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Abstract: The evolution of a deoxyribonucleotide synthesizing ribonucleotide reductase might have initiated the transition from the 
ancient RNA world into the prevailing DNA world. At least five classes of ribonucleotide reductases have evolved. The ancient 
enzyme has not been identified. A reconstruction of the first ribonucleotide reductase requires knowledge of contemporary 
enzymes and of microbial evolution. Experimental work on the former focuses on few organisms, whereas the latter is now well 
understood on the basis of ribosomal RNA sequences. Deoxyribonucleotide formation has not been investigated in many 
evolutionary important microorganisms. This review covers our knowledge on deoxyribonucleotide synthesis in microorganisms and 
the distribution of ribonucleotide reductases in nature. Ecological constraints on enzyme evolution and knowledge deficiencies 
emerge from complete coverage of the phylogenetic groups. 
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Introduction 

Ribonucleotide reductases (RNRs)  are known 
as essential enzymes providing deoxyribonu- 
cleotides for D N A  replication. They are also evo- 
lutionary key enzymes. The invention of a ribonu- 
cleotide reductase made the transition from a 
RNA world to a D N A  world possible [1,2]. Inten- 
sive research on abiotic formation of biomolecules 
has not revealed a chemical route to deoxyri- 
bonucleotides [3-5]. 

Our knowledge of complex and well-organized 
catalytic RNA systems raises the likelihood that 

Correspondence to: J. Harder, Max-Planck-Institut fiJr Marine 
Mikrobiologie, Fahrenheitstr. 1, 28359 Bremen, FRG. 

the first ribonucleotide reducing enzyme was ei- 
ther a ribozyme or a ribonucleoprotein. Five dif- 
ferent classes of RNRs  are known in the modern 
world, and even more may await discovery. None 
of these can currently be identified as the ancient 
RNR.  Therefore,  it was proposed that all arose 
by prote in-for-RNA replacement  events [6]. Ri- 
bonucleotide reduction, however, has not been 
studied in many evolutionary important microor- 
ganisms. 

Future research can contribute to an under- 
standing of the emergence of DNA, if it combines 
our understanding of bacterial evolution with a 
broad knowledge of contemporary RNRs.  The 
former  has been established based on ribosomal 
R N A  sequences [7,8], the latter has progressed 
extensively since the last review on the distribu- 
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tion of RNRs in nature 10 years ago [9]. The time 
seems ripe for a review of our current knowledge 
on deoxyribonucleotide formation in microorgan- 
isms and the distribution of ribonucleotide reduc- 
tases in nature. Salvage supply of DNA precur- 
sors, the alternative to de novo synthesis, is con- 
sidered, but the biochemistry of deoxyribonu- 
cleotide modification, e.g. thymidylate synthesis, 
is excluded. In this review I will first briefly 
describe the chemistry of ribonucleotide reduc- 
tion and the enzyme classes. The main part de- 
scribes deoxyribonucleotide formation in phyloge- 
netic groups, covering the domains Archaea, Bac- 
teria and Eucarya. Finally, I will discuss ecologi- 
cal and evolutionary features of ribonucleotide 
reductases. 

D e  n o v o  a n d  sa lvage  f o r m a t i o n  o f  d e o x y r i b o n u -  
c l e o t i d e s  

Ribonucleotide reductases are radical en- 
zymes. They embody essential radical sites which 
during catalysis accommodate a hydrogen atom 
abstracted from the substrate. Reduction of the 
activated substrate, a ribonucleotide containing a 

sugar-based free radical, involves redox active 
cysteines. The enzymes reduce all four ribonu- 
cleotides to the corresponding deoxyribonu- 
cleotides. Enzyme activity and substrate speci- 
ficity are regulated by ATP and dNTPs acting 
allosterically. The nucleotide binding sites are 
located together with the cysteine domains on 
one protein, R1. The radical site has the proper- 
ties of a cofactor and defines the different en- 
zyme classes. 

All RNRs investigated use a common reaction 
pathway for ribonucleotide reduction (Fig. 1) 
[10,11]. Substrate binding to the reduced enzyme 
induces activation of the radical domain and hy- 
drogen abstraction from the 3'-carbon of the sugar 
moiety. Reduced cysteines mediate the 2'-hy- 
droxyl reduction with retention of configuration. 
The intermediate, energetically unfavourable 2'- 
carbocation is stabilized by interaction with the 
3'-carbon radical. Finally, the hydrogen atom is 
transferred from the radical domain to the prod- 
uct radical. 

All RNRs have two functional domains (Fig. 
2). R1 contains binding sites for allosteric and 
substrate nucleotides and redox active cysteines 
[12]. The complex allosteric regulation by ATP 
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Fig. 1. Proposed reaction mechanism for ribonucleotide reductases (from [11]). 
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Fig. 2. Model of E. coli ribonucleoside diphosphate reductase 
(from [12]). 

together with the R1 domain on one polypeptide 
chain [28-30]. 

The demand for high accuracy of DNA repli- 
cation favours de novo synthesis of dNTPs over 
salvage supply. Deoxyribonucleoside and deoxyri- 
bonucleoside monophosphate kinases are often 
not present or have only a low synthesis rate, with 
exception of thymidylate kinases. Salvage synthe- 
sis of DNA precursors seems to be restricted to 
organisms living in a nutrient-rich habitat, e.g. 
Giardia lamblia and Lactobacillus sp. 

Salvage activities, however, can disturb the de- 
termination of RNR activity in crude extracts. 
Enzyme assays are performed with radioactively 
labelled ribonucleotides. After incubation all nu- 
cleotides are dephosphory[ated and the deoxynu- 
cleosides formed are determined by chromatogra- 
phy [27,31]. Phosphatases and phosphorylases can 
form radioactive deoxynucleosides from the sub- 
strate and deoxynucleosides present in crude ex- 
tracts, thus mimicking RNR activity [32,33]. This 
problem is circumvented in enzyme assays which 
detect the reaction product as deoxyribonu- 
cleotide [34-37]. 

and all four dNTPs provides a balanced supply of 
the precursors for DNA synthesis [13,14]. Con- 
stant intraceIlular dNTP pools are crucial for a 
low mutation rate during DNA replication [15]. 
The reducing equivalents are transferred from 
NADPH via either thioredoxin, glutaredoxin or 
unknown proteins to a pair of cysteines on the 
surface of R1 [16,17]. This pair of cysteines is 
located near the C-terminus in class I RNRs. 
Internal redox active cysteines i n / n e a r  the sub- 
strate binding site are either involved in the 2'- 
hydroxyl reduction or serve as a radical relay in 
the 3'-hydrogen abstraction [18-23]. 

The nature of the cofactor, a radical domain, 
characterizes the different classes of RNRs. The 
small protein subunit R2 of class I enzymes con- 
tains/~-oxo bridged binuclear Fe(III) clusters and 
tyrosyl radical(s) [12,24]. Deoxyadenosylcobal- 
amin is the radical precursor in class II RNRs 
[25,26]. Class III enzymes have a small subunit 
R2 with a highly oxidized manganese cluster [27]. 
Recent studies suggest that a glycine radical is 
present in class IV proteins which is located 

Nature of  ribonucleotide reductases 

Oxygen-dependent enzymes 

Oxygen is nowadays easily available and has 
the required high oxidation potential to abstract a 
hydrogen atom from a non-activated hydrogen-  
carbon bond. It is widely used in nature to initi- 
ate the degradation of recalcitrant substances, 
e.g. lignin, aromatic compounds and hydrocar- 
bons. In all these cases hydrogen atom abstrac- 
tion from the substrate is irreversible. But ribonu- 
cleotide reduction requires a reversible C-H acti- 
vation. This difference may explain why oxygen is 
only used for the oxidative activation of radical 
domains in class I and III enzymes [27,38,39]. 

The active enzymes are sensitive towards re- 
ducing reagents which can penetrate the protein 
shield around the radical domain. Hydroxyurea 
(HU) was found to be a selective inhibitor of 
oxygen-dependent RNRs [40,41]. DNA synthesis 
ceases, but RNA and protein synthesis are not 
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impaired. The cell cycle is blocked in early S- 
phase. Growth rates of bacteria and eukaryotic 
cells possessing a class I or III RNR are usually 
reduced to 50% at 1-2 mM HU, and DNA 
replication and cell division ceases completely 
above 10 mM HU. The inhibition can often be 
suppressed by a supply of deoxyribonucleotides 
or deoxyribonucleosides in the medium. This in- 
dicates the specificity of HU inhibition, but it 
requires the presence of salvage kinases. 
Hydroxyurea can chelate metal ions with the hy- 
droxamate group and undergoes one-electron ox- 
idations. High concentrations (>  10 mM) induce 
metal ion limitations and reductive stress. The 
specific inhibition of DNA synthesis occurs at 
lower concentrations of the drug. Proliferation 
cessation could in only one case not be traced to 
a RNR: HU inhibits chlorophyll biosynthesis in 
Euglena [42]. 

Class I." iron(III)-tyrosyl radical proteins 
The aerobic ribonucleoside diphosphate re- 

ductase (nrdAB) from Escherichia coli is cer- 
tainly the best studied RNR [43]. The crystal 
structure of the small subunit R2 has recently 
been solved [44,51]. It has an a2/32 structure (Fig. 
2). Several excellent reviews describe structural 
and functional aspects of the enzyme [11,12,45- 
47]. 

Current studies focus on the mechanism of the 
activation reaction and the nature of the hydro- 
gen abstraction pathway [24,39,47,48]. The R2 
dimer harbours the radical domains, deep inside 
the protein, each consisting of a /z-oxo bridged 
binuclear iron(III) center and a tyrosyl radical 
nearby. The radical is at least 10 ~,ngstr6m away 
from the surface of R2. A long-range transport of 
one electron has to occur between the tyrosyl 
radical and the 3'-position of the substrate bound 
to R1. The C-terminal nonapeptide of R2 binds 
the small subunit to R1 and recent studies sug- 
gest that this part of R2 and redox active cys- 
teines from R1 participate in the electron trans- 
fer [20,21,49,50]. 

The nucleotide sequences of several class I 
RNRs have been determined, e.g. enzymes from 
E. coli, T4 virus, mouse, clam, yeast and several 
herpes viruses [47,49,51]. NrdA from E. coli en- 

codes a 761-amino acid polypeptide. The first 200 
residues are not conserved in herpes R1 genes 
where a protein kinase activity is located on the 
N-terminal region. Forty-five residues are con- 
served in R1 genes, whereas 18 from 375 amino 
acids are invariant between R2 genes. The bind- 
ing sequence of the R2 C-terminus is species- 
specific. This allows the development of new an- 
tiviral drugs inhibiting subunit association. 

An open question concerns the distribution of 
class I RNRs in other bacteria. The phylogenetic 
tree indicates that the main bacterial groups 
evolved early before the appearance of free at- 
mospheric oxygen. Aerobic bacteria sensitive to- 
wards hydroxyurea appear in several branches, 
but detailed studies of enzyme structures are 
lacking, except for E. coli and Corynebacterium 
ammoniagenes. 

Class III: manganese proteins 
Unbalanced growth and arrest of DNA synthe- 

sis in coryneform bacteria is essential for the 
commercial production of ribonucleotides and is 
caused by manganese limitation. The require- 
ment could be traced to a RNR [52,53]. The 
manganese enzyme from Corynebacterium ammo- 
niagenes (formerly Brer, ibacterium ammoniagenes ) 
has been purified and characterized [27,54]. It 
resembles in the overall structure class I RNRs. 
The small subunit R2 contains manganese in- 
stead of iron ions. Absorption and EPR spectra 
suggest the presence of high-valency /x-oxo 
bridged manganese(III,IV) complexes. The en- 
zyme is hydroxyurea-sensitive and requires 
molecular oxygen for reactivation. A free radical 
has not been detected. The manganese complex 
itself may serve as radical domain in this enzyme. 
A manganese cluster is used in the water-oxidiz- 
ing enzyme in chloroplasts [55]. High-valency 
manganese complexes are easily formed in a 
spontaneous reaction from manganese(II), molec- 
ular oxygen and carboxylates, and they are sensi- 
tive towards reduction [56]. 

Oxygen-independent enzymes 

Many anaerobic, facultative anaerobic and 
aerobic microorganisms possess a deoxyadenosyl- 
cobalamin-dependent RNR which is neither oxy- 
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gen-dependent nor oxygen-sensitive. None of the 
other known RNRs can function in aerobic and 
anaerobic environments. 

Class II." cobalamin-dependent enzymes 
Vitamin Bl2 or deoxyribonucleosides have ear- 

]ier been identified as growth factors for lactic 
acid bacteria [57,58]. The presence of a Blz-de- 
pendent RNR was first demonstrated in Lacto- 
bacillus leichmanii [59,25]. The class II enzyme is 
not inhibited by hydroxyurea. The radical chem- 
istry of cobalamin-dependent RNR differs slightly 
from all other B12-dependent enzymes. Tritium 
from [5'-3H2]deoxyadenosylcobalamin [60] is not 
exchanged with the substrate under turnover con- 
ditions. It is released into water [61,62]. This 
points towards the existence of an acidic radical 
relay between the 3'-position and the de- 
oxyadenosyl radical, perhaps one of the internal 
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redox active cysteines of R1 [63-66]. The specific 
exchange reaction has been used to detect Blz- 
dependent RNRs in several microorganisms (Ta- 
ble 1). 

Oxygen-sensitiue enzymes 

Class IV: glycine radical proteins 
The first strictly anaerobic ribonucleotide re- 

ductase was recently isolated and characterized 
from E. coli [67-71,28-30]. The enzyme is a 
homodimer of 154 kDa and contains in the active 
state i ron-sulphur  cluster(s) and glycine 
radical(s). The organic free radical is oxidatively 
introduced in an enzymatic activation reaction 
with concomitant reductive cleavage of S-adeno- 
sylmethionine into 5'-deoxyadenosine and me- 
thionine. This type of activation reaction was 
previously detected only with pyruvate-formate 

Table 1 

Cobalamin-dependent ribonucleotide reductases in microorganisms 

Bt2-dependent RNR activity Positive 3H20 release assay Negative 3H20 release assay 

Bacillus megaterium [138] Bacillus megaterium [138] Escherichia coli [61,89] 
Corynebacterium nephridii [130] Clostridium sticklandii [61,89] Aerobacter aerogenes [61] 
Lactobacillus leichmannii [132] Clostridium thermoaceticum [89] Agmenellum quadruplicatum [115,119] 
LactobaciUus acidophilus [132] Clostridium tetanomorphum [61,89] Methanobacillus omelianskii [89] 
Rhizobium japonicum [96] Corynebacterium nephridii [61,89] Pseudomonas [89] 
Rhizobium leguminosarum [96] Lactobacillus leichmannii [61] Micrococcus lysodeikticus [89] 
Rhizobium meliloti [96] Lactobacillus acidophilus [61] Synechococcus 7003 [115] 
Rhizobium phaseoli [96] Pseudomonas stutzeri [89] ( Coccochloris elabens ) 
Rhizobium trifolii [96] Micrococcus denitrificans [89] 
Thermus X-1 [90] Sphaerophorus uarius [89] 
Streptomyces aureofaciens [131] Synechococcus spp. [115,116] 

Thermus aquaticus [89] 
Anacystis nidulans [ 115,116] 
Coccochloris" peniocystis [ I 16] 
Nostoc commune [ 116] 
Anabaena spp. [ 116] 
Oscillatoria prolifera [116] 
Scytonema hofmanni [ 116] 
Fremyella diplosiphon [ l 16] 
Plectonema boryanum [ 116] 
Phormidium luridum [ 116] 
Phormidium autumnale [ 116] 
Astasia longa [89] Marchantia polymorphia [89] 

Cordyceps militaris [89] 
Ochromonas spp. [89] 
Chlorella spp. [116] 

Euglena gracilis [150] 
Pithomyces chartarum [201] Euglena gracilis [89,116] 
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lyase from E. coli [72]. The gene nrdD is located 
at 96 minutes on the genome, as found by the 
Kohara library. The deduced amino acid se- 
quence shows 72% similarity to SunY from coli- 
phage T4, now a putative anaerobic RNR [29,73]. 

T h e  radical  chemis t ry  of  S-adenosy l -  
methionine is also employed by nature in lysine 
2,3-aminomutase from clostridia [74-78]. Activa- 
tion of S-adenosylmethionine is initiated by one- 
electron reduction and generates an unstable sul- 
phuranyl radical which, like other sulphuranyl 
radicals, may dissociate to methionine and a 5'- 
deoxyadenosyl radical (Fig. 3). The environment 
supplied by the proteins determines the fate of 
the organic free radical: it serves as a catalytic 
radical in lysine 2,3-aminomutases, whereas hy- 
drogen abstraction from a specific glycine residue 
leads to enzyme activation of ribonucleotide re- 
ductase and pyruvate-formate lyase and forma- 
tion of 5'-deoxyadenosine. 

Class V: methanogenic RNRs 
Initial studies of ribonucleotide reduction in 

Methanobacteriurn thermoautotrophicum have in- 
dicated that the enzyme from strict anaerobic 
methanogenic bacteria differs from all other 

known classes [79,80]. The reductase activity is 
oxygen-sensitive and inhibited by S-adenosyl- 
methionine and reducing agents. The structure of 
the radical domain is currently unknown. 

Distribution of ribonucleotide reductases 

Archaea 

The domain Archaea includes methanobacte- 
ria, halobacteria, and sulphobacteria. Methano- 
and sulphobacteria have evolved very slowly and 
may represent the oldest bacteria. Sulphobacteria 
have many eukaryotic characters, a fact which has 
caused discussions on their phylogenetic position 
in rooted evolutionary trees [81-86]. Halobacteria 
have evolved significantly as indicated by riboso- 
mal transversions [84]. They are adapted to aero- 
bic life, but some strains are capable of anaerobic 
proliferation, gaining energy from respiration of 
fumarate, nitrate, dimethylsulphoxide or trimeth- 
ylamine-N-oxide [87,88]. 

Deoxyribonucleotide formation has only been 
studied in methanogenic bacteria. Methanobac- 
teriurn therrnoautotrophicum and Methanobac- 
terium M.o.H. ('Methanobacillus omelanskii') do 
not contain a class II RNR [79,89]. Recent inves- 
tigations have provided evidence that the M. ther- 
moautotrophicum enzyme is the prototype of a 
new class of anaerobic RNR [79,80]. 

Bacteria 

Ribonucleotide reduction has not been studied 
in many bacterial divisions. We lack the knowl- 
edge of deoxyribonucleotide formation in Ther- 
motogales, Verrucomicrobium, Chloroflexaceae, 
Planctomyces,  Bacteroides  and Cytophaga,  
Chlorobiaceae and Spirochaetes. 

Deinococci 
Thermus aquaticus and Thermus X-1 react pos- 

itive in the 3H-release assay with [5'-3Hz]de - 
oxyadenosylcobalamin [89]. A monomeric ribonu- 
cleoside triphosphate reductase has been purified 
from Thermus X-1 [90]. The enzyme depends on 
cobalamin, has a temperature optimum of 70-  
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75°C and is allosterically controlled by nu- 
cleotides. 

Chlamydiae 
The genus Chlamydia includes intracellular 

parasites, C. trachomatis, C. psittaci and C. pneu- 
moniae [91]. Free living species are not known. 
Early studies showed that host DNA is not sal- 
vaged by the parasite [92,93]. Exogenous de- 
oxyadenosine and deoxyguanosine are efficient 
DNA precursors in C. psittaci, but deoxycytidine 
and thymidine are poorly incorporated [91,94]. In 
a recent study, using a hypoxanthine-guanine 
phosphoribosyltransferase-negative cell line and 
inhibitors of salvage enzymes, it was shown that 
purine deoxyribonucleoside usage requires intact 
host catabolic pathways and salvage reactions [95]. 
The experiments exclude dependence of Chlamy- 
dia on host deoxynucleosides and provide indirect 
evidence for a chlamydial RNR. 

Proteobacteria 
The 'purple bacteria' include a wide array of 

phenotypes .  Anaerobes  and aerobes,  het- 
erotrophs and chemolithotrophs, photosynthetic 
and non-photosynthet ic  species are spread 
throughout the phylum. 

a subdivision. Rhizobia (R. meliloti, R. japon- 
icum, R. leguminosarum (formerly R. trifolii and 
R. phaseoli)) possess a B 1z-dependent enzyme [96]. 
Cobalt deficiency induces the apoenzyme and 
stops DNA synthesis. Rescue of cobalt-limited 
cultures was not possible with deoxynucleosides 
indicating the absence of efficient salvage en- 
zymes. Agrobacterium tumefaciens and Rick- 
settsia prowazekii contain HU-sensitive RNRs 
[97,231]. Paracoccus denitrificans (formerly Mi- 
crococcus denitrificans) has a class II enzyme 
which is repressed under aerobic conditions [89]. 
The existence of a second RNR has not been 
investigated. 

19 subdivision. Our knowledge of deoxyribonu- 
cleotide formation in this subdivision is limited to 
growth inhibition of Neisseria meningitidis [98] 
and Alcaligenes eutrophus by hydroxyurea [99]. 

3' subdivision. Major members of this group are 
enterobacteria and pseudomonads. E. coli has 
two ribonucleotide reductases, a class I diphos- 
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phate reductase and a class IV triphosphate re- 
ductase. Due to the lack of studies on other 
aerobic RNRs it is not clear if the class I enzyme 
is of bacterial origin or has been acquainted in a 
horizontal gene transfer from a eukaryotic source. 
Growth of Klebsiella pneumoniae, Pseudomonas 
aeruginosa and Proteus mirabilis is sensitive to- 
wards hydroxyurea [100-103]. The widespread 
occurrence of an aerobic enzyme in enterobacte- 
ria is also supported by negative tritium release 
assays with Enterobacter aerogenes (formerly Aer- 
obacter aerogenes) and Pseudornonas aeruginosa 
[61,89]. However, ribonucleotide reduction in 
crude extracts of Pseudomonas stutzeri was per- 
formed in the presence of deoxyadenosylcobal- 
amin [104]. The published data are not sufficient 
to determine the reductase class. 

and • subdivisions. Intensive research on 
anaerobic habitats during the last decade ac- 
counts for several isolates located in the 6 and • 
subgroups: sulphate and sulphur-reducing bacte- 
ria [105-107], Metallobacter oxidoreducens [108], 
Wolinella succinogenes [109] and Pelobacter sp. 
[110]. However, studies on DNA precursor 
biosynthesis have been limited to aerobes, pre- 
dominantly in bdellovibrios. A myxobacter isolate 
reacted negative in the tritium release assay [89]. 

DNA replication of Bdellovibrio sp. occurs only 
in the host cell after invasion into the periplasmic 
space. Experiments with [3H]thymidine labelled 
E. coli showed that host DNA is degraded by 
bdellovibrio deoxyribonucleases and incorporated 
into bdellovibrio DNA [111,112]. Exogenous 
thymidine monophosphates compete effectively 
with labelled host DNA; low incorporation rates 
of thymidine argue for a deficiency of deoxynu- 
cleoside kinases [113]. Interactions between host 
and bdellovibrio control the initiation of DNA 
precursor biosynthesis by host DNA degradation 
[114]. Bdellovibrio is certainly salvaging degraded 
host DNA for its DNA synthesis; however, it has 
not been investigated whether bdellovibrio can 
synthesize deoxyribonucleotides de novo. 

Cyanobacteria 
Cyanobacteria are the only prokaryotes per- 

forming oxygenic photosynthesis. The tritium ex- 
change reaction has been used extensively to gain 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article-abstract/12/4/273/513890 by M
ax-Planck-Institute Brem

en user on 29 August 2019



280 

insight into the taxonomic position of 'blue-green 
algae' [115,116]. Extracts from Anabaena 7119, 
A. flos-aquae, Anacystis nidulans, Coccochloris pe- 
niocystis, Fremyella diplosiphon, Nostoc commune, 
Oscillatoria prolifera, Phormidium autumnale, P. 
luridum, Plectonema boryanum, Scytonema hof- 
manni, Synechococcus sp. 6311, 6312, 7401, 6908 
and ATCC 27146 reacted positively in the assay. 
The halophilic Aphanothece halophytica is not 
sensitive towards hydroxyurea [117]. Purification 
from Anabaena 7119 yielded a monomeric en- 
zyme [118]. Agmenellum quadruplicatum and 
Synechococcus sp. 7003 ('Coccochloris elabens') 
have not a class II RNR, but the enzyme struc- 
tures have not been elucidated [115,116,119]. The 
mechanism of deoxyribonucleotide formation in 
prochlorophytes is not known [120]. 

Gram-positiue bacteria 
Firmicutes with high G + C Content of DNA. 

The deepest branchings in the high G + C subdi- 
vision are defined by anaerobic species, the bifi- 
dobacteria and the propionibacteria. The latter 
use a class II RNR [121,122]. The B~2-dependent 
enzyme has two major disadvantages: biosynthesis 
of the cofactor involves several proteins and con- 
sumes more energy than the synthesis of other 
RNRs. More importantly, the cobalt requirement 
limits available habitats. The low cobalt content 
in the environment [123] causes a selective pres- 
sure for an alternative RNR. As propionibacteria 
that possess catalases are aerotolerant, they had 
the opportunity to develop an oxygen-dependent 
RNR. It has indeed been reported that some 
strains induce a hydroxyurea-sensitive RNR un- 
der cobalt-deficient growth [122,124]. Induction 
of the enzyme requires iron ions in the media. 
The nature of the second RNR has not been 
determined. 

Actinomycetes are predominantly respiratory 
strict aerobic soil bacteria and have evolved more 
recently according to phylogenetic studies. The 
manganese RNR has been characterized from 
Corynebacterium ammoniagenes (formerly Bre- 
t,ibacterium ammoniagenes) and, as evident from 
growth studies, is also present in Nocardia opaca, 
Arthrobacter globiformis, A. oxydans, A. citreus 
and Micrococcus luteus (formerly M. lysodeikti- 

cus) [9,27,52,125,126]. Mycobacterium smegmatis 
is sensitive towards hydroxyurea [127,128]. Micro- 
coccus luteus does not contain a B L2-dependent 
RNR [89]. Actinomycetes in mammalian hosts 
are often able to grow anaerobically. Corynebac- 
terium nephridii was isolated from urine of horse 
leech [129] and contains a B~2-dependent RNR 
[130]. Enzyme activity was also determined with 
the tritium release assay and increased almost 
10-fold when Corynebacterium was grown anaero- 
bically with nitrate as electron acceptor [89]. This 
anaerobic induction of the class II enzyme sug- 
gests the presence of a second aerobic RNR in 
Corynebacterium nephridii. Streptomyces aureofa- 
ciens also contains a cobalt-dependent enzyme 
[131]. 

Firmicutes with low G + C content of DNA. 
The evolution of RNRs in this subdivision of 
Gram-positive bacteria seems to follow the devel- 
opmental path observed in the G + C-rich subdi- 
vision. Anaerobic bacteria representing deep lin- 
eages possess a cobalamin-dependent enzyme, 
whereas more recently evolved aerobic species 
contain a hydroxyurea-sensitive RNR. The lack 
of studies on the nature of these aerobic RNRs 
represents a major gap in our knowledge. 

Clostridia (C. sticklandii, C. tetanomorphum, 
C. thermoaceticum) and lactobacilli (L. leich- 
manii, L. casei, L. acidophilus) possess a B~e-de- 
pendent RNR [25,61,89,132]. The latter have also 
evolved a functional salvage synthesis of deoxyri- 
bonucleotides [57,58]. Lactobacillus acidophilus 
R-26 contains, besides a thymidine kinase, two 
deoxynucleoside kinases specific for deoxycyti- 
d i n e / d e o x y a d e n o s i n e  and deoxyguanos ine /  
deoxyadenosine [133,134]. Studies with Entero- 
coccus faecalis (formerly Streptococcus faecalis) 
indicate the presence of two RNRs. Aerobic 
growth is hydroxyurea-sensitive whereas anaero- 
bic growth is not impaired by HU [135]. Staphylo- 
coccus epidermis is sensitive towards HU [136]. 
Mycoplasmas represent the fastest evolving fam- 
ily in this subdivision. These parasites seem to be 
HU-resistant but it has not been investigated if 
this is caused by salvage synthesis or a class II 
enzyme [137]. Bacillus megaterium has a class II 
RNR [138], whereas Bacillus subtilis possesses a 
HU-sensitive enzyme [100]. The presence of de- 
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oxyribonucleoside kinases in B. subtilis permits 
the isolation of RNR mutants [139,140]. The en- 
zyme activity was found in a DNA-membrane 
multienzyme complex with replisome activity 
[141]. dATP salvage synthesis has been character- 
ized in B. cereus [142]. 

HU concentrations is not based on DNA precur- 
sor limitation. The presence of a cobalt-depen- 
dent RNR was also detected in a non-photosyn- 
thetic euglenid. Cell extracts of Astasia longa 
react positive in the tritium exchange/release 
assay [89]. 

Phylogenetically unaffiliated bacteria 
Fusobacterium t'arius (formerly Sphaerophorus 

varius) is an obligate anaerobic Gram-negative 
rod-shaped bacteria and contains a deoxyadeno- 
sylcobalamin-dependent RNR [89]. 

Eucarya 

Microsporidia, diplomonads and trichomonads 
The deepest branch within the domain Eu- 

carya is represented by microsporidia which are 
obligate intracellular parasites without mitochon- 
dria [143,144]. Deoxyribonucleotide formation was 
studied in their closest living relative, the 
diplomonad Giardia lamblia [145,146]. The anaer- 
obic gut inhabitant lacks de novo synthesis of 
purines, pyrimidines and deoxyribonucleotides. 
DNA synthesis relies completely on salvage of 
deoxynucleosides. The lack of a RNR was also 
observed in Triehomonas vaginalis which contains 
deoxyribonucleoside phosphotransferases [147]. A 
RNR activity was found in Tritrichomonas foetus 
extracts, independent of B12 and insensitive to 
hydroxyurea [148]. To determine this, a nucleo- 
side assay was used. Therefore it cannot be ex- 
cluded from the available data that a false-posi- 
tive salvage activity was observed. 

Euglenids 
The flagellate branchings euglenids and try- 

panosomes might stem from the microaerobic 
period in the earth's history, emerging before the 
major burst of eukaryotic lineages: ciliates, di- 
noflagellates, fungi, plants and animals [7]. Eu- 
glena gracilis is the descendant of the first photo- 
synthetic Eukaryon. DNA synthesis depends on a 
class II RNR and it has been used as microbio- 
logical assay for B~2 [149,150]. Euglena exhibits 
also a high sensitivity towards HU which inhibits 
chlorophyll biosynthesis [42]. This is the only 
known case where HU inhibition of growth at low 

Trypanosomes 
A RNR from trypanosomes has not been de- 

scribed, but all members of the genus investi- 
gated so far are susceptible to hydroxyurea. 
Growth rates of Trypanosoma cruzi, T. gambiense 
and Leishmania donovani were halved just above 
100/ ,M HU [145]. Other studies reported /s0-val- 
ues up to 2 mM HU for T. brucei [151,152], 
Crithidia fasciculata [153] and C. luciliae [154]. 
HU inhibited cell proliferation of L. tarentolae 
[155], L. major [156], L. donovani [156], L. mexi- 
cana [157] and Herpetomonas megaseliae [158]. 
The stimulation of [3H]thymidine uptake in the 
presence of low HU concentration observed in 
several cases is a typical physiological reaction 
caused by the lack of deoxyribonucleotides 
[152,159]. 

Replication of kinetoplast DNA seems to be 
HU-insensitive in several species. Cell cycle inhi- 
bition of H. megaseliae with HU lead to enrich- 
ment of multiflagellates with multiple kineto- 
plasts, indicating an evidently differential in- 
hibitory effect of the drug on nuclear division 
versus kinetoplast DNA replication [158]. Enrich- 
ment of 2K-1N forms was observed with T. brucei 
brucei procyclic culture forms [152]. These results 
could not be confirmed in short-term inhibition 
experiments with C. luciliae [154], L. tarentolae 
[155] and T. brucei [160]. 

Slime moulds 
The source of DNA precursors in Entamoeba 

is not known [161]. Cell proliferation of Physarum 
polycephalum and Dictyostelium discoideum is in- 
hibited by hydroxyurea [162,163]. The nature of 
ribonucleotide reductases involved has not been 
studied. 

Cilia tes 
Cell biological studies revealed that prolifera- 

tion and DNA synthesis in Tetrahymena pyri- 
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formis and Blespharisma seshachari are sensitive 
towards hydroxyurea [164-167]. The effect is re- 
versible and can be relieved with deoxyribonucle- 
osides [168]. 

Free-living ciliates have evolved to exploit 
anaerobic habitats. Their  organelles morphologi- 
cally resemble mitochondria, but lack mitochon- 
drial enzymes. The hydrosomes seem to be modi- 
fied mitochondria and differ from the hydro- 
somes of trichomonads which may have evolved 
from an endosymbiontic fermenting bacterium 
[144]. Deoxyribonucleotide formation may be 
based on salvage supply, an anaerobic RNR or 
supply by endosymbiontic bacteria. Many anaero- 
bic ciliates contain methanogenic bacteria as en- 
dosymbionts which support growth by uptake of 
hydrogen. Growth of anaerobic ciliates without 
endosymbionts has been achieved, therefore ex- 
cluding an endosymbiontic DNA precursor sup- 
ply [169,170]. 

Parasitic sporozoa: Plasmodium and Toxoplasma 
Growth of Plasmodium falciparum and Toxo- 

plasma gondii is inhibited by hydroxyurea [171- 
173]. Chemical mutagenesis was used to isolate a 
hydroxyurea-resistant mutant of T. gondii [173]. 

Algae, plants, fungi and animals 
Tritium release assays performed on green al- 

gae were negative [89,116]. Specific growth inhibi- 
tion by hydroxyurea was observed with Acetabu- 
laria, Chlamydomonas and Charavulgaris [174- 
177]. RNR activity could easily be detected in 
crude extracts of Chlorella pyrenoidosa and 
Scenedesmus obliquus [178]. The enzyme of S. 
obliquus was characterized and exhibits the typi- 
cal EPR signal of a class I RNR [179-181]. The 
hydroxyurea-sensitivity of RNR activity in plant 
extracts supports the general impression that all 
higher eukaryotes have a class I enzyme [182,183]. 

Ribonucleotide reduction has been studied in 
great detail in Saccharomyces cereuisiae. Genes 
for the small subunit R2 and two large subunits 
R1 of a class I RNR were isolated [184-187]. The 
second large subunit is only expressed in re- 
sponse to DNA damage, in addition to the regu- 
lar large subunit [188]. It is the first example of a 
special enzyme existing for DNA repair. Thiore- 

doxin deficiency prolongs the S phase [189]. The 
active RNR exhibits the tyrosyl radical EPR sig- 
nal of class I enzymes [190]. It has long been 
known that S. cerevisiae can grow, but not prolif- 
erate under anaerobic conditions [191,192]. An 
anaerobic RNR activity was not detectable [190]. 

Proliferation inhibition caused by hydroxyurea 
was observed in cultures of Wangiella dermatitidis 
[193], Candida albicans [194], Neurospora crassa 
[195,196] and Schizophyllum commune [197-199]. 
RNR activity in extracts of the water mould 
Achyla was also hydroxyurea-sensitive [200]. Only 
one short communication reported evidence for a 
cobalamin-dependent enzyme in fungi: the RNR 
activity of Pithomyces chartarum extracts re- 
quired BI2 [201]. 

The class I RNR from mammals differs slightly 
from the E. coli enzyme: the tyrosyl radical has a 
short half-life, iron ions are removed more easily 
from the protein and the reactivation of hydroxy- 
urea-inhibited enzyme preparations is easily 
achieved in vitro. The instability of the active 
enzyme allows one to understand why mam- 
malian cells exhibit an extended G1/S  transition 
under moderate limitations of oxygen tension 
[202-204]. 

Viruses 

The genome of coliphage T4 includes genes 
for a class I (nrdAB) and a class IV (sunY) 
enzyme [29,205,206]. Class I enzymes were found 
in Teven and T5 coliphages using aerobic cul- 
tures and in large mammalian viruses. The pro- 
tein environment of the tyrosyl radical is different 
in the R2 protein of herpes virus, mouse and E. 
coli [207]. Recently, a hydroxyurea-sensitive en- 
zyme has been detected in phycovirus-infected 
green algae [232]. 

Ecology of ribonucleotide reduction 

Chemical opportunities for radical domains 

Evolution of life has led to a limited number of 
structures usable for radical enzymology. Every 
one-electron transfer reaction involves molecules 
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with unpaired electrons, either transition metal 
ions or organic radicals. Radicals are present in 
electron transport chains, they are intermediates 
in several oxygenation reactions [208-215]. But 
the number of reactions known to involve cat- 
alytic organic radicals is short. Activation of 
prostaglandin H synthase with peroxides yields a 
high-valency ferryl heme and a tyrosyl radical 
which catalyzes the cyclooxygenase reaction 
[216,217]. Several radical-induced rearrangements 
depend on deoxyadenosylcobalamin (Vitamin B12) 
[215,218-220]. The coenzyme is substituted by 
S-adenosylmethionine, cobalt and i ron-sulphur 
clusters in lysine 2,3-aminomutase [74-78] and by 
an organic free radical in a membrane-bound 
d io ldehydra tase  in Clostridium glycolicum 
[221,222]. The highest numbers of possible radical 
domains for one reaction has been detected in 
RNRs. A glycine radical is the active species in 
pyruvate-formate  lyase [72]. 

Catalysis via radicals requires tight control on 
possible reaction pathways of the highly reactive 
intermediates [215]. Proteins are ideal substrates 
for remodelling spontaneously formed structures 
for different purposes. The non-heme iron clus- 
ters present in class I RNR occur also in methane 
monooxygenase from methylotrophs, e.g. Meth- 
ylococcus capsulatus and Methylosinus trichospo- 
riurn, in hemerythrin, a reversible 0 2 binding and 
transport protein in blood of marine inverte- 
brates, in purple phosphatases and in ruberythrin 
from Desulfouibrio sp. [223,224]. Ruberythrin is a 
periplasmic protein with a midpoint redox poten- 
tial of +230 mV and might serve as oxygen 
reductase in oxygen-tolerant sulphate-reducing 
bacteria. The diversity of enzymatic functions re- 
alized with one basic structure is impressive and 
has a complement in the number of structures 
adapted to fulfil one function: ribonucleotide re- 
duction. Further studies will reveal which other 
structures have been adopted for radical do- 
mains. 

Ribonucleotide reduction within cells 

The importance of constant intracellular de- 
oxyribonucleotide pools for replication fidelity ex- 
plains the tight regulation of ribonucleotide re- 
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ductase activity during the cell cycle. Levels of 
regulation include gene expression, translational 
control, stability of the proteins, posttranslational 
activation and deactivation and allosteric control 
of enzyme activity by intracellular ATP and dNTP 
pool sizes. The nucleotide pools are influenced by 
salvage, catabolism and substrate cycles. Regula- 
tion occurs during the cell cycle and spatially 
within the cell. The intracellular organization of 
dNTP and DNA synthesis is discussed in the 
framework of a 'replitase': a supramolecular 
structure built through loose association of sev- 
eral enzymes involved in DNA precursor biosyn- 
thesis and DNA replication, channels the inter- 
mediates to receive high local concentrations of 
dNTPs at the origin of DNA replication. Al- 
though experimental data deny the existence of a 
'replitase' in mammalian cells, a dNTP synthase 
complex has been characterized from T4-infected 
E. coli [225,226] and DNA replication occurs 
within a multienzyme complex. Most purified ri- 
bonucleotide reductase preparations have poor in 
vitro activities insufficient to sustain in vivo rates 
of DNA replication. One possible explanation 
could be the lack of activity stimulation by pro- 
te in-prote in  interaction within a multienzyme 
complex. For prokaryotes, a 'replitase' is still an 
attractive model and is supported by experimen- 
tal data, e.g. the purification of a replisome from 
Bacillus subtilis [141]. Further genetic and bio- 
chemical studies have to prove that prote in-pro-  
tein interaction in replitases are required for effi- 
cient dNTP synthesis. 

Deoxyribonucleotides tor replication of mito- 
chondrial and chloroplast DNA are imported and 
not synthesized in the cell organelles. Mitochon- 
dria and chloroplasts - as known from mammals 
and plants - represent the evolutionary final stage 
of a symbiotic integration of a bacterium in a 
eukaryotic host cell where only a special part of 
the metabolism is maintained in the organelle for 
the benefit of the organism. The presence of a 
RNR seems possible in organelles which still 
have an elaborate metabolisms. Growth studies 
of trypanosomes in the presence of hydroxyurea 
occasionally revealed a mitochondrial DNA repli- 
cation [152,158]. The biochemistry behind this 
observation deserves attention. 
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Ribonucleotide reduction and oxygen 

The availability of molecular oxygen defines 
life spheres: anaerobic and aerobic habitats. Evo- 
lution of molecular oxygen was a major event in 
the earth 's  history that strongly influenced the 
evolution of life. The oxygen requiring RNRs  
(class I and III)  are based on metal  clusters 
available by spontaneous formation and represent  
enzymes developed after oxygen evolution. The 
class ! enzyme has been purified from several 
eukaryotes which evolved after the oxygen burst. 
It is also present in E. coli - living in the diges- 
tive tracts of humans - and viruses infecting 
mammalian cells or E. coli. The presence of an 
ancient anaerobic R N R  in E. coli, maintained by 
selective pressure in the anaerobic gut environ- 
ment,  raises questions about the heritage of the 
class I enzyme. A horizontal gene transfer is an 
attractive explanation, considering the ease of a 
gene transfer mechanism compared with the un- 
likelihood of accidental duplicate enzyme evolu- 
tion. However, our knowledge of aerobic HU-  
sensitive RNRs  in proteobacteria  is very limited 
and does not allow any speculation about the 
direction of the gene transfer. The presence of 
two R N R  in one organism seems to be widespread 
among microorganisms. A careful assessment of 
published data indicates that Paracoccus denitrifi- 
cans, propionibacteria,  Corynebacterium nephredii 
and Enterococcus faecalis are able to adapt  de- 
oxynucleoside synthesis to environmental limita- 
tions. 

Phylogenetic trees based on ribosomal RNA 
sequences used as molecular chronometers  indi- 
cate that major bacterial groups evolved before 
the rise in oxygen levels. Organisms using a class 
II enzyme are prepared to live in an aerobic 
environment,  although the usage of a cobalt-de- 
pendent  R N R  restricts the habitat. Occupation of 
aerobic environments with cobalt-deficiency re- 
quired innovation of a new RNR.  The manganese 
enzyme is one archetype of a successful adaption. 
We do not know how archaebacteria adapted to 
aerobic environments, e.g. halobacteria or sulphi- 
dogens. 

The anaerobic class II and IV enzymes use 
RNA-derived cofactors. Amino acids and nucleo- 

sides are easily formed under prebiotic condi- 
tions. Therefore,  one might suggest that the S- 
adenosylmethionine-dependent  glycine radical 
enzyme represents an older R N R  than the B~2- 
dependent  RNR,  perchance the ancient enzyme. 
Eschenmoser 's  studies on abiotic formation of 
porphyrinogenic structures have shown that the 
chromophore  is easily accessible starting from 
a-aminonitri les [233]. This observation, together 
with the widespread occurrence of class II en- 
zymes, counterbalance the arguments favouring 
class IV enzymes. Finally, dNTP synthesis has not 
been investigated in several old bacteria. 

Other  anaerobic RNRs have not been charac- 
terized completely, but at present studies on de- 
oxyribonucleotide formation in methanogens in- 
dicate that a class V enzyme occurs in archaebac- 
teria. The currently pursued study on Methano- 
bacterium thermoautotrophicum is the first in-de- 
pth study on archeal RNRs. 

Deoxyribonucleotide formation in anaerobic 
eukaryotes has only been studied in organisms 
which represent  ancient species and depend 
nowadays on salvage synthesis, e.g. Giardia lam- 
blia. A second group of organisms consisting of 
protozoa and fungi have re-explored eukaryotic 
life in anaerobic habitats. Anaerobic fungi have 
been isolated from faeces and gut [227-230]. 
Free-living anaerobic ciliates contain endosym- 
biontic bacteria which live on hydrogen produced 
by the host. The source of deoxyribonucleotides 
in these anaerobic eukaryotes is unknown. 

Outlook: Evolution-oriented research on ribonu- 
cleotide reduction 

Studies on deoxyribonucleotide formation were 
initiated by interest in the basic metabolic path- 
ways of living organisms and have been main- 
tained by the complex structure of the enzyme 
and our difficulties to understand the enzyme 
mechanism. The central function of RNRs in 
D N A  replication and cell proliferation initiated 
intensive basic research on eukaryotic and viral 
RNRs in order to develop drugs against cancer 
and viral diseases. 
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Renewed interest on R N R  research results 
from studies on the evolution of life. Phylogenetic 
studies on ribosomal R N A  provided the first view 
on the early evolutionary history of organisms. 
The new picture of biological evolution has started 
a hefty discussion on the nature of the common 
ancestor, the first D N A  organism. Currently, our 
fractal knowledge of the nature and occurrence 
of ribonucleotide reductases cannot contribute to 
an understanding of the subject. Future studies 
on deoxyribonucleotide formation in evolutionary 
relevant organisms will support us in painting a 
picture of the R N A - D N A  transition. 
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