APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Oct. 1999, p. 4666-4671
0099-2240/99/$04.00+0

Vol. 65, No. 10

Copyright © 1999, American Society for Microbiology. All Rights Reserved.

Diversity of Sulfate-Reducing Bacteria in Oxic and Anoxic
Regions of a Microbial Mat Characterized by Comparative
Analysis of Dissimilatory Sulfite Reductase Genes
DROR MINZ,'t JODI L. FLAX,' STEFAN J. GREEN,' GERARD MUYZER,* YEHUDA COHEN,?

MICHAEL WAGNER,* BRUCE E. RITTMANN," anp DAVID A. STAHL'*

Department of Civil Engineering, Northwestern University, Evanston, Illinois 60208-3109"; Max-Planck-Institute for
Marine Microbiology, D-28359 Bremen, Germany?; The Moshe Shilo Center for Marine Biogeochemistry, Alexander
Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel’; and Technische
Universitit Miinchen, Lehrstuhl fiir Mikrobiologie, D-80290 Munich, Germany*

Received 16 April 1999/Accepted 20 July 1999

Sequence analysis of genes encoding dissimilatory sulfite reductase (DSR) was used to identify sulfate-
reducing bacteria in a hypersaline microbial mat and to evaluate their distribution in relation to levels of
oxygen. The most highly diverse DSR sequences, most related to those of the Desulfonema-like organisms within
the d-proteobacteria, were recovered from oxic regions of the mat. This observation extends those of previous
studies by us and others associating Desulfonema-like organisms with oxic habitats.

The relationship of sulfate-reducing bacteria (SRB) to oxy-
gen has been of particular interest since the publication of
earlier reports of exceptionally high rates of sulfate reduction
in the oxygenated surface regions of some microbial mats (4, 6,
16, 44). These observations are inconsistent with the generally
accepted paradigm that environmentally available electron ac-
ceptors are depleted sequentially according to the thermody-
namically predicted order of preference. Although there is no
apparent restriction on the use of sulfate in the presence of a
thermodynamically preferred electron acceptor, such as oxy-
gen and nitrate, it is generally assumed that the use of sulfate
under these conditions places an organism at a selective dis-
advantage. However, selective advantage or disadvantage can
be evaluated only with a full understanding of the environmen-
tal context, from considering such factors as syntrophy, micro-
habitat, and varying physical and chemical environments. In
turn, this understanding cannot be achieved without knowl-
edge of population structure. In this study we use comparative
sequencing of genes encoding a key enzyme in sulfate respira-
tion, dissimilatory sulfite reductase (DSR), to directly identify
SRB populations within the oxic and anoxic regions of a mi-
crobial mat community.

Although pure culture remains fundamental to microbiol-
ogy, the biases associated with culture-based descriptions of
community structure are now generally acknowledged. Thus,
this well-established approach is increasingly complemented by
the use of a variety of molecular tools. In particular, compar-
ative sequencing of the 16S rRNAs now provides the most
general framework for studies of natural microbial diversity
and abundance (21, 35, 38, 39; for reviews, see references 2, 14,
and 32). One limitation of the rRNA-based analysis is that it
does not provide a direct link to physiology. To some extent,
populations identified by rRNA sequence are expected to
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share metabolic features with close relatives characterized by
results of pure culture, but little inference can be made for
more distant relatives. Thus, novel lineages of SRB—which
may contribute to sulfate reduction in oxic habitats—cannot be
identified by rRNA sequence alone.

A direct molecular identification of novel SRB must con-
sider the presence of enzymes required for sulfate respiration
or the genes encoding them. To this end we earlier demon-
strated that a 1.9-kb DNA fragment encoding most of the
alpha and beta subunits of the DSR could be amplified by PCR
from all recognized lineages of SRB with a single primer set
(46). DSR catalyzes the six-electron reduction of sulfite to
sulfide and hence is required by all SRB. Development of a
general PCR primer set was possible because of the remark-
able conservation of the DSR sequence. This conservation was
first suggested by the combined studies led by Voordouw and
Triper showing that the bacterial (Desulfovibrio) and archaeal
(Archaeoglobus) genes have approximately 60% nucleotide
similarity (11, 20, 25, 45).

Our previous studies demonstrated that this PCR primer set
would amplify the appropriate DNA fragment only from sul-
fate-respiring microorganisms and that the phylogenies of
DSRs of hitherto analyzed reference strains are consistent with
that inferred from the 16S rRNA (46). The homologous en-
zyme from the sulfide-oxidizing organism Chromatium vino-
sum is phylogenetically well separated from those of sulfate
respirers (20). Thus, environmental studies based on DSR se-
quence analyses should provide a more direct measure of SRB
diversity and distribution. We here describe the use of this
approach to directly evaluate the diversity of SRB populations
in a hypersaline cyanobacterial mat from Solar Lake (Sinai,
Egypt). In particular, we addressed the issue of the relationship
of the presence of SRB to the availability of oxygen by deter-
mining the distribution of DSR sequence types within previ-
ously described oxic and anoxic depth intervals within this mat
(7, 12, 31, 34).

Mat maintenance and analysis. Mats maintained in aquaria
were characterized after 5 h of exposure to light as described in
the accompanying paper (31) and as previously established (16,
24, 34).
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TABLE 1. Distribution of characterized DSR clones by depth and phylogenetic affiliation

Clone(s) (GenBank accession no.) found at indicated depth (mm) in indicated mat zone

OHWMMMmMn Permanently oxic Fluctuating oxic-anoxic Permanently anoxic Longitudinal
0.05 03 04 0.6 1.6 2.0 4.0 9.0 section
Clade A 237 (AF179340, 78 (AF179332, 934 (AF179345, 22 (AF179347, 40227, 4023 918 (AF179337,
AF179320), 244 AF179312), AF179325), AF179327), (AF179342, AF179317),
(AF179341, 74 (AF179333, 91 (AF179331, B5 (AF179348, AF179322) 919 (AF179338,
AF179321) AF179313) AF179311) AF179328) AF179318)
Clade B 713 (AF179343, 8033 (AF179335, 13¢
AF179323), AF179315)
716 (AF179344,
AF179324), 72¢
Lineage C 9 (AF179346, 52 (AF179330,
AF179326) AF179310)
Lineage D 8037 (AF179336,
AF179316)
Clade E 9065 50 (AF179329,
AF179309)
Lineage F 917 (AF179334,
AF179314),
920 (AF179339,
AF179319)

“ Not shown in the phylogenetic DSR tree (Fig. 2) due to limited sequence information. Phylogenetic affiliation of these cloned DSR sequences was determined by analyzing a reduced number of positions by the different
treeing methods (data not shown).
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FIG. 1. Distribution of DSR sequence type by sample depth in the mat in
relation to oxygen concentration. The number of clones recovered from each
sample depth affiliated with each sequence type (A to F) is represented by the
size of the corresponding circle (one to three clones). The medians and ranges
for the one-half maximum-oxygen (open triangle) and minimum-oxygen (filled
triangle) values were calculated from six independent microelectrode measure-
ments (31).

0

10

Nucleic acid analyses. Total DNAs were extracted from mat
depths of 0.05, 0.3, 0.4, 0.6, 1.6, 2.0, 4.0, and 9.0 mm, and a
longitudinal sample was taken from a complete mat core by a
modification of the method described by Tsai and Olson (42).
Briefly, mat sections were washed with 1 ml of TE (10 mM
Tris-HCl, 1 mM EDTA [pH 8.0]) and incubated in 200 pl of
lysozyme solution (0.15 M NaCl, 0.3 M Na,-EDTA, 15 mg of
lysozyme per ml) for 3 h at 37°C. Then, 200 wl of lysis buffer
(0.1 M NaCl, 0.5 M Tris-HCI [pH 8.0], 10% sodium dodecyl
sulfate) was added and the suspension was subjected to three
cycles of freezing (ethanol and dry ice for 5 min) and thawing
(65°C water bath for 10 min). Finally, proteinase K was added
to a final concentration of 50 pg/ml and the tubes were incu-
bated at 30°C for 30 min. DNA was purified by phenol extrac-
tion, precipitated with isopropanol, washed with 80% (vol/vol)
ethanol, and resuspended in water.

PCR amplification, cloning, and sequencing. PCR amplifi-
cation was carried out in a 1650 Air Thermo-Cycler (Idaho
Technology, Idaho Falls, Idaho) under the reaction conditions
and with the DSR1F and DSR4R primers previously described
(46). PCR products (ca. 1.9 kb) were ligated either directly
with the TA Cloning System into pCRII plasmids and trans-
formed into ONE SHOT competent Escherichia coli cells ac-
cording to the directions of the manufacturer (Invitrogen, San
Diego, Calif.) or following recovery from an agarose gel with
an agarose gel DNA extraction kit (Boehringer Mannheim
GmbH, Mannheim, Germany). Partial sequences were ob-
tained from the 3’ and 5’ ends of each insert with a LI-COR
4000L automated sequencer and infrared dye-labeled M13 for-
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ward and reverse primers (LI-COR Corp., Lincoln, Nebr.).
Clones and GenBank accession numbers are listed in Table 1.

PCR amplification of DNAs obtained from the indicated
depths (Fig. 1) yielded amplification products of the expected
1.9-kb size. A total of 24 DSR clones were sequenced (Table
1). Deduced DSR amino acid sequences were aligned with the
Genetic Data Environment (GDE) version 2.2 sequence editor
(37a) implemented in the ARB software environment (40).
Distance matrix {FITCH and KITCH (PHYLIP version 3.5
[15a]) and neighbor-joining (ARB)}, parsimony (PROTPARS,
PHYLIP version 3.5), and maximum-likelihood (PROTML,
PHYLIP version 3.5) analyses were performed on a concate-
nated alpha- and beta-subunit amino acid data set. Missing
sequence information was coded as missing data, yielding 291
total positions for the combined alpha-subunit (128 positions)
and beta-subunit (163 positions) data set. Bootstrap analysis
(1,000 resamplings) was performed for the parsimony method
with a program in the PHYLIP package.

No two sequences were identical, and all were affiliated with
the bacterial domain. Comparison of phylogenetic trees ob-
tained with the different methods revealed, in general, consis-
tent topologies for both alpha and beta DSR subunits. For
consideration of maximum sequence information, we present
results of a phylogenetic analysis of a concatenated alpha- and
beta-subunit amino acid data set (Fig. 2). A more complete
development of the basis for this analysis is presented in our
previous study of DSR phylogeny (46).

Six well-resolved lineages of DSR sequences are represented
by the cloned sequences (A to F). Many of these lineages are
not associated with established SRB groups. Although some
may be related to cultured SRB not yet characterized by DSR
sequencing, others almost certainly represent undescribed
SRB. In overview, lineages A to E are within or closely related
to the & subgroup of the class Proteobacteria. The F lineage is
well resolved from the others and can be classified only as a
member of the bacterial domain. The more deeply diverging
sequences (E and F) were recovered either from the deep,
permanently anoxic, regions of the mat or from longitudinal
slices consisting primarily of the permanently anoxic region
(2.5 to 9 mm). The depth distribution of sequence types in
relation to oxygen is shown in Fig. 1.

Clade A. Clade A includes the greatest number of cloned
sequences; 8 of 11 clones originated from the oxic zone (0 to
1.5 mm), and 2 of 3 clones originated from the chemocline. All
12 sequences affiliated with clade A are unique and closely
related to described Desulfonema and Desulfococcus species
within the §-proteobacteria.

Clade B. Clade B is comprised of five unique sequences,
including those of the three remaining clones from the oxic
zone of the mat. This clade is affiliated with the Desulfococcus-
Desulfonema lineage within the §-proteobacteria.

Lineage C. Lineage C contains two cloned sequences, dis-
tantly related to Desulfobacter spp. These sequences were re-
covered from a depth of 1.6 mm (chemocline during the day
and anoxic zone at night) and from a longitudinal section.
However, the phylogenetic position is not fully resolved; neigh-
bor-joining and FITCH analyses indicated a relatively close
relationship with clade B sequences, which was not supported
by maximume-likelihood and parsimony methods.

Lineage D. Lineage D is defined by one clone recovered
from a depth of 4 mm, a region that is permanently anoxic.
Although not related to any described SRB, it shows high
sequence similarity to a DSR sequence recovered from an
aromatic-hydrocarbon-degrading, sulfate-reducing enrichment
(17a).
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FIG. 2. Phylogenetic tree reflecting the relationships of the analyzed DSR clones retrieved from the mat with the DSRs from characterized sulfate-reducing
prokaryotes (46). The DSR sequences of Desulfobulbus propionicus and Desulfonema ishimotoi (47) were added to the data set so that we could more accurately define

the phylogenetic depth of the 3-subclass SRB in the DSR tree and provide addi
the DSR alpha- and beta-subunit amino acid data set. Bootstrap values were d

tional reference. Tree topology was obtained from FITCH distance matrix analysis of
etermined from parsimony analysis with an identical data set. Branches for which no

bootstrap value is indicated were not recovered in the majority of bootstrap replicates by the parsimony method. The scale bar indicates the number of expected amino

acid substitutions per site per unit of branch length.

Clade E. Clade E is represented in the phylogenetic tree by
one clone recovered from a longitudinal section of the mat and
another clone isolated from the 9-mm depth. It is not related
to any available pure culture sequence and only peripherally
related to Desulfobulbus spp.

Lineage F. Lineage F is deeply diverging and defined by two
highly similar DSR sequences not closely related to any avail-
able pure culture sequence. It demonstrates a weak specific
association with Desulfotomaculum ruminis by KITCH analysis
but forms an independent lineage by all other applied treeing
methods.

There is a general need in microbial ecology to more directly
relate community structure to community functions. Within
the analytical framework of comparative gene sequencing, the

most direct linkages are provided by genes encoding key phys-
iological attributes. Several genes have been used in this way,
including those for nitrogenase (3, 52-54), [NiFe] hydrogenase
(48), ribulose bisphosphate carboxylase/oxygenase (33), meth-
ane monooxygenase (30), and ammonia monooxygenase (36,
37). However, with the possible exception of ammonia mono-
oxygenase (restricted to two well-defined lineages within the
proteobacteria), none of these genes provide fully comprehen-
sive or consistent coverage. The DSR gene appears to be the
first example of a gene encoding a widely distributed metabolic
trait of sufficiently high sequence conservation to be recover-
able from all recognized archaeal and bacterial lineages with a
single PCR primer set and to also display phylogenetic rela-
tionships generally consistent with the 16S rRNA.
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Of particular interest was the relationship of SRB to oxygen.
During the diurnal cycle, these mats are exposed to changing
chemical gradients, most notably of O,, H,S, and pH. With
reference to O, exposure, this and previous studies have de-
fined three general depth intervals (8, 9, 18, 23, 24, 34): (i)
permanently oxic (0 to 0.5 mm), (ii) fluctuating oxic and anoxic
(0.5 to 2.5 mm), and (iii) permanently anoxic (deeper than 2.5
mm). The most striking observation was that all DSR se-
quences derived from the permanently oxic zone are affiliated
with clades A and B (Fig. 1 and Table 1), whose members are
closely related to the Desulfonema-Desulfococcus group of
metabolically versatile, completely oxidizing SRB (17, 50). At
this depth dissolved oxygen concentrations varied from ap-
proximately 160% saturation during the day to below 10%
saturation during the night.

It has been recognized for some time that many SRB are
oxygen tolerant and that some may have a limited capacity to
respire oxygen. Many Desulfovibrio spp. have these character-
istics (1, 10, 13, 15, 22, 29, 43). Several Desulfovibrio species
isolated from oxic regions of microbial mats (e.g., Desulfovibrio
oxyclinae and Desulfovibrio halophytica) have been shown to
have a high affinity for oxygen but a limited capacity to respire
it for growth (26, 27). However, no DSR sequences related to
Desulfovibrio were recovered in this study. In addition, our
previous studies of a similar mat in Guerrero Negro (Baja
California Sur, Mexico) with group-specific rRNA probes re-
vealed a minor presence of Desulfovibrio species in the near
surface (upper 2 mm). A common feature of both mat systems
is the near-surface abundance of Desulfonema-like popula-
tions, as revealed by the DSR sequences recovered in this study
and with group-specific probes to characterize the population
structure of the Guerrero Negro mat (35). Since DNAs recov-
ered from environmental samples may be derived in part from
dead or inactive cells, the DSR sequence alone does not pro-
vide direct evidence for an active sulfate-respiring population.
However, rRNA-based analyses provide additional support for
the presence of an active SRB microbiota in the oxic regions of
this mat community. The general patterns of DSR distribution
are also consistent with the results of the high-resolution study
of rRNA abundance in this mat community presented in our
accompanying paper (31).

Although pure culture isolates of Desulfonema have not
been examined for their relationship to oxygen, other members
of this family have been demonstrated to either reduce oxygen
or be oxygen tolerant, including Desulfobacterium autotrophi-
cum strains (13, 15, 29), several Desulfobacter species (10, 13),
and a Desulfococcus multivorans strain (13, 15). More recently,
Desulfonema spp. were identified by in situ hybridization in sea
sediments (28), and high numbers of Desulfonema spp. have
been identified by most-probable-number counts in the upper
2 mm of a field sample of the Solar Lake cyanobacterial mat
and identified by sequencing of 16S rRNA gene fragments
amplified from DNAs isolated near the chemocline (41). Thus,
molecular and microbiological data derived from two indepen-
dent field sites and from the aquarium systems consistently
show the Desulfonema-like SRB to be dominant in the perma-
nently oxic region of hypersaline cyanobacterial mat commu-
nities. However, no identical DSR sequences were recovered
in our initial analysis and we anticipate that continued studies
will reveal much greater sequence diversity, pointing to a very
complex ecology of SRB in the near surface of the mat.

We anticipate that comparative DSR sequence analyses will
provide a useful complement to the microbiological and mo-
lecular tools now used to study the ecology of sulfate-respiring
microorganisms. For example, DSR sequence type could be
used to assist in monitoring successful enrichment of previ-
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ously unknown SRB. Or, if a close phylogenetic relationship
implies phenotypic similarity, this information could assist in
the design of specific enrichment strategies. Since this se-
quence is an explicit indicator of the capacity for sulfate res-
piration, DSR-based analyses should also foster a better un-
derstanding of the more general environmental roles of these
organisms (9a). The metabolic diversity of this group has been
revised repeatedly in recent years, suggesting a more general
participation in the flow of carbon and electrons in anoxic
habitats than earlier thought. For example, their carbon
sources, long thought to be limited to simple organic acids and
alcohols, now include a wide variety of aliphatic and aromatic
compounds (5, 49, 51; for a review, see reference 19). Also,
although sulfate respiration unites them, SRB are not re-
stricted to this mode of existence. As a group, they have the
capacity to use a broad variety of electron acceptors, including
sulfite, thiosulfate, sulfur, nitrite, and nitrate (10, 15, 19, 22, 29,
43). Some members derive energy from disproportionation of
sulfur, thiosulfate, and sulfide and incomplete sulfate reduc-
tion to thiosulfate and sulfur (for a review, see reference 50).
It is conceivable that within certain habitats, sulfate respiration
may be a minor metabolic mode for some members of this
functionally defined assemblage.

Nucleotide sequence accession numbers. See Table 1 for
nucleotide sequence accession numbers.
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