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Measurements of the radiance distribution and fluence rate within turbid samples with fiber-optic
radiance microprobes contain a large variable instrumental error caused by the nonuniform directional
sensitivity of the microprobes. A general theory of three-dimensional radiance measurements is pre-
sented that provides correction for this error by using the independently obtained function of the angular
sensitivity of the microprobes. © 1997 Optical Society of America
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1. Introduction

Studies of light-controlled processes in photomedi-
cine, photobiology, and ecology require a detailed
knowledge of the light microenvironment within ab-
sorbing turbid media such as living tissue and sedi-
ments. Direct three-dimensional measurements of
radiation fields in such samples with optical fiber
microprobes have been increasingly employed over
the past several years.1–9

The most universal type of optical fiber probe is the
radiance microprobe, which has a tip diameter as
small as 10 mm and a directional sensitivity mainly
concentrated around the axis of the probe within a
solid angle as small as 10°. In contrast to other
types that sense the entire spherical or hemispherical
flux,8 it is the only probe that provides the angular
distribution of radiance. A radiance distribution at
a given depth is found on the basis of successive
measurements with a radiance microprobe advanced
to this depth in different zenithal directions, u, rela-
tive to the light source as shown in Fig. 1. The unit
sphere containing all directions ~Fig. 1! is subdivided
into K spherical bands, and within each band i one
measurement under the angle ui is carried out. This
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measurement is representative for the radiance in
any direction within the band number i, i.e., the ra-
diance within each band is assumed to be constant.
We designate this radiance value as Li. To the ac-
curacy of this discretization the solid radiance distri-
bution is given by the sequence of measured values
Li: L~u! 5 $L1, L2, . . . , Lk%.

The fluence rate I~P! in a point P ~see Fig. 1! is then
obtained as a sum of Li weighted with the fractional
areas of the corresponding spherical bands, wi:

I~P! 5 2p*
u

L~u!du < 4p (
i51

K

Liwi (1)

The weighting factors wi are easily derived from the
geometrical considerations as

wi 5 ~cosu# i21 2 cos u# i!y2,

u#0 5 0, u#K 5 p, (
i

wi 5 1,

where u# i21, u# i are the zenithal angles for the bound-
ary circles on the unit sphere delimiting the band i
~see Fig. 1!. Importantly, a measurement in this
scheme in principle yields not the radiance Li but the
radiant flux LiS, where S is the reference area of the
microprobe on the unit sphere ~S is shown as a bright
circle in Fig. 1!. Thus the reading of a measurement
should be divided by S to obtain Li.

However, as shown elsewhere,10 the described
measurements produce erroneous values of Li. This
intrinsic instrumental error results from the nonuni-
form angular sensitivity of the microprobe.

Radiance microprobes ~for technical details see
Refs. 2, 4, and 6! have well-defined light-collecting



properties. The directional sensitivity of a radiance
microprobe is specified by a numerical aperture n0
sin~ua!, where n0 is the refraction index of the me-
dium and ua is the acceptance half-angle of the optical
fiber.11 The meaning of ua is clear from Fig. 2, which
shows examples of the angular sensitivity distribu-
tion of a probe h as a function of the deviation y from
the optical axis of the probe. The sensitivity h~y!,
being maximal along the axis of the probe, decreases
monotonously with y. The angle ua specifies such
deviation y for which h~y! 5 0.5hmax. The bell-
shaped distribution h~y! is directly measurable. It
can be approximated by a slightly modified Gaussian
formula:10

h~y! 5 cos~y! exp@2m sin2~y!#, (2)

where the fitting coefficient m adjusts the function to
the individual curve of the microprobe under consid-
eration. Parameters m and ua are related as

m 5 ln~2 cos ua!ysin2 ua.

Fig. 1. Spatial design of three-dimensional radiance measure-
ments. To perform the measurement number i, the microprobe
advanced to the point P is oriented in the direction ui ~i 5 1, 2, . . . ,
K!. Each measurement is representative of the radiance within
the corresponding spherical band of the unit sphere circumscribing
the point P. The radiance value Li is assumed to be constant
within the band number i. u# i21, u# i are the zenithal angles of the
circles delimiting the band i.
Figure 2 shows two functions h~y!, with m 5 44.23~ua
5 7.2°! and m 5 5~ua 5 21.2°!. Both Eq. ~2! and Fig.
2 present the normalized function h~y!, i.e., hmax 5 1.

If a probe with the sensitivity distribution h~y! such
as that in Fig. 2 is used to measure Li in the scheme
shown in Fig. 1, its optical axis has the orientation ui,
thus providing y 5 0 for u 5 ui. Only the radiance
directed exactly along ui is perceived with maximal
sensitivity. The sensitivity for those radiances Li
that belong to the band i ~e.g., with u# i21 , u , u# i! but
deviate from the direction ui is decreasing with in-
creasing deviation from ui, as prescribed by the func-
tion h~y!. Furthermore, the probe also senses
radiances from the neighboring bands. Thus any
single measurement produces not the average radi-
ance within the targeted band but a linear combina-
tion of different radiances weighted by the function
h~y!. This measured quantity, which we designate
as Mi, deviates from Li.

In a recent paper10 we reported on the first step
toward the analysis of the instrumental error and
stated the problem of theoretical correction of the
measurements. The idea of this approach was to
process the measured data by using additional infor-
mation contained in the function h~y! that is mea-
sured independently. We developed this theory for
the special case of equidistant measurements and
accounted for the distorting contributions of only two
immediate neighbors ~i.e., bands i 2 1 and i 1 1!.

Fig. 2. Angular sensitivity distribution of a microprobe: y is the
internal angular coordinate; y 5 0 concides with the axis of the
probe; h~y! is the relative sensitivity @see Eq. ~2!#, h~y! is maximal
for y 5 0 while light deviating from the axis is perceived with lower
sensitivity. The acceptance half-angle 6ua specifies the y values
for which h~y! 5 0.5 hmax. Function h~y! is specified for a concrete
probe by fixing either parameter m or angle ua. The two curves
represent a flat ~m1 5 5; ua1 5 21.2°! and a strongly peaked ~m2 5
44.23; ua2 5 7.2°! sensitivity distribution.
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In this paper the general theory for arbitrarily
spaced measurements is presented. In Subsection
2.A the problem is formulated in mathematical terms
and the basic system of linear equations connecting
Li and Mi is derived. The coefficients of the equa-
tions are surface integrals of h~y!, with the compli-
cated domains of integration arising from the
geometry of measurements. Subsection 2.B con-
tains an elucidation of these domains that is the pre-
requisite for the solution of the integrals given in
Subsection 2.C. In Subsection 2.D we consider an
application of the theory to our measurements in a
costal sediment with diatoms. This treatment
yields the instrumental error for the measured radi-
ance distribution and fluence rate. It also shows
that the divergent measured values obtained on the
same sample with different probes converge very well
after they were treated by the correcting procedure.

2. Results

A. Mathematical Formulation of the Problem

Let us consider radiation in an arbitrary point P
within a turbid sample illuminated from above as
shown in Fig. 1. Introducing spherical coordinates u
~zenith angle! and C ~azimuth angle! associated with
the unit sphere circumscribing P, we assume that at
any point ~u, C! the radiance depends on u but not on
C. As described in Section 1, K measurements with
a microprobe having the directional sensitivity dis-
tribution h~y! are performed in the point P in the
directions ui:

0 # u1 , u2 · · · , uK # p.

The results of these measurements are designated
Mi~i 5 1, 2, . . . , K!. The unit sphere is subdivided
into K spherical bands ~see Section 1!, and radiance
within each band is assumed to have a constant value
Li~i 5 1, 2, . . . , K!. The circles delimiting these
bands are described by equations u 5 u# j~ j 5 1, 2, . . . ,
K 2 1!, where u# j can be chosen arbitrarily within a set
that obeys the inequality

ui , u# i , ui11, u#0 5 0, u#K 5 p.

The zenithal distribution of radiance thus appears
as a stepwise constant function:

L~u! 5 Li for u# i21 # u , u# i ~i 5 1, 2, . . . K!

~compare Fig. 1!. The problem is to calculate all Li
on the basis of the measured quantities Mi~i 5 1,
2, . . . , K! and known function h~y!.

For an individual measurement under zenith angle
u 5 ui # py2, we introduce local Cartesian coordi-
nates x, y, z and also corresponding spherical coordi-
nates y, c associated with the point P and direction ui,
so that y 5 u 2 ui ~see Fig. 3!. The angular sensi-
tivity of the measurement, h~y!, is defined on the
whole hemisphere

(i: ~0 # y # py2, 0 # c # 2p!
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visible from the direction ui. As described above, the
hemisphere •i is subdivided into a set of spherical
bands •ij with constant radiance values Lj. Thus
the magnitude Mi obtained in this measurement con-
tains contributions from different parts of the hemi-
sphere •i:

Mi 5 **
•i

L~u!h~y!d• 5 (
j51

ni

Lj **
•ij

h~y!d• 5 (
j51

ni

LiJij

(3)

with

Jij 5 **
•ij

h~y!d•, (4)

where ni is the number of spherical bands contribut-
ing to the hemisphere •i.

The system of linear equations, Eq. ~3!, contains K
equations with K unknown variables Lj. Its coeffi-
cients Jij can be estimated because h~y! is a known
function. Thus the system ~3! provides a solution to
our problem. However, the estimation of Jij re-
quires a major effort because the domains of integra-
tions in Eq. ~4! are complicated functions of all ui and
u# j, i.e., of the entire geometry of measurements. In

Fig. 3. Geometry of a single measurement in the u 5 ui direction.
The incident light comes from the u 5 0 direction, which is the
same as in Fig. 1; however, here the picture is turned clockwise on
ui. x, y, z is the Cartesian coordinate system associated with this
measurement. •i is the hemisphere of the unit sphere seen from
the u 5 ui direction. Si is the circumference of radius 1 centered
at point P; it is also a projection of the boundary of •i onto the plane
xPy. Ellipse Sij is a projection of the delimiting circle u 5 u# j ~cf.
Fig. 1! onto the plane xPy. Qij is the point of contact of Sij with Si,
y is the zenithal spherical coordinate associated with the measure-
ment in the u 5 ui direction, and h~y! is the function of the angular
sensitivity of the probe.



the Subsection 2.B we analyze this geometry in order
to facilitate the solution of the integrals Jij.

B. Geometry of the Surface Integrals Jij

Our starting point is the general relation between the
integral of a function f over an arbitrary convex sur-
face • and that over the plane s:

**
•

f ~M!d• 5 **
s

f ~N!

cos~n, n0!
ds, (5)

where ~n, n0! is the angle between the normal to • in
a point M and the normal to the plane s, N is the
projection of point M onto the plane, and f ~M! 5 f ~N!.

To calculate the integrals in Eq. ~4! we map the
spherical surface •i onto the plane xPy ~see Fig. 3!.
In this case we have ~n, n0! 5 y, the zenithal spherical
coordinate of the local coordinate system associated
with the ith measurement; • 5 •i, the visible hemi-
sphere corresponding to the ith measurement; and s
5 si, the circular disk bounded by the circumfernce
Si of radius 1 centered at point P.

The mapping transfers the delimiting circles u 5 u# j
into ellipses Sij and the surface areas •ij into the
plane areas sij ~compare Figs. 3 and 4!. On the basis
of formulas ~4! and ~5! we obtain

Jij 5 **
sij

h~y!

cos~y!
ds. (6)

Let us consider projections of the areas •ij and
their boundaries u 5 u# j onto the plane xPy. We are
not interested in the circles u 5 u# j ~u# j # ui 1 py2!
located completely outside the hemisphere •i and

Fig. 4. Mapping of the spherical surface •i onto the plane xPy
performed for the measurement in the u 5 ui direction. Circum-
ference Si is the projection of the boundary of the hemisphere •i

onto the plane xPy. Ellipses Sij are the projections of circles u 5
u# j onto plane xPy. The plane areas sij are projections of spherical
bands •ij onto plane xPy; the index i means only that the mapping
is performed within the geometry induced by the ith measurement.
Lj is the radiance within the band •ij. w# i2 is the polar coordinate
of the point of tangency for a tangent drawn from point P to ellipse
Si2; wi5 is the polar coordinate of the point of contact of ellipse Si5

with the circumference Si.
 consider only circles that belong to •i either com-
pletely or partially. In the first case the correspond-
ing ellipses Sij are located completely inside the
circular disk si. In the second case they contact the
circumference Si in the points Qij ~cf. Figs. 3 and 4!,
and we are interested only in the parts corresponding
to those parts of the circles u 5 u# j which are located on
the hemisphere •i. We can also restrict the follow-
ing consideration to the values ui # py2 because the
case py2 , ui # p is transferred to the case ui # py2
by the coordinate transformation u9 5 p 2 u. Thus
the admissible domain of values of ~ui, u# j! under con-
sideration is ~ui , py2; u# j , ui 1 py2!, which is
illustrated in Fig. 5. Also, the sum limit ni in for-
mula ~3! can be easily estimated: it is equal to the
maximal value of j, satisfying the inequality ~see Fig.
3!

u# j $ ui 1 py2.

It is more convenient to consider within the circu-
lar disk si a set of nested domains s# ij,

s# i1 , s# i2 , · · · , s# ini
5 si,

instead of the set of nonoverlapping domains sij.
Each domain s# ij is the internal area of the ellipse Sij
if this ellipse has no points of contact to Si. Other-
wise the domain s# ij is circumferenced by the part of
the ellipse Sij contained between its points of contact
Qij, Qij9 to the circumference Si and that part of Si

located between Qij and Qij9 that is convex toward the
positive direction of the axis x ~see Fig. 4!.

Let us introduce the integrals over the nested do-
mains:

#Jij 5 **
sij

h~y!

cos~y!
ds. (7)

Fig. 5. Admissible domain of values of ~ui, u# j!, subdivided into four
subdomains with a specific relationship between ui and u# j in each
one.
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Fig. 6. Different positions
of an ellipse Sij with respect
to the point P and circumfer-
ence Si on plane xPy as im-
plied by the parameter ui, u#j

representing the geometry of
measurements. ~a!–~d! cor-
respond to ui, u#j values from
domains I–IV in Fig. 5.
Obviously

Jij 5 #Jij 2 #Jij21 ~ j 5 1, 2, . . . , ni!, (8)

where ~cf. Fig. 4!

#Ji0 5 0, #Jini
5 2p *

0

1 h~y!

cos y
rdr.

Thus the integrals Jij can be easily calculated from
integrals #Jij that have much more convenient inte-
gration domains. However, prior to this the limits of
the surface integrals should be analytically derived.
This derivation and the subsequent calculation of J# ij
are given in Subsection 2.C.

C. Calculation of Integrals J# ij

For the integration limits to be derived, the bound-
aries of the domains s# ij should be described. We
introduce polar coordinates r, w ~note that r 5 sin y!
on the plane xPy and also the double-valued function
fij
2~w! and r 5 fij

1~w!. In this case the point of tan-
gency is located on the boundary of a domain s# ij and

cos w# ij 5
@sin~ui 1 uj!sin~ui 2 uj!#

1y2

sin ui
. (10)

If u# j . ui then the ellipse Sij is located within the
negative semiaxis x. In this case only the branch r 5
fij

1~w! makes a part of the boundary of s# ij and the
point of tangency is not located on the boundary.

The important boundary point for integration to
be performed is the point of contact for an ellipse Sij
with the circumference Sij. If such a point exists
it is always located, as one can easily see, on a
positive branch r 5 fij

1~w!. The w coordinate of this
point we designate as wij. The value of wij is deter-
mined through the parameters ui, u# j as ~see Appen-
dix A!

cos wij 5 cos u# jysin ui. (11)
fij
6~w! 5

cos u# j sin ui cos w 6 cos ui@sin~ui 1 uj!sin~uj 2 ui! 1 sin2 ui cos2 w#1y2

cos2 ui 1 sin2 ui cos2 w
, (9)
which will be useful for the description of the ellipses
Sij.

An ellipse Sij contains the coordinates origin P
when the parameters ui, u# j satisfy the inequality

sin~ui 1 u# j!sin~ui 2 u# j! , 0,

i.e., ui , u# j , p 2 ui. In this case its equation is
presented by the single-valued function r 5 fij

1~w!
~for the proof see Appendix A!. Otherwise point P is
located outside the ellipses Sij. In such a case a
tangent line from point P to the ellipse is always
feasible. We designate the w coordinate of the point
of tangency as w# ij ~cf. Fig. 4!.

If the ellipse is located completely within the pos-
itive semiaxis x ~which takes place for u# j , ui!, then to
any value 0 , w , w# ij correspond two values of r: r 5
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On the basis of the above considerations, four differ-
ent cases appear with respect to the subdivision of the
integration domain for an integral #Jij and elucidation
of the integration limits in each subdomain. Accord-
ingly, the admissible domain of parameters ui, u# j is
subdivided into four subdomains, shown in Fig. 5.
Below we consider all four cases and derive explicite
formulas for #Jij in each case.

Case I. u# j , ui, u# j # py2 2 ui. Ellipse Sij is
located completely on the positive semiaxis x and has
no points of contact with Si ~or the unique point of
contact has coordinate wij 5 0!. This case is depicted
in Fig. 6~a!.

#Jij 5 2 *
0

w# ij

dw *
fij1~w!

fij2~w! h~y!

cos~y!
rdr. (12a)



Case II. u# j , ui, u# j . py2 2 ui. The ellipse Sij is
located on the positive semiaxis x and has the point of
contact wij Þ 0 with Si @see Fig. 6~b!#.

J# ij 5 2 *
0

wij

dw *
fij2~w!

1 h~y!

cos~y!
rdr

1 2 *
wij

w# ij

dw *
fij2~w!

fij1~w! h~y!

cos~y!
rdr. (12b)

Case III. u# j . ui, u# j # py2 2 ui. Point P is located
inside the ellipse Sij, which has no point of contact
with Si @or the unique point of contact has coordinate
wij 5 0; see Fig. 6~c!#.

J# ij 5 2 *
0

p

dw *
0

fij1~w! h~y!

cos~y!
rdr. (12c)

Case IV. u# j . ui, u# j . py2 2 ui. Ellipse Sij is
located completely or partially on the negative semi-
axis x and has points of contact 6wij Þ 0 @see Fig.
6~d!#.

#Jij 5 2 *
0

p

dw *
0

1 h~y!

cos~y!
rdr 2 2 *

wij

p

dw *
fij1~y!

1 h~y!

cos~y!
rdr.

(12d)

Substituting Eq. ~2! for h~y! into Eqs. ~12! and not-
ing that r 5 sin y, we can easily obtain a general
solution for the internal integral in formulas ~12!:

*
f1~w!

f2~w!

exp~2mr2!rdr 5
1

2m
$ exp@2mf1

2~w!#

2 exp@2mf2
2~w!#%.

Thus for any set of ui, u# j presenting a concrete geom-
etry of measurements and for a given m presenting
the directional sensitivity of the concrete microprobe,
integrals ~12! and then @using Eq. ~8!# integrals ~4!
can be calculated. Substituting integrals ~4! into
Eq. ~3! and solving these equations with respect to
Li~i 5 1, 2, . . . , K!, one obtains the real radiances
from the measured quantites Mi.

Note that when the measured radiation field con-
tains a strong collimated component, for example,
under illumination with a laser, the calculation of
integrals Ji1 can be developed in a special way in-
volving the description of the collimated component
as a singularity by means of d functions. This ap-
pears to be necessary when the measurements are
planed and discussed in the framework of the theory
of radiative transfer, in which the collimated compo-
nent is aways separated as a singularity. The ap-
propriate procedure for the calculation of Ji1 is given
in Appendix B.

D. Example of Application: Correction of the
Measurements and Stability of the Correcting Procedure

Here the theory is applied to our radiance measure-
ments in costal sediments with diatoms. Proceeding
from a true radiance distribution, solid L~u!, and cor-
responding fluence rate I~P! 5 * L~u!du, we find esti-
mates of L~u! and I~P! ~a! as the raw experimental
data and ~b! as the data processed by the theory, and
then we compare estimates ~a! and ~b! one to another
and to the true magnitudes. Furthermore, we re-
peat this procedure for probes with four different ac-
ceptance angles ua as well as for different angular
distances between the measurements in order to re-
veal the effect of these characteristics on both pro-
cessed and nonprocessed data.

We start with the true radiance distribution L~u!
shown in Fig. 7. Its diffuse part is a continuous
function; the collimated part we interpret as a con-
stant level radiance concentrated in the narrow an-
gular range ~0, 2.5°!. The fluence rate of this
radiation I~u! 5 349.9 relative units.12 On the basis
of known L~u!, the measurable quantity M~u! can be
calculated for any direction ui and any microprobe as

**
•i

L~u!h~u 2 ui!d• 5 Mi. (13)

This quantity calculated for four different m values is
shown in Fig. 8. Because of a very extended range of
values of M~u!, the angular domain near u 5 0° is

Fig. 7. True radiance distribution L~u!. This distribution with
the fluence rate value of I~P! 5 349.9 relative units is the starting
point for the analysis of the correcting procedure. Averaged val-
ues L# i for spherical bands ~specified by vertical lines! calculated on
the basis of this distribution are used in Table 1.
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shown separately in the inset at a different scale.
On each curve in Fig. 8 one can read the fluxes ~or-
dinate! measured by the corresponding microprobe
oriented in the direction u ~abscissa! when the true
distribution solid of radiance is presented by the func-
tion L~u! from Fig. 7. Of course, the real measure-
ments are performed only on a restricted number of
points, providing an approximative shape of the
curves in Fig. 8. For example, the measurements
spaced equidistantly with the 20° step and performed
with the probe having m 5 44.23 are specified in Fig.
8. A comparison of the curves in Figs. 7 and 8 shows
that the nonprocessed measurements give a severely
distorted picture of the radiance distribution solid,
especially those with larger acceptance angles of the
probes. Only the probe with the most peaked direc-
tional sensitivity ~Fig. 8, lowest curve! conveys more
or less the shape of L~u!, although this is rather dis-
torted and has strongly underestimated values.

Now let us process these data according to the the-
ory. We consider the set of equidistant measure-
ments with the 20° step in ten directions ui ~0°,
20°, . . . , 180°! for all four probes, represented in Fig.
8. We subdivide the unit sphere into ten spherical
bands with assumed constant radiance value Li
within each band. The numbers and zenithal areas
of these bands are given in columns 1 and 2 of Table 1.
Note that the first band is very narrow because we
assume that the light within this zenithal area con-
tains the nonscattered part of the incident collimated
flux and can strongly differ from the surroundings.
Then we perform the entire correcting procedure to

Fig. 8. Zenithal distributions of the measurable photon fluxes
M~u! based on the true radiance distribution L~u! as they can be
obtained by four microprobes with a different parameter m. Spec-
ified points of ui 5 0°, 20°, 40°, . . . , 180° were used to perform the
correction procedure. The initial part of the curves M~u! for the
lower u range is shown in the inset.
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find the Li from the Mi. The results for the four
probes are given in columns 4 to 7 of Table 1. These
results should be compared with the true radiance
values L~u! averaged over each band, presented in
column 3 of Table 1 as L# i. Figure 7 shows the av-
eraged true values L# i on the background of the radi-
ance distribution L~u!. As one can see from Table 1,
the correcting procedure recovers the radiance distri-
bution solid with extremely high accuracy. The rel-
ative deviation of Li from L# i is in almost all cases
within 65%.

Let us address the estimates of the fluence rate I~P!
that are presented in Table 2. Column 1 contains
the parameters of the four probes under consider-
ation. Columns 2–4 contain the characteristics of
the equidistant measurements constructed in accor-
dance with each probe. For example, the probe with
ua 5 7.2° implies the step D 5 15° between measure-
ments. Correspondingly, the number of measure-
ments is K 5 2pyD 1 1 5 13. The reference area of
a microprobe ~see Section 1! for this band size is S 5
0.0538. Note that the rather artificial magnitude S
is necessary only for nonprocessed calculations to
proceed from the measured flux Mi to the radiance
Li. In the framework of the theory, there is no
place for the notion of S because the reference area
is the entire hemisphere •i and the transmission
from the measured fluxes Mi to the radiance Li is
accomplished automatically through the integration
and solution of system ~3!. Column 5 contains the
results provided by the measurements characterized
in columns 2–4. All these numbers strongly overes-
timate the true value I~P! 5 349.9 presented above.
In order to see the effect of deviations of the band size
from the probe acceptance angle, we performed cal-
culations with the fixed band size ~20°! and corre-
sponding number of measurements ~ten! for different
probes ~column 6!. The probe with ua 5 7.2° used
under these conditions underestimates the fluence
rate; the probes with ua 5 15.1° and ua 5 21.2° that
have acceptance angles exceeding the band size

Table 1. Radiance Values Li Recovered by Means of the Correcting
Procedure Applied to the Measured Fluxes Mi from the Curves in Fig. 8a

Band
No.

Band
Range
~deg! L# i

Li Values

m 5 44.23 m 5 20 m 5 10 m 5 5

1 0–2.5 7800 8034 8229 8371 8186
2 2.5–30 74.5 78.1 77.7 76.7 80.7
3 30–50 36.1 34.3 32.8 31.9 26.6
4 50–70 33.5 33.9 34.5 35.6 42.0
5 70–90 25.4 25.4 25.5 25.0 29.0
6 90–110 16.8 16.7 16.6 16.8 20.7
7 110–130 8.5 8.0 7.8 7.8 4.6
8 130–150 8.0 7.8 7.7 7.7 10.0
9 150–170 10.7 10.9 11.1 11.2 9.1

10 170–180 9.6 9.7 9.5 9.0 14.8

aFor each of four curves representing different microprobes, the
Mi values corresponding to the ten equidistant points ui with the
20° step ~0°, 20° . . . , 180°! were used. L# i is the true mean value
as shown in Fig. 7.



Table 2. Processed and Nonprocessed Fluence Rate Values I~P!a

Probe
Parameters

Nonprocessed Results Processed Results

Equidistant Measurementsb Constant
Geometryc

~S 5 0.0954! I~P!

Constant
Geometryc

I~P!S D K I~P!

m 5 44.23 0.0538 15° 13 466.9 274.2 351.0
ua 5 7.2°
m 5 20 0.0954 20° 10 581.8 581.8 350.6
ua 5 10.7°
m 5 10 0.2141 30° 7 520.8 1165.0 350.5
ua 5 15.1°
m 5 5 0.4783 45° 5 462.2 2308.2 350.9
ua 5 21.2°

aThese values are obtained from the same sets of measured fluxes Mi as used in Table 1. S is the reference area of the probe; D ' 2ua
is the step between measurements; K is the number of measurements. The true value of I~P! is 349.9 relative units.

bGeometry is adjusted to the band size.
cHere D 5 20° and K 5 10.
highly overestimate it. Column 7 of Table 2 de-
scribes the same measurements as column 6, with
the difference that the data were processed by the
theory. The estimates in column 7 are very precise,
with deviations from the true value within 1%, inde-
pendent of whether the band size is adjusted to the
acceptance angle of the probe ~line 2! or not ~lines 1,
3, and 4!.

Appendix A: Geometry of Ellipses Sij

We consider the measurement ui and the correspond-
ing circular disk Si normal to the direction u 5 ui.
The circumference u 5 u# j on the unit sphere is
mapped onto the plane Si as the ellipse Sij. Let us
designate the half-axes of Sij as aij, bij and the x
coordinate of the center as qij ~see Fig. 9!. As we can
easily see from Fig. 9,

aij 5 sin u# j cos ui,

bij 5 sin u# j,

qij 5 cos u# j sin ui,

cij
2 5 bij

2 2 aij
2 5 sin2 u# j sin2 ui. (A1)

The equation of the ellipse Sij in the polar coordi-
nates ~r, w! is given by expressions ~see the appendix
in Ref. 10! r 5 fij

1~w! when point P is inside Sij and
r 5 fij

6~w! when point P is outside Sij, where
Point P is located inside the ellipse Sij when aij
2 2

qij
2 . 0, which yields the condition sin~ui 1 u# j!sin~u# j 2

ui! . 0, i.e., p 2 ui . u# j . ui. Outside the range
where this condition holds the inequality sin ~ui 1
u# j!sin~ui 2 u# j! . 0 is valid.

Let us consider the area ui . u#j, i.e., the case in which
the ellipse Sij is completely on the positive semiaxis x.
We draw a tangent to the ellipse Sij from point P. The
coordinate of the point of tangency w# ij is found from the
condition for vanishing of the radical in Eq. ~A3!:
sin~ui 1 u#j!sin~u#j 2 ui! 1 sin2 ui cos2 w 5 0, which yields

cos w# ij 5
@sin~ui 1 u# j!sin~ui 2 u# j!#

1y2

sin ui
.

If the ellipse Sij has a point of contact with disk Si,
its coordinate w 5 wij is found from the condition fij

1

5 1, which holds when cos wij 5 cos u# jysin ui.

Appendix B: Calculation of integrals Ji1

This calculation is of integrals Ji1 when the collimated
component is presented as a singularity by means of a
d function. The collimated component of radiance Fc
can be presented as Fc 5 Fp d~m 2 1!, where

Fp is the collimated flux at point P,
m 5 cos u,
*0

1 d~m 2 1!dm 5 1,
Substituting Eq. ~A1! into Eq. ~A2!, we obtain *0
1 f ~m!d~m 2 1!dm5 f ~1!.

fij
6~w! 5

cos u# j sin ui cos w 6 cos ui@sin~ui 1 uj!sin~uj 2 ui! 1 sin2 ui cos2 w#1y2

cos2 ui 1 sin2 ui cos2 w
. (A3)

fij
6 5

qijbij
2 cos~w! 6 aijbij@aij

2 2 qij
2 1 ~qij

2 1 cij
2!cos2~w!#1y2

aij
2 1 c2 cos2~w!

. (A2)
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For a measurement in the direction ui # 90°, one
should specify

L1 5 Fp,
Ji1 5 *0

1 h~y!d~m 2 1!dm.

For h~y! 5 cos y exp ~2m sin2 y! we obtain

y 5 u 2 ui,
cos y 5 m cos ui 1 =1 2 m2 sin ui,
sin y 5 =1 2 m2 cos ui 2 m sin ui,
Ji1 5 cos ui exp~2m sin2 ui!.

Fig. 9. Derivation of formulas for the half-axes aij, bij of the ellipse Sij

and the distance qij between the point P and the center of Sij. All
designations are the same as in Figs. 3, 5, and 7. The top section
shows the vertical cross section of the unit sphere containing the direc-
tions u 5 0 and u 5 ui. The bottom section shows the cross section of
the unit sphere through the plane xPy normal to the direction u 5 ui.
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