (73) of the form [the second term is a solution on its own due to (78), but it is not pure gauge]

h±ABA′B′ = (S
†ϕ)ABA′B′ ± (S†K1ϕ)ABA′B′ (102)

is again a complex solution to linearized gravity, and it depends only on one of the extreme curvature scalars (ϕ0 for + and ϕ4 for −). These
are the Debye potential maps given by the Hertz map (97) with one of the extreme components set to zero. However, we will see that h+

≠ h−,
and contrary to the spin-1 case, the difference is not pure gauge. For completeness, we present the components of the self-dual curvature
χ̄±

A′B′C′D′
= (Th±)A′B′C′D′ and anti-self-dual curvature ψ±

ABCD
= (Th±)ABCD of (102) for the plus sign in (C12) and for the minus sign in (C13)

in Appendix C.
For the second step we note that a pure gauge metric can be constructed from (78) and in the source-free case we have analogous to (40)

(S†K1ϕ)ABA′B′ −
1
2Ψ2κ3

1(LξG)ABA′B′ = (TA)ABA′B′ , (103)

− 1
2Ψ2κ3

1(Lξ /G) = (DA), (104)

where the second equation is given in Ref. 14, Eq. (4.13). The right-hand side are the trace-free and trace parts of a linearized diffeomorphism
(one can discuss the real and imaginary parts separately and deal with real diffeomorphisms), so we can add/subtract this to/from the linearized
metric (75) without changing the actual perturbation,

hABA′B′ =(S†ϕ)ABA′B′ ± ((S†K1ϕ)ABA′B′ −
1
2Ψ2κ3

1(LξG)ABA′B′) (105a)

= h±ABA′B′ ∓
1
2Ψ2κ3

1(LξG)ABA′B′ , (105b)

/h= ∓ 1
2Ψ2κ3

1(Lξ /G). (105c)

Here, we understand (hABA′B′ , /h) as a representative of gauge equivalent metrics, and therefore the equalities here are up to gauge. It follows
that the difference between h+ and h− is a Lie derivative and a gauge transformation. Also note that the gauge transformation introduces a
trace to the linearized metric. Now, using (105b), (C12), and (C13), we get the different forms of the curvature of the metric hABA′B′ .
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Lemma 18. The extreme components of the self-dual and anti-self-dual curvatures of the complex metric hABA′B′ are

χ̄0′ = ð′ð′ð′ð′(κ4
1ϕ0) −

1
2Ψ2κ3

1Lξϕ̄0′ ,

χ̄4′ = þ′þ′þ′þ′(κ4
1ϕ0) −

1
2Ψ2κ3

1Lξϕ̄4′ ,

ψ0 =
1
2Ψ2κ3

1Lξϕ0,

ψ4 = −
1
2Ψ2κ3

1Lξϕ4

(106)

for the plus case and
χ̄0′ = þþþþ(κ4

1ϕ4) + 1
2Ψ2κ3

1Lξϕ̄0′ ,

χ̄4′ = ðððð(κ4
1ϕ4) + 1

2Ψ2κ3
1Lξϕ̄4′ ,

ψ0 =
1
2Ψ2κ3

1Lξϕ0,

ψ4 = −
1
2Ψ2κ3

1Lξϕ4

(107)

for the minus case. As the corresponding metrics only differ by a linearized diffeomorphism, these extreme curvature components are the same.

Restricting to the real or imaginary part of the metric (105a) leads to linear combinations 1
2(χn + ψn) or 1

2i(χn − ψn) for the self-dual
curvature. The Lie derivative terms make both (106) and (107) dependent of ϕ0 and ϕ4.

Remark 19. If we study the imaginary part of hABA′B′ , we get for the Kerr case Im(h)ABA′B′ = Im(h±)ABA′B′ because GABA′B′ and ξAA′ are
real and Ψ2κ3

1 is a real constant in that case. Hence, it reduces down to the Debye potential case with self-dual curvature 1
2i(χ

±

n
− ψ±

n
) given by

(C12) and (C13).

An alternative point of view can be obtained by noting that P2T on (103) gives

(P2TTA)A′B′C′D′ = (P
2TS†K1ϕ)A′B′C′D′ −

1
2Ψ2κ3

1(P
2Lξϕ̄)A′B′C′D′ (108a)

= 1
2κ1κ̄−3

1′ ((K
1Ôϕ)A′B′C′D′ − (K

1L̂ϕ̄)A′B′C′D′). (108b)

The left-hand side vanishes because the extreme curvature components are gauge invariant, and the right-hand side vanishes because of the
TSI. Summarized, the extreme components of ϕABCD can be used as a Hertz potential via (101), or each one of them as a Debye potential. Our
analysis shows that the difference between these three possibilities is the TSI and Lie derivatives.

Similar to (50) and (51) for the spin-1 case, we can write the extreme components of the curvature of (75) in “purely angular” or “purely
radial” form by adding/subtracting the TSI in a different way.

Lemma 20. The extreme components of the self-dual curvature (76a) can be represented in the form

χ̄A′B′C′D′ = (TS†ϕ)A′B′C′D′ ±
1
2κ1κ̄−3

1′ ((Ôϕ)A′B′C′D′ − (L̂ϕ̄)A′B′C′D′) (109)

with the second term vanishing on solutions. The components read

χ̄0′ = ð′ð′ð′ð′(κ4
1ϕ0) −

1
2Ψ2κ3

1Lξϕ̄0′ , (110a)

χ̄4′ = ðððð(κ4
1ϕ4) + 1

2Ψ2κ3
1Lξϕ̄4′ . (110b)

for the plus sign and

χ̄0′ = þþþþ(κ4
1ϕ4) + 1

2Ψ2κ3
1Lξϕ̄0′ , (111a)

χ̄4′ = þ′þ′þ′þ′(κ4
1ϕ0) −

1
2Ψ2κ3

1Lξϕ̄4′ . (111b)

for the minus sign.

These alternative forms of the symmetry operator play an important role for its invertibility.
Finally, we consider the sixth order symmetry operator (88). Recall that the analogous (i.e., from the TSI operator identity) symmetry

operator in the spin-1 case encoded TME separability. This cannot work here due to the mismatched number of derivatives of the symmetry
operator and the TME (however, see Remark 22) but we find the following:

Lemma 21. On a Schwarzschild background, the extreme components of the curvature (94),

ψABCD =
1
2(TŜ

⋆

ϕ)ABCD + 1
2(TŜ

†
ϕ̄)ABCD, (112)
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after simplification due to field equations take the form

ψ0 = κ6
1(ðð

′ + 2Ψ2 + 2ρρ′)(ðð′ + Ψ2 + ρρ′)ðð′ϕ0,

ψ4 = κ6
1(ð
′ð + 2Ψ2 + 2ρρ′)(ð′ð + Ψ2 + ρρ′)ð′ðϕ4.

(113)

In a principal frame, we have Ψ2 = −
M
r3 , ρρ′ = 2M−r

2r3 , with M being the mass of the black hole and r being the areal radius coordinate. Since
κ1 ∝ Ψ−1/3

2 , we choose κ1 = −r/3 so that κ2
1Ψ2 + κ2

1ρρ′ = −1/18 and (113) is almost the spin-weighted spherical Laplacian to the power three (the
difference is a constant shift in the eigenvalues).

This can be seen through direct component calculations and the following argument. As we assume that ϕABCD satisfies both TME and
TSI, we can use the identity (95) to reduce the order of the second term in (112) due to the TSI. The first term however, will remain sixth order,
but we can use the TME to eliminate the þþ′ derivatives after commutations. The lower order terms from the second term in (112) cancel with
the lower order terms from the first term so that we finally end up with (113).

Remark 22. It should be noted that on a generalized Kerr-NUT spacetime (real ξAA′ ), the operator [similar to (52) in the spin-1 case]
defined by

S : S4,0 → S4,0, S ∶= κ1P2K1C(−1,1)κ̄1′K
1
C †
(−3,0)P

2
− κ1K1P2Lξ , (114)

is a second order symmetry operator for the TME. In GHP form, the non-vanishing components are (cf. Theorem 5.4.1 in Ref. 17)

(Sϕ)0 =2κ1κ̄1′(ð − τ − τ̄′)(ð′ − 4τ′)ϕ0 + (κ̄1′ − κ1)Lξϕ0 − κ−3
1 κ̄1′(Oϕ)0, (115a)

(Sϕ)4 =2κ1κ̄1′(ð′ − τ̄ − τ′)(ð − 4τ)ϕ4 + (κ1 − κ̄1′)Lξϕ4 − κ−3
1 κ̄1′(Oϕ)4. (115b)

If we assume that ϕ0 and ϕ4 satisfy the TME, then on a Schwarzschild spacetime, we get (Sϕ)0 = 2κ2
1ðð′ϕ0 and (Sϕ)4 = 2κ2

1ð′ðϕ4. Therefore,
(113) can be written in terms of the S operator, which gives a relation to the TME separation constants. It is an open question if the sixth
order operator can be factored also on the Kerr spacetime. Even though (114) is a symmetry operator for the TME, it cannot be interpreted as
a symmetry operator for linearized gravity, but the sixth order operator comes from a linearized metric and can therefore be cast into a form
mapping linearized metrics to linearized metrics.

V. CONCLUSIONS
In this paper, we have shown that for the Maxwell equations and linearized gravity on vacuum spacetimes of Petrov type D, the covariant

TME and TSI equations can separately be cast into self-adjoint form. This was used to construct a symmetry operator in each of the cases
which was then related to various concepts such as Hertz and Debye potentials or TME separability. Moreover, the self-adjointness naturally
leads to variational principles for the TME and TSI. A recent application of the corresponding canonical energy for the spin-2 TME in the
Schwarzschild geometry for the discussion of linear stability by Prabhu and Wald is given in Ref. 23. We expect the symmetry operators
to play an important role in the general study of decay estimates for spin-1 and spin-2 similar to the scalar wave equation case in Ref. 12.
The modifications of the operators with terms vanishing on-shell may open up the possibility to invert certain potential maps and lead to
a generalization of the decay results of Ref. 24 to a curved background. Finally, the self-adjoint TSI for linearized gravity leads to a new
conservation law which we plan to discuss in a separate paper.
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APPENDIX A: ADJOINTS
In this section, we collect the †- and ⋆-adjoints of the algebraic and differential operators introduced in Sec. II. First of all, for a general

composition of operators A and B, we have

(AB)† = B†A†, (AB)⋆ = B⋆A⋆. (A1)

For general constants n, m, the adjoints of the extended fundamental spinor operators (10) are given by
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(D(n,m))
†
= −T(−n,−m), (C(n,m))

†
= C †

(−n,−m), (A2a)

(T(n,m))
†
= −D(−n,−m), (C †

(n,m))
†
= C(−n,−m), (A2b)

(D(n,m))
⋆
= −T(−m,−n), (C(n,m))

⋆
= C(−m,−n), (A2c)

(T(n,m))
⋆
= −D(−m,−n), (C †

(n,m))
⋆
= C †

(−m,−n). (A2d)

The adjoints of the algebraic K-operators (14) are

K0†
= − 4K2, K1†

= −K1, K2†
= − 1

4K
0, (A3a)

K0†
= − 4K2

, K1†
= −K1

, K2†
= − 1

4K
0
, (A3b)

K0⋆
= − 4K2

, K1⋆
= −K1

, K2⋆
= − 1

4K
0
, (A3c)

K0⋆
= − 4K2, K1⋆

= −K1, K2⋆
= − 1

4K
0. (A3d)

Multiplication by a scalar, e.g., κ1 or Ψ2 is a self-adjoint operation. For the projection operators (15), we find

(Ps
)
†
= Ps, (Ps

)
⋆
= Ps

. (A4)

The Lie derivative is skew-adjoint,

(Lξ)
†
= −Lξ . (A5)

APPENDIX B: K-OPERATOR COMMUTATORS
To avoid clutter in the notation, we present the commutators as operators which can be applied to arbitrary elements ofS(k,l), where k and

l are large enough so that the combination of operators on the left-hand side is properly defined. n, m used below are arbitrary constants. The
proof is straightforward but tedious. Examples can be found in Ref. 14 (Lemma 2.9). Complex conjugating these identities gives commutators
for the K operators.

Lemma B.1. Commuting the K-operator outside the extended fundamental spinor operators on Sk,l yields

D(n,m)K
2
= K2D(n+1,m), (B1a)

C †
(n,m)K

2
= K2C †

(n+1,m), (B1b)

C(n,m)K
2
= K2C(n−1,m) −

1
k+1K

1D(n+k,m), (B1c)

T(n,m)K
2
= K2T(n−1,m) −

1
k+1K

1C †
(n+k,m), (B1d)

D(n,m)K
1
=
(k−1)(k+2)

k(k+1) K1D(n,m) + 2
kK

2C(n−k−1,m), (B1e)

C †
(n,m)K

1
=
(k−1)(k+2)

k(k+1) K1C †
(n,m) + 2

kK
2T(n−k−1,m), (B1f)

C(n,m)K
1
= K1C(n,m) + 1

2(k+1)K
0D(n+k+1,m), (B1g)

T(n,m)K
1
= K1T(n,m) + 1

2(k+1)K
0C †
(n+k+1,m), (B1h)

D(n,m)K
0
=

k(k+3)
(k+1)(k+2)K

0D(n−1,m) −
4

k+2K
1C(n−k−2,m), (B1i)

C †
(n,m)K

0
=

k(k+3)
(k+1)(k+2)K

0C †
(n−1,m) −

4
k+2K

1T(n−k−2,m), (B1j)

C(n,m)K
0
= K0C(n+1,m), (B1k)

T(n,m)K
0
= K0T(n+1,m). (B1l)
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Corollary B.2. Commuting the K-operator inside the extended fundamental spinor operators on Sk,l yields

K2D(n,m) = D(n−1,m)K
2, (B2a)

K2C †
(n,m) = C †

(n−1,m)K
2, (B2b)

K2C(n,m) =
(k−1)(k+2)

k(k+1) C(n+1,m)K
2 + 1

k+1 D(n+k+1,m)K
1, (B2c)

K2T(n,m) =
(k−1)(k+2)

k(k+1) T(n+1,m)K
2 + 1

k+1 C †
(n+k+1,m)K

1, (B2d)

K1D(n,m) = D(n,m)K
1
− 2

k C(n−k,m)K
2, (B2e)

K1C †
(n,m) = C †

(n,m)K
1
− 2

k T(n−k,m)K
2, (B2f)

K1C(n,m) =
k(k+3)

(k+1)(k+2)C(n,m)K
1
− 1

2(k+1)D(n+k+2,m)K
0, (B2g)

K1T(n,m) =
k(k+3)

(k+1)(k+2)T(n,m)K
1
− 1

2(k+1)C
†
(n+k+2,m)K

0, (B2h)

K0D(n,m) = D(n+1,m)K
0 + 4

k+2 C(n−k−1,m)K
1, (B2i)

K0C †
(n,m) = C †

(n+1,m)K
0 + 4

k+2 T(n−k−1,m)K
1, (B2j)

K0C(n,m) = C(n−1,m)K
0, (B2k)

K0T(n,m) = T(n−1,m)K
0. (B2l)

Lemma B.3. Commuting two K-operators on Sk,l yields

K2K0
=
(k−1)(k+2)

k(k+1) K0K2
− 4

k+2K
1K1, (B3a)

K1K0
= k

k+2K
0K1, (B3b)

K2K1
= k−2

k K1K2, (B3c)

K1K1
= Id − k−1

k K0K2, (B3d)

where Id is the identity operator.

APPENDIX C: GHP FORM
Given a spinor dyad (oA, ιA), any spinor φA1...AkA′1...A

′

l
∈ Sk,l can be represented in terms of its (k + 1) (l + 1) Newman-Penrose scalars

φij′ = φA1...AkA′1...A
′

l
ιA1 . . . ιAi oAi+1 . . . oAk ῑA

′

1 . . . ῑA
′

j ōA′j+1 . . . ōA′l . (C1)

In particular, the Weyl spinor ΨABCD corresponds to the five complex Weyl scalars Ψ0, . . ., Ψ4. The dyad normalization oAιA = 1 is invariant
under the transformation oA → λoA, ιA → λ−1ιA with λ being a nonvanishing, complex scalar field. Consequently, (C1) transforms as a section
of a complex line bundle,

φij′ → λpλ̄qφij′ , (C2)
with p = k − 2i, q = l − 2j, and it is said to be of type {p, q}. The Levi-Civita connection ∇AA′ lifted to the complex line bundles of weighted
fields is denoted by ΘAA′ , and its dyad components are the weighted GHP operators

þ = oAōA′ΘAA′ , þ′ = ιA ῑA
′

ΘAA′ , (C3a)

ð = oA ῑA
′

ΘAA′ , ð′ = ιAōA′ΘAA′ . (C3b)

The remaining (properly weighted) complex connection coefficients are denoted by ρ, ρ′, τ, τ′, κ, κ′, σ, σ′, and only the first four are nonzero
with respect to a principal tetrad on vacuum type D spacetimes. Background and more details about the GHP formalism can be found in the
original work.25 In this section, we collect the dyad components of various covariant operators introduced in Secs. III and IV.
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1. Spin-1
The components of the TME operator (22b) are

(Oϕ)0 = −
κ1

κ̄1′
þ(κ1κ̄1′(þ

′
− 2ρ′))ϕ0 +

κ1

κ̄1′
ð(κ1κ̄1′(ð′ − 2τ′))ϕ0 + 1

3κ1Lξϕ0, (C4a)

(Oϕ)1 = 0, (C4b)

(Oϕ)2 = −
κ1

κ̄1′
þ′(κ1κ̄1′(þ − 2ρ))ϕ2 +

κ1

κ̄1′
ð′(κ1κ̄1′(ð − 2τ))ϕ2 −

1
3κ1Lξϕ2. (C4c)

The components of the TSI operator (22d) are

(Ôϕ)0′ = −
κ̄1′

κ1
þþ(κ2

1ϕ2) +
κ̄1′

κ1
ð′ð′(κ2

1ϕ0), (C5a)

(Ôϕ)1′ = 0, (C5b)

(Ôϕ)2′ = −
κ̄1′

κ1
þ′þ′(κ2

1ϕ0) +
κ̄1′

κ1
ðð(κ2

1ϕ2). (C5c)

The components of the linear symmetry operator (36) are

ψ0 =þ(κ1κ̄1′(þ
′
− 2ρ′))ϕ0 + ð(κ1κ̄1′(ð′ − 2τ′))ϕ0 −

1
3κ1Lξ̄ϕ0, (C6a)

ψ1 =
1
2(þ

′ + ρ′)(κ1κ̄1′(ð′ − 2τ′))ϕ0 + 1
2(ð

′ + τ′)(κ1κ̄1′(þ
′
− 2ρ′))ϕ0

+ 1
2(þ + ρ)(κ1κ̄1′(ð − 2τ))ϕ2 + 1

2(ð + τ)(κ1κ̄1′(þ − 2ρ))ϕ2, (C6b)

ψ2 =þ′(κ1κ̄1′(þ − 2ρ))ϕ2 + ð′(κ1κ̄1′(ð − 2τ))ϕ2 + 1
3κ1Lξ̄ϕ2. (C6c)

The components of the antilinear symmetry operator (34) are

χ̄0′ = þþ(κ2
1ϕ2) + ð′ð′(κ2

1ϕ0), (C7a)

χ̄1′ = (þð + τ̄′þ)(κ2
1ϕ2) + (þ′ð′ + τ̄þ′)(κ2

1ϕ0), (C7b)

χ̄2′ = þ′þ′(κ2
1ϕ0) + ðð(κ2

1ϕ2). (C7c)

The Lie derivative of ϕAB components along ξ is given by

Lξϕ0 = − 3κ1(ρ′þ − ρþ′ − τ′ð + τð′ −Ψ2)ϕ0, (C8a)

Lξϕ1 = − 3κ1(ρ′þ − ρþ′ − τ′ð + τð′)ϕ1, (C8b)

Lξϕ2 = − 3κ1(ρ′þ − ρþ′ − τ′ð + τð′ + Ψ2)ϕ2, (C8c)

2. Spin-2
The components of the TME operator (67) are

(Oϕ)0 = −
κ3

1

κ̄1′
þ(κ1κ̄1′(þ

′
− 4ρ′))ϕ0 +

κ3
1

κ̄1′
ð(κ1κ̄1′(ð′ − 4τ′))ϕ0 + κ3

1Lξϕ0, (C9a)

(Oϕ)1 = 0, (Oϕ)2 = 0, (Oϕ)3 = 0, (C9b)

(Oϕ)4 = −
κ3

1

κ̄1′
þ′(κ1κ̄1′(þ − 4ρ))ϕ4 +

κ3
1

κ̄1′
ð′(κ1κ̄1′(ð − 4τ))ϕ4 − κ3

1Lξϕ4. (C9c)

The components of the operator (81a) are

(Ôϕ)0′ = −
κ̄3

1′

κ1
þþþþ(κ4

1ϕ4) +
κ̄3

1′

κ1
ð′ð′ð′ð′(κ4

1ϕ0), (C10a)

(Ôϕ)1′ = 0, (Ôϕ)2′ = 0, (Ôϕ)3′ = 0, (C10b)

(Ôϕ)4′ = −
κ̄3

1′

κ1
þ′þ′þ′þ′(κ4

1ϕ0) +
κ̄3

1′

κ1
ðððð(κ4

1ϕ4). (C10c)
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The Lie derivative of ϕABCD components along ξ is given by

Lξϕ0 = − 3κ1(ρ′þ − ρþ′ − τ′ð + τð′ − 2Ψ2)ϕ0, (C11a)

Lξϕ1 = − 3κ1(ρ′þ − ρþ′ − τ′ð + τð′ −Ψ2)ϕ1, (C11b)

Lξϕ2 = − 3κ1(ρ′þ − ρþ′ − τ′ð + τð′)ϕ2, (C11c)

Lξϕ3 = − 3κ1(ρ′þ − ρþ′ − τ′ð + τð′ + Ψ2)ϕ3, (C11d)

Lξϕ4 = − 3κ1(ρ′þ − ρþ′ − τ′ð + τð′ + 2Ψ2)ϕ4. (C11e)

The curvature components of the Debye map given by the metric (102) for the plus sign are given by

χ+
0′
= ð′ð′ð′ð′(κ4

1ϕ0), (C12a)

χ+
1′
= (þ′(ð′ − τ̄) + 3ρ′τ̄ − 6ρ̄′τ̄ + 3ρ̄′τ′)(ð′ + 2τ̄)(ð′ + 2τ̄)(κ4

1ϕ0), (C12b)

χ+
2′
= ((ð′ − τ̄)þ′ + 6ρ′τ̄ − 12ρ̄′τ̄ + 6ρ̄′τ′)((ð′ + 2τ̄)(þ′ + 3ρ̄′) + ρ′τ̄ − 2ρ̄′τ̄ + ρ̄′τ′)(κ4

1ϕ0), (C12c)

χ+
3′
= (ð′(þ′ − ρ̄′) + 3ρ′τ̄ − 6ρ̄′τ̄ + 3ρ̄′τ′)(þ′ + 2ρ̄′)(þ′ + 2ρ̄′)(κ4

1ϕ0), (C12d)

χ+
4′
= þ′þ′þ′þ′(κ4

1ϕ0), (C12e)

ψ+
0
= Ψ2κ3

1Lξϕ0, (C12f)

ψ+
1
= 0, ψ+

2
= 0, ψ+

3
= 0, ψ+

4
= 0, (C12g)

and for the minus sign, we get

χ−
0′
= þþþþ(κ4

1ϕ4), (C13a)

χ−
1′
= (ð(þ − ρ̄) + 3ρ̄τ + 3ρτ̄′ − 6ρ̄τ̄′)(þ + 2ρ̄)(þ + 2ρ̄)(κ4

1ϕ4), (C13b)

χ−
2′
= ((ð − τ̄′)þ + 6ρ̄τ + 6ρτ̄′ − 12ρ̄τ̄′)((ð + 2τ̄′)(þ + 3ρ̄) + ρ̄τ + ρτ̄′ − 2ρ̄τ̄′)(κ4

1ϕ4), (C13c)

χ−
3′
= (þ(ð − τ̄′) + 3ρ̄τ + 3ρτ̄′ − 6ρ̄τ̄′)(ð + 2τ̄′)(ð + 2τ̄′)(κ4

1ϕ4), (C13d)

χ−
4′
= ðððð(κ4

1ϕ4), (C13e)

ψ−
0
= 0, ψ−

1
= 0, ψ−

2
= 0, ψ−

3
= 0, (C13f)

ψ−
4
= −Ψ2κ3

1Lξϕ4. (C13g)

Restricting to the real or imaginary part of the metric (102) leads to the linear combinations 1
2(χ

±

n
+ ψ±

n
) or 1

2i(χ
±

n
− ψ±

n
) for the self-dual

curvature.
We note that on vacuum type D background, the identities

ð′ð′ð′ð′(κ4
1ϕ0) = (ð′ − τ̄)(ð′ − τ̄)(ð′ − τ̄)(ð′ + 3τ̄)(κ4

1ϕ0),

þ′þ′þ′þ′(κ4
1ϕ0) = (þ′ − ρ̄′)(þ′ − ρ̄′)(þ′ − ρ̄′)(þ′ + 3ρ̄′)(κ4

1ϕ0),

and their GHP-primed and c.c. versions follow from the Ricci identities. This connects the more compact form presented here to the equations
given in Refs. 10, 8, and 9.
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