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Abstract

We present linear stability studies performed with the newly developed CASTOR3D
code. This code is a very flexible and versatilely applicable numerical tool to study the
stability properties of 3D equilibria. Ideal external kink modes of a quasi-axisymmetric
(QA) equilibrium are investigated taking into account effects of parallel viscosity, plasma
flow, and resistive walls. The results are compared with those obtained for an axisymmet-
ric approximation of this equilibrium. Two major differences in the stability properties are
found: (i) The QA equilibrium is vertical stable, while the axisymmetric equilibrium is ver-
tical unstable. (ii) A mode of the QA equilibrium only oscillates, when the plasma rotates
with a minimum rotation frequency, or faster. This mininum rotation frequency depends on
the n*-type of mode (with n* being the dominant toroidal Fourier harmonic contributing
to the mode). Resistive wall structures in combination with plasma flow, however, lead to
resistive wall modes and/or plasma modes for both types of equilibria.
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1 Introduction

Three-dimensional tokamak and stellarator equilibria are in the focus of present fusion research.
While stellarators are characterized by a complex 3D magnetic field topology, 3D tokamaks are
devices with weakly broken axisymmetry. Reasons for the asymmetry of tokamak configura-
tions are e.g. three-dimensional resistive wall structures which can reduce the growth rates of
external modes [1, 2, 3], and magnetic perturbation fields [4]. The latter are applied to mitigate,
or even to suppress edge localized modes (ELMs) [35, 6]. In quasi-axisymmetric (QA) configu-
rations [7] the rotational transform is partly produced by coil currents, while the magnetic field
strength is approximately independent from the toroidal Boozer coordinate [8]. That is, these
configurations have common properties with tokamaks and stellarators. The question, whether
a QA configuration can be found that unites the positive properties of tokamaks and stellara-
tors, is currently investigated [9]. The design of 3D fusion devices, as well as the analysis and
interpretation of the corresponding plasma discharges require appropriate numerical tools that

are able to handle their complex geometry.

There are several 2D reduced and full Magneto HydroDynamic (MHD), linear stability codes
which take into account important physical effects, such as, resistivity, viscosity, and plasma
flow, (e.g. MARS [10], CASTOR _FLOW [11], MISHKA-F [12]), drift-kinetic effects on re-
sistive wall modes (MARS-K [13]), and the stabilizing effects of thick 3D walls (CarMa [14]).
However, in their present forms all these codes can only be applied to 2D axisymmetric equi-
libria. There are also 3D linear stability codes (e.g. CAS3D [15], TERPSICHORE [16], etc.),
but these are ideal stability codes relying on the energy principle. To our knowledge, the newly
developed, linear stability CASTOR3D code [17] is presently the only linear stability code that
works for 2D and 3D equilibria, and takes plasma resistivity, viscosity, and torodial flow into

account.

The CASTOR3D code is a hybrid version of the linear stability CASTOR_3DW code [18],
and the resistive wall mode STARWALL code [3], which uses the thin wall approximation.
Both code parts have been modified and extended considerably. Their general 3D formulation
allows to use various kinds of flux coordinates. There is no limitation to ideal wall structures
or resistive time scales, because the extended eigenvalue problem describes simultaneously
the plasma perturbation and the corresponding currents in the external conducting structures.
Depending on the complexity of the conducting structures, they are either discretized by a
spectral method, or by triangular finite elements where the resistivity in each triangle may be
different.

Several code extensions and improvements have been made in comparison to the preceding
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code version described in Ref. [17]. In addition to plasma resistivity, the current code version
includes the effects of parallel viscosity, and plasma flow in the direction of (quasi-)symmetry.
The coupling of the linear MHD and the vacuum equations via the perturbed magnetic vector
potential allows the solution of an extendend eigenvalue problem including the effects of plasma
resistivity, parallel viscosity, and plasma flow. This non-hermitian eigenvalue problem is solved
by using the parallelized SLEPc-Krylov-Schur solver [19].

During the optimization process of QA stellarator equilibria [9] also a highly compact, but rather
unstable configuration was found. Because of its relatively simple geometry and its instability,
this QA equilibrium is studied in the following. It provides an excellent test case to demon-
strate the large variety of possible applications of the CASTOR3D code. In order to illustrate
similarities and differences of the stability properties of axisymmetric and quasi-axisymmetric
configurations, also an axisymmetric approximation of this stellarator configuration is investi-

gated.

The paper is organized as follows. In section 2 necessary extensions and modifications of the
eigenvalue problem are described. The properties of the considered equilibria are summarized
in section 3. In section 4 linear stability studies are presented for ideal, external kink modes
(section 4.1) taking into account the effects of parallel viscosity (section 4.2), plasma flow
(section 4.3), and resistive wall structures (section 4.4). Code properties and obtained results
are summarized in section 5, and in the appendix the numerical accuracy of the computations is

discussed.

2 Extensions and modifications of the extended eigenvalue problem

The numerical methods used in the CASTOR3D code are described in detail in [17] and [3].
However, the linearized MHD equations used in [17] do not take into account plasma flow
and parallel viscosity, and the extended eigenvalue problem is only solved for an ideal plasma.
Using the gauge B =VxA, E =—)A, with B and E being the perturbations of magnetic and
electric fields [20], the single-fluid, resistive MHD equations including flow and viscosity [11]

read as follows:

Ao =—Vo-Vp— pV-Vo — Vg — poV-7, (1)

Moot = =p(Vo-V)Vo—po((Vo- V)T + (5-V) Vo) = V(poT + pTp) /m



—V -7+ (VX Bo) x (Vx A) + (V< (V x A)) x By)/ pho, 2)

AT = ~Vo-VT — (I = )TV -V — &-VT — ([ = )T,V -7, G)
A/f-%X(ng)—kﬁxéo—ﬂiVx(fof). “4)
0

Here, p, v, T, and A describe the perturbations of density, velocity, temperature and magnetic
vector potential, respectively. The time dependence of the perturbed quantities is taken to be
~ M, with \ = v + iw. The real part of A denotes the growh rate, and w describes the
oscillation frequency of the mode. The quantities py and 7j represent the unperturbed density
and temperature, while m, p, 7, and I' (I' = 5/3) indicate particle mass, vacuum permability,

plasma resistivity, and compressibility.

Symmetric and quasi-symmetric plasma configurations can rotate almost freely in the direction
of (quasi-)symmetry [21]. Therefore, we use the general ansatz for the plasma velocity

T = - Q(s)7. (5)
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Here, s, v, u are the curvilinear coordinates with the radial coordinate, s, being defined as the
square root of the normalized toroidal flux, v being the toroidal, and u being the poloidal coordi-
nate. The rotational frequency, €2, is only a function of s. The toroidal coordinate v corresponds
to the direction of symmetry for (i) axisymmetric equilibria using axisymmetric straight field
line coordinates [22, 20], (ii) axisymmetric and almost axisymmetric 3D tokamak configura-
tions using the flux coordinates of the NEMEC code [23, 24], and (iii) QA configurations using
Boozer coordinates [8]. That is, this general ansatz of the plasma flow holds for various types

of symmetries provided the proper coordinates are chosen.

Toroidal flow in combination with dissipation in the plasma may open a stability window within
a certain distance range of an external wall [25, 10]. In a first step, we indroduce a simple form
of the parallel viscosity

=V = AU (6)

with the velocity perturbation, ¥, dynamic viscosity coefficient, /1, and the Laplace operator in
parallel direction, A||. The latter is defined by

Ay=bb-V)(b(b-V)) (7

with the unit vector, b = g—g, pointing in direction of the equilibrium magnetic field, By =
BYr,, +B"T,.



As described in detail in [17] and [3], the vacuum equations are derived from a Lagrangian using
a variational method. There, the solution for the perturbation of the vacuum vector potential can
be generated by surface currents on the plasma-vacuum boundary, and on the resistive and ideal
wall structures. This Lagrangian contains the boundary term | s, dfp[?p - A with [?p being
the divergence-free surface current density at the plasma boundary, S,, and A"* being the

perturbation of vector potential at this boundary.

The tangential component of the electric field perturbation is continuous at the plasma boundary

1, x BV = 17, x E (8)
with n,, being the normal vector of the plasma surface in outward direction. Using E=— %—’f =
M together with Ohm’s law (4), the boundary condition (8) reads

— ]_ - — — — —
1, x A = =S (0, - BYVy + (1, - ) By + Miﬁp < (VxB)) =1, x 4. 9)
0

Equation (9) reduces to the boundary condition used in [17] in case of an ideal plasma without
flow. There, the vacuum equations are coupled with the MHD equations via the radial velocity
perturbation 7i,, - ¥ at the plasma boundary (71, X Avae — —%((n} X)) By). However, (9) offers
also a much simplier way, namely

1, x AV = 12 % A. (10)

Using this relation and performing the transformations

1y - (K x (1, x A7) = i, - (K, x (17, x A) (11)
yields
K, A" =K, A (12)

That is, the vacuum equations can also be coupled with the MHD equations via the vector
potential perturbation of the plasma, A. This coupling is independent of the explicit form of
Ohm’s law (4).



3 Equilibria

The considered QA equilibrium is characterized by geometrical and physical quantities listed in
Table 1. Based on this equilibrium, an axisymmetric equilibrium has been computed by leaving
pressure, rotational transform and plasma beta unchanged, and defining the plasma boundary
by the n=0 Fourier harmonics of the QA boundary. As shown in Table 1, the axisymmetric
equilibrium has similar properties as the quasi-axisymmetric one. However, the toroidal plasma
current of the axisymmetric equilibrium is larger since most of the poloidal field has to be
created by this current, and not by complicated shaped external coils as in the QA case.

Table 1: Properties of the quasi-axisymmetric and axisymmetric equilibria.

quantity unit quasi-axisym.  axisym.
aspect ratio: A 4.113 4.038
major radius: Ry [m] 12.290 12.069
minor radius: ag [m] 2.988 2.923
min. inboard radius: Rmin [m] 7.860 9.694
max. outboard radius: RIS [m] 14.995 14.444
plasma volume: |4 [m?] 1900.006 2035.614
rot. transform (axis): la 0.095 0.095
rot. transform (boundary): Ly 0.557 0.557
toroidal plasma current: Lo, [MA] -8.890 -12.402
poloidal plasma current: Jpol [MA] -3.700 -1.666
total toroidal flux: Dy [Wb] 125.256 137.00
total poloidal flux: W0t [Wb] 67.327 73.639
pressure (axis): Da [kPa] 574.060 574.060
magnetic field strength (axis): B, [T] 4.749 4.728
plasma beta: <[> [%] 2.949 2.929

Figure 1 shows three cross-sections of the QA equilibrium at the toroidal angles ¢ = 0,45
and 90° in comparison with the cross-section of the axisymmetric approximation. The profiles
of pressure, rotational transform and toroidal current are presented in Fig. 2. Since the rota-
tional transform, ¢, is greater 0.5 (safety factor ¢ < 2) at the plasma boundary, these equilibria
are highly unstable with respect to ideal, external kink modes. Therefore, these equilibria are
excellent test cases for the CASTOR3D code.



[
I

¥
I

El E E
= 0F Y — = 0F -
N N N
2+ 2+ - 2+ -
af- — 4 - A -
6 — 6 — 6 —
il ] il ] il ] il ] 1 I 1 I 1 I 1 I 1 ] il ] il ] L
6 8 10 12 14 8 10 12 14 10 12 14 16
R [m] R [m] R [m]

Fig. 1: Cross-sections of the QA equilibrium (black) at the toroidal angles ¢ = 0, 45, and 90°

in comparison with its axisymmetric approximation (red).
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Fig. 2 (a) Rotational transform and normalized pressure profiles, which are identical for the

quasi-axisymmetric and the axisymmetric configurations, and (b) toroidal current profiles.

Quasi-axisymmetry means that in Boozer coordinates the magnetic field strength is independent
of the toroidal coordinate. However, this symmetry is only fulfilled approximately. Due to the
design of the considered equilibrium [9], the deviation from the quasi-axisymmetry is smallest
around S ~ 0.4—0.5 (S = s? being the normalized toroidal flux), while it increases in direction
to the magnetic axis and to the plasma boundary. Figure 3 shows the magnetic field strength
at the plasma boundary for the QA equilibrium and the axisymmetric approximation of this

equilibrium.



6.122 6.187

5.882 5.940

- s —

5.642 5.693

5.402 5.446

51625 5190 E
) ~ - )

4922 4.952

4.682 4.705

4.441 4.458

(a)

(b)

4.201 4.211

Fig. 3 Magnetic field strength at the plasma boundary for (a) the QA equilibrium, and (b) the

axisymmetric approximation.

4 Linear stability studies

4.1 Ideal external kink modes

The considered QA stellarator configuration and its axisymmetric approximation are unstable
with respect to various ideal, external kink modes. Solving the non-hermitian eigenvalue prob-
lem for a sub-group of eigenvalues by using the parallelized SLEPc Krylov-Schur Solver [19],
sets of unstable eigenvalues are obtained. The eigenmodes are identified by viewing the cor-
responding eigenfunction Fourier spectra of these eigenvalues. For this purpose, we use the
Fourier spectrum of the radial velocity perturbation, because it corresponds to the normal dis-
placement. While the modes of axisymmetric equilibria are characterized by their toroidal mode
number n, for 3D equilibria several n-harmonics couple together and contribute to the Fourier
spectrum of the perturbation. In the latter case, we use the dominant n-harmonic of the Fourier
spectrum, which we call n*, to characterize these modes and their eigenvalues. This mode la-
beling is very useful and physically justified, as we will show below. It is n* = n for the modes
of the axisymmetric equilibrium. In the following, we will use the lable n* for the modes of the
2D and 3D equilibria. More details on the mode labeling, the used sets of toroidal and poloidal

Fourier harmonics, and the numerical accuracy of the results are given in the appendix.
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The growth rates as function of n* are shown for the axisymmetric and the quasi-axisymmetric
equilibrium in Fig. 4. Because of the two-periodic QA stellarator configuration, there exist
two mode families, that is, an odd (n = 1,3,5,...) and an even (n = 0,2,4,...) one. Only
the harmonics of a mode family couple together. In contrast to the axisymmetric equilibrium,
the eigenvalues of the two orthogonal solutions of each mode of the QA equilibrium are not
degenerated. The differences between these two eigenvalues decrease with growing n*, because
the larger n*, the higher the m of the leading Fourier harmonic, and the more similar are the
mode structures, as illustrated in Figs 5, 6 and 7. Although, the quasi-axisymmetric equilibrium
and its axisymmetric approximation are also unstable with respect to higher n*-modes, we
restrict our studies to n* < 7. The influence of the 3D geometry is largest for low-n* modes,

and the computational effort grows with increasing n*.

In Figs 5, 6, and 7 the real parts of the complex and conjugate-complex Fourier harmonics,
and the corresponding mode structures of the radial velocity perturbation are shown for the
n*=2, 3, and 7 external kink modes. Due to the stellarator symmetry of the quasi-axisymmetric
configuration, the eigenfunctions are sine- and cosine-type functions, respectively. While the
labeling of modes presented in Fig. 5 and Fig. 7 by n*=2 and n*=7 is unambiguous (the dom-
inant n-harmonics are n = 2 and n = 7, respectively), this is not so easy to see for the n*=3
mode illustrated in Fig. 6 . As shown in the upper plot of Fig. 6b, the contributions of the n=7
harmonics are larger than the n=3 ones in case of the cosine-type mode. However, the eigen-
values of the sine- and cosine-type modes are very similar. There exists no further cosine-type
mode with large n=3 contributions, and, last but not least, there is another mode with unam-
biguous n*=7 character (see Fig. 7). The eigenvalue of that cosine-type mode fits very well to

the eigenvalue of the n*=7, sine-type mode, and the mode structures are also very similar.
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Fig. 6: Fourier spectra and modes structures of the radial velocity perturbations of the n*=3

modes of the odd mode family.
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Fig. 7: Fourier spectra and mode structures of the radial velocity perturbations of the n*=7

modes of the odd mode family.

As shown in Fig. 4, the eigenvalues obtained for the axisymmetric approximation are similar
to the QA results. This similarity confirms the physical relevance of the chosen mode label-
ing. However, there is one important difference between the two equilibrium configurations.
While the axisymmetric equilibrium is vertical unstable (n*=0 mode, see Figs 4 and 8), the QA
equilibrium is stable with respect to this mode type due to its non-axisymmetric shape [26, 27].
Nevertheless, the n=0 harmonics contribute to the growth rates of the even mode family. As

already described in detail in [17], the implemented many-valued current potentials [28] in the
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STARWALL part [3] of the CASTOR3D code allow a correct treatment of the m=0, n=0 har-
monic. In order to allow for a net-poloidal current in the vacuum region that originates from
this kind of perturbation, thin, ideally conducting, toroidal field coils are arranged in the vacuum
region surrounding the plasma. The contribution of the m=0,n=0-harmonic to the growth rate
of the vertical instability shown in Fig. 8 amounts to ~ 10% (with m=0: v=306336 1/s, with-
out m=0: v=271440 1/s). The Fourier spectra of the components of the velocity perturbation,
shown in Fig. 8b-d, illustrate that the 0/0-harmonic contributes via the poloidal and toroidal ve-
locity perturbations to the vertical instability. The effect of this harmonic on the growth rates of
the even mode family of the QA equilibrium is much smaller. It amounts to ~ 1% (with m=0:
v=338421 1/s, without m=0: ~v=334731 1/s) for the n*=2, sine-type mode, and is negligible

small for all others.

Note, here and in the subsequent sections the characterization of the modes by sine-type or
cosine-type always refers to the Fourier spectrum of the radial velocity perturbation. That is,
the notations sine-type and cosine-type modes are the acronyms for modes with sine-type and
cosine-type Fourier spectra of the radial velocity perturbations, respectively. The types of the
eigenfunction Fourier spectra of all perturbed quantities are listed in Table 2. For the definitions
of the radial velocity 0" , toroidal velocity ©;'", poloidal velocity ©;", density p™", tem-
perature 7™ | radial vector potential A;””, toroidal vector potential fl;’”‘” and poloidal vector

potential Fourier harmonics AZ‘” see [17].

Table 2: Eigenfunction Fourier specta types of the perturbated quantities.
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Fig. 8 (a) Mode structure of the vertical instability of the axisymmetric equilibrium. The vectors

characterize the velocity perturbation in the R-Z plane. (b)-(d) Fourier spectra of the radial,

poloidal and toroidal velocity perturbations.

4.2 Effect of the parallel viscosity

For more realistic stability studies, especially in case of a rotating plasma, the viscous force has
to be taken into account [25, 10, 29, 30]. In a first step, we implemented the parallel viscous
damping Eq.(6) in the CASTOR3D code. The dynamic viscosity coefficient, p;, may be a
function of the radial coordinate, but here we use contstant values. Figure 9 shows the growth

rates as functions of ;.

10
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Fig. 9: Growth rates as functions of the parallel dynamic viscosity coefficient, j|, for various
n*-modes. (a) Odd mode family, and (b) even mode family of the QA equilibrium in comparison

with the corresponding growth rates obtained for the axisymmetric approximation (dotted lines
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with full circles). The solid and dashed lines mark the cosine and sine-type modes of the QA
configuration, respectively.

First of all, the growth rates of the QA equilibrium and of its axisymmetric approximation
show the same behaviour. The parallel viscosity has a negligible effect on the growth rate for
p < 1 kg/ms, while there is a slight damping for 1 < p; < 10 kg/ms. Eventually, for
p < 10 kg/ms the growth rates quickly decrease with growing parallel viscosity. A very
rough estimate of p| ~ /vafhpa/kH yields a value in the range of 1 < 1 < 10 kg/ms for these
high-£, collisionaless equilibria (see also Table 1) using || ~ /7, wave vector kj ~ 1/Ry,
density p, ~ 1077 %, and ion thermal velocity v ~ 10° 2. In the subsequent computations
either no viscosity is taken into account, or z; = 50 kg/ms is used. This large value has been
chosen, because it leads to a noteworthy effect, and is, therefore, suitable to demonstrate the
capability of the CASTOR3D code to deal with parallel viscosity in combination with plasma

flow, and/or resistive wall structures in case of 2D and 3D equilibria.

As shown in Fig. 9a, the parallel viscosity damps the two n*=1 modes of the QA equilibrium
very differently. It reduces the growth rate of the sine-type mode less. Figures 10 and 11 show
that the viscosity modifies the mode structure of the n*=1, sine-type mode, while the structure

of the cosine-type mode is almost unchanged.
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Fig. 10: Sine-type eigenfunctions: Fourier spectra and mode structures of the radial veloc-

ity perturbations of the n*=1 mode of the odd mode family (a) without, and (b) with parallel
VISCOSILty.
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Fig. 11: Cosine-type eigenfunctions: Fourier spectra and mode structures of the radial veloc-

ity perturbations of the n*=1 mode of the odd mode family (a) without, and (b) with parallel

ViSCosity.

4.3 Effect of the plasma flow

Now we invesigate the effect of the plasma flow on the plasma stability of the QA equilibrium
and its axisymmetric approximation. For this purpose, we use the normalized toroidal rotation
profile shown in Fig. 12, which is defined by the polynomial (s) = Q(1 — 0.7s?), with Qg
being a free parameter that determines the plasma rotational frequency at the magnetic axis.
We consider subsonic rotational frequencies in the range of 0 < ¢ < 100000 rad/s, which
correspond to Mach numbers < 0.42 or /4 < 0.1 with Q4 being the Alfvén rotational
frequency. Furthermore, we compare results obtained with (x; = 50 kg/ms), and without
parallel viscosity. Static equilibria are only approximations in case of large Mach numbers
(2 0.2 [11]). However, most of the presented results are obtained for smaller Mach numbers,
and the used static equilibria are only test configurations to demonstrate the large variety of
possible applications of the CASTOR3D code.
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Fig. 12: Normalized torodial rotation profile.
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Fig. 13: Absolute values of the oscillation frequencies of the n*=1,3,7 modes for the axisym-
metric (solid lines) and the QA equilibrium (dotted lines with full circles) (a) without, and (b)

with parallel ion viscosity (i = 50 kg/ms) taken into account.
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two orthogonal solutions.
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Varying () in the defined range, we found a remarkable difference in the behaviour of the QA
and the axisymmetric configurations. In the latter, the toroidal rotation of the plasma leads to an
oscillation of the perturbations. The oscillation frequencies of the modes, w, are proportional
to the rotation frequency of the plasma, €2y, as shown in Fig. 13. In these double logarithmic
representation w (solid lines) linearly increases with ;. However, the behaviour of the QA
configuration is different. There, a minimum plasma rotation frequency is required for the
mode to oscillate. As illustrated in Fig. 13 (dotted lines with full circles), each mode type has
its individual minimum frequency which we will call threshold frequency, €2,..s. While the
mode doesn’t oscillate for {2y < (24,5, the oscillation suddenly sets in for 2y > Q5. quickly
increases, and, finally, linearly grows with () as in the axisymmetric case. The reason for this

behaviour is the following.

In axisymmetric geometry the two orthogonal solutions of the eigenvalue problem are degen-
erated, because the toroidal location of the mode doesn’t play a role. This is different in 3D
geometry. There, the two solutions belong to different mode structures which in general have
different eigenvalues (see e.g. Fig. 5). However, in case of a rotating plasma, the difference
of the two eigenvalues, Ay = v, — 75, decreases with increasing €1y, as shown in Figs 14c,d.
When the two eigenvalues become equal, the mode starts to oscillate (see Figs 14e,f). Now,
the various mode structures that the mode undergoes within an oscillation cycle have the same
growth rate, and the mode is free to rotate.
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Fig. 15: (a) Differences of the non-degenerated growth rates of the non-rotating plasma, Ay =

n*

Y1 — 72, and (b) threshold frequencies, (2ip.s, Of the low-n* mode types of both mode families
of the QA configuration. Black circles and red crosses mark the results obtained without, and

with parallel viscosity taken into account.

The threshold frequency, 2.5, is correlated with A+, as illustrated in Fig. 15. There, the
differences of the non-degenerated eigenvalues of the non-rotating plasma, and €2y, are pre-
sented for the low-n* mode types of both mode families of the QA configuration. The two plots

clearly show a correlation. The larger A+, the higher 2;4cs-
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w=-22780 rad/s w=-21928 rad/s w=21928 rad/s

Fig. 16: Oscillation of the radial velocity perturbation of (a) the axisymmetric equilibrium , and
the QA equilibrium with (b) w < 0 and (¢) w > 0 for the n*=1 mode type. Shown are various

time steps within 1/4 oscillation cycle.
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In case of 2y > Qypres (inres = 0 for axisymmetric configurations), the solution of the eigen-
value problem yields two eigenvalues with ; = 5 and w; = —ws. The eigenvalues differ only
in the signs of the oscillation frequencies. However, these opposite signs do not mean opposite
rotation directions of the mode, but indicate a phase shift. That is, both modes undergo the
same oscillation cycle, but the initial mode structures at ¢ = 0 are different. The phase shift is
illustrated for the QA configuration in Fig. 16b,c. Additionally, a time sequence for the axisym-
metric configuration is shown in Fig. 16a. The figures show the radial velocity perturbation of
T, and
T5p denote the periods of one oscillation cycle of the axisymmetric and the QA configuration,

the n*=1 mode type for equidistant time steps within 1/4 oscillation cycle T = 2w—”

respectively. The computations have been performed for 2y = 1-10° rad/s and p = 50 kg/ms.
As indicated by the times, ¢, the phase shift of the QA configuration amounts to ~ 1%Tgp.
Starting the sequences for the QA cases w < 0 (Fig. 16b) and w > 0 (Fig. 16c) at t = 0 and
t = 1%Tg D, respectively, the pattern are the same. In the axisymmetric case the mode oscillation
simply corresponds to a toroidal rotation in direction of the plasma rotation (Fig. 16a), while in

QA symmetry the oscillation looks more complicated (Fig. 16b,c).

4.4 Effect of external wall structures

External wall structures may be able to reduce the growth rates of external modes. While an
ideal wall may stabilize the modes completely, a resistive wall only reduces the growth rates
up to the resistive time scale of the wall. As already shown by Bondeson and Ward [25],
external modes in tokamaks can be fully stabilized by resistive walls, if the plasma rotates at
some fraction of the sound speed. Here, we demonstrate that all these findings also hold for 3D

quasi-axisymmetric stellarators.
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Fig. 17: Cross-sections of plasma boundary (black), and closed wall (blue) of the QA equilib-
rium at the toroidal angles p = 0, 45 and 90°. The distance between plasma boundary and wall

amounts to ~ 25 cm at the outer midplane of the ¢ = 0° cross-section.
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Fig. 18: (a) Cross-sections of plasma boundary (black), closed wall (blue), and wall segment
(red) of the axisymmetric configuration. (b) 3D representation of the axisymmetric wall seg-
ment. The distance between plasma boundary and wall amounts to ~ 24 cm at the outer mid-

plane.

Figures 17 and 18a show hypothetical closed walls for the QA and the axisymmetric equilib-
rium, respectively. The simple geometry of these walls is defined by 2D Fourier series. Fur-
thermore, a wall segment composed by triangles is illustrated in Fig. 18b. The latter is used to
study the growth rate of the vertical instability of the axisymmetric equilibrium as function of
the wall resistivity, 7,,, as shown in Fig. 19. Solving the extended eigenvalue problem for wall
resistivities in the range of 107 < n,, < 1 Qm (wall width: 6,, = 0.5 cm), the growth rates
vary over 6 orders of magnitude from Resistive Wall Mode (RWM) time scales to the no wall

limit. Here, the latter corresponds to v = 286086 1/s.
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We now study the dependencies of growth rates, v, and oscillation frequencies, w, on the
plasma-wall distances of the closed walls. As example, we choose the n*=2 mode, which
is the most unstable of the considered external kink modes (see Fig. 4). The wall distances,
dwal, are measured at the outer midplane of the ¢ = 0° cross-sections of the axisymmetric

and the QA equilibrium, respectively. The computations are performed for various cases: (1)
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ideal wall, no plasma rotation, (ii) resistive wall, no rotation, (iii) resistive wall, plasma rota-

tion 2,=20000 rad/s, and (iv) resistive wall, plasma rotation €2,=50000 rad/s. A parallel ion

viscosity of p = 50 kg/ms is taken into account. We use the same plasma rotation profile

as in section 4.3 (see Fig. 12). Furthermore, for the resistive walls we assume a specific wall
1

conductivity of o, = 56 - 10° o (copper wall) and a wall width of d,, = 0.5 cm (within the

thin wall approximation).
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Fig. 20: (a,c) Growth rates, and (b,c) oscillation frequencies of the n*=2 mode as functions of
the wall distance, d.q;, for (a,b) the axisymmetric and (c,d) the QA equilibrium. The growth
rates are obtained for an ideal closed wall (black), a resistive closed wall (green), and a resistive
closed wall in combination with plasma flow (red: €}y = 20000 rad/s, blue: £y = 50000 rad/s.)
The solid red and blue curves mark the plasma modes, and the dashed curves the resistive wall

modes.
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As shown in Fig. 20, the growth rates and oscillation frequencies obtained for the axisymmetric
and the QA equilibrium show a similar behaviour. In both cases, the ideal wall stabilizes the
n*=2 mode at a certain distance, while the mode remains unstable for all distances in case
of a resistive wall. Taking plasma rotation into account, two mode branches exist (as already
described for tokamaks in [25]). (i) The growth rate of the so-called plasma mode decreases
with shrinking wall distance, while it strongly oscillates. (ii) The growth rate of the resistive
wall mode finally decreases with growing wall distance. The oscillation frequency of this mode
is small. Furthermore, a narrow stability window arises in case of the QA equilibrium and a

toroidal plasma rotation frequency of €2, = 50000 rad/s.

S Summary

Additional extensions and improvements make the CASTOR3D code a versatilely applicable
numerical tool. It computes growth rates and oscillation frequencies of MHD instabilities for
2D and 3D plasma equilibria, taking into account: (i) plasma resistivity, (ii) parallel viscosity,
(ii1) plasma flow in the direction of (quasi-)symmetry, and (iv) ideal and resistive wall structures.
The coupling of the linear MHD and the vacuum equations via the perturbed magnetic vector
potential allows the solution of an extended eigenvalue problem including all those physical ef-
fects. The MPI parallelization of the code, and the use of the parallelized SLEPc-Krylov-Schur
solver for non-hermitian eigenvalue problems allow an efficient solution of large eigenvalue

problems, which is essential in case of 3D configurations.

The linear stability properties of a quasi-axisymmetric stellarator equilibrium have been studied
and compared with the results obtained for the axisymmetric approximation of this equilibrium.
Both equilibria show similar properties with respect to growth rates of external kink modes, and
damping of these modes due to parallel viscosity. Ideal walls may stabilize the external kink
modes, while resistive walls can only reduce their growth rates down to resistive time scales.
Depending on the plasma-wall distance of resistive wall structures, plasma modes and/or re-
sistive wall modes are obtained in case of rotating axisymmetric and quasi-axisymmetric equi-
libria. Stability windows may exist. Besides these similarities, two differences in the stability
properties of axisymmetric and quasi-axisymmetric equilibria have been found: (i) The QA
equilibrium is vertical stable, while the axisymmetric equilibrium is vertical unstable. (ii) In
case of a QA configuration a minimum plasma rotation frequency, €1, is required for the
mode to oscillate. Each mode type has its individual threshold frequency, which is correlated to

the difference of the non-degenerated growth rates of the non-rotating plasma, A~. The larger
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A, the higher €2,,..,. In contrast to a QA configuration, the growth rates of the two orthogonal
solutions of an axisymmetric configuration are degenerated, that is, Ay = 0 and Q.. = 0 for

all mode types.

The reproduction of well known stability properties of axisymmetric equilibria, and the com-
parable results obtained for the QA equilibrium demonstrate that the CASTOR3D provides

compelling results.

Further extensions of the CASTOR3D code are possible, e.g. the application of the code to

equilibria with toroidal flow, or the implementation of heat conductivity, diamagnetic drift, etc.
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Appendix: Numerical accuracy

The non-hermitian linear eigenvalue problem is solved by using the SLEPc Krylov-Schur Solver
[19]. It provides the possibilities to compute all eigenvalues (the number of possible eigenvalues
corresponds to the dimension of the matrix of the eigenvalue problem), or to determine a sub-
group of eigenvalues the user is interested in. In the latter case initial guesses of eigenvalues
and desired numbers of eigenvalues have to be provided. Since we are only interested in the
most unstable low-n external kink modes, we compute only sub-groups of eigenvalues. In a
first step, it is necessary to determine m- and n-harmonics that contribute to an eigenmode, that

is, to determine all m- and n-harmonics necessary for a converged eigenvalue solution.

In case of the axisymmetric approximation of the QA equilibrium each mode is defined by one
toroidal harmonic n, and a spectrum of poloidal harmonics. Total number, m;,;, and region of
the essential poloidal harmonics have to be determined numerically. Since we are interested in
external kink modes, we use poloidal spectra centred around the smallest m-values that fulfill
the condition ™ > ¢, for given n-numbers, and g, = 1/1, = 1.795 being the safety factor at the
plasma boundary (see also Table 1). Starting with these m- harmonics and the correponding 7-
numbers, the number of poloidal harmonics is increased in each of the subsequent computations
by two (e.g. computations for the n = 5 external kink mode: 1. computation: m;,; = 1, m=9,
2. computation: My, = 3, 8 < m < 10, ..., 9. computation: m,; = 17, 1 < m < 17). In case

of the n = 0 vertical instability we start with m = 0, 1 and end up withm = 0, 1, ..., 16.

In Fig. 21 the growth rates as function of m,,; are shown for n=0,1,2,5 and 7. These results
demonstrate that 13 poloidal harmonics are enough to obtain converged eigenvalues with an
inaccuracy < 0.1% for this simple axisymmetric equilibrium. These results also show that
the eigenvalues of the two orthogonal solutions per n (represented by crosses and circles) are

completely degenerated because of the axisymmetry of the equilibrium.
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The 3D geometry of the quasi-axisymmetric stellarator equilibrium causes a coupling of the
toroidal-harmonics. That is, not only several m-harmonics, but also several n-harmonics con-
tribute to an eigenmode. We have to determine the m- and n-Fourier spectra of the essential
harmonics contributing to a mode. This is done in an anlogue manner, as it is described above
for the axisymmetric case, but now it is a 2D problem. Using the same poloidal Fourier spectra
per n as in the axisymmertic case, the total number of considered n-harmonics, 7., is increased
step by step. Because of the two-periodic QA stellarator configuration, two mode families exist
(odd mode family: (n = 1,3,5,...), and even mode family: (n = 0,2,4,...)), which can be
investigated separately. The toroidal harmonics of the two mode families don’t couple because

of the 2-periodic geometry [15].
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of the radial velocity perturbation).

Taking more than one toroidal harmonic into account, the solution of the eigenvalue problem
yields eigenvalues of several unstable modes, which have to be identified. The m- and n-
harmonics of the largest Fourier harmonics are determined by analyzing the eigenfunctions
of the radial velocity perturbation (see sect. 4.1, Figs 5-7, upper plots). Usually, the Fourier
spectra are clearly dominated by one toroidal harmonic. We use this n-value to characterize the
mode. Throughout the paper, the eigenvalues and the corresponding modes are labeled by this
n-value, which we call n*, in order to avoid confusion with the toroidal harmonic, n. In case
of the modes of the axisymmetric equilibrium, it is n* = n. The knowledge of the eigenvalue
spectra (Fig. 22), and the already identified eigenfunction Fourier spectra help to characterize

ambigous mode structures (see also sect. 4.1).

In order to make sure that the most unstable, low-n* external kink modes (n* < 7) have been
found, a scan over initial guesses of the eigenvalues has been performed. No solutions with
larger eigenvalues could be found. All results presented in this publication have been obtained
by solving the linear eigenvalue problems for the Fourier ensembles listed in Table 3a,b. Figures
22a-d clearly show that these harmonics (which correspond to m.,;=13 per n, and n;,; = 6 (odd
mode family) and n.,,; = 7 (even mode family), respectively) are sufficient to determine the

eigenvalues with an inaccuracy < 1%.

Table 3a: odd mode family Table 3b: even mode family
n m-interval n m-interval

1 —4<m<8 0 0<m< 12

3 0<m<12 2 —2<m<10

5 3<m<15 4 1<m< 13

7 6<m<10 6 4<m<16

9 10 <m <22 8 8§<m <20

11 15 <m <27 10 11<m <23

- - 12 15 <m <27
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