Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Solution of the inverse problem of radiative transfer on the basis of measured internal fluxes

MPG-Autoren
/persons/resource/persons256905

Fukshansky-Kazarinova,  Nina
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

Fukshansky ,  L.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210554

Kühl,  Michael
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210489

Jørgensen,  Bo Barker
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fukshansky-Kazarinova, N., Fukshansky, L., Kühl, M., & Jørgensen, B. B. (1998). Solution of the inverse problem of radiative transfer on the basis of measured internal fluxes. Journal of quantitative spectroscopy & radiative transfer, 59(1-2), 77-89. doi:10.1016/S0022-4073(97)00135-0.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-4316-7
Zusammenfassung
A method for the solution of the inverse problem of radiative transfer is presented which utilizes the internal fluxes measured at different depths and in different directions with optical radiance microprobes in dense multiple scattering media. The method yields optical cross-sections and the phase function for the sample even when these parameters are depth dependent. The sensitivity analysis shows that the theoretical errors caused by the finite number of measurements as well as by the non-uniform directional sensitivity of the microprobes can be held on a low level; even the fourth Legendre coefficient of the unknown phase function can be recovered to the accuracy of 10%. Copyright (C) 1998 Elsevier Science Ltd. All rights reserved.