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A polynomial action on colored sl2 link homology

Matthew Hogancamp

Abstract. We construct an action of a polynomial ring on the colored sl2 link homology of

Cooper–Krushkal, over which this homology is finitely generated. We define a new, related

link homology which is finite dimensional, extends to tangles, and categorifies a scalar

multiple of the sl2 Reshetikhin–Turaev invariant. We expect this homology to be functorial

under 4-dimensional cobordisms. The polynomial action is related to a conjecture of

Gorsky–Oblomkov–Rasmussen–Shende on the stable Khovanov homology of torus knots,

and as an application we obtain a weak version of this conjecture. A key new ingredient

is the construction of a bounded chain complex which categorifies a scalar multiple of the

Jones–Wenzl projector, in which the denominators have been cleared.
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1. Introduction

In this paper, we address the problem of infinite dimensionality of colored link

homology theories, specifically the colored sl2 link homology constructed by

B. Cooper and V. Krushkal [4]. Our motivation is the program of constructing

categorifications of the Reshetikhin–Turaev link invariants which are functorial

under 4-dimensional link cobordisms. Functoriality requires that the homology
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of the unknot have finite total rank, which fails for most colored link homology

theories. Indeed B. Webster [26] has categorified the Reshetikhin–Turaev invari-

ants for links L � S3 for general Lie algebras g, but Webster’s homology of the

V -colored unknot is finite dimensional only when V is a minuscule representa-

tion of g. In the special case of g D slN , there are many categorifications of

the Reshetikhin–Turaev invariants (see §1.5 for a discussion). These, too, tend

to be infinite dimensional unless one restricts to minuscule representations (ex-

terior powers ƒi .CN / of the natural representation). Roughly speaking, infinite

complexes are required to categorify denominators appearing in the Reshetikhin–

Turaev tangle invariant.

There is one exception to this rule, given by Khovanov’s colored sl2 homol-

ogy [14]. Khovanov’s colored homology avoids infinite complexes by categorify-

ing the colored link invariant, and not its extension to tangles. In this paper we

prefer not to sacrifice the extension to tangles, and instead fix the problem of in-

finite complexes in a different way. Essentially we provide a categorical analogue

of clearing denominators for Cooper–Krushkal homology.

1.1. A categorical analogue of clearing denominators. For a definition of the

Temperley–Lieb algebra TLn and the Jones–Wenzl projectors pn 2 TLn see §2.

One can define an integral form TLZ

n � TLn, which is the ZŒq; q�1�-subalgebra

generated by diagrams (crossingless matchings of 2n points in a rectangle). The

Jones–Wenzl projector is not an element of TLZ

n , but from the explicit recur-

sion (2.2) one can see that

n
Y

kD2

.1 � q2k/pn 2 TLZ

n (1.1)

Thus, we say that pn has denominators of the form 1 � q2k .

In §2.2 we recall Bar-Natan’s category TLn of tangles and dotted cobordisms.

This would be denoted by Mat..Cob3�.n/=l/ in [1]. Equivalently, we could work

with modules over Khovanov’s rings Hn, see [12]. There is an isomorphism

from the split Grothendieck group of TLn to TLZ

n , which implies that a bounded

complex over TLn has a well-defined Euler characteristic �.A/ 2 TLZ

n . In

contrast, unbounded complexes do not all have a well-defined Euler characteristic.

Nonetheless, all of the unbounded complexes considered in this paper have a well-

defined Euler characteristic, which takes values in the algebra obtained from TLZ

n

by extending scalars to Laurent series ZŒq�1�JqK (see §2.7). Homotopy equivalent

complexes have equal Euler characteristics. We say that a complex categorifies
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its Euler characteristic, and that an equivalence of complexes categorifies the

corresponding identity in TLn, et cetera.

The main ingredient in Cooper–Krushkal homology is the construction in [4]

of family of complexes Pn 2 Kom.n/ which categorify the Jones–Wenzl projec-

tors. This requires unbounded complexes, in order to categorify the denominators

.1 � q2k/�1 D
P1
iD0 q

2ki . It is natural to ask whether the rescaled version of pn

given in expression (1.1) admits a categorification by a bounded complex. As we

will see, the answer is yes.

The heart of this paper is the construction, in section §3, of complexes Qn

which categorify the elements .1� q2n/pn 2 TLn in which certain denominators

have been cleared. The complex Qn is built out of Pn�1 D
. . .

. . .

in the following

way:

Qn D
�

. . .

. . .

�!
. . .

. . .

�! � � � �!
. . .

. . .

�!
. . .

. . .

�! � � � �!
. . .

. . .

�!
. . .

. . .

�

:

Each picture above denotes a chain complex Ei over TLn, and each arrow corre-

sponds to a certain chain map Ei ! EiC1. See Definition 3.5 for details. The

above notation means that Qn is equal to a direct sum of the Ei (grading shifts

omitted), endowed with a differential which is the sum of the differentials internal

to each Ei , the arrows connecting adjacent Ei ’s, and morphisms corresponding

to length > 1 arrows pointing to the right. Such a complex is called a convolution

(Definition 2.42), and can also be thought of as an iterated mapping cone

Qn D Cone.E1�2n �! Cone.� � � �! Cone.E�2 �! Cone.E�1 �! E0// � � � //:

These complexes Qn are of fundamental importance. For instance, the Cooper–

Krushkal projectors Pn can be recovered from Qn by a categorical analogue of

multiplication by .1� q2n/�1 D
P1
kD0 q

2nk:

Theorem 1.2. There is a chain map @n 2 END.Qn/ of bidegree deg.@n/ D

.2n � 1;�2n/ such that

Pn ' ZŒun�˝Qn with differential 1˝ dQn
C un ˝ @n (1.3)

where un is a formal indeterminate of bidegree .2 � 2n; 2n/.

Here, HOM.A; B/ denotes the chain complex generated by all bihomogenous

linear maps between chain complexes, with differential

f 7! dB ı f � .�1/
degh.f /f ı dA:
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The bidegree is deg.f / D .degh.f /; degq.f //. Theorem 1.3 makes it obvious that

ZŒun� acts on Pn. In fact, un includes ZŒun� ˝Qn as subcomplex of itself, with

quotientQn (this is an imprecise statement, since TLn is not an abelian category).

More precisely:

Theorem 1.4. Let Un 2 END.Pn/ denote the chain map coming from the action

of un on the complex (1.3). Then

Qn ' Cone.Un/: (1.5)

The presentation of Qn as the mapping cone on an endomorphism makes

it obvious that the exterior algebra ƒŒ@n� acts on Qn, and we easily recover

the statement of Theorem 1.2. The dual relationship between Theorem 1.2 and

Theorem 1.4 is precisely that of Koszul duality between modules over polynomial

and exterior algebras.

On the level of Euler characteristic, equivalence (1.3) becomes

�.Pn/ D .1� q
2n/�1�.Qn/

and equivalence (1.5) becomes

�.Qn/ D .1� q
2n/�.Pn/:

Thus, the constructions in Theorems 1.2 and 1.4 provide categorical analogues of

division and multiplication by .1� q2n/.

Recall that we are looking for a bounded complex which categorifies the scalar

multiple of pn appearing in expression (1.1). Such a complex is provided by a

tensor product of the Qk’s, for 2 � k � n. To see this, first let P 0
k

denote

the complex ZŒuk � ˝ Qk with differential as in (1.3). Let .�/ t 1i WKom.j / !

Kom.i C j / denote the functor which places i parallel strands to the right of each

diagram. From the unique characterization of Cooper–Krushkal projectors, one

can see that .P 0
k
t 1n�k/˝ P

0
n ' P

0
n. In particular

Pn ' .P
0
2 t 1n�2/˝ .P

0
3 t 1n�3/˝ � � � ˝ P

0
n:

Written differently this is:

Corollary 1.6. We have

Pn ' ZŒu2; u3; : : : ; un�˝Kn (1.7)

with differential

1˝ dKn
C

n
X

kD2

uk ˝ @k ;

where Kn WD .Q2 t 1n�2/˝ .Q3 t 1n�3/˝ � � � ˝Qn.
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On the level of Euler-characteristic, this equivalence becomes

�.Pn/ D

n
Y

kD2

.1� q2k/�1�.Kn/:

That is to say,

�.Kn/ D

n
Y

kD2

.1� q2k/�.Pn/;

as desired. We have seen that this element lies in the integral form TLZ

n . This fact

is categorified by the following, which is proven in §3.3:

Theorem 1.8. The complex Kn D .Q2 t 1n�2/ ˝ .Q3 t 1n�3/ ˝ � � � ˝ Qn is

homotopy equivalent to a bounded complex.

Remark 1.9. We know that the result of Theorem 1.8 is not optimal. For example

Q3 is homotopy equivalent to a bounded complex (see Example 3.41). On the

other handQk is not homotopy equivalent to a bounded complex for k � 4. For a

discussion on precisely which tensor products of the Qk’s are bounded, see §3.7.

There is another special property that the Euler characteristic of Kn has,

namely that it is a scalar multiple of an idempotent. In general, if e 2 A idempotent

element of an algebra, and ˛ is a scalar, then any multiple f D ˛e satisfies

f 2 D f̨ . It turns out that this property has a categorical analogue as well:

Theorem 1.10. The complexesQk satisfy

(1) Q˝2
n ' Qn ˚ t

1�2nq2nQn;

(2) .Qk t 1n�k/˝Qn Š Qn ˝ .Qk t 1n�k/.

In particularK˝2
n is equivalent to a direct sum of 2n�1 copies ofKn, with grading

shifts.

This is proven in §3.6.

1.2. The polynomial action on Pn. Note that any chain complex C 2 Kom.n/

is an .R;R/-bimodule, where R D ZŒx1; : : : ; xn�=.x
2
1 ; � � � ; x

2
n/. The action of xi

is given by the identity cobordism with a dot on one of the sheets or, equivalently,

multiplication by X in Khovanov homology. The actions of xi on Pn are homo-

topic up to sign. We will pick our favorite of these endomorphisms and call it

U
.n/
1 . For instance, U

.n/
1 WD

. . .

. . .

2 END.Pn/. This induces an action of ZŒu1� on

Pn. The equivalence (1.7) allows us to extend this action to an action of a larger

polynomial ring:
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Definition 1.11. For 2 � k � n, let U
.n/

k
2 END.Pn/ denote the map induced

from the action of uk on the complex (1.7). As in the preceding remarks, put

U
.n/
1 WD

. . .

. . .

.

The homology of END.Pn/ is graded commutative [9], so these chain maps

define an action of ZŒu1; : : : ; un� on Pn, up to homotopy. We will see in a moment

that the maps U
.n/

k
do not depend on any choices, up to homotopy and sign. But

first, the following illustrates the usefulness of equivalence (1.7) in computations.

Theorem 1.12. There is a representative for Pn such that END.Pn/ deformation

retracts onto a differential bigraded ZŒu1; : : : ; un�-module

Wn D ZŒu1; : : : ; un�=.u
2
1/˝ƒŒ�2; �3; : : : ; �n�

with differential satisfying

(1) d.uk/ D 0 for each k D 1; 2; : : : ; n;

(2) d.�k/ 2 2u1uk C ZŒu2; : : : ; uk�1� for each k D 2; 3; : : : ; n.

The data of the deformation retract END.Pn/! Wn are ZŒu1; : : : ; un�-equivari-

ant, where uk acts on END.Pn/ via post-composition with U
.n/

k
.

This is proven in §3.4. As a corollary, we have

Theorem 1.13. For 1 � k � n, the group of chain maps t2�2kq2kPn ! Pn

modulo chain homotopy is isomorphic to Z, spanned by the class of U
.n/

k
. The

mapping cones satisfy Cone.U
.n/

k
/ ' .Qk t 1n�k/ ˝ Pn. In particular, Qn is

uniquely characterized by the equivalenceQn ' Cone.U
.n/
n /.

For the uniqueness statement, see Theorem 3.39.

1.3. Application to link homology. Let us outline the construction of our family

of link homology theories, explained in detail in §4.1. First:

Definition 1.14. Recall the maps U
.n/

k
from Definition 1.11. For any sequence

1 � i1; : : : ; ir � n, let Pn.i1; : : : ; ir/ denote the tensor product of complexes

Cone.U
.n/
ik
/. For the empty sequence, we put Pn.¿/ WD Pn. We call these

complexes Pn.i/ quasi-projectors.
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LetD be an oriented tangle diagram, together with a finite number of marked

points x1; : : : ; xk onD, away from the crossings, such that there is at least one xi

on each component of the underlying tangle. Let K D ¹K1; K2; : : :º be a family

of complexes of the form Kn D Pn.in/ for some sequences in. To these data we

associate a chain complex JDIKK as follows: replace an n-colored component

of D with n parallel copies of itself, insert the appropriate Kn near each marked

point, and define JDIKK using the planar composition operations on Bar-Natan’s

categories (formally similar to tensor product).

By a decorated tangle we will mean a pair .T; V /, where T � B3 is a colored,

framed, oriented tangle together V � T is a finite set of points in the interior of T .

We regard these modulo (framed) isotopy of pairs. We prove the following in §4.1:

Theorem 1.15. The chain homotopy type of JDIKK is an invariant of the under-

lying decorated tangle. This invariant satisfies the following properties.

(1) SupposeD and D0 are identical, except that D0 has one fewer marked point

than D, on a component colored by n. Then JDIKK is chain homotopy

equivalent to a direct sum of copies of JD0IKK with degree shifts, depending

only on n.

(2) If D and D0 differ only in the orientation, then JDIKK ' JD0IKK up to an

overall degree shift.

(3) For some choices ofK, JDIKK is homotopy equivalent to a bounded complex.

Remark 1.16. This new invariant categorifies the sl2 Reshetikhin–Turaev invari-

ant (see §2.7) up to a scalar multiple depending only on the colors and numbers

of marked points. By choosing exactly 1 marked point on each component of L,

we can forget the data of markings altogether. The resulting unmarked invariant

is defined for tangles, but respects gluing only up to a direct sum. One may call

such an invariant quasi-local.

Remark 1.17. To obtain an actual homology theory, one must apply the functor

Hom.¿;�/ to JD;KK, which is defined only if the tangle underlyingD is actually

a knot or link L. We will denote the homology of this complex of Z-modules by

Hsl2
.LIK/.

In the special case P D ¹P1; P2 : : : ; º is the family of Cooper–Krushkal pro-

jectors, we call the homology Hsl2
.LIP/ the Cooper–Krushkal homology of L.

Actually, this homology is dual to that constructed in [4] (see Observation 4.14).

In §4.3, we prove that the ZŒu1; : : : ; un�-action on Pn descends to a well-defined

action on link homology:
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Theorem 1.18. Let L � R3 be a framed, oriented link whose components are

colored n1; : : : ; nr . Let R.L/ denote the tensor product

R.L/ WD

r
O

iD1

ZŒu1; : : : ; uni
�

graded so that deg.uk/ D .2 � 2k; 2k/. Then the Cooper–Krushkal homology

Hsl2
.LIP/ is a well-defined isomorphism class of finitely generated, bigraded

R.L/-modules.

Finally, the various link homologies can be related by spectral sequences

(see §4.3):

Theorem 1.19. Fix a family K D ¹K1; K2; : : : ; º of quasi-projectors, and let

L � S3 be a colored, framed, oriented link. There is a polynomial ringR.L/ and a

spectral sequence of bigradedR.L/-modulesR.L/˝ZHsl2
.LIK/H)Hsl2

.LIP/.

1.4. Connection to conjectures of Gorsky–Oblomkov–Rasmussen–Shende.

Recent work [7, 8] has indicated that the Khovanov and Khovanov-Rozansky

homology of the torus knots are very interesting objects, and are related to affine

Lie algebras. This surprising connection itself has its origins in a fascinating

conjecture [20] relating the triply-graded Khovanov-Rozansky homology of an

algebraic link with the Hilbert scheme of points on its defining complex curve.

This is a very exciting area of research, and reflects that there is much to discover

in the landscape of link homology.

Of specific importance to us is the following conjecture, which appears in [7]:

Conjecture 1.20. Let Vn D ZŒu1; : : : ; un�˝ƒŒ�1; : : : ; �n� denote the differential

bigraded algebra with bigrading

deg.um/ D .2 � 2m; 2m/; deg.�m/ D .1� 2m; 2C 2m/;

and differential given by

d.um/ D 0 d.�m/ D
X

iCjDmC1

uiuj

for all 1 � m � n, together with the graded Leibniz rule. Then the homology of

Vn is isomorphic to the limiting Khovanov homology of the .n; r/ torus links as

r !1.
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In this paper we make significant progress toward this conjecture. It is known

that the limiting Khovanov homology of .n; r/ torus links as r !1 is isomorphic

to the homology of the closure of the categorifiied Jones–Wenzl projector [23].

This is simply the Cooper–Krushkal homology of the n-colored unknot. We

know that this homology coincides with the homology of the differential bigraded

algebra END.Pn/. The additional structure onPn afforded by the expression (3.13)

allows us to greatly simplify this latter algebra (see Theorem 1.12 earlier in the

introduction, and §3.4 in the main body of the paper). Specifically, we construct

a projector Pn and a deformation retract END.Pn/ ! ZŒu1; : : : ; un�=.u
2
1/ ˝

ƒŒ�2; : : : ; �n� DW Wn with some ZŒu1; : : : ; un�-equivariant differential.

This is not yet a proof of Conjecture 1.20, since we are unable to give an explicit

formula for d.�k/. Moreover, we do not know if the Leibniz rule holds forWn. On

the other hand, the deformation retract END.Pn/ ! Wn endows Wn with the

structure of an A1 algebra, the existence of which is not apparent in [7]. We can

check directly that�2.�2; �2/ D u
3
2 is nonzero, whereas the obvious multiplication

in Wn gives �22 D 0. So there is the possibility that the A1 structure on Wn is

interesting.

1.5. Other Lie algebras. Let L � S3 be a framed, oriented link. Fix a complex

semi-simple Lie algebra g, for example g D sln.C/, and label the components of

L by finite dimensional irreducible representations of g. The Reshetikhin–Turaev

invariant of L is an element of ZŒq; q�1�, defined using the braiding operation on

tensor products of representations of the quantum group Uq.g/. In case g D sl2,

the corresponding link invariant is called the colored Jones polynomial. The finite

dimensional irreducible representations of sl2 are determined up to isomorphism

by their dimension, so the colored Jones polynomial is naturally an invariant of

framed, oriented links L � S3 whose components are labelled by non-negative

integers, called the colors. The color n corresponds to the n C 1 dimensional

representation.

More generally, the finite dimensional irreducible representations of slN .C/

up to isomorphism are indexed by partitions (that is, non-increasing sequences of

integers) � D .�1; : : : ; �N / with �N D 0. The representation associated with �

is denoted L.�/. If !i D .1; : : : ; 1; 0; : : : ; 0/ with i ones and n � i zeroes, then

L.!i / D ƒi .CN / is the i-th exterior power of the standard representation. At

the other extreme, if � D .n; 0; : : : ; 0/, then L.�/ D Symn.CN /. The minuscule

representations are precisely the exterior powersƒi .CN /, for i D 1; 2; : : : ; N � 1.

We list a small sample of the many various ways in which the slN polynomial

has been categorified, for various colors and various N . For the uncolored slN
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invariant see [11, 13, 16, 19, 3], for the ƒi .CN /-colored invariant see [28, 25, 17],

for the Symi .CN / colored invariant .N 2 ¹2; 3º/, see [14, 4, 23, 6, 22], for arbitrary

colors and arbitrary N , see [26, 2]. Except for [14], these are all expected to be

isomorphic or, at worst, related by Koszul duality [24]. In all of these examples

except [14], the homology of the V -colored unknot is infinite dimensional unless

V D ƒi .CN /.

All of the results in this paper concern the Symn.C2/-colored sl2 link invariant,

but we expect our results to extend without difficulty to the Symn.CN /-colored slN

link invariant, in an essentially obvious way. The diagram gets replaced by its

web analogue: the letter “I”, and Bar-Natan’s cobordism categories get replaced

by categores of slN matrix factorizations [16] or foams [19], or perhaps Soergel

bimodules [15].

1.6. Organization of the paper. In §2 we recall Bar-Natan’s categorification of

the Temperley–Lieb algebras TLn and the Cooper–Krushkal categorification of

the Jones–Wenzl projector pn 2 TLn.

In §3 we show how to construct complexes Qn over Bar-Natan’s categories

which categorify the expressions .1 � q2n/pn 2 TLn and find a unique char-

acterization of the Qn. We then establish some basic properties, particularly the

relationship with the Cooper–Krushkal projectors Pn, from which our polynomial

action will originate.

In §4 we show that the Qn can be used to construct a new family of colored

sl2 link homologies, and give a characterization of which of these give finite

homologies. These new homologies retain a close relationship with Cooper–

Krushkal homology, in the form of a certain spectral sequence. As a by-product,

we will see the Cooper–Krushkal homology can be refined to an invariant which

takes values in finitely generated bigraded modules over a polynomial ring, up to

isomorphism.

Finally, the appendix §5 introduces some basic notions in homological algebra

such as convolutions and deformation retracts, and establishes some useful tools

for simplifying some of the unbounded chain complexes which appear in this

subject.
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2. The Temperley–Lieb algebra and its categorification

The sl2 quantum invariant for tangles is defined via a braid group action on

the Temperley–Lieb algebras TLn together with certain idempotent elements

pn 2 TLn called the Jones–Wenzl projectors. In this section we study the cat-

egorification of pn due to Cooper–Krushkal [4], in the setting of Bar-Natan’s

categories [1] or, equivalently categories of modules over Khovanov’s rings Hn,

see [12]. We also set up some basic theory involving the Cooper–Krushkal pro-

jectors which we will use later.

2.1. The Temperley–Lieb algebras and Jones–Wenzl projectors. Let TLmn
be the C.q/-vector space generated by properly embedded 1-submanifolds of the

rectangle Œ0; 1�2 with boundary equal to a standard set of m points ¹.k; .mC 1// j

k D 1; : : : ; mº on the “top” of the rectangle and n points ¹.k; .m C 1// j k D

1; : : : ; mº on the “bottom” of the rectangle. Here C.q/ is the field of rational

functions in an indeterminate q. We regard the generators modulo planar isotopy

and the relation D t U D .q C q�1/D, where U is a circle disjoint from the rest

of the diagram. By a diagram or a Temperley–Lieb diagram, we will simply mean

the image of a 1-manifold with no circle components inside TLmn .

We have a bilinear map TLmk �TLkn ! TLmn given by vertical stacking, which

we denote by a � b, or simply ab. This makes the collection of spaces TLmn
into a C.q/-linear category TL with objects given by non-negative integers and

morphisms n ! m given by elements of TLmn . In particular, composition makes

the vector space TLn WD TLnn into a unital algebra, called the Temperley–Lieb

algebra on n strands. The identity is the diagram 1n consisting of n-vertical

strands. For a diagram a 2 TLmn , define the through degree �.a/ to be the minimal

k such that a D b�cwith b 2 TLmk , c 2 TLkn. For a linear combination b D
P

a faa

of diagrams, let �.b/ WD max¹�.a/ j fa ¤ 0º.

� D D .q C q�1/

Figure 1. Multiplication in TL4. Each of the diagrams above has through degree 2.

The following is classical [27, 5], and defines the Jones–Wenzl projectors

pn 2 TLn:

Theorem 2.1. There is a unique element pn 2 TLn satisfying

(JW1) pn D 1n C a with �.a/ < n;

(JW2) a � pn D pn � b D 0 whenever �.a/; �.b/ < n.
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We refer to axiom (JW2) by saying that pn kills turnbacks. Indeed, using the

graphical notation in which we denote a parallel strands by
a

and pn WD
n

,

this axiom becomes equivalent to

i

n

n i 2

D 0 D
i

n

n i 2

for 0 � i � n � 2. Similarly, if f 2 TLn is such that a � f D 0 (respectively

f � a) whenever �.a/ < n, then we say f kills turnbacks from above (respectively

below). An explicit description of pn is given by p1 D 11 2 TL1 together with

the recursion

pn D
. . .

. . .

�
Œn � 1�

Œn� . . .

. . .

C
Œn � 2�

Œn� . . .

. . .

� � � � ˙
1

Œn� . . .

. . .

(2.2)

where the white box denotes pn�1 and Œk� D qk�q�k

q�q�1 is the quantum integer. One

can find this result in [5] with a different sign convention.

2.2. The tangle categories. In [1] Bar-Natan interprets the Temperley–Lieb dia-

grams as objects of a category in which the morphisms ensure that the Temperley–

Lieb relations lift to isomorphisms. The paper [1] contains an excellent exposition,

and we refer the reader to [9] for more details regarding our specific conventions.

Definition 2.3. For each integer n � 0, fix a standard set Bn � @D
2 of 2n points,

and define a category Cobn as follows:

� The objects of Cobn: symbols qjT , where T � D2 is a properly embedded

1-submanifold with boundary @T D Bn.

� A morphism f W qiT ! qjT 0 is a formal Z-linear combination of cobordisms

T ! T 0 in D2 � Œ0; 1�, decorated with dots, regarded modulo (1) isotopy of

the underlying surfaces (rel boundary), (2) dots are allowed to move freely

about the components of the cobordism, and (3) the following local relations:

(1) D 0, D 1, D 0, and D 0;

(2) D C ;

(3) D 2 .
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Here, a cobordism S W qiT ! qjT 0 is a properly embedded surface S 2

D2 � I with boundary @S D .T � ¹0º/ [ .T 0 � ¹1º/ [ .Bn � Œ0; 1�/. The

degree of S W qiT ! qjT 0 is defined by

degq.S/ D nC j � i � �.S/C 2.# of dots/

where �.S/ is the Euler characteristic of the surface S , and we allow only

homogeneous morphisms of degq zero.

Composition of morphisms in Cobn is induced by gluing of cobordisms, extended

bilinearly to arbitrary morphisms. Since Euler characteristic is additive under

gluing, the composition of degree zero morphisms is again degree zero, so that

Cobn is well-defined.

The categories Cobn do not contain all direct sums, so we formally add them,

obtaining a category whose objects are formal direct sums of objects of Cobn

and whose morphisms are matrices of morphisms of morphisms in Cobn with the

appropriate source and target.

Definition 2.4. Let TLn denote the category with objects the symbols
Lr
kD1 ak

where ai 2 Cobn .1 � i � n/. Morphisms in TLn from
Lr
kD1 ak !

Ls
lD1 bl

are matrices f D .fij / where fij 2 HomCobn
.aj ; bi /. Composition is given by

matrix multiplication .f ı g/ij D
P

k fik ı gkj .

Definition 2.5. Let Kom.n/ WD Kom.TLn/ denote the category of potentially

unbounded chain complexes over TLn with morphisms given by degree zero chain

maps. Similarly define KomC.n/, Kom�.n/, Komb.n/ � Kom.n/ to be the full

subcategories of Kom.n/ consisting of chain complexes which are bounded from

below, respectively bounded from above, respectively bounded, in homological

degree. We denote homotopy equivalence of complexes by '.

We will always draw our diagrams in a rectangle, so that the set of 2n distin-

guished boundary points corresponds to n standard points on the top Œ0; 1� � ¹1º,

respectively bottom Œ0; 1� � ¹0º of D2 D Œ0; 1� � Œ0; 1�. Various planar operations

can be regarded as multilinear functors among the TLn, via gluing tangles (resp.

cobordisms) together in the obvious manner.

Definition 2.6. Let ˝WTLn � TLn ! TLn be the bilinear functor induced by

vertical stacking, so that a˝ b is ‘a on top of b.’ Let tWTLn � TLm ! TLnCm be

the bilinear functor induced by horizontal juxtaposition. Let T WTLn ! TLn�1 be

the partial trace functor:

T .a/ D

. . .

. . .

a :
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Proposition 2.7. Each of the (multi-linear) functors of Definition 2.6 has an

extension to the relevant categories Kom˙.n/ of semi-infinite chain complexes.

Proof. It is an easy fact (see, for example, [9]) that if Ai , B are additive categories

then any multilinear functor A1� � � ��Ar ! B extends naturally to a multilinear

functor Kom�.A/1� � � ��Kom�.A/r ! Kom�.B/ of categories of semi-infinite

chain complexes and degree zero chain maps. The precise formulae recall the

definition of the tensor product of chain complexes of abelian groups via the usual

Koszul sign rule on differentials. �

In this paper, whenever we write f WA ! B or f 2 Hom.A; B/, we mean

that f is a chain map which is homogenous of homological and q-degree zero.

It is often convenient to assemble the maps of arbitrary degree (not necessarily

compatible with the differentials) into a chain complex:

Definition 2.8. For complexes A;B 2 Kom.n/, let HOMTLn
.A; B/ denote the

chain complex generated by bihomogeneous maps of arbitrary bidegree and dif-

ferential given by the super-commutator Œd; f � D dB ı f � .�1/
jf jf ı dA. By

an element of this hom complex we will always mean a bihomogeneous element,

and we let deg.f / D .degh.f /; degq.f // denote the bidegree. We often write

degh.f / D jf j and HOM D HOMTLn
.

The HOM complex is a bigraded abelian group

HOMi;j .A; B/ D
Y

k2Z

HomTLn
.qjAk; BkCi /

with a differential of bidegree .1; 0/.

The bidegree .i; j / cycles (respectively, boundaries) of HOMi;j .A; B/ are

precisely chain maps (respectively null-homotopic chain maps) t iqjA ! B ,

where t and q denote the functors Kom.n/ ! Kom.n/ given by shifting upward

in homological and q-degree, respectively. Our convention for behavior of the

differentials is dtA D �dA and dqA D dA, appropriately interpreted.

Definition 2.9. Let Exti;j .A; B/ denote the .i; j /-th homology group of the

complex HOM.A; B/, which is simply the group of chain maps t iqjA ! B

modulo chain homotopy.

2.3. Some mapping cone lemmas. It seems worthwhile to pause and recall

some basic facts of mapping cones which will be useful in the sequel.
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Definition 2.10. Suppose A;B are chain complexes over an additive category,

and f WA! B is a chain map (all arrows are assumed to have degree zero). The

mapping cone on f is the chain complex Cone.f / D t�1A˚ B with differential

dCone.f / D

"

�dA

f dB

#

:

We will also write this as Cone.f / D .t�1A
f
�! B/, in anticipation for similar

notation for convolutions (Definition 2.42).

Lemma 2.11. Let A;B be chain complexes over an additive category. A chain

map f WA! B is a homotopy equivalence if and only if Cone.f / ' 0.

Proof. This is a standard property of mapping cones. For an easily accessible

proof, see [22]. �

Lemma 2.12. Suppose A;A0; B; B 0 are chain complexes over an additive cate-

gory, and f WA! B is a chain map. Let �WA! A0 and  WB ! B 0 be homotopy

equivalences. Then

Cone.f / ' Cone. ı f ı ��1/

where ��1 denotes a homotopy inverse for �.

Proof. The differentials on Cone.f / and Cone. f ��1/ are the matrices

dCone.f / D

"

�dA 0

f dB

#

; dCone. f��1/ D

"

�dA0 0

 f��1 dB0

#

:

Define a chain map ˆWCone.f /! Cone. f ��1/ by the matrix

ˆ D

"

� 0

� f h  

#

where dAhChdA D IdA ��
�1�. Then one can check that Cone.ˆ/ is contractible.

One way to see this is that Cone.ˆ/ can be reassociated into a mapping cone

Cone.Cone.�/ ! Cone. //. Now, Cone.�/ and Cone. / are contractible since

� and  are equivalences. Thus, Cone.‰/ ' 0 by two applications of Gaussian

elimination (Proposition 5.10). This implies that ˆ is a homotopy equivalence.

�
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2.4. Turnback killing and Cooper–Krushkal projectors. The turnback killing

property plays an important role for Jones–Wenzl projectors, and the same is true

of their categorified counterparts.

Definition 2.13. Define the through-degree of a complex A 2 Kom.n/ to be

�.A/ D maxa¹�.a/º, where a ranges over all diagrams appearing as direct sum-

mands of chain groups of A.

Note that if a 2 TLn has �.n/ < n, then a is a direct sum of objects ei1˝� � �˝eir ,

where the ei are the usual Temperley–Lieb generators. A chain complexA satisfies

�.A/ < n if and only if each chain group satisfies �.Ai/ < n.

Definition 2.14. We say that a complex C 2 Kom�.n/ kills turnbacks from below

(resp. above) if C ˝ N ' 0 (resp. N ˝ C ' 0) for each complex N 2 Kom�.n/

with �.N / < n. We say C kills turnbacks if it kills turnbacks from above and

below.

Proposition 2.15. A complex C 2 Kom�.n/ kills turnbacks from below (resp.

above) if and only if C ˝ ei ' 0 (resp. ei ˝ C ' 0) for all Temperley–Lieb

generators ei WD 1n�i t e t 1i�1, where e D .

Proof. If C kills turnbacks from below, then C ˝ ei ' 0, since �.ei / < n for all

i D 1; : : : ; n� 1.

Conversely, suppose C ˝ ei ' 0 for each i D 1; : : : ; n � 1. If a 2 TLn

is any diagram with �.a/ < n, then a is isomorphic to a direct sum of objects

ei1˝� � �˝ eir , since the ei generate the non-identity Temperley–Lieb diagrams. It

follows thatC˝a ' 0whenever a 2 TLn satisfies �.a/ < n. IfN 2 Kom�.n/ has

�.N / < n, then each chain group satisfies �.Ni / < n. Then C ˝ A D Tot.� � � !

C˝Ni ! C˝NiC1 ! � � � / is contractible by Theorem 5.12, so C kills turnbacks

from below, by definition. �

We now discuss the categorified Jones–Wenzl projectors, following Cooper–

Krushkal [4]. Our exposition differs from that in [4] in a few ways. Firstly, we

consider complexes which are bounded from above in homological degree, rather

than below. The reason for this choice is so that the homology of the uknot is

naturally a unital algebra, rather than a counital coalgebra. The two conventions

are related by the contravariant duality functor .�/_WKom˙.n/ ! Kom�.n/

which reverses all degrees and flips cobordisms upside-down. Secondly, we will

work primarily with a definition which is slightly more general than the projectors

considered in [4]. We take the liberty of naming our objects after Cooper–

Krushkal, despite these slight differences.
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Definition 2.16. A Cooper–Krushkal projector is a pair .Pn; �/ where Pn 2

Kom�.n/ is a complex, and �W 1n ! Pn is a chain map satisfying

(CK1) Cone.�/ is homotopy equivalent to a complex with through degree < n;

(CK2) Pn kills turnbacks.

The map � is called the unit of the projector Pn.

We often drop the unit �W 1n ! Pn from the notation, and simply call Pn a

Cooper–Krushkal projector.

Combining axioms (CK1) and (CK2), we see that

Pn ˝ Cone.1n ! Pn/ ' 0: (2.17)

This equivalence gives us a good notion of categorical idempotents. Firsly, note

that on the level of Euler characteristic, equivalence (2.17) becomespn.pn�1/ D 0

which characterizes the usual notion of idempotents. Moreover (2.17) implies

Pn˝Pn ' Pn, but is stronger in the sense that the equivalence Pn ! Pn˝Pn is

induced from a map 1n ! Pn. One important consequence is that the homotopy

category of complexes such that Pn ˝ C ' C is triangulated (see Remark 2.25).

Let us relate our projectors to those considered in [4]. Note that there is a

projection Cone.�/! t�11n, and the mapping cone satisfies

Pn ' Cone.t Cone.�/ �! 1n//:

By axiom (CK1), there is a complex N ' t Cone.�/ with �.N / < n. By

Lemma 2.12 we thus have

Pn ' Cone.N ! 1n/ (2.18)

Up to reversing the homological grading convention, the projectors originally

considered by Cooper–Krushkal in [4] are all of this more restricted form on the

right-hand side above. They were called universal projectors in [4]. We will call

them strong Cooper–Krushkal projectors:

Definition 2.19. A strong Cooper–Krushkal projector is a chain complex Pn 2

Kom�.n/ such that

(1) Pn D Cone.N
f
�! 1n/ for some chain complex N 2 Kom�.n/ with

�.N / < n.

(2) Pn kills turnbacks.
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Remark 2.20. Definition 2.19 is not preserved under homotopy equivalences, in

the sense that there exist complexesC 2 Kom�.n/which are homotopy equivalent

to strong Cooper–Krushkal projectors, but which are not strong Cooper–Krushkal

projectors. This is our main reason for defining Cooper–Krushkal projectors as we

have. Nonetheless, the existence of strong Cooper–Krushkal projectors is often

useful for technical reasons, as in Proposition 2.30.

The following is clear:

Proposition 2.21. If Pn 2 Kom�.n/ is a strong Cooper–Krushkal projector

then .Pn; �/ is a Cooper–Krushkal projector, where �W 1n ! Pn is the inclusion

1n ! Cone.N ! 1n/. �

As we have a slightly different set of axioms than in [4], we will develop the

theory from our point of view.

Proposition 2.22. Suppose .A; �A/ and .B; �B/ are Cooper–Krushkal projectors

in Kom.n/. Then .A˝ B; �A ˝ �B/ is a Cooper–Krushkal projector.

Proof. Clearly A˝ B kills turnbacks, since A and B do. Consider the following

chain complex:

C D

0

B
B
B
B
@

t�1A A˝ B

t�11n A

 

!

� IdA

 

!
IdA ˝�B

 

!
�A

1

C
C
C
C
A

:

Contracting the isomorphism (Gaussian elimination, Proposition 5.10) , we see

that C ' Cone.�A ˝ �B/. On the other hand, the rows are A ˝ Cone.�B/ and

Cone.�A/, each of which is homotopy equivalent to a complex with through-degree

< n by axiom (CK1) of definition 2.16. It follows that Cone.�A˝ �B/ is equivalent

to a complex with through-degree < n, by Lemma 2.12. Thus .A˝B; �A ˝ �B/ is

a Cooper–Krushkal projector. �

Proposition 2.23. Let C 2 Kom�.n/ be arbitrary, and let .Pn; �/ be a Cooper–

Krushkal projector. The following are equivalent:

(1) C kills turnbacks from below;

(2) C ˝ Cone.�/ ' 0;

(3) C ˝ Pn ' C .
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Similarly, the following are equivalent:

(5) C kills turnbacks from above;

(6) Cone.�/˝ C ' 0;

(7) Pn ˝ C ' C .

Proof. (1) H) (2). Assume that (1) holds. By axiom (CK2) Cone.�/ is equivalent

to a complex with � < n, hence C ˝ Cone.�/ ' 0, which is (2).

(2) H) (3). Assume that (2) holds. Note that Cone.IdC ˝�/ is isomorphic to

the contractible complex C ˝Cone.�/. It is a standard property of mapping cones

that a chain map f is a homotopy equivalence if and only if Cone.f / ' 0. Thus

IdC ˝� defines a homotopy equivalence C ' C ˝ Pn, which is (3).

(3) H) (1). Obviously, if C ' C ˝ Pn, then C kills turnbacks from below.

A similar argument shows that (4), (5), and (6) are equivalent. �

We refer to the equivalence of (1) and (3) in the previous proposition as the

projector absorbing property. As an immediate consequence we have:

Corollary 2.24. Cooper–Krushkal projectors are idempotent: Pn ˝ Pn ' Pn.

Proof. Take C D Pn in Proposition 2.23. �

Remark 2.25. We may think of the functor Pn ˝ .�/ as a categorified projec-

tion operator. Denote by Pn˝Kom�.n/ the image of this functor, that is, the full

subcategory of Kom�.n/ consisting of complexes which are fixed by Pn ˝ .�/

up to homotopy equivalence. Proposition 2.23 implies that C is an object of

Pn ˝ Kom�.n/ if and only if C annihilates Cone.�/. This latter condition is

obviously closed under taking mapping cones, so the homotopy category of

Pn ˝Kom�.n/ is triangulated. This is a desirable property of categorified idem-

potents.

As another application of Proposition 2.23, we have:

Corollary 2.26. Cooper–Krushkal projectors are unique up to homotopy equiv-

alence.

Proof. If .Pn; �/ and .P 0
n; �

0/ are two Cooper–Krushkal projectors then P 0
n˝Pn '

P 0
n and P 0

n ˝ Pn ' Pn by two applications of projector absorbing. �

Remark 2.27. In §2.5 we prove that any two Cooper–Krushkal projectors are, in

fact, canonically equivalent.
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Proposition 2.28. Let .Pn; �/ be a Cooper–Krushkal projector. We havePn˝A '

A˝ Pn for all complexes A 2 Kom�.n/.

Proof. Note that the set of complexes C with �.C / < n forms a tensor ideal in

Kom�.n/. That is, if �.C / < n, then �.A ˝ C/ < n and �.C ˝ A/ < n for all

A 2 Kom�.n/.

Let .Pn; �/ be a Cooper–Krushkal projector, and letA 2 Kom�.n/ be arbitrary.

From the Cooper–Krushkal axioms, and the above remarks, A˝Cone.�/ is equiv-

alent to a complex with through degree < n, hence Pn ˝ A˝ Cone.�/ ' 0 since

Pn kills turnbacks. Proposition 2.23 now implies that Pn ˝ A ' Pn ˝ A ˝ Pn.

An entirely symmetric argument establishes that this latter complex is homotopy

equivalent to A˝ Pn, as well. This completes the proof. �

The following simplifies the task of showing that a complex kills turnbacks.

We remark that its proof assumes the existence of Cooper–Krushkal projectors.

Corollary 2.29. Let C 2 Kom˙.n/ be arbitrary. Then C kills turnbacks from

above if and only if C kills turnbacks from below.

Proof. It suffices to prove the proposition in the case where C 2 Kom�.n/. The

case C 2 KomC.n/ will follow by symmetry. If C kills turnbacks from below,

then

C ' C ˝ Pn ' Pn ˝ C;

which kills turnbacks from above since Pn does. The first equivalence is projector

absorbing, and the second is from Proposition 2.28. A similar argument shows that

if C kills turnbacks from above, then C kills turnbacks from below as well. �

Finally, for technical reasons, we will want to strengthen the notion of projector

absorbing.

Proposition 2.30 (Projector absorbing). Suppose A 2 Kom�.n/ kills turnbacks,

and .Pn; �/ is a strong Cooper–Krushkal projector. Then there are deformation

retracts (Definition 5.8) A˝ Pn ! A and Pn ˝ A! A.

Proof. We will only prove the first statement. The second is similar. From the

definitions, one sees that a strong Cooper–Krushkal projector Pn can be written

as

Pn Š N ˚ 1n with differential

"

dN 0

ı 0

#
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for some ı 2 HOM1;0.N; 1n/, where �.N / < n, and where � is the inclusion of

the 1n subcomplex. Thus

A˝ Pn Š .A˝N/˚ A with differential

"

dA˝N 0

IdA˝ı dA

#

:

If A kills turnbacks, then A ˝ N ' 0, and we can apply Gaussian elimination

(Proposition 5.10), obtaining a deformation retractA˝Pn! A as in the statement.

�

2.5. Canonical maps. We can use the existence of duals in TLn to compute some

Hom complexes, and show that any two Cooper–Krushkal projectors Pn; P
0
n are

canonically equivalent. Most of the results in this section are explained in [9] in

more detail.

Theorem 2.31. For M 2 Kom.TLn�1/, N 2 Kom.TLn/, we have natural

isomorphisms

(1) HOMTLn
.M t 1; N / Š HOMTLn�1

.M; qT .N//,

(2) HOMTLn
.N;M t 1/ Š HOMTLn�1

.T .N/; qM/,

where T .a/ D

. . .

. . .

a denotes the partial trace functor.

Idea of proof of (1). Let �WHOMTLn
.M t 1; N /! HOMTLn

.M; qT .N// be the

map sending f 2 HOMTLn
.M t 1; N / to the composition

. . .

. . .

M �!
. . .

. . .

M

. . .

. . .

f

������!

. . .

. . .

N

where the first map is IdM tS where S D is the cup cobordism from ¿ to

the unknot. Let  WHOMTLn
.M; qT .N// ! HOMTLn

.M t 1; N / to be the map

which sends g to the composition

. . .

. . .

M
. . .

. . .

g

�����!

. . .

. . .

N �!
. . .

. . .

N

where the first map is g t 1 and the second map is given by a saddle cobordism.

We leave it to the reader to check that  and � are inverse chain maps. More

details can be found in [9]. The proof of (2) is similar. �
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Corollary 2.32. Let .�/_WTLn ! TLn denote the contravariant functor which

reverses q-degree shifts and reflects diagrams about a horizontal axis. Then for

each a 2 TLn we have an isomorphism HOMTLn
.A˝ a; B/ Š HOM.A; B ˝ a_/

which is natural in A;B 2 Kom.n/.

Proof. If ei 2 TLn denotes the Temperley–Lieb generator (Definition 2.14) then

we have e_
i D ei and .ei1 ˝ � � � ˝ eir /

_ Š .eir ˝ � � � ˝ ei1/. Hence the general

case follows from the case a D ei , which in turn follows from two applications of

Theorem 2.31. �

Proposition 2.33. Suppose A 2 Kom.n/ kills turnbacks and Pn is a strong

Cooper–Krushkal projector (Definition 2.19). Then precomposition with the map

�W 1n ! Pn gives a deformation retract HOM.Pn; A/ ' Hom.1n; A/.

Proof. The idea is to rewrite HOM.Pn; A/ as a convolution (using direct product)

of terms of the form HOM..Pn/k ; A/, where .Pn/k denotes the k-th chain object.

The turnback killing property together with Corollary 2.32 implies that most of

these terms are contractible, and the only one which survives is HOM.1n; A/.

Performing the infinitely many contractions is justified by Remark 5.13. For more

details, see [9]. �

In order to refer to homology classes of END.Pn/ without choosing a specific

representative, we need to show that any two Cooper–Krushkal projectors are not

just homotopy equivalent, but canonically equivalent.

Definition 2.34. Let .An; �A/ and .Bn; �B/ be Cooper–Krushkal projectors. Let us

call a degree .0; 0/ chain map �WAn ! Bn canonical if � ı �A ' �B .

Theorem 2.35. If .An; �A/ and .Bn; �B/ are Cooper–Krushkal projectors, then a

canonical map �WAn ! Bn exists and is unique up to homotopy. This map is a

homotopy equivalence. The composition of canonical maps is a canonical map.

Proof. By Proposition 2.33, precomposition with �A gives an equivalence

HOM.An; Bn/ �! HOM.1n; Bn/:

Taking the preimage of �B 2 HOM.1n; Bn/ gives a chain map �WAn ! Bn which

is uniquely characterized up to homotopy by � ı �A ' �B . Thus, canonical maps

exist and are unique.
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If �WAn ! Bn and WBn ! Cn are canonical maps between Cooper–Krushkal

projectors, then  ı � ı �A '  ı �B ' �C . Hence the composition of canonical

maps is canonical. This implies immediately that the canonical maps An ! Bn

and Bn ! An are homotopy inverses, since any a canonical map An ! An is

homotopic to IdA by uniqueness. This completes the proof. �

2.6. The Cooper–Krushkal recursion. The Cooper–Krushkal axioms force

P1 ' 11 2 Kom.1/. For n � 2, the projector Pn is related to Pn�1 by a formula

which categorifies a well-known recursion for ordinary Jones–Wenzl projectors

pn.

Definition 2.36. Let Pn�1 2 Kom.n � 1/ be a Cooper–Krushkal projector, and

define the Cooper–Krushkal sequence (relative to Pn�1) to be the following semi-

infinite sequence of chain complexes and chain maps

. . .

. . .

�
!

qn�1

. . .

. . .

�! qn�2

. . .

. . .

�! � � � �! q2
. . .

. . .

�! q
. . .

. . .

�
!

qnC1

. . .

. . .

 � qnC2

. . .

. . .

 � � � �  � q2n�2

. . .

. . .

 � q2n�1

. . .

. . .

�
!

q3n�1

. . .

. . .

�! q3n�2

. . .

. . .

�! � � � �! q2nC2

. . .

. . .

�! q2nC1

. . .

. . .

�
!

q3nC1

. . .

. . .

 � q3nC2

. . .

. . .

 � � � �  �

(2.37)

where the white box denotes Pn�1 and the maps are

. . .

. . .

. . .

. . .

;
. . .

. . .

. . .

. . .

;
. . .

. . .

�
. . .

. . .

;
. . .

. . .

C
. . .

. . .

between adjacent terms. We remind the reader that W q ! denotes the

map corresponding to the saddle cobordism, and W q2 ! denotes an

identity cobordism with a dot on one of the sheets. Since the gluing of diagrams

together in the plane is functorial, it is clear how to interpret the indicated pictures

as chain maps.
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Proposition 2.38. Write the sequence (2.37) as E� D
�

� � �
˛�2
�! E�1

˛�1
�! E0

�

.

Then ˛i�1 ı ˛i ' 0, so that .E�; ˛/ defines an object of Kom.Kom.n/=h/.

Proof. The proof splits up into cases. First, note that when n D 2 the Cooper–

Krushkal recursion produces

P2 WD
�

� � �
�

������! q5
C

������! q3
�

������! q !
�

(2.39)

which is already chain complex (not a homotopy complex).

In case n � 3, the proof that ˛i�1 ı ˛i ' 0 splits up into cases, depending on

whether ˛iC1 and ˛i are both saddle maps, or whether one of them is a sum or

difference of dots.

Case 1: Both ˛i and ˛i C1 are saddles. Up to flipping cobordisms upside down,

˛iC1 ı ˛i is the composition of saddle cobordisms

˛iC1 ı ˛i D . . .

. . .

or ˛iC1 ı ˛i D . . . . . .

. . . . . .

:

By isotopy invariance of morphisms, the saddle maps can be performed in any

order, and so ˛iC1 ı ˛i factors through the chain complex

. . .

. . .

or
. . . . . .

. . . . . .

;

each of which is contractible since Pn�1 kills turnbacks. Hence ˛iC1 ı ˛i ' 0 in

this case.

Case 2: ˛i or ˛i C1 is a difference of dots. Up to flipping cobordisms upside

down, the composition ˛iC1 ı ˛i is

˛iC1 ı ˛i D
. . .

. . .

�
. . .

. . .

;

which is zero by isotopy of dots.

Case 3: ˛i or ˛i C1 is a sum of dots. Up to flipping cobordisms upside down,

the composition ˛iC1 ı ˛i is

˛iC1 ı ˛i D
. . .

. . .

C
. . .

. . .

'
. . .

. . .

C
. . .

. . .

; (2.40)
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by isotopy of dots. Now, this latter map is homotopic to zero by the following

argument. One one hand, from the neck cutting relation D C

(Definition 2.3) we have

. . . . . .

. . . . . . . . .

ı
. . . . . .

. . . . . . . . .

'
. . . . . .

. . . . . . . . .

C
. . . . . .

. . . . . . . . .

:

On the other hand, this map is nulhomotopic, since it factors through the con-

tractible complex

. . . . . .

. . . . . . . . .

:

In particular (2.40) is nulhomotopic. This completes the proof. �

In the above proof, we obtained the following:

Corollary 2.41 (Dot-hopping). If C kills turnbacks, then the dotted identity maps

q2C ! C satisfy the alternating property

. . . . . .

. . . . . . . . .

' �
. . . . . .

. . . . . . . . .

and vertical reflections of these. Here, we have put
. . .

. . .

D C . �

The Cooper–Krushkal sequence is not a bicomplex since the composition of

successive maps is null-homotopic, rather than zero on the nose. The notion of

convolution replaces that of total complex in this situation (see also §5.1):

Definition 2.42. Let Ei be chain complexes over an additive category and

˛i WEi ! EiC1 chain maps such that ˛iC1 ı ˛i ' 0 for all i 2 Z. Any such

sequence will be called a homotopy chain complex, and will be denoted as

E� D � � �
˛i�1
���! Ei

˛i
�! EiC1

˛iC1

���! � � � : (2.43)

A convolution of a homotopy chain complex E� is any chain complex which, as

a graded object equals
L

i2Z t
iEi and whose differential d satisfies the following

conditions: if dij 2 HOM1�iCj .Ej ; Ei / is the corresponding component of d ,

then

� di i D .�1/
idEi

.

� diC1;i D ˛i .

� dij D 0 for i < j .
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We will denote a convolution of (2.43) by M D Tot.E�/, or with a parenthesized

notation in which we write all of the degree shifts explicitly:

M D
�

� � �
˛i�1
���! t iEi

˛i
�! t iC1EiC1

˛iC1

���! � � �
�

:

One should think of the differential of a convolution of (2.43) as a lower-

triangular Z � Z matrix with .�1/idEi
on the diagonal and the ˛i on the first

subdiagonal.

Theorem 2.44 (the Cooper–Krushkal recursion). If Pn�1 2 Kom.n � 1/ is a

Cooper–Krushkal projector, then there exists a convolution Pn 2 Kom.n/ of the

Cooper–Krushkal sequence relative to Pn�1, and any such convolution is a strong

Cooper–Krushkal projector (Definition 2.19).

Remark 2.45. In [4, §7.4] the map between adjacent
. . .

. . .

terms is defined to

be

. . .

. . .

�
. . .

. . .

rather than our

. . .

. . .

C
. . .

. . .

:

But by dot-hopping (Corollary 2.41) the two maps are homotopic and, by Theo-

rem 5.6, any convolution of one sequence is isomorphic to a convolution of the

other.

Proof of Theorem 2.44. Up to reversing the homological grading conventions, it

is shown in [4] that a convolution C 2 Kom�.n/ of the sequence (2.37) relative

to Pn�1 exists and, any such convolution kills turnbacks from below.

Let .�/�WKom�.n/ ! Kom�.n/ denote the covariant functor which reflects

diagrams vertically. Then C � 2 Kom�.n/ kills turnbacks from above. Thus,

P 0
n WD C

�˝ C kills turnbacks from above and below and satisfies the axioms for

a strong Cooper–Krushkal projector (Definition 2.19). The condition on 1n sum-

mands is clear from inspection of the sequence (2.37). Thus, a strong Cooper–

Krushkal projector P 0
n exists. Given this, Corollary 2.29 says that C kills turn-

backs, so that tensoring with the vertical reflection was unnecessary after all.

Thus, C is a strong Cooper–Krushkal projector. �
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2.7. A well-defined Euler characteristic. The usual notion of Grothendieck

group is trivial for the categories Kom�.n/ of semi-infinite complexes. However,

all of the complexes in this paper can be assumed to lie in some subcategory for

which there is a well-defined Euler characteristic, which takes values in

TL0
n WD ZŒq�1�JqK˝

ZŒq;q�1� TLZ

n ;

where TLZ

n � TLn is the ZŒq; q�1�-subalgebra generated by diagrams. This is

discussed in [4, §2.7.1]. The fact that the Euler characteristic descends to the

homotopy category is discussed in [21].

By clearing denominators and expanding rational functions into power series,

we obtain an inclusion of rings Q.q/ ,! ZŒq�1�JqK, hence Q.q/˝ZŒq;q�1�TLZ

n can

be regarded as a subalgebra of TL0
n and TLn. We say that a complexA 2 Kom�.n/

categorifies a 2 TL0
n\TLn if A has a well-defined Euler characteristic which

equals a.

3. Categorified Jones–Wenzl quasi-idempotents

One can see from the recursion (2.2) that certain products of elements .1�q2k/pn

are linear combinations of Temperley–Lieb diagrams with polynomial coefficients,

as opposed to rational coefficients. In this section our goal is to show how to

categorify the expressions .1 � q2k/pn in terms of certain complexes Qk over

TLk , in such a way that corresponding tensor products of the Qk are equivalent

to bounded complexes. We then establish some basic properties of the Qk . One

can recover the Cooper–Krushkal projector Pn as a periodic complex constructed

from the Qk , from which originates an action of the ring ZŒu1; : : : ; un� on the

Cooper–Krushkal projector Pn.

Let us describe another motivation for this polynomial action, coming from the

apparent periodicity in the Cooper–Krushkal recursion, described in §2.6. Con-

sider the following diagram, in which each row is the Cooper–Krushkal sequence

E� and we have omitted all degree shifts:

� � ��!
. . .

. . .

�!
. . .

. . .

�!
. . .

. . .

�! 0

Id

�
!

Id

�
! . . .

. . .

�
!

� � ��!
. . .

. . .

�!
. . .

. . .

�!
. . .

. . .
. . .

. . .

�!
. . .

. . .

�! � � � �!
. . .

. . .

�!
. . .

. . .

(3.1)
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The right-most nontrivial square commutes up to homotopy, and every other

square commutes on the nose. That is to say, (3.1) defines a map of homo-

topy complexes q2nEŒ2 � 2n�� ! E�, where Œ1� denotes the upward grading

shift, EŒ1�k D Ek�1. It is one of the goals of this paper to realize this homo-

topy chain map as an honest chain map. That is to say, we wish to add some

more maps pointing to the right and (non-strictly) down such that (1) the rows

become the projector Pn and (2) the non-horizontal components define a chain

map UnW t
2�2nq2nPn ! Pn. Constructing Un directly is quite difficult because of

the higher differentials required to make the Cooper–Krushkal sequence a chain

complex. Nonetheless, if Un were to exist, then Cone.Un/ would be homotopy

equivalent to a complex

Qn D
�

q2n
. . .

. . .

! q2n�1

. . .

. . .

! � � �

! qnC1

. . .

. . .

! qn�1

. . .

. . .

! � � � ! q
. . .

. . .

!
. . .

. . .

�

whose differential is a sum of arrows pointing non-strictly to the right, and whose

length 0 and 1 components are understood. In this section we construct Un

indirectly by first constructing such a complex Qn. We then recover Pn as a

periodic complex built fromQn, from which we can define the mapUn as desired.

We first consider the case n D 2.

3.1. The case n D 2. In case n D 2, the homotopy chain map (3.1) is the

following honest chain map

U2W t
�2q4P2 �! P2;

U2 WD

0

B
B
B
@

� � �
C

�����! q7
�

�����! q5 �����! q4 �����! 0

Id

�
!

Id

�
!

�
!

Id

�
!

� � �
C

�����! q7
�

�����! q5
C

�����! q3
�

�����! q ��!

1

C
C
C
A
:

(3.2)

By contracting the identity maps (Gaussian elimination, Proposition 5.10) we see

that Cone.U2/ deformation retracts onto the much simpler chain complex

Q2 WD
�

��! q3
�

�����! q ��!
�

: (3.3)
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We can now recover P2 as a periodic chain complex built out of copies of Q2.

Indeed, let P 0
2 denote the following semi-infinite chain complex:

q4 ��! q3
�

�����! q ��!
�! � Id

q8 ��! q7
�

�����! q5 ��! q4

�! � Id

� � �
�

�����! q9 ��! q8

(3.4)

One interprets the above diagram as a chain complex whose chain groups are

given by summing along columns, the components of whose differential are

indicated by the labelled arrows. Contracting the identity maps, we see that

in fact P 0
2 deformation retracts onto P2. The signs above ensure that under

the equivalence P 0
2 ' P2, the obvious map t�2q4P 0

2 ! P 0
2 (inclusion of a

subcomplex) corresponds to the map (3.2), and not its negative.

3.2. The symmetric Cooper–Krushkal sequence. It is remarkable that the

above description of P2 generalizes to all of the projectors Pn.

Definition 3.5. Let Pn�1 2 Kom.n� 1/ be a Cooper–Krushkal projector and de-

fine the symmetric Cooper–Krushkal sequence relative to Pn�1 to be the following

sequence E� of chain complexes in Kom.n/ and chain maps:

qn�1

. . .

. . .

! qn�2

. . .

. . .

! � � � ! q2
. . .

. . .

! q
. . .

. . .

!
. . .

. . .�
!

qnC1

. . .

. . .

 qnC2

. . .

. . .

 � � �  q2n�2

. . .

. . .

 q2n�1

. . .

. . .

 q2n
. . .

. . .

(3.6)

where the white box denotes Pn�1. The maps in this sequence are given by

�
. . .

. . .

. . .

. . .

between two terms in the top row;

�
. . .

. . .

. . .

. . .

between two terms in the bottom row;

�
. . .

. . .

�
. . .

. . .

between the two terms in the left column.



30 M. Hogancamp

We index this sequence as E1�2n ! � � � ! E0, so that E0 corresponds to

the underlined term. The word symmetric refers to the fact that q2n�iE�i D

qiE1�2nCi for all 0 � i � n � 1.

Proposition 3.7. The symmetric Cooper–Krushkal sequence (3.6) is a homotopy

chain complex.

Proof. Similar to the proof of Proposition 2.38. �

Definition 3.8. Suppose K 2 Kom�.n � 1/ is any chain complex which kills

turnbacks. Define the symmetric Cooper–Krushkal sequence relative to K to be

the sequence of chain complexesEi 2 Kom�.n/ and chain maps defined precisely

as in Definition 3.5, with Pn�1 replaced everywhere by K.

The proof that the symmetric Cooper–Krushkal sequence is a homotopy chain

complex uses only the turnback killing property, hence it applies to K as well.

Definition 3.9. Suppose K 2 Kom.n � 1/ kills turnbacks. Call a complex

Qn 2 Kom.n/ a symmetric projector relative to K if it is a convolution of

the sequence (3.6) relative to K. Call Qn simply a symmetric projector if it

is a symmetric projector relative to some Pn�1. By convention we also call

Q1 WD Cone.b/ 2 Kom.1/ a symmetric projector, where b D W q211 ! 11.

3.3. Exressing Pn in terms of the Qn. We now show how to obtainPn fromQn.

Then, assuming the existence of Q2; : : : ; Qn, we construct a family of Cooper–

Krushkal projectors P1; : : : ; Pn which is useful for calculations.

In the following definition, assume n � 2 and let E� D E1�2n ! � � � ! E0

be the symmetric Cooper–Krushkal sequence (Definition 3.5) relative to Pn�1 2

Kom.n� 1/. We have E1�2n D q
2nPn�1 t 11 and E0 D Pn�1 t 11.

Definition 3.10. If Qn D Tot.E�/ is a symmetric projector then let

�nWPn�1 t 11 �! Qn and "nWQn ! t1�2nq2nPn�1 t 11

be the chain maps given by the inclusion of E0, respectively the projection onto

t1�2nE1�2n. Put

@n WD ��n ı "n:
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In the sequel we will often encounter expressionsA˝C , whereA is a bigraded

abelian group and C 2 Kom.n/ is a chain complex. We interpret such expressions

as an appropriate direct sums of shifted copies of C . For example, if x is an

indeterminate of bidegree .a; b/ then

ZŒx�˝ C WD
M

k�0

.takqbk/A

whenever this direct sum exists. For f 2 HOMi;j .C;D/, it is clear how

to interpret xk ˝ f as an element of HOMakCi;bkCj .ZŒx� ˝ C;ZŒx� ˝ D/.

We will simplify such complexes using Theorem 5.21.

Theorem 3.11. Let un denote a formal indeterminate of bidegree .2 � 2n; 2n/.

If Qn 2 Kom.n/ is a symmetric projector .n � 2/, then the chain complex

ZŒun�˝Qn with differential 1˝ dQn
C un ˝ @n is Cooper–Krushkal projector.

Remark 3.12. In case n D 1 we run into a technical difficulty, which is that the

direct sum ZŒu1�˝Q1 D
L

k�0 q
2kQ1 is not finite in each homological degree,

hence does not exist in Kom.1/. If we want to treat the variable u1 similarly to

u2; : : : ; un, we could adjoin countable direct sums to TLn, obtaining a category

TL˚
n . Note that if C 2 Kom�.n/ is any complex, then ZŒu1; : : : ; un�˝C exists in

Kom.n/˚ WD Kom.TL˚
n /.

Proof of Theorem 3.11. SupposeQn is a convolution of (3.6) relative to Pn�1, and

let C WD ZŒun� ˝ Qn with differential 1 ˝ dQn
C un ˝ @n. Then C is the total

complex of a bicomplex as in

�
. . .

. . .

�!
. . .

. . .

�! � � � �!
. . .

. . .

�!
. . .

. . .

�

�! � Id
�

. . .

. . .

�!
. . .

. . .

�! � � � �!
. . .

. . .

�!
. . .

. . .

�

�! � Id

� � � �!
. . .

. . .

�!
. . .

. . .

�

(3.13)

Contracting the isomorphisms in this expression using Gaussian elimination

(Proposition 5.10) produces a homotopy equivalent complex which is a Cooper–

Krushkal projector by Theorem 2.44. Thus C is a Cooper–Krushkal projec-

tor. �
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Remark 3.14. Here, the unit �W 1n ! C is the composition 1n ! Pn�1t11
�
! C ,

where � D 1 ˝ �WPn�1 t 11 ! ZŒun� ˝ Qn is the inclusion of the right-most

summand of (3.13).

Remark 3.15. If K 2 Kom�.n/, then ZŒu2; u3; : : : ; un�˝K satisfies hypotheses

of Theorem 5.21. Indeed, for k > 1 the indeterminate uk has strictly negative

homological degree. If K is bounded from above in homological degree, then
L

i�0 u
i
k
˝K is a finite direct sum in each homological degree. Such direct sums

are isomorphic to direct products in the category Kom�.n/, in which morphisms

are degree preserving chain maps. A different argument takes care of the variable

u1 as well.

If we can constructQn, we will have succeeded in constructing the map (3.1):

Corollary 3.16. If Qn 2 Kom.n/ is a symmetric projector, then there is a

Cooper–Krushkal projector Pn and a chain map UnW t
2�2nq2nPn ! Pn such that

Cone.Un/ ' Qn. �

Corollary 3.17. Any symmetric projectorQn kills turnbacks.

Proof. If Qn exists then it is equivalent to a mapping cone

Cone.Un/ D
�

t1�2nq2nPn
Un
�! Pn

�

:

This complex kills turnbacks since Pn does. �

Now we construct a nice family of Cooper–Krushkal projectors P1; : : : ; Pn,

assuming the existence of Q2; : : : ; Qn. First, a lemma:

Lemma 3.18. Let Cn�1 2 Kom.n � 1/ be a strong Cooper–Krushkal projector,

and suppose that we are given a symmetric projector Qn relative to Cn�1. If

K 2 Kom.n � 1/ is any complex which kills turnbacks, then there is a symmetric

projector Q0
n relative to K and a deformation retract .K t 11/˝Qn ! Q0

n.

Proof. By definition, the symmetric projector Qn is a convolution of the form

Qn D
�

. . .

. . .

�!
. . .

. . .

�! � � � �!
. . .

. . .

�!
. . .

. . .

�! � � � �!
. . .

. . .

�!
. . .

. . .

�
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where
. . .

. . .

D Cn�1. Let �C W 1n�1 ! Cn�1 denote the unit of Cn�1. Let us denote

K graphically by K D
. . .

. . .

, so that

.K t 11/˝Qn D
�

. . .

. . .

. . .

�!
. . .

. . .

. . .

�! � � � �!
. . .

. . .

. . .

�!
. . .

. . .

. . .

�! � � � �!
. . .

. . .

. . .

�!
. . .

. . .

. . . �

:

(3.19)

By projector absorbing (Proposition 2.30) the round box absorbs the white box

via a deformation retract
. . .

. . .

. . .

!
. . .

. . .

. Applying this deformation retract to each

term of the complex (3.19), (using Theorem 5.12) gives a deformation retract

.Cn�1 t 11/˝Qn '
�

. . .

. . .

�!
. . .

. . .

�! � � � �!
. . .

. . .

�!
. . .

. . .

�! � � � �!
. . .

. . .

�!
. . .

. . . �

:

This latter complex is a symmetric projector Q0
n relative to K, as desired. �

Construction 3.20. Fix an integer n � 2 and assume that we are given symmetric

projectors Q2; Q3; : : : ; Qn. Assume further that Qk is a symmetric projector

relative to a strong Cooper–Krushkal projector Ck�1. Let P 0
k
D ZŒuk � ˝ Qk

with differential 1˝dQk
Cuk˝@k from Theorem 3.11. Now constructP1; : : : ; Pn

by the following algorithm.

(1) Put P1 D 11.

(2) Assume that Pn�1 has been constructed, and choose the data .�; �; h/ of a

deformation retract Pn�1 ˝ Cn�1 ! Pn�1.

(3) Let Q0
n denote the symmetric projector relative to Pn�1 constructed in

Lemma 3.18. That is, Q0
n is the target of a deformation retract .Pn�1 t 11/˝

Qn ! Q0
n, constructed from our chosen data .�; �; h/.

(4) Note that

.Pn�1 t 11/˝ P
0
n D ZŒun�˝ ..Pn�1 t 11/˝Qn/

with differential 1˝ d C un ˝ @. Apply the deformation retract

.Pn�1 t 11/˝Qn �! Q0
n

to each term using Theorem 5.21, which applies by Remark 3.15. Define Pn

to be the target of this deformation retract.
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Theorem 3.21. LetQ2; : : : ; Qn and P1; : : : ; Pn be as in Construction 3.20. Then

there is a bounded complex Kn ' .Q2 t 1n�2/ ˝ .Q3 t 1n�3/˝ � � � ˝Qn such

that

Pn D ZŒu2; u3; : : : ; un�˝Kn (3.22)

with differential

1˝ dKn
C

X

f >1

f ˝ @f

where the sum is over nonconstant monomials f 2 ZŒu2; : : : ; un�.

Proof. Induction on n � 1. The claim is vacuous in the base case n D 1. Assume

by induction that statement (1) holds for Pn�1.

From Construction 3.20 we assume that Qn is a symmetric projector relative

to a strong Cooper–Krushkal projector Cn�1. Pick a deformation retract

Kn�1 ˝ Cn�1 �! Kn�1:

end Applying this deformation retract to each term of

Pn�1 ˝ Cn�1 D ZŒu2; : : : ; un�1�˝ .Kn�1 ˝ Cn�1/

with differential

1˝ d C
X

f >1

f ˝ @f

gives the data of a deformation retract Pn�1 ˝ Cn�1 ! Pn�1.

Let P 0
n D ZŒun�˝Qn be as in Theorem 3.11, so that

.Pn�1 t 11/˝ P
0
n D ZŒu2; : : : ; un�˝ ..Kn�1 t 11/˝Qn/

with differential

1˝ d C
X

f >1

f ˝ @f :

Now, Pn is obtained from .Pn�1 t 11/˝ P
0
n by applying the deformation retract

Pn�1˝Cn�1 ! Pn�1 wherever possible. By construction, this deformation retract

is the result of applying the deformation retract Kn�1 ˝ Cn�1 ! Kn�1 wherever

possible. By Lemma 3.18, applying Kn�1 ˝ Cn�1 ! Kn�1 to .Kn�1 t 11/˝Qn

produces a symmetric projector Kn relative to Kn�1. Therefore, Pn is simply the

target of a deformation retract

.Pn�1 t 11/˝ P
0
n �! ZŒu2; : : : ; un�˝Kn
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with differential

1˝ d C
X

f >1

f ˝ @f

as in the statement. This completes the proof. �

Definition 3.23. Suppose Pn is as in Construction 3.20. Let ZŒu1; : : : ; un� !

END.Pn/ be the map of differential bigraded algebras in which uk .k � 2/

acts in the obvious way on (3.22), and in which u1 acts as the dotted identity

u1 D . . .

. . .

. Let us denote the image of uk by U
.n/

k
. If P 0

n is any other Cooper–

Krushkal projector, then conjugating by a canonical equivalence (Definition 2.34)

Pn ! P 0
n gives a chain map t2�2kq2kP 0

n ! P 0
n (well-defined up to homotopy,

and may depend on the choice of Q2; : : : ; Qn), which we also denote by U
.n/

k
,

by abuse.

In light of Corollary 3.35, if we did not care about sign ambinguity, we

could simply define U
.n/

k
to be a chain map which represents a generator of

Ext2�2k;2k.Pn; Pn/ Š Z. We will occasionally abuse this notation and write

uk D U
.n/

k
.

Corollary 3.24. Let Pn be as in Construction 3.20. For each a 2 TLn with

�.a/ < n, the homotopy which contracts Pn ˝ a and a ˝ Pn can be chosen to

commute with the ZŒu2; : : : ; un�-action.

Proof. Note that Kn kills turnbacks since Qn does (Corollary 3.17). We have

Pn˝a D ZŒu2; : : : ; un�˝ .Kn˝a/with differential 1˝dC
P

f >1 f ˝@
0
f

. If a 2

TLn has through degree �.a/ < n, then homotopy ha which contracts this complex

can be chosen to commute with the ZŒu2; : : : ; un�-action by Theorem 5.21. �

Remark 3.25. The fact that the homotopies which contract Pk ˝ a ' 0 and

a˝ Pk ' 0 can be chosen to be ZŒu2; : : : ; uk �-equivariant implies, together with

Remark 5.14, that essentially any equivalence which uses only the turnback killing

properties of Pn can be chosen to be ZŒu2; : : : ; un�-equivariant.

3.4. Simplification of END.Pn/, connection to the GOR conjecture. We will

use the above construction of Pn to simplify END.Pn/ up to equivalence. We will

conclude, in particular, that any chain map f 2 ENDi;j .Pn/ with i C j D 3 is

null-homotopic. In the next section, we use this fact in an inductive argument for

the existence of QnC1.
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Definition 3.26. AssumeQ2; : : : ; Qn andP1; : : : ; Pn are as in Construction 3.20.

For k 2 ¹1; : : : ; nº denote the complex HOM.1k; Pk/ simply by Ek . We re-

gard Ek as a differential bigraded ZŒu1; : : : ; uk �-module, where uk acts as post-

composition with U
.k/

k
from Definition 3.23.

Definition 3.27. Throughout, let �k denote a formal (odd) indeterminate of bide-

gree .1 � 2k; 2 C 2k/. Notation such as ZŒuk ; �k� will always denote the super-

polynomial ring ZŒuk �˝Z ƒŒ�k �.

Proposition 3.28. There is a deformation retract

En ' ZŒun; �n�˝Z En�1

where the complex on the right has ZŒun�-equivariant differential determined by

(1) d.1˝ ˛/ D 1˝ d.˛/ and

(2) d.� ˝ ˛/ D 2un ˝ .u1 ı ˛/C 1˝ ın.˛/ � �n ˝ d.˛/

for all ˛ 2 En�1, where ın 2 END.En�1/ is some chain map of bidegree

.2 � 2n; 2 C 2n/. The data of this deformation retract are ZŒu1; : : : ; un�-

equivariant.

Proof. From Theorem 2.31, we have

En D HOM.1n; Pn/ Š HOM.1n�1; qT .Pn�1//

where T WKom.n/ ! Kom.n � 1/ is the partial trace functor (Definition 2.6).

Naturality implies that this isomorphism is ZŒu1; : : : ; un� equivariant. Let us

simplify qT .Pn/.

Applying qT .�/ to the periodic complex (3.13) and contracting terms of the

form
. . .

. . .

. . .

. . .

(using Theorem 5.12), we see that qT .Pn/ deformation retracts

onto

�

. . .

. . .

�!
. . .

. . .

�!
. . .

. . .

�!
. . .

. . .
�

�! � Id
�

. . .

. . .

�!
. . .

. . .

�!
. . .

. . .

�!
. . .

. . .
�

�! � Id

� � � �!
. . .

. . .

�!
. . .

. . .
�

(3.29)
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We can simplify this complex row-by-row (Lemma 3.31) obtaining a deformation

retract of this complex onto (after inserting the correct degree shifts):

Tot

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

yPn�1 Pn�1

xyPn�1 xPn�1

:::
:::

 

!
ın

 

!

2
. . .

. . .

 

!
2

. . .

. . .

 

!

2
. . .

. . .

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

; (3.30)

where y D t1�2nq2C2n and x D t2�2nq2n. The data of the above deformation

retracts commute with the ZŒu1; : : : ; un�-action by Remark 3.25 and equivariance

of retracts coming from Theorem 5.21.

The complex (3.30) is a mapping cone on a chain map� D 2un˝ . . .

. . .

C1˝ın 2

END.ZŒun�˝Pn�1/. By dot-hopping (Corollary 2.41), we have
. . .

. . .

' ˙
. . .

. . .

, and

so we can replace � by ˙2un ˝ u1 C 1 ˝ ın. The dot-hopping uses only the

turnback killing property of Pn�1 hence can be done ZŒu1; : : : ; un�-equivariantly.

Replace ın by ˙ın if necessary. Now, apply the functor HOM.1n�1;�/ to this

deformation retract to obtain a deformation retract as in the statement. �

The following lemma was used in the proof of Proposition 3.28:

Lemma 3.31. The chain complexes

C1 WD q
2 ����! q ; C2 WD q

�1 ����! q�2 (3.32)

deformation retract onto , and applying these equivalences row-by-row to the

following chain complex gives a deformation retract:

q�1

q

 

!

 

!

�

 

!

'

q

q�1

 

!

2

(3.33)

Proof. This is a straightforward computation in Bar-Natan’s categories, which we

leave to the reader. This computation also appears in the proof of invariance of

Khovanov homology under the Reidemeister 1 move. �
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Theorem 3.34. Assume that symmetric projectors Q2; : : : ; Qn exist, and let

P1; P2; : : : ; Pn be as in Construction 3.20. Then there is a deformation re-

tract from END.Pn/ onto a differential bigraded ZŒu1; : : : ; un�-module Wn D

ZŒu1; : : : ; un; �2; �3; : : : ; �n�=.u
2
1/ with differential satisfying the following prop-

erties:

(1) d.uk/ D 0 for each k D 1; 2; : : : ; n;

(2) d.�k/ 2 2u1uk C ZŒu2; : : : ; uk�1� for each k D 2; 3; : : : ; n;

(3) the inclusion of bigraded abelian groupsWn�1 ,! Wn commutes with differ-

entials.

The data of this deformation retract can be chosen to beZŒu1; : : : ; un�-equivariant.

Proof. First, note that Pn is a complex of the form (3.13) by construction. Con-

tracting the isomorphisms, we see that Pn deformation retracts onto a strong

Cooper–Krushkal projector C 0
n. Applying the functor HOM.�; Pn/ gives a de-

formation retract END.Pn/ ! HOM.C 0
n; Pn/, the data of which commute with

the action of ZŒu1; : : : ; un� on the second argument. Now, Proposition 2.33 gives

a deformation retract

HOM.C 0
n; Pn/ �! HOM.1n; Pn/ DW En:

The data of this deformation retract commute with the ZŒu1; : : : ; un�-action, by

naturality of the isomorphism of Corollary 2.32, and Remark 3.25. Thus, it

suffices to construct a deformation retract En ! Wn as in the statement. This will

be accomplished by induction, with inductive step provided by Proposition 3.28.

In the base case: E1 D HOM.¿; q � unknot/ is the Khovanov homology of the

unknot, shifted up in q-degree. This is isomorphic to ZŒu1�=.u
2
1/, which proves

the base case. Assume by induction that we have constructed a deformation retract

En�1 ! Wn�1.

From Proposition 3.28, there is aZŒu1; : : : ; un�-equivariant deformation retract

from En onto a complex of the form

.�nZŒun�˝En�1/˚ .ZŒun�˝En�1/

with differential "

1˝ dEn�1
0

2un ˝ u1 C 1˝ ın 1˝ dEn�1

#

;

where we are using the Koszul sign rule to evaluate tensor products of morphisms

on tensor products of graded spaces. By the induction hypothesis, we have the

ZŒu1; : : : ; un�1�-equivariant data .�; �; h/ of a deformation retractEn�1 ! Wn�1.
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Applying this to each ZŒun�˝En�1 summand above (Theorem 5.12 in the special

case of 2-term convolutions) gives a deformation retract from ZŒun; �n� ˝ En�1

onto

.�ZŒun�˝Wn�1/˚ .ZŒun�˝Wn�1/

with differential "

1˝ dWn�1
0

2un ˝ u1 C 1˝ Nın 1˝ dWn�1

#

;

where Nın D � ı ın ı� . The data of this deformation retract can be chosen to com-

mute with the ZŒu1; : : : ; un�-action by Remark 5.14. As a bigraded ZŒu1; : : : ; un�-

module, this latter object is isomorphic toZŒun; �n�˝Wn�1 Š Wn. The differential

onWn satisfies the properties (1)–(3) of the statement, by inspection. For example:

d.�n/ D 2unu1 C Nın.1/. For degree reasons, Nı.1/ 2 Wn�1 � Wn must be some

quadratic polynomial in u2; : : : ; un�1. This completes the proof. �

Corollary 3.35. Let Pn be a Cooper–Krushkal projector, and assume that sym-

metric projectors Qk 2 Kom.k/ exist for 2 � k � n. Then the group

Exti;j .Pn; Pn/ of chain maps t iqjPn ! Pn modulo chain homotopy satisfies the

following properties:

(1) Extk�i;i .Pn; Pn/ D 0 for all i , if k < 0;

(2) Ext0�i;i.Pn; Pn/ D Z for i D 0 and zero otherwise;

(3) Ext1�i;i.Pn; Pn/ D 0 for all i ;

(4) Ext2�i;i.Pn; Pn/ D Z for i D 2; 4; : : : ; 2n and zero otherwise;

(5) Ext3�i;i.Pn; Pn/ D 0 for all i .

For a generator of Ext2�2k;2k.Pn; Pn/ Š Z we may pick ŒU
.n/

k
� as in Defini-

tion 3.23.

Proof. From Theorem 3.34, we see that there is some differential on Wn D

ZŒu1; : : : ; un�=.u
2
1/˝ƒŒ�2; : : : ; �n� such that (1) d.�m/ ¤ 0 .1 � m � n/, and (2)

the homology of Wn is isomorphic to the homology of END.Pn/ as bigraded

ZŒu1; : : : ; un�-modules. The bigrading respects the algebra structure: deg.vv0/ D

deg.v/ C deg.v0/, but the differential does not necessarily respect the algebra

structure. Collapse the bigrading to the single grading degs D deghC degq, so

that degs.uk/ D 2 and degs.�k/ D 3 for k D 1; : : : ; n.

Clearly there are no elements x 2 Wn of degree degs.x/ < 0 or degs.x/ D 1,

and the only bihomogeneous elements with degs.x/ D 3 are the multiples of

�k . But none of the �k are cycles. This proves statements (1), (3), and (5) of the

theorem.
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The only elements x 2 Wn with degs.x/ D 0 are multiplies of the identity.

If any of these were a boundary d.h/ D a � 1, then degs.h/ D �1 forces h to

be zero. (2) follows. Similarly, the only bihomogeneous elements x 2 Wn with

degs.x/ D 2 are multiples of some uk , each of which is a cycle. If any multiple

of um were a boundary, say d.h/ D aum, then degs.h/ D 1 forces h D 0. This

shows that the um generate homology groups isomorphic to Z, which is (4). �

We conclude this section with a result which relates the above computations

with a conjecture in [7] regarding Khovanov homology of torus knots.

Corollary 3.36. Let Hp;q denote the Khovanov homology of the p; q-torus link

(oriented as a positive braid; see §4.1 for our conventions regarding Khovanov

homology). Then there is a grading shift Fp;q and a direct system

Fp;qHp;q �! Fp;qC1Hp;qC1

with limit Hp;1, where Hp;1 is the homology of the chain complex Wp from

Theorem 3.34.

Proof. Denote by Cp the positive braid corresponding to the n-cycle .1; 2; : : : ; n/.

Then Tp;q is the braid closure ofC
q
p . It is known [23] that the Khovanov complexes

¹JC qp K j q 2 Z�0º form a direct system up to homotopy and grading shifts, and

that there is a limit given by the projector Pp. Thus, the Khovanov homology

of C
q
p has stable limit (up to shift) as q ! 1, given by the homology of

HOM.¿; T p.Pp//, where T is the partial trace functor (Definition 2.6). By

Theorem 2.31 and Proposition 2.33, this latter homology is isomorphic to the

homology of END.Pn/, up to shift. Finally, Theorem 3.34 says that the homology

of END.Pn/ is isomorphic to the homology of ZŒu1; : : : ; un; �2; : : : ; �n�=.u
2
1/with

some ZŒu1; : : : ; un�-equivariant differential. �

The conjecture in [7] is that d.�k/ D
P

iCjDkC1 uiuj , and that d satisfies

the graded Leibniz rule with respect to the obvious multiplication in Wn WD

ZŒu1; : : : ; un; �2; : : : ; �n�=.u
2
1/. We do not yet have such a formula for d.�k/,

nor do we know that the differential can be assumed to respect the Leibniz rule

with respect to the obvious multiplication. Nonetheless, the fact that END.Pn/

deformation retracts (for appropriate choice of representative for Pn) onto Wn,

hence Wn inherits the structure of an A1-algebra from END.Pn/. In particular,

there is some multiplication on Wn (associative up to homotopy) such that the

Leibniz rule is satisfied.
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3.5. Existence and uniqueness of Qn. The proof that Qn exists uses the fol-

lowing basic fact.

Lemma 3.37. Let A;B; C be chain complexes over an additive category, and

suppose we have linear maps ˛ 2 HOM1.A; B/, ˇ 2 HOM1.B; C / which are

homogeneous with homological degree 1. Then a convolution
�

A
˛
�! B

ˇ
�! Cg

�

exists if and only if ˛; ˇ are cycles and ˇ ı ˛ 2 HOM2.A; C / is a boundary. In

particular, such a convolution exists if ˛ and ˇ are cycles and Ext2.A; C / Š 0.

Proof. Recall that a convolution is simply a direct sum of complexes with lower

triangular differential. Observe

2

6
6
4

dA 0 0

˛ dB 0

�h ˇ dC

3

7
7
5

is a differential if and only if (1) dB ı ˛ C ˛ ı dA D 0, (2) dC ı ˇ C ˇ ı dB D 0,

and (3) ˇ ı˛ D dC ıhChıdA. This is precisely the statement of the lemma. �

Theorem 3.38. For each integer n � 2 there exists a symmetric projector

Qn 2 Kom.n/.

Proof. The proof that Qn exists proceeds by induction on n � 2. The chain

complex Q2 is already defined in §3.1. Assume by induction that Qm 2 Kom.m/

exists for each 2 � m � n � 1. Write the sequence (3.6) as E1�2n ! � � � !

E�1 ! E0. By the Cooper–Krushkal recursion (Theorem 2.44) we can assume

that there is a convolution

M D .t2�2nE2�2n �! � � � �! t�1E�1 ! E0/

of all terms except for the left-most. We seek a convolution of the form

�

t1�2nE1�2n
„ ƒ‚ …

A

�! t2�2nE2�2n
„ ƒ‚ …

B

�! t3�2nE3�2n ! � � � ! t�1E�1 ! E0
„ ƒ‚ …

C

�

:

We reassociate as indicated by the parentheses, so that M is a convolution M D
�

B
ˇ
�! C

�

for some degree 1 cycle ˇ 2 HOM1;0.B; C /. The degree zero chain

map ˛1�2nWE1�2n ! E2�2n defines a degree 1 cycle ˛W 2 HOM1;0.A; B/. By

Lemma 3.37, we must show that ˇ ı ˛ is a degree .2; 0/ boundary. In fact, we

will show that the relevant homology group is zero. Examining the symmetric
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Cooper–Krushkal sequence (3.6), we see that

A WD t1�2nq2n
. . .

. . .

;

B WD t2�2nq2n�1

. . .

. . .

;

C WD
�

t3�2nq2n�2

. . .

. . .

�! � � � �! t�1q
. . .

. . .

�!
. . .

. . .

�

:

Abbreviate F.�;�/ WD HOM.�;�/ and y D t1�2nq2n, and compute:

F.A; C /
.1/
D F

�

y
. . .

. . .

;
�

t3�2nq2n�2

. . .

. . .

�! � � � �! t�1q
. . .

. . .

�!
. . .

. . .

��

.2/
Š y�1

F

�
. . .

. . .

;
�

t3�2nq2n�2

. . .

. . .

�! � � � �! t�1q
. . .

. . .

�!
. . .

. . .

��

.3/
Š qy�1

F

�

. . .

. . .

;
�

. . .

. . .

�! � � � �!
. . .

. . .

�! t�1q
. . .

. . .

�!
. . .

. . .
��

:

.4/
' qy�1

F

�

. . .

. . .

;
�

t�1q
. . .

. . .

�!
. . .

. . .
��

.5/
' qy�1

F

�

. . .

. . .

; q�1
. . .

. . .

�

.6/
Š y�1

F

�

. . .

. . .

;
. . .

. . .

�

:

Let us explain. First, note that HOM is invariant under homotopy equivalence

of its arguments. (1) is by definition of A and C . (2) and (6) hold by the eas-

ily proven fact that if x and y are shifts in bidegree, then HOM.xM; zN/ Š

x�1zHOM.M;N/. (3) holds by Corollary 2.32 (we have omitted some of the

grading shifts because of space limitations). The equivalence (4) holds by con-

tracting the contractible complexes of the form
. . .

. . .

. . .

. . .

and using Theo-

rem 5.12. Finally, (5) holds by Lemma 3.31).

By the above computation, we have an isomorphism of homology groups

Ext2;0.A; C / Š Ext3�2n;2n.Pn�1; Pn�1/:

This group is zero by Corollary 3.35, which applies to Pn�1 since we assume that

Q1; : : : ; Qn�1 exist. This shows that a convolution Qn D .A! B ! C/ exists,

and completes the proof. �
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Theorem 3.39. Symmetric projectors are unique up to homotopy equivalence.

Proof. Suppose Pn and P 0
n are Cooper–Krushkal projectors, and Un 2 END.Pn/,

U 0
n 2 END.P 0

n/ represent generators of the degree .2� 2n; 2n/ homology groups

(isomorphic to Z). Then any equivalence Pn ! P 0
n conjugates Un to ˙U 0

n up

to homotopy, hence Cone.Un/ ' Cone.U 0
n/ by Lemma 2.12. Thus, it suffices to

show that for any symmetric projector Qn there is a Cooper–Krushkal projector

Pn and a generator ŒUn� 2 H
2�2n;2n.END.Pn// Š Z such that Qn ' Cone.Un/.

For each Qn, the projector Pn and map Un are provided by Corollary 3.16. The

class ŒUn� 2 H
2�2n;2n.END.Pn// is an integer multiple of a generator Œf �, say

ŒUn� D kŒf �. We must show that k D ˙1. To see this, one can examine the long

exact sequence in homology associated to the mapping cone:

HOM.Pn;Cone.kf // D Cone
�

END.Pn/
.kf /ı.�/
������! END.Pn/

�

:

The relevant part of the long exact sequence looks like

Ext
0;0.Pn; Pn/ Ext

2 2n;2n.Pn; Pn/! !

ı. /

 ! Š  !

! !
k

Š

Ext
2 2n;2n.Pn; Qn/

. /

!

 ! Š

!

!!Z Z

A slight modification of the arguments in §3.4 shows that the homology of

HOM.Pn; Qn/ is isomorphic to a sub-quotient of ZŒu1; : : : ; un�1; �2; : : : ; �n�. For

degree reasons, there can be no homology in degree .2� 2n; 2n/, and we see that

the group (�) above is zero. By exactness, this forces k D ˙1, as desired. �

Corollary 3.40. For 1 � k � n, let U
.n/

k
2 END.Pn/ represent a generator of the

degree .2� 2k; 2k/ homology group, which is isomorphic to Z by Corollary 3.35.

Then Cone.U
.n/

k
/ ' .Qk t 1n�k/˝ Pn.

Proof. In case k D 1, the claim is obvious, so let us assume that 1 < k � n.

Let Q2; : : : ; Qn and P1; : : : ; Pn be as in Construction 3.20. By Corollary 3.35

the map U
.n/

k
2 END.Pn/ from Definition 3.23 represents a generator of the

relevant homology group. It is easy to see that Cone.U
.n/

k
/ ' .Qk�1 t 11/.

By construction, Pn is the target of a deformation retract

.P 0
2 t 1n�2/˝ � � � ˝ P

0
n �! Pn;
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where P 0
k
D ZŒuk �˝Qk with differential 1˝ d C uk ˝ @k . The uk action on Pn

is inherited from the action of uk on P 0
k
, hence

Cone.U
.n/

k
/ ' .P2 t 1n�2/˝ � � � ˝ Cone.uk/˝ � � �P

0
n

' .P2 t 1n�2/˝ � � � ˝ .Qk t 1n�k/˝ � � �P
0
n:

By projector absorbing, this latter complex is homotopy equivalent to the complex

.Qk t 1n�k/˝ Pn. This completes the proof. �

As an application of uniqueness, we obtain an expression for Q3:

Example 3.41. Let C 2 Kom.3/ denote the following chain complex:

q5 q4 q2 q5

q6
˛
�! ˚

ˇ
�! ˚



�! ˚

ˇ�

�! ˚
˛�

�!

q5 q4 q2 q5

where

˛ D

" #

; ˇ D

"

�

�

#

; 
 D

"

C

C

#

;

and .�/�WTLn ! TLn is the contravariant functor which is the identity on objects

and flips cobordisms upside down. In particular
�
D and vice versa. The

reader is invited to compare this chain complex with the expression for P3 in [4].

One can check that C kills turnbacks. By projector absorbing, we then have

.P2 t 11/ ˝ C ' C . On the other hand, one can simplify .P2 t 11/ ˝ C by

expandingC into its chain groups and cancelling the turnbacks which hitP2 (using

Theorem 5.12 to contract all such terms). The resulting complex is readily seen

to be a convolution of the symmetric Cooper–Krushkal sequence relative to P2.

Hence C ' Q3 by Theorem 3.39.

We remark that for n � 4 the complex Qn is not homotopy equivalent to a

bounded complex.

Definition 3.42. For any sequence 1 � i1; : : : ; ir � n, put

Pn.i1; : : : ; ir/ WD Cone.Ui1/˝ � � � ˝ Cone.Uir /

where Uk WD U
.n/

k
is the chain map from Definition 3.23. By convention,

associated to the empty sequence we have Pn.¿/ WD Pn. Since the Uk are unique

up to homotopy, different choices of Uk give canonically isomorphic complexes

Pn.i1; : : : ; ir/. We call the complexes Pn.i1; : : : ; ir/ quasi-projectors.
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In light of Corollary 3.40, these complexes can also be described in terms of

tensor products of the Qk . In particular,

Pn.1; 2; : : : ; n/ ' .Q1 t 11/˝ .Q2 t 1n�2/˝ � � � ˝Qn:

In the remainder of §3 we study properties of these complexes.

3.6. Quasi-idempotency and commuting properties. If e 2 A is an idempo-

tent of a k-algebra A and ˛ 2 k is a scalar, then any f D ˛e satisfies f 2 D f̨ .

This property is called quasi-idempotency. Note that Qn ' .t
1�2nq2nPn ! Pn/

categorifies a multiple of the Jones–Wenzl projector in the sense of §2.7. It is nat-

ural to ask whether Qn is quasi-idempotent up to homotopy, and it is a pleasant

surprise that it actually is. First, a lemma:

Lemma 3.43. Let �WPn˝Pn ! Pn be a canonical equivalence (Definition 2.34)

and ��1WPn ! Pn ˝ Pn a homotopy inverse. Let

ˆ1; ˆ2WEND.Pn/ �! END.Pn/

denote the maps

ˆ1.f / D � ı .f ˝ IdPn
/ ı ��1 and ˆ2.f / D � ı .IdPn

˝f / ı ��1

for all f 2 END.Pn/. Then ˆ1 ' ˆ2 ' IdEND.Pn/.

Proof. Let us first remark that HOM.�;�/ respects homotopy in the following

sense: suppose A;B;A0; B 0 are chain complexes over an additive category, and

�WA0 ! A,  WB ! B 0 are chain maps. Denote by

L WHOM.A; B/ �! HOM.A; B 0/

and

R� WHOM.A; B/ �! HOM.A0; B/

the chain maps defined by

L .f / D  ı f and R�.f / D f ı �

for all f 2 HOM.A; B/. If  '  1 (respectively � ' �1), then L ' L 1

(respectively, R� ' R�1
). In the present situation, we want to show that

L�FR��1 ' IdENDPn
for some F . By the preceding remarks, the validity of

this relation is unchanged if we replace ��1 by some � ' ��1.
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Denote the unit of Pn by �W 1n ! Pn. Then �˝ �W 1n ! Pn ˝ Pn is the unit of

Pn ˝Pn. Thus, �˝ IdPn
and IdPn

˝� are canonical equivalences Pn ! Pn˝Pn,

as can easily be verified from the definitions (canonical equivalences are defined

in Definition 2.34). Uniquness of canonical equivalences (Theorem 2.35) implies

that

��1 ' �˝ IdPn
' IdPn

˝�:

Thus, ˆ1 is homotopic to the map sending

f 7�! � ı .f ˝ IdPn
/ ı .IdPn

˝�/ D � ı .IdPn
˝�/ ı .Id1n

˝f /

which is homotopic to the identity map on END.Pn/, since � ı .IdPn
˝�/ ' IdPn

.

This shows that ˆ1 is homotopic to the identity. A similar argument shows that

ˆ2 is homotopic to the identity. �

Theorem 3.44. Recall the complexesPn.i1; : : : ; ir/ from Definition 3.42. We have

(1) Pn.i1; : : : ; ir/ ' Pn.i�.1/; : : : ; i�.r// for any permutation � 2 Sr and

(2) Pn.k; k; i1; : : : ; ir/ ' .1C t
1�2kq2k/Pn.k; i1; : : : ; ir/

for all indices 1 � k; i1; : : : ; ir � n. In particular,Q˝2
n ' Qn ˚ t

1�2nq2nQn.

Proof. It is clear that Pn.i � j/ ' Pn.i/˝ Pn.j/ for all sequences i; j. It therefore

suffices to prove the statements

(1) Cone.Ui /
˝2 ' Cone.Ui /˚ t

1�2iq2i Cone.Ui / for all 1 � i � n;

(2) Cone.Ui /˝ Cone.Uj / ' Cone.Uj /˝ Cone.Ui / for all 1 � i; j � n.

Let yk D t
1�2kq2C2k denote the grading shift functor and compute:

Tot

0

B
B
B
B
B
@

yiyjPn ˝ Pn yjPn ˝ Pn

yiPn ˝ Pn Pn ˝ Pn

 

!
Ui ˝Id

 

! � Id ˝Uj

 

! Id ˝Uj

 

!
Ui ˝Id

1

C
C
C
C
C
A

:

By projector absorbing we have the data .�; �; h/ of a deformation retract Pn ˝

Pn ' Pn. Apply � WPn ˝ Pn ! Pn (using Theorem 5.12) to each term to obtain

Cone.Ui /˝ Cone.Uj / ' Tot

0

B
B
B
B
B
@

yiyjPn yjPn

yiPn Pn

 

!
�1.Ui /

 

!��2.Uj /

 

!

w  

! �2.Uj /

 

!
�1.Ui /

1

C
C
C
C
C
A

;
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where �1; �2WEND.Pn/! END.Pn/ denote the maps

�1.f / D � ı .f ˝ Id/ ı � �2.f / D � ı .Id˝f /˝ �:

By Lemma 3.43 we have �1 ' �2 ' IdEND.Pn/, hence by Theorem 5.6 we can

replace the horizontal maps by Ui and the vertical maps with ˙Uj at the expense

of affecting the length-two component of the differential:

Cone.Ui /˝ Cone.Uj / ' Tot

0

B
B
B
B
B
@

yiyjPn yjPn

yiPn Pn

 

!�Uj

 

!

h

 

!
Ui

 

! Uj

 

!
Ui

1

C
C
C
C
C
A

for some h 2 END.Pn/with Œd; h� D ŒUi ; Uj �. If h0 is any other choice of diagonal

map, then h� h0 2 END.Pn/ is a cycle of bidegree .3� 2i � 2j; 2i C 2j /, hence

a boundary by Corollary 3.35. Thus the isomorphism type of the right-hand side

above does not depend on h. It follows that swapping i and j in the right-hand

side of the above gives an isomorphic chain complex, which proves (2).

Now, specialize to the case i D j . Since the choice of h is irrelevant, we may

assume h D 0, so that

Cone.Ui /˝ Cone.Ui / ' Tot

0

B
B
B
B
B
@

yiyjPn yjPn

yiPn Pn

 

!
Ui

 

! �Ui

 

! Ui

 

!
Ui

1

C
C
C
C
C
A

:

After performing an elementary similarity transform to the matrix

2

6
6
6
6
4

d 0 0 0

Ui �d 0 0

�Ui 0 �d 0

0 Ui Ui d

3

7
7
7
7
5

(namely add the second row to the third while subtracting the third column

from the second) we can replace the vertical maps with zeroes up to isomor-

phism. The result will be a chain complex which is isomorphic to Cone.Ui / ˚

t1�2iq2i Cone.Ui /. This proves (1). �
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3.7. Improving the statement of boundedness. Sections are §3.7 and §3.8 can

be skipped without interrupting the logical flow of the paper.

Theorem 3.45. Let .i1; : : : ; in/ be any sequence obtained from .1; 2; : : : ; n/ by

removing some indices k for which Uk 2 END.Pn/ is nilpotent up to homotopy.

Then Pn.i1; : : : ; in/ is homotopy equivalent to a bounded complex.

The key observation in the proof of this theorem is the following:

Lemma 3.46. For any chain complex C 2 Kom.n/ and any closed morphism

f 2 END.C /, the mapping cone Cone.f m/ can be expressed as a total complex

of a bicomplex:

Cone.f m/ ' Tot.Cone.f / �! �Cone.f / �! � � � �! �m Cone.f //:

Proof. Observe

Cone.f m/ ' Tot

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

t�1�C C

t�1�2C �C

:::
:::

t�1�kC �k�1C

 

!
f

 
!

� Id
 

!
f

 

!

� Id

 

!
� Id

 

!
f

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; (3.47)

where � D tdegh.f /qdegq.f / is the degree shift necessary in order to have a degree

.1; 0/ differential. We have written Tot to emphasize that the right-hand side above

is the direct sum of shifted copies of C , whose total differential is is the sum all

of the indicated morphisms together with the differential on each copy of C . The

homotopy equivalence comes from canceling the isomorphism using Gaussian

elimination (Proposition 5.10). �

Proof of Theorem 3.45. By Theorem 3.44 we can assume that the indices ij are

distinct, and ordered as we please. Throughout, we write C ' bounded when-

ever C is homotopy equivalent to a bounded chain complex. By Theorem 3.21, we

know that Pn.1; 2; : : : ; n/ ' bounded. We must show that the indices correspond-

ing to nilpotent ŒUk �’s can be omitted. Assume Pn.k; i1; : : : ; ir/ ' bounded, and

Uk 2 END.Pn/ satisfies Um
k
' 0. We will show that Pn.i1; : : : ; ir/ ' bounded.
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By construction, Pn.k; i1; : : : ; in/ ' Cone.Uk/ ˝ Pn.i1; : : : ; in/ which is

' bounded by hypothesis. By projector absorbing, we have Pn.i1; : : : ; in/ '

Pn ˝ Pn.i1; : : : ; ir/. The action of Uk on Pn gives a closed morphism f D

Uk ˝ Id 2 END.Pn ˝ Pn.i1; : : : ; ir//. Observe that

(1) Cone.f / D Cone.Uk/˝ Pn.i1; : : : ; ir/ ' bounded;

(2) f m ' 0 by hypothesis, so we have that Cone.f m/ splits as two copies of

Pn ˝ Pn.i1; : : : ; ir/, with degree shifts;

(3) by Lemma 3.46, Cone.f m/ is homotopy equivalent to a complex built out of

finitely many copies of Cone.f /;

(4) since Cone.f / ' bounded (by item (1)), it follows that Cone.f m/ '

bounded.

Comparing items (2) and (4), the only possibility is thatPn.i1; : : : ; ir/ ' bounded.

This completes the proof. �

The converse of Theorem 3.45 is also true, though we will not prove it. Thus,

Example 3.41 shows that the action of U2 on P3 is nilpotent up to homotopy. In

general we have:

Conjecture 3.48. For each 1 � k � n, let U
.n/

k
2 END.Pn/ denote the map

from Definition 3.23. Then ŒU
.n/

k
� is nilpotent if and only if k � .n C 1/=2.

Correspondingly, Pn.i1; : : : ; ir/ ' bounded if and only if ¹i1; : : : ; irº contains

each k with .nC 1/=2 < k � n.

3.8. Relation with torus braids. It is well-known that categorified idempotents

are related to infinite torus braids [23, 21, 2]. It turns out that our quasi-idempotent

complexes Qn are also related to torus braids.

Recall the chain complex appearing in the unoriented Bar-Natan–Khovanov

skein relation:

J K WD q �! :

We will usually omit the braces; all of our pictures should be interpreted as objects

of the appropriate Kom.n/.

Remark 3.49. The complex which we associate to the unoriented crossing differs

from the complexes (4.1) and (4.2) up to an overal degree shift.
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Denote Pn�1 graphically by a white box
. . .

. . .

with n � 1 strands attached to

the top and bottom. By expanding crossings and contracting a large contractible

summand, one can show that . . .

. . .

. . .

is homotopy equivalent to a convolution of a

truncation of the homotopy chain complex (3.6):

. . .

. . .

. . .

'
�

q2n�1

. . .

. . .

�! � � � �! qnC1

. . .

. . .

�! qn�1

. . .

. . .

�! � � � �! q
. . .

. . .

�!
. . .

. . .

�

:

(3.50)

Recall the partial trace functor T WTLn ! TLn�1. By contracting terms of the form
. . .

. . .

. . .

. . .

and delooping (Lemma 3.31) we see that

. . .

. . .

. . .

. . .

D T
�

. . .

. . .

. . . �

'
�

t2�2nq2n�1
. . .

. . . ˇ
�! q�1

. . .

. . .

�

:

Examining degrees, we see thatˇ is a bidegree .3�2n; 2n/ element of END.Pn�1/.

The condition that the above is a chain complexes implies that ˇ is a cycle, which

by Corollary 3.35 we know must be a boundary. It follows that:

Proposition 3.51. Let
. . .

. . .

D Pn�1 2 Kom.n � 1/ denote a Cooper–Krushkal

projector and denote the two-term complex defined at the beginning of this

section. Then

q
. . .

. . .

. . .

. . .

'
. . .

. . .

˚ t2�2nq2n
. . .

. . .

:

This result can be used to give an alternate construction of symmetric projec-

tors:

Proposition 3.52. There is a chain map

�nW t
2�2nq2n

. . .

. . .

�! . . .

. . .

. . .

such that Cone.�n/ 2 Kom.n/ is homotopy equivalent to a symmetric projector,

where

. . .

. . .

D Pn�1:



A polynomial action on colored sl2 link homology 51

Proof. Theorem 2.31 implies that

HOM
�

t2�2nq2n
. . .

. . .

; . . .

. . .

. . . �

Š t2n�2q1�2n HOM
�

. . .

. . .

;
. . .

. . .

. . .

. . . �

' .1C t2n�2q�2n/END
�

. . .

. . .

�

:

Taking the degree .0; 0/ homology groups gives

Ext0;0
�

t2�2nq2n
. . .

. . .

; . . .

. . .

. . . �

Š Ext0;0.Pn�1; Pn�1/˚ Ext2�2n;2n.Pn�1; Pn�1/

Š Z˚ 0:

Let �n denote a generator of the Ext group on the left above. We leave it to the

reader that Cone.�n/ is equivalent to a symmetric projector (compare with (3.50)).

�

This result can be used to give an independent proof that the Cooper–Krushkal

projectors are limits of powers of the full twist, as in [23]. Moreover, composing

the map �n with Pn gives a description of the map Un from Definition 3.23 as the

composition

t2�2nq2n
. . .

. . .

'
�! t2�2nq2n

. . .

. . .

. . . �n˝Id
����!

. . .

. . .

. . .

. . .

'
�!

. . .

. . .

:

4. Local and quasi-local colored sl2 link homology

In this section we show that the action of ZŒu1; : : : ; un� on Pn induces a well-

defined action on the colored Khovanov homology due to Cooper and Krushkal

[4]. We establish properties of the symmetric projectors Qn and show that they

can be used to define a new homology theory, in which they play a role analogous

to Pn. We use the adjective quasi-local to mean that the link invariants which we

construct can be defined for tangles, but they respect gluing of tangles only up to

taking direct sums. Another way of saying this is that we construct an invariant of

pairs .T; X/where T is a tangle andX � T is a finite collection of marked points.

There is a mild penalty for merging two marked points (see Proposition 4.7).
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4.1. A new family of link homologies. Recall the complexes associated to cross-

ings in Khovanov homology:

r z
WD

�

0 �! q2 �! q �! 0
�

; (4.1)

r z
WD

�

0 �! q�1 �! q�2 �! 0
�

; (4.2)

where we have underlined the terms in homological degree zero. Notice that the

positive and negative crossings differ only in an overall degree shift.

Definition 4.3 (bracket complex). Fix as initial data a family K D ¹Kn 2

Kom�.n/ j n D 0; 1; 2; : : :º of complexes. Let D � D2 be an oriented tangle

diagram whose components are labeled with non-negative integers, called the

colors. Assume D is equipped with some marked points ¹viº away from the

crossings, with at least one on each component of the underlying tangle. We

will define a chain complex JDIKK over the appropriate Bar-Natan’s category as

follows. Obtain a new diagram by replacing an n-colored component by n-parallel

copies of itself, with alternating orientations:

s

n m

{
WD

u
wv

. .
 .

. .
 .

. .
 .

. .
 .

n m

}
�~ :

To each marked point we insert a labelled white box in a corresponding location

in the cabled diagram t
n IK

|
D

s

. . .

. . .

Kn

{
:

Now, by taking the planar composition of oriented crossings and Kn’s, we obtain

an object JDIKK of some Kom�.N / (recall that gluing of diagrams in the plane

induces multilinear functors on Bar-Natan’s categories TLn; this categorical pla-

nar algebra structure is called a canopoly in [1]). Strictly speaking, this planar

composition requires an ordering on the set of crossings and marked points ofD,

but any two choices give canonically isomorphic complexes.

In this paper we consider only the case where K is a collection of quasi-

projectors (Definition 3.42). That is, K D ¹Pn.in/ j n D 1; 2; : : :º for some

sequences in. In this case the chain homotopy type of JDIKK is an invariant of

the colored, framed, oriented, marked tangle represented byD. We will prove this

in steps, by establising a number of local relations that JDIKK satisfies. Below,

K D ¹K1; K2; : : :º denotes a fixed family of quasi-projectors.
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Proposition 4.4. Away from the marked points, the bracket complex is invariant

under the framed, colored Reidemeister moves

t
n

|
'

s
n

{
'

t
n

|
;

s
n m

{
'

s
nm

{
;

s
n

m
k

{
'

s

n

m
k

{

with arbitrary orientations.

Proof. This follows from repeated use of the invariance of the usual Khovanov

tangle invariant under the Reidemeister moves. �

Proposition 4.5. The dependence of JDIKK on framing is given by

u
wv n IK

}
�~ ' Gn

t
n IK

|
;

u
wv n IK

}
�~ ' G�1

n

t
n IK

|
;

where Gn D tn
2=2q�.n2C2n/=2 for n even and Gn D t .n

2�1/=2q�.n2C2n�3/=2 for n

odd.

Proof. Let Twn and Tw�1
n denote the braids corresponding to the right-handed

(respectively, left-handed) full twist on n strands with alternating orientations.

We must check that JTw˙
n K ˝ Kn ' G˙1

n .Kn/, where Gn is the stated grading

shift functor. By Reidemeister invariance of J�K, we have JTwnK˝ JTw�1
n K ' 1n.

Thus, either of these equivalences implies the other.

Note that Twn is the n-cycle

C D

composed with itself n times. This is a pure braid with n.n�1/ crossings. Once we

give Twn the alternating orientations “up, down, up, : : :, ” the number of positive
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and negative crossings in Twn is

mC.n/ D

8

ˆ
<̂

ˆ̂
:

1

2
.n2 � 2n/ if n is even,

1

2
.n2 � 2nC 1/ if n is odd,

m�.n/ D

8

ˆ
<̂

ˆ̂
:

1

2
n2 if n is even,

1

2
.n2 � 1/ if n is odd.

Define complexes

XC WD
r z

; X� WD
r z

; X˙
i WD 1i�1 tX

˙ t 1n�i�1

as in (4.1) and (4.2). Observe that JTwnK 2 Kom.n/ is a tensor product of mC.n/

complexes of the form XC
i and m�.n/ complexes of the form X�

i , for various i .

Since Kn kills turnbacks, we see directly from the definitions of the crossing X˙
i

that

XC
i ˝Kn ' qKn; X�

i ˝K ' tq
�2Kn:

It follows that Twn˝Kn ' t
m�.n/qmC.n/�2m�.n/Kn. This proves the proposition,

given our formulas for m˙.n/. �

Proposition 4.6. If D and D0 are identical except for the choice of orientation,

then JDIKK and JDIKK are homotopy equivalent up to an overall degree shift.

Proof. First, note that the complexes associated to positive (4.1) and negative

crossings (4.2) differ only up to an overall degree shift, so the proposition holds

if D has no marked points. If D has marked points, then a change of orientation

has the local effect of replacing some complexes Kn by their rotated versions:

t
n IK

|
D

s

. . .

. . .

Kn

{
;

t
n IK

|
D

u
wv

. . .

. . .

. . .

. . .

Kn

}
�~ :

Let us prove that Kn is equivalent to its rotation. It will follow that a change of

orientation preserves JDIKK up to homotopy equivalence and a well-understood

overall degree shift.
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Let r WKom.n/ ! Kom.n/ be the covariant functor given by rotation by �

radians. Note that r2 is isomorphic to the identity functor, since isotopic tangles

give isomorphic objects in TLn. Now, if Pn 2 Kom.n/ is a Cooper–Krushkal

projector, then so is r.Pn/. So r.Pn/ ' Pn by uniqueness of Cooper–Krushkal

projectors. This completes the proof in case i D ¿. Thus, we may assume

i D .i1; : : : ; ir/ is non-empty. In this case, compute

r.Pn.i1; : : : ; ir// D r.Pn.i1/˝ � � � ˝ Pn.ir // Š r.Pn.ir //˝ � � � ˝ r.Pn.i1//;

where we have used the graphically obvious fact that r.A˝ B/ Š r.B/˝ r.A/.

The Pn.ij / commute up to homotopy by Theorem 3.44, so it suffices to show

that r.Pn.i// ' Pn.i/ for each i D 1; : : : ; n. That is to say, suppose ŒUi � 2

Ext2�2i;2i .Pn; Pn/ Š Z is a generator. We must show that r.Cone.Ui // '

Cone.Ui /.

Note that r is an automorphism of categories, and commutes with grading

shifts. It follows that Œr.Ui /� 2 Ext2�2i;2i .r.Pn/; r.Pn// is a generator. Corol-

lary 3.40 now says Cone.Ui / ' Cone.r.Ui// ' .Qi t 1n�i /˝ Pn. On the other

hand, since r is a linear functor, it commutes with mapping cones, and we have

r.Cone.Ui // Š Cone.r.Ui // ' Cone.Ui /;

as desired. This completes the proof. �

In the following, we will regard any Laurent polynomial f .q; t / 2 ZŒq˙1; t˙1�

as a functor Kom.n/ ! Kom.n/ which sends any A 2 Kom.n/ to a finite direct

sum of copies of A with degree shifts given by the terms of f .q; t /.

Proposition 4.7. If Kn D Pn.i1; : : : ; ir/, then

t
n IK

|
Š f .q; t /

t
n IK

|

where f .q; t / D
Qr
jD1.1C t

1�2ij q2ij /.

Proof. We must show that Pn.i/
˝2 ' f .q; t /Pn.i/, where f .q; t / is as in the

hypotheses. In case i D ¿, this reduces to idempotency of Pn. So assume that

i D .i1; : : : ; ir/ is non-empty. Recall that Pn.i1; : : : ; ir/ D Pn.i1/˝ � � � ˝ Pn.ir /,

and the Pn.ij / commute up to equivalence by Theorem 3.44. Thus, it suffices to

assume that r D 1. Quasi-idempotency of Pn.i/ D Cone.Ui/ was proven in the

proof of Theorem 3.44. �
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We have our final local relation:

Proposition 4.8. Marked points can be slid past crossings:

s

n m
IK

{
'

s

n m
IK

{
;

s

n m
IK

{
'

s

n m
IK

{

and similarly for the negative crossing.

We will postpone the proof of this proposition until §4.2. Granting this, we

obtain the following:

Theorem 4.9. Let K D ¹Pn.in/ j n D 1; 2; : : :º be a family of quasi-projectors.

The chain homotopy type of JDIKK is an invariant of the colored, framed, ori-

ented, marked tangle represented by D up to framed isotopy. This invariant sat-

isfies the following properties.

(1) A change of framing or orientation affects JDIKK only up to an overall degree

shift.

(2) SupposeD andD0 are identical, except thatD0 has 1 fewer marked point than

D, on a component colored by n. Then JDIKK is chain homotopy equivalent

to a direct sum of copies of JD0IKK with degree shifts, depending only on n.

(3) For special choices of K (not depending on D), JDIKK is homotopy equiv-

alent to a bounded complex.

See Theorem 3.45 (respectively Conjecture 3.48) what we know (respectively

expect) to be true about boundedness of the complexes Pn.i/.

4.2. Sliding quasi-idempotents past crossings. This section is dedicated to the

proof of Proposition 4.8.

It will be useful to set up some notation, which we will use throughout the rest

of this section. Fix an integer n � 1. For each 1 � k � n, let

Uk W t
2�2kq2kPn �! Pn

represent a fixed generator of Ext2�2k;2k.Pn; Pn/ Š Z. Xn WD J
. . .

. . . K 2
Kom.nC1/ in which the “under” strands have been given alternating orientations.

Define a bilinear functor F.A; B/ WD .A t 11/˝Xn ˝ .11 ˝ B/. That is to say,

F.A:B/ D

u
wv

. . .

. . .

. . .

. . .

A

B

IK

}
�~ :
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Lemma 4.10 (sliding projectors past crossings). Let .Pn; �/ be a Cooper–Krushkal

projector, and suppose K 2 Kom�.n/ kills turnbacks. Then

F.IdK ; �/WF.K; 1n/ �! F.K; Pn/

is a homotopy equivalence. Similarly, F.�; IdK/ is a homotopy equivalence.

In case K D Pn, we recover the fact that projectors slide past crossings:

F.Pn; 1n/ ' F.Pn; Pn/ ' F.1n; Pn/:

Proof. We will prove only the first statement. The proof of the second is similar.

It is a standard fact in homotopy theory that a chain map f is a homotopy

equivalence if and only if Cone.f / is contractible. Observe:

Cone.F.IdK ; �// Š F.K;Cone.�//

by linearity of the functor F.K;�/. We must show that this latter complex is

contractible.

By invariance of the Khovanov tangle invariant under the Reidemeister II

move, we have F.K; eiC1/ ' F.K ˝ ei ; 1n/ for each 1 � i � n � 1, where

ei denotes the Temperley–Lieb “cup-cap” generator. IfK kill turnbacks, then this

implies that F.K; eiC1/ ' 0 for each 1 � i � n � 1. An argument similar to the

proof of Proposition 2.23 now implies that F.K;Cone.�// ' 0, as desired. �

Lemma 4.11. There exist homotopy equivalences ˆL; ˆRWEND.F.Pn; Pn// '

END.Pn/ ˝ END.11/ such that ˆL.f; IdPn
/ ' f ˝ Id1 ' ˆR.IdPn

; f / for all

closed morphisms f 2 END.Pn/.

Proof. Let �WF.Id; �/WF.Pn; 1n/ ' F.Pn; Pn/ denote the homotopy equivalence

from Lemma 4.10, and let ��1 denote a homotopy inverse. Note that

� ı F.f; IdPn
/ D F.Id; �/ ı F.f; Id/ D F.f; Id/ ı F.Id; �/ D F.f; Id1n

/ ı �

for all f 2 END.Pn/. Conjugating with � gives a homotopy equivalence

˛WEND.F.Pn; Pn//
'
�! END.F.Pn; 1n//

which satisfies

˛.F.f; IdPn
// WD � ı F.f; IdPn

/ ı ��1 D F.f; Id1n
/ ı � ı ��1 ' F.f; Id1n

/

for all closed morphisms f 2 END.Pn/.
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Now, by definition, F.Pn; 1n/ D .Pn t 1/ ˝ Xn, where Xn D J
. . .

. . . K with

some orientations. There is an inverse complex X�1
n with Xn ˝ X

�1
n ' 1nC1.

Using this inverse complex we can define a homotopy equivalence

ˇWEND.F.Pn; 1n// �! END.Pn t 1/

as follows. Let  WXn ˝ X
�1
n ! 1nC1 denote a fixed homotopy equivalence and

 �1 a homotopy inverse. Now, we may defineˇ by commutativity of the following

square, for each g 2 END.F.Pn; 1n// D END..Pn t 1/˝Xn/:

.Pn t 1/˝Xn ˝X
�1
n .Pn t 1/˝Xn ˝X

�1
n

.Pn t 1/˝ 1n .Pn t 1/˝ 1n

 

!
g˝Id

X�1
n

 

! IdPnt1 ˝ �1

 

! IdPnt1 ˝ 

 

!
ˇ.g/˝Id1n

It is easy to see that ˇ.F.f; Id1n
// ' f t Id1 for all closed morphisms f 2

END.Pn/.

Finally, there is an isomorphism 
 WEND.Pn t 1/ Š END.Pn/ ˝ END.11/

uniquely characterized by 
�1.f˝g/ D f tg. In particular, 
.f tId1/ D f˝Id1.

The composition ˆL WD 
 ı ˇ ı ˛ is a homotopy equivalence

ˆLWEND.F.Pn; Pn// ' END.Pn/˝ END.11/

such that ˆL.f; Id/ ' f ˝ Id1 for all closed morphisms f 2 END.Pn/. This

constructsˆL as in the statement. A similar argument shows that there is aˆR as

in the statement as well. This completes the proof. �

Proposition 4.12. For each 1 � k � n, we have F.Uk ; IdPn
/ ' ˙F.IdPn

; Uk/.

Graphically this is u
wv

. . .

. . .

. . .

. . .

IdPn

Uk

}
�~ ' ˙

u
wv

. . .

. . .

. . .

. . .

IdPn

Uk

}
�~ :

Each is a closed element of END.F.Pn; Pn//.

Proof. If k D 1, the statement reduces to the well known fact that ' � .

So assume that 1 < k � n.

Suppose 1 < k � n. Consider the homotopy equivalences

ˆL; ˆRWEND.F.Pn; Pn// �! END.Pn/˝ END.11/
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from Lemma 4.11. We can compute the degree .2 � 2k; 2k/ homology groups of

these complexes as follows. Recall that END.11/ Š Z ˚ q2Z (generated by the

identity and the dotted identity). Then, by Corollary 3.35, the degree .2� 2k; 2k/

homology group of END.Pn/˝ END.11/ is isomorphic to

Ext2�2k;2k.Pn; Pn/˚ Ext2�2k;�2C2k.Pn; Pn/ Š Z˚ 0

generated by the class of Uk ˝ Id1. Since an isomorphism must send gener-

ators to generators, it follows that the degree .2 � 2k; 2k/ homology group of

END.F.Pn; Pn// is isomorphic to Z, generated by

ŒF.Uk ; IdPn
/� D ˆ�1

L .ŒUk ˝ Id1�/:

This group is also generated by ŒF.IdPn
; Uk/� D ˆR.ŒUk ˝ Id1�/. Since any two

generators of Z coincide up to sign, we must have ŒF.Id; Uk/� D ˙ŒF.Uk ; Id/�.

This completes the proof. �

We are now ready to prove Proposition 4.8.

Proof of Proposition 4.8. We will prove that Pn.i/ can be slid under crossings.

A similar argument will show that Pn.i/ can be slid over crossings. We must

show that F.Pn.i/; 1n/ ' F.1n; Pn.i// for each sequence i 2 ¹1; : : : ; nºr . If i is

empty, then Pn.i/ D Pn, and the result holds by Lemma 4.10 and the comments

following. So assume i D .i1; : : : ; ir/ is non-empty.

By definition, Pn.i/ D Cone.Ui1/ ˝ � � � ˝ Cone.Uir /, where Uk is as in

Definition 3.23. So it suffices to show that F.Cone.Uk/; 1n/ ' F.1n;Cone.Uk//.

By Proposition 4.12, we have F.Uk ; IdPn
/ ' ˙F.IdPn

; Uk/. Taking mapping

cones, we have

F.Cone.Uk/; Pn/ Š F.Pn;Cone.Uk//:

Since Cone.Uk/ kills turnbacks, Lemma 4.10 says that the LHS above is equivalent

to F.Cone.Uk/; 1n/, and the RHS is equivalent to F.1n;Cone.Uk//. Therefore,

F.Cone.Uk/; 1n/ is homotopy equivalent to F.1n;Cone.Uk/. This completes the

proof. �

4.3. Connection to Cooper–Krushkal homology. Let K D ¹K1; K2; : : :º be

a collection of quasi-projectors (Definition 3.42). If D is a colored, framed,

oriented, marked link diagram, then JDIKK is an object of Kom�.0/. In order

to define homology, we must first apply the functor HOM.¿;�/, (called the

tautological TQFT in [1]), which lands in the category of complexes of graded

abelian groups.
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Definition 4.13. Suppose L � R3 is a colored, framed, oriented link, and let

K be a collection of quasi-projectors. Let Hsl2
.LIK/ denote the homology of

HOM.¿; JDIKK/, whereD is a diagram forLwith precisely one marked point on

each component. The link invariant L 7! Hsl2
.LIK/ takes values in isomophism

classes of bigraded abelian groups.

Observation 4.14. In caseP D ¹P1; P2; : : :º is the collection of Cooper–Krushkal

projectors, the complex which computes Hsl2
.LIP/ is dual to a complex which

computes the homology theory defined in [4], since our Pn is dual to the pro-

jectors originally constructed by Cooper–Krushkal. Thus, a universal coefficient

theorem relates our homology with theirs. Nonetheless, we continue to refer to

our homology Hsl2
.LIP/ as Cooper–Krushkal homology.

The purpose of this section is to show that the action of ZŒu1; : : : ; un� on Pn

descends to an action on Cooper–Krushkal homology, and that this homology is

finitely generated over a tensor product of such rings. That is to say, we show

that Cooper–Krushkal can be lifted to an invariant taking values in isomorphism

classes of finitely generated modules over a polynomial ring.

Two marked diagrams represent isotopic links if they are related by a sequence

of Reidemeister moves (away from the crossings), merging and splitting of marked

points, and sliding marked points past crossings. We must show that the action of

ZŒu1; : : : ; un� commutes with each of these equivalences.

Proposition 4.15. Let UkW t
2�2kq2kPn ! Pn be as in Definition 3.23. The

following equivalences are unique up to homotopy and sign, and each commutes

with the action of Uk up to homotopy and sign:

. . .

. . .

. . .

.1/
'

. . .

. . .

. . .

. . . .2/
'

. . .

. . .

. . .

. . .

. . . .3/
'

. . .

. . .

. . .

. . .

. . .

. . . .4/
'

. . .

. . .

. . .

;

where

. . .

. . .

D Pn:

Proof. For the first statement one can show that the homology groups HOM0;0

are all isomorphic to Z using Theorem 2.31 and the fact that Ext0;0.Pn; Pn/ Š Z

(Corollary 3.35). This implies that each homotopy equivalence is unique up to

homotopy and sign.

Proof of (1). Consider the map ‰WEND.Pn ˝ Pn/ ! END.Pn/ given by

conjugating by a canonical equivalence �WPn ˝ Pn ! Pn . By Lemma 3.43,

we have ‰.f ˝ Id/ ' f for all closed morphisms f 2 END.Pn/. In particular
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�ı.f ˝ Id/ ' f ı� for any closed morphism f 2 END.Pn/. A similar argument

shows that � ı .Id˝f / ' f for all closed morphisms f 2 END.Pn/. Taking

f D Uk gives the result for equivalence (1).

Proof of (2). Let r.�/WTLn! TLn denote the covariant functor which rotates

diagrams by 180 degrees. Then we have an equivalence �W r.Pn/ ' Pn by

uniqueness of Cooper–Krushkal projectors. Conjugating by this equivalence gives

an isomorphism Ext.r.Pn// ' Ext.Pn/. Note that Uk and � ı r.Uk/ ı �
�1 each

represent generators of an Ext group which is isomorphic to Z, by Corollary 3.35.

It must be that � ı r.Uk/ ı �
�1 ' ˙Uk , hence � ı r.Uk/ ' ˙Uk ı �. That is to

say, � commutes with the action of Uk up to homotopy and sign.

Proof of (3). We have the following equivalences

. . .

. . .

. . .

'

. . .

. . .

. . .

. . .

'
. . .

. . .

. . .

. . .

D
. . .

. . .

. . .

. . .

'

. . .

. . .

. . .

. . .

'
. . .

. . .

. . .

:

Each complex above is endowed with a chain map Uk acting on the projector

marked with a �. The first and last equivalences commute with the maps Uk up

to homotopy and sign by statement (1) of the theorem. The second and fourth

maps honestly commute with Uk since distant maps commute. The map in the

middle commutes with Uk up to homotopy and sign by Proposition 4.12. Thus the

composition of these equivalences commutes with Uk up to homotopy and sign.

Proof of (4) is similar. �

We now have our main result on Cooper–Krushkal homology:

Theorem 4.16. Let L � R3 be a framed, oriented link whose components are

colored n1; : : : ; nr . Let R.L/ denote the tensor product

R.L/ WD

r
O

iD1

ZŒu1; : : : ; uni
�

graded so that deg.uk/ D .2 � 2k; 2k/. Then the Cooper–Krushkal homology

Hsl2
.LIP/ is a well-defined isomorphism class of finitely generated, bigraded R-

modules.

Proof. We will actually show that the Cooper–Krushkal homology is finitely

generated over a tensor product R of rings ZŒu2; : : : ; un�, as n ranges over the

set of colors with multiplicity.

Let P D ¹P1; P2; : : :º and K D ¹K1; K2; : : :º denote the collection of projec-

tors, respectively bounded complexes, from Theorem 3.21. By definition, JDIPK
is the planar composition of a bounded complex (Khovanov complex of a tangle),
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together with the projectors Pi1 ; : : : ; Pir . Multilinearity of planar composition,

together with the construction of Pn in terms of Kn implies that

JDIPK Š R˝ JDIKK

with differential

1˝ d C
X

f

f ˝ @f

where the sum is over non-constant monomials f 2 R and the @f 2 END.JDIPK/
are some elements, all but finitely many of which are equal to zero. Applying the

functor HOM.¿;�/ gives

CP.D/ D R ˝Z CK.D/

with some R-equivariant differential. We have abbreviated

CP.D/ WD HOM.¿; JDIPK/

and similarly for CK.D/. Since each Kn is bounded, it follows that CK.D/ is a

finitely generated R-module. Since polynomial rings are Noetherian, this implies

that the homology of CP.D/ is finitely generated over R also. Thus, Hsl2
.DIP/

is finitely generated over R.

It remains to show that different diagramsD produce isomorphic bigraded R-

modules Hsl2
.DIP/. To see this, first note that Reidemeister equivalences occur

away from the crossings, and induce isomorphisms in homology which commute

with the R-action.

The only other equivalence which we must account for is the sliding of marked

points over or under crossings. To this end, supposeD differs fromD0 by an equiv-

alence from Proposition 4.8. Then the homotopy equivalence CP.D/ ' CP.D
0/

commutes with theR actions up to homotopy and sign, by Proposition 4.15. Thus,

Hsl2
.DIP/ is well-defined up to isomorphism of R-modules, and also replacing

some of the polynomial generators by their negatives.

At this point, we appeal to the fact that Hsl2
.DIP/ is the homology of a

complex which is free as an R-module. For a free ZŒx�-module M , one can

construct an explicit Z-module isomorphism �WM ! M such that �.xm/ D

�x�.m/. In the same way, any two R-module structures on CP.D/ which differ

by a sign on some generators are isomorphic. Thus, Hsl2
.DIP/ does not depend

on the choice of D up to isomorphism of bigraded R-modules. This completes

the proof. �
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Remark 4.17. Obviously if some Uk 2 END.Pn/ is nilpotent up to homotopy,

then the generator uk can be omitted from the ring ZŒu1; : : : ; un�, while retaining

finite generation. For example, U 21 D 0, so this variable is not needed for finite

generation. Also, Example 3.41 can be used to show that U2 acting on P3 is

nilpotent up to homotopy, so this variable can be omitted. See Conjecture 3.48

for what we expect to be true in general.

Theorem 4.18. Fix a family K D ¹K1; K2; : : : ; º of quasi-projectors, and let

L � S3 be a colored, framed, oriented link. There is a polynomial ringR.L/ and a

spectral sequence of bigradedR.L/-modulesR.L/˝ZHsl2
.LIK/) Hsl2

.LIP/.

Proof. LetD be a diagram representing L, and assumeD is marked with exactly

one marked point on each component, away from the crossings. For each n,

write Kn D Pn.i1; : : : ; ir/ with 1 � i1 < : : : < ir � n, and define rings

Rn D ZŒu1; : : : ; ur �. Put R D Rn1
˝ � � � ˝ Rnk

, where n1; : : : ; nk are the colors

appearing on the components of L.

From the proof of Theorem 4.16, we see that there exist chain complexes

CK.D/ and CP.D/ of abelian groups such that

(1) the homology of CP.D/ and CK.D/ areHsl2
.LIP/ andHsl2

.LIK/, respec-

tively;

(2) CP.D/ D R˝CK.D/with anR-equivariant differential of the form 1˝dC
P

f f ˝ @f , where the sum is over nonconstant monomials f 2 R.

RegardR as being filtered by degree of polynomials. Then equipR˝CK.D/with

the tensor product filtration. The above says that CP.D/ is equal to R ˝ CK.D/

with an R-equivariant, filtered differential whose filtration preserving part is

precisely 1 ˝ d . Standard arguments produce a spectral sequence with E2 page

R ˝Hsl2
.LIK/ and E1 page the associated graded of Hsl2

.LIP/. �

5. Appendix: Convolutions and deformaton retracts

A category A is called Z-linear if (1) the morphism spaces are abelian groups

and (2) composition is bilinear. A Z-linear category A is called additive if, in

addition, (3) A is closed under finite direct sums (equivalently direct products).

For a Z-linear category, let Kom.A/ denote the category of possibly unbounded

chain complexes over A with differentials of degree C1, with morphisms given

by degree zero chain maps.

Let t WKom.A/! Kom.A/ denote the upward shift functor satisfying, .tC /kD

Ck�1 with differential �dC .
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5.1. Convolutions. SupposeA;B are chain complexes over an additive category

A, and f WB ! A is a chain map. The mapping cone on f is the chain complex

Cone.f /i D BiC1 ˚ Ai with differential

dCone.f / D

"

�dB 0

f dA

#

:

Note that, as graded objects Cone.f / D t�1B ˚A. Now, suppose that gWC ! B

is a chain map. This g extends to a chain map QgW t�1C ! Cone.f / if and only if

f ı g ' 0, in which case

Cone. Qg/ D t�2C ˚ t�1B ˚ A

with differential 2

6
6
4

dC 0 0

g �dB 0

�h f dA

3

7
7
5
;

where �h is the corresponding component of Qg. Iterated mapping cones of this

sort are called convolutions, and can be desribed as follows.

Definition 5.1. LetEi be chain complexes over an additive category and ˛i WEi !

EiC1 chain maps such that ˛iC1 ı ˛i ' 0 for all i 2 Z. Any such sequence will

be called a homotopy chain complex, and will be denoted as

E� D � � �
˛i�1
���! Ei

˛i
�! EiC1

˛iC1

���! � � � : (5.2)

A convolution of a homotopy chain complex E� is any chain complex which, as

a graded object equals
L

i2Z t
iEi and whose differential d satisfies the following

conditions: if dij 2 HOM1�iCj .Ej ; Ei / is the corresponding component of d ,

then

� di i D .�1/
idEi

,

� diC1;i D ˛i ,

� dij D 0 for i < j .

We will denote a convolution using parenthesized notation in which we write all

of the degree shifts explicitly:

M D
�

� � �
˛i�1
���! t iEi

˛i
�! t iC1EiC1

˛iC1

���! � � �
�

:

We have a dual notion, in which
L

is replaced by
Q

in the above definition. We

will refer to convolutions using
L

(respectively
Q

) as being of type I (respectively

type II).
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Example 5.3. A bicomplex is a special case of homotopy complex, in which the

“horizontal” chain maps ˛i WEi ! EiC1 satisfy ˛iC1 ı ˛i D 0. The total complex

of E� is an example of a convolution, and exists precisely when the direct sum
L

i2Z t
iEi exists in Kom.A/.

Even though most homotopy complexes are not bicomplexes, we will continue

to use the suggestive notation Tot.E�/ to denote a convolution ofE�. We warn the

reader that there may exist many convolutions of a given E�, or none at all. If the

infinite direct sumM WD
L

i2Z t
iEi exists in Kom.A/, then a convolution Tot.E�/

exists if and only if all of the Massey products [18] hŒ˛iCr �; Œ˛iCr�1�; : : : ; Œ˛i �i

vanish, where ˛i is regarded as a degree 1 cycle in the differential graded algebra

END.M/.

The notion of convolution is standard in the theory of triangulated categories,

where the term is used more generally to mean the following: if E� 2 Kom.T / is

a chain complex over a triangulated category, then a convolution Tot.E�/ 2 T is

an iterated mapping cone, which represents a “flattening” of E�; see [10].

We give a special name to the “convolution degree” of a map Tot.E�/ !

Tot.F�/:

Definition 5.4. Suppose M D Tot.E�/ and N D Tot.F�/ are convolutions. Say

that an element f 2 HOMA.M;N/ of M has length k if the component

fij 2 HOMA.Ej ; Fi /

vanishes unless i � j D k.

We can write any element f 2 HOMA.M;N/ in terms of its length k compo-

nents, f D
P

k2Z fk, where fk WD .fiCk;i /i 2
Q

i HOM.Ei ; FiCk/ is regarded

as an element of HOMA.M;N/ of length k. Let us say that f is a map of convo-

lutions if fk D 0 for k < 0. Suppose F� is bounded from above, i.e. Fi D 0 for

i � 0, and fk 2 HOM.M;N/ are any elements of length k, each of some fixed

homological degree r . Then any infinite sum f0C f1C � � � is finite on restriction

to each Ej , hence is a well-defined element of HOMA.M;N/ by the universal

property of direct sums.

Moreover, length is additive under composition of morphisms, so that if f D

f0 C f1 C � � � , g D g0 C g1 C � � � , and f ı g D .f ı g/0 C .f ı g/1 C � � �

are written in terms of length k components, then .f ı g/k D
P

iCjDk fi ı gj .

We have proven:
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Lemma 5.5. Let M and N be convolutions which are bounded above, fix r 2 Z,

and suppose we have elements fk 2 HOMr .M;N/ of length k, for each k 2 Z�0.

Then the series f D f0 C f1 C � � � is a well defined element of HOMr.M;N/. In

particular, if ˛ 2 END0.M/ has length k > 0, then IdM �˛ and IdC˛C˛2C� � �

are mutual inverses. �

If E� is a homotopy chain complex as in equation (5.2), then the differential

on a convolutionM D Tot.E�/ can be written in terms of its length k components

as

dM D �0 C�1 C � � �

where �k 2 END1.M/ has length k. In particular �0jEi
D .�1/idEi

and

�1jEi
D ˛i .

Below, we will absorb the explict grading shifts into the complexes Ei , so

that our convolutions will be
L

i Ei with lower triangular differential, rather than
L

i t
iEi .

Theorem 5.6 (Perturbing the differentials). Suppose we are given Ei 2 Kom.A/,

Ei D 0 for i � 0, and cycles ˛i 2 HOM1.Ei ; EiC1/ such that ˛iC1 ı ˛i ' 0

for all i . Suppose M D .� � �
˛i�1
�! Ei

˛i
�! EiC1

˛iC1

�! � � � / is a convolution of the

corresponding homotopy chain complex. Fix an integer k � 1 and assume there

are elements �i 2 HOM1.Ei ; EiCk/ such that

diCk;i � �i ' 0

for all i 2 Z, where diCk;i 2 HOM1.Ei ; EiCk/ is the component of dM . Then up

to isomorphism of convolutions, each diCk;i can be replaced by �i at the expense

of affecting only the length > k components of dM .

Proof. Fix an integer k � 1; we will perturb the length k component of dM .

Write the differential on M as � D �0 C �1 C �2 C � � � in terms of its

length l components, so that in particular �0jEi
D dEi

and �1jEi
D ˛i . Now,

fix an element H 2 END0.M/ of length k. By Lemma 5.5, the infinite sum

IdM CH C H
2 C � � � is a well defined element of END0.C /, and is a two sided

inverse for .IdM �H/. Conjugating the differential � by .IdM �H/ gives

�0 WD .IdM �H/ ı .�0 C�1 C�2 C � � � / ı .IdM CH CH
2 C � � � /

D d0 C�
0
1 C�

0
2 C � � � :

(5.7)
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Recall that length is additive under function composition and H has length k,

so �0
l
D �l for 0 � l < k and �0

k
D �k � �0H C H�0. This is to

say, a perturbation of the length k part of � up to homotopy is realized by the

isomorphism .IdM �H/W .M;�/
Š
! .M;�0/ of convolutions, where the length l

components of � and �0 agree for 0 � l < k. �

5.2. Deformation retracts. Here we recall the standard notion of (strong) defor-

mation retracts, which are a particular nice class of chain homotopy equivalences

which interact nicely with convolutions.

M N
 

!
h

 

!
�

 

!

�

Figure 2. The data .�; �; h/ of a deformation retract M ! N .

Definition 5.8. Let A be a Z-linear category, andM;N chain complexes over A.

A chain map � WM ! N is called a deformation retract if there exist a chain map

� WN !M and a homotopy h 2 END�1
A
.M/ such that

� h ı � D � ı h D 0;

� � ı � D IdN ;

� IdM �� ı � D dM ı hC h ı dM .

In this case we say .�; �; h/ give the data of the deformation retract.

Lemma 5.9. Suppose A;B 2 Kom.A/ and .�; �; h/ give the data of a strong

deformation retract A! B . Then

(1) IdA D � ı � C dA ı h C h ı dA is a decomposition of IdA into mutually

orthogonal idempotents;

(2) h may be assumed to satisfy h2 D 0.

Proof. The proof of (1) is straightforward. For part (2), put h0 D hdh. Then

� .h0/2 D .hdh/.hdh/ D h.dh/.hd/h D 0 since hd and dh are orthogonal;

� dh0 C h0d D d.hdh/ C .hdh/d D .dh/2 C .hd/2 D dh C hd D IdA���

since hd and dh are idempotent.

Thus, h0 has the desired properties. �
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Proposition 5.10 (Gaussian elimination). Suppose we have graded objects A D

.Ak/k2Z andB D .Bk/k2Z over an additive category A, and supposeC D A˚B

is a chain complex with differential

"

AdA AdB

BdA BdB

#

:

Suppose also that Bd
2
B D 0. If .B;BdB/ is a contractible chain complex, then

there is a deformation retract C ! A0 where A0 D A with differential d 0
A D

AdA �AdB ı h ı BdA, where h is a nulhomotopy for B which satisfies h2 D 0.

Proof. By hypotheses there is some nulhomotopy h 2 END1.B/, and by

Lemma 5.9 we may assume h2 D 0. The relevant maps are defined in the fol-

lowing diagram:

A
˚
B

A
 

!

h
0 0
0 h

i  

!
�DŒ Id �AdB ıh �

 

!

�D
h

Id
�hıBdA

i

It is straightforward to check that

(1) � and � are chain maps;

(2) � ı � D IdA, (3) IdA˚B D � ı � C
h

AdA AdB

BdA BdB

i

H CH
h

AdA AdB

BdA BdB

i

;

(3) � ıH D 0, (4) H ı � D 0.

That is, .�; �;H/ give the data of a strong deformation retract. �

We want to see how convolutions interact with deformation retracts. It is useful

to first make a definition:

Definition 5.11. If M is a convolution with differential d then the associated

graded complex is the complex gr.M/ D .M; d0/ where d0 is the length zero

part of d (Definition 5.4). In other words, the associated graded of

M D .� � � ! Ei ! EiC1 ! � � � /

is
L

i2ZEi .

Suppose we are given the data .�; �; h/ of a deformation retract M ! N ,

and that �; �; h respect the convolution filtration. Then the length zero parts

.�0; �0; h0/ give the data of a deformation retract gr.M/! gr.N /. Under a certain

finiteness assumption on M , the converse also holds.
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Theorem 5.12. SupposeM is a convolution with gr.M/ D
L

i Ei , and that each

Ei deformation retracts onto some Fi . If Ei D 0 for i � 0, then there is a

convolution N with gr.N / D
L

i Fi onto which M deformation retracts.

(1) The length 1 part of the differential on N is induced by the composition

Fi ' Ei
˛i
�! EiC1 ' FiC1, where ˛i is the component of dM .

(2) For each integer k, the length k components of the data .�; �; h/ of the retract

M ! N are zero for k < 0, and in general are polynomials in the �0; �0; h0,

and the components dl of dM . These polynomials are universal in the sense

that they do not depend on any of the initial data.

Before proving, we note that there are various extensions of this theorem:

Remark 5.13. One could allow generalized convolutions, in which the terms are

indexed by any partially ordered setX , rather than Z�0. If each x 2 X has finitely

many descendants, then the theorem holds as is. If instead each x 2 X has finitely

many ancestors, then the theorem holds provided we replace
L

with
Q

in the

definition of convolution. Here a descendant (resp. ancestor) of x 2 X is a y 2 X

such that x < y (resp. y < x).

Remark 5.14. Informally speaking if �0; �0; h0, and dM preserve some additional

structure on M , then N inherits a similar structure, and �; �; h; dN preserve this

structure. This is because the components of the latter morhisms are certain

polynomials evaluated on the components of the former. For example, supposeM

is a dg A-module for some dg-algebra A, and suppose �0; �0; h0 commute with

the A-action. Then N is a dg A-module, and the maps �; �; h are A-equivariant.

Proof. LetM;Ek, Fk be as in the hypotheses, and putN D
L

k Fk . We can write

the differential dM in terms of its length k components as dM D d0Cd1C� � � . By

hypothesis we have length zero maps �0 2 HOM0.M;N/, �0 2 HOM0.N;M/,

and h0 2 HOM�1.M;M/ such that

(i) IdN D �0 ı �0;

(ii) IdM ��0 ı �0 D d0 ı h0 C h0 ı d0;

(iii) �0 ı h0 D 0;

(iv) h0 ı �0 D 0.
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Put e WD �0 ı �0, and consider following statement, where k 2 N [ ¹1º:

Hyp.k/. There exist elements ˛l 2 END0.M/ of length l , for 1 � l < k such that

(a) each ˛l is a polynomial in h0; e; d0; d1; d2; : : :;

(b) the length l components of

� WD .IdM C˛k/ ı � � � ı .IdM C˛1/ ı dM ı .IdM C˛1/
�1 ı � � � ı .IdM C˛k/

�1

(5.15)

satisfy �0 D d0 and �l D e ı�l ı e for all 1 � l < k.

Let us assume that Hyp.1/ holds. Then define ˆ to be the infinite composition

ˆ WD � � � ı .IdM C˛2/ ı .IdM C˛1/;

which is a well defined series

ˆ D IdM Cˆ1 Cˆ2 C � � � :

By Lemma 5.5 ˆ and ˆ�1 are well defined elements of END0.M/. Put

� WD �0 ıˆ;

� WD ˆ�1 ı �0;

h D ˆ�1 ı h0 ıˆ;

dN D �0 ıˆ ı dM ıˆ
�1 ı �0:

An elementary calculation shows that .�; �; h/ give the data of a deformation

retract .M; dM / ! .N; dN /. All of the computations are immediate except for

the following:

dM ı hC h ı dM D dM ı .ˆ
�1 ı h0 ıˆ/C .ˆ

�1 ı h0 ıˆ/ ı dM

D ˆ�1 ı .� ı h0 C h0 ı�/ ıˆ

D ˆ�1 ı .d0 ı h0 C h0 ı d0/ ıˆ

D ˆ�1 ı .IdM ��0 ı �0/ ıˆ

D IdM �� ı �:

The first, second, and fifth equalities follow from the definitions. The fourth holds

since .�0; �0; h0/ are the data of a deformation retract .M; d0/! .N; �0ıd0ı�0/.



A polynomial action on colored sl2 link homology 71

Let us convince ourselves that the third equality holds. By statement (b) of

Hyp.1/ the conjugated differential

� WD ˆ ı dM ıˆ
�1

satisfies

� D d0 C�1 C�2 C � � �

with

�k D e ı�k ı e for all k � 1.

Since h0 ı e D 0 D e ı h0, we have h0 ı �k D 0 D �k ı h0 for all k � 1. The

length zero part of � is �0 D d0, hence h0 ı� D h0 ı d0, and � ı h0 D d0 ı h0.

The third equality above follows, and we have a deformation retract, as claimed.

Note also that the length k components of �; �; h, and dN are polynomials in

�0; �0; h0 and the dk since the same is true of IdM C˛k and .IdM C˛k/
�1. Thus,

we have proven the theorem, assuming that Hyp.1/ holds. The remainder of the

proof is taken care of by the following lemma. �

Lemma 5.16. The statement Hyp.1/ holds.

Proof. We will construct by induction on k � 1 a stable family of elements

¹˛1; : : : ; ˛k�1º for which Hyp.k/ holds. The base case k D 1 is vacuous. Assume

by induction that ¹˛1; : : : ; ˛k�1º satisfy Hyp.k/, and define

� WD d0 C�1 C�2 C � � �

to be the differential dM conjugated by
Q

k>l�1.IdM C˛l / as in equation (5.15).

By the induction hypothesis, the ˛l are polynomial in the h0; e; d0; d1; : : :, hence

so are the �l .

Taking the length k part of the equation �2 D 0 gives

d0 ı�k C�k ı d0 D �
X

i;j

�i ı�j (5.17)

where the sum on the right-hand side is over 1 � i; j < k such that i C j D k.

Now, by the induction hypothesis we have �l D e�le for 1 � l < k. Since

h0e D eh0 D 0, composing equation (5.17) on the left (resp. right) with h0 gives

h0 ı Œd0; �k� D 0 .resp. Œd0; �k� ı h0 D 0/: (5.18)
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Define

˛k WD h0 ı�k � e ı�k ı h0

Since �k is polynomial in h0; e; d0; d1; : : :, the same is true of ˛k . Compute

Œd0; ˛k � D Œd0; h0� ı�k � h0 ı Œd0; �k�� e ı Œd0; �k� ı h0 C e ı�k ı Œd0; h0�

D .IdM �e/ ı�k C e ı�k ı .IdM �e/

D �k � e�ke:

Here we have used that the super-commutator Œd0;�� satisfies the graded Leibniz

rule with respect to function composition, together with (5.18)) and the facts that

Œd0; h0� D IdM �e and Œd0; e� D 0. Therefore

�0 WD .IdM C˛k/ ı� ı .IdM �˛k C ˛
2
k � � � � / D d

0
0 C�

0
1 C�

0
2 C � � �

with �0
l
D �l for 1 � l < k and

�0
k D �k C ˛k ı d0 � d0 ı ˛k D e ı�k ı e:

This shows that ˛1; : : : ; ˛k, satisfy the conditions of Hyp.kC 1/. This completes

the inductive step and completes the proof. �

We conclude with a useful application of Theorem 5.12. Put a bigrading on

R D ZŒx1; : : : ; xr � by declaring that deg.xi / D .ai ; bi/. Let S � R denote the set

of monomials x
i1
1 � � �x

ir
r . For any K 2 Kom.n/, we put

R˝K WD
M

f 2S

f ˝K (5.19)

whenever this infinite direct sum exists in Kom.n/. Put a partial order on S : say

f � g if f divides g. We often consider complexes of the form

M D ZŒx1; : : : ; xr �˝K

with differential

1˝ dK C
X

f >1

f ˝ @f :

Such a complex can be regarded as a convolution with indexing set Zr�0, and

associated graded R ˝ K. Thus in good situations, a simplification of K up to

homotopy equivalence will produce a simplification of M .
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Observation 5.20. One must be careful when attempting to simplify complexes

as described above. For example, suppose C is some complex, and put

K WD Cone.IdC /:

There is a closed morphism @ 2 END1;0.K/ such that

C ' ZŒx�˝K with differential 1˝ dK C x ˝ @;

where x is an indeterminate of bidegree .0; 0/. Since K is the mapping cone on

an isomorphism, we haveK ' 0. On the other hand C was arbitrary, so the above

complex is certainly not always contractible.

Theorem 5.21. Let R D ZŒx1; : : : ; xr �, K, and M be as in the discussion

preceding Observation 5.20. Assume that the direct sum ZŒx1; : : : ; xr � ˝ K D
L

f f ˝K is isomorphic to the categorical direct product
Q

f f ˝K, then there

is a deformation retractM ! N , such that

(1) N D ZŒx1; : : : ; xr �˝ L with differential 1˝ dL C
P

f >1 f ˝ @
0
f

;

(2) the data of the deformation retract M ! N are equivariant with respect to

the ZŒx1; : : : ; xr �-action

Proof. Recall that S � R denotes the set of monomials x
i1
1 � � �x

ir
r , and order the

monomials by declaring that f � g if f divides g. By hypothesis,

R˝K D
M

f 2S

f ˝K Š
Y

f 2S

f ˝K: (5.22)

Now, suppose we have M D R ˝ K with differential 1 ˝ dK C
P

f >1 f ˝ @f
as in the hypotheses. This differential respects the partial ordering on the direct

summands (or factors) of (5.22), hence M can be regarded as a convolution over

the indexing set S . Note that the part of the differential onM which preserves the

S -degree, rather than raises it, is precisely 1˝ dK . Hence, the associated graded

complex is R ˝ K. Any monomial f 2 S is divisible by only finitely many

distinct monomials, hence we are in a situation to which Theorem 5.12 applies, by

Remark 5.13.

By hypothesis, we have the data .�; �; h/ of a deformation retract K ! L.

These give the R-equivariant data .1˝ �; 1˝ �; 1˝ h/ of a deformation retract

R˝K ! R˝L. Since R˝K is the associated graded part ofM , Theorem 5.12

gives a deformation retract ofM onto someS -indexed convolution with associated

graded partR˝L. The data of this deformation retract commute with theR action

by Remark 3.25, hence N D R ˝ L with some R-equivariant differential. The

only possibility is dN D 1 ˝ dL C
P

f >1 f ˝ @f for some @0
f
2 END.L/. This

completes the proof. �
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